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Abstract

Introduction. This article is devoted to the consideration of options for symmetrization of two-layer implicit iterative
methods for solving grid equations that arise when approximating boundary value problems for two-dimensional
elliptic equations. These equations are included in the formulation of many problems of hydrodynamics, hydrobiology
of aquatic systems, etc. Grid equations for these problems are characterized by a large number of unknowns — from
10%to 10'°, which leads to poor conditionality of the corresponding system of algebraic equations and, as a consequence,
to a significant increase in the number of iterations, necessary to achieve the specified accuracy. The article discusses
a method for reducing the number of iterations for relatively simple methods for solving grid equations, based on the
procedure of symmetrized traversal of the grid region.

Materials and Methods. The methods for solving grid equations discussed in the article are based on the procedure of
symmetrized traversal along the rows (or columns) of the grid area.

Results. Numerical experiments have been performed for a model problem — the Dirichlet difference problem for the
Poisson equation, which demonstrate a reduction in the number of iterations compared to the basic algorithms of these
methods.

Discussion and Conclusions. This work has practical significance. The developed software allows it to be used to solve
specific physical problems, including as an element of a software package.
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Hayunas cmamos

CuMMeTpH30BaHHBIC BADHAHTHI METO0B 3eiiiesisl M BepXHell pejlakcanun
pelieHusi AByMEePHBIX PA3HOCTHBIX 32124 JUIMNITHYECKOT0 THIIA

B.B. Cupopsixuna 3, JI.A. Contomaxa

JIoHCKOM rocyAapCTBeHHBIN TeXHUYECKUI yHUBepcuTeT, Poccuiickas ®enepanus, r. Poctos-Ha-/lony, . ['arapuna, 1
™ cvv9@mail.ru

AHHOTALUA

Beeoenue. Jlannasi craTbs NOCBSIIEHA PACCMOTPEHHIO BApHAHTOB CHMMETPH3AINH ABYXCIIOWHBIX HESBHBIX HTEPALMOH-
HBIX METOJIOB JUIS PEIICHHsI CETOYHBIX ypaBHEHHH, BO3HUKAIOIIMX IIPH alllIPOKCHMAIIMU KPaeBbIX 3aj1a4 JJIsl JBYMEPHBIX
ypaBHeHI/Iﬁ JJUIMIITUYCCKOI'O THIIA. ]IaHHI)Ie YpaBHCHUA BXOAAT B IMOCTAHOBKM MHOIUX 3aJdad TUAPOAWHAMUKH,
FI/I}Ip06I/IOJ'lOFI/II/I BOJHBIX CUCTEM U P. CeTounble YpPaBHCHUA JI4 JaHHBIX 3a/1a4 XapaKTECPUSYIOTCA OOJIBIINM KOJIMYECTBOM
Hen3BecTHBIX — OT 106 10 10'°, 4TO MPUBOAMT K TIIOX O 0OYCIIOBIEHHOCTH COOTBETCTBYIOIIEH CHCTEMBI alreOpanIecKux
YPaBHEHHH W, KaK CIEJICTBHE, K CYIIECTBCHHOMY POCTY 4YMCIIa MTEpaluii, HEOOXOAUMBIX IS JOCTHXCHUS 3aJlaHHON
TOYHOCTH. B cTaThe paccMOTpEeH METO/ CHIDKEHHUS YMCIla UTEPalid Ui OTHOCHTENFHO MPOCTBIX METOAOB PEIICHHMS
CETOYHBIX YpaBHEHUH (MeToaa 3eiisenst U BepXHEH penakcalun).

Mamepuansl u memoost. PaccMaTprBaeMble B CTAThe METO/IbI PEIICHHSI CETOUYHBIX ypaBHEHUN 0a3uPYIOTCS Ha TIPOIEAYPe
CUMMETPH30BaHHOTO 00X0/1a TI0 CTPOKaMH (MK CTOJIOIAMH) CETOYHOM 00J1acTH.

Pesynomamul uccnedosanus. BIIIOIHEHB! YUCIEHHBIE SKCTIEPUMEHTBI IJIs1 MOJENIBHON 3a/1a4d — PAa3HOCTHOM 3amadu
Hupuxne g ypasaeHus [Iyaccona, KOTOpbIe IEeMOHCTPUPYIOT COKpAIICHUE YK CIa HTEPALIU 110 CPABHEHHUIO ¢ 0a30BBIMHU
ITOPUTMAaMH JTaHHBIX METOJIOB.

Oécyscoenue u 3axniouenusn. JlanHas padoTa MMeET NPAKTHYECKYIO 3HAYMMOCTb. Pa3zpaboTaHHOE mporpamMMHOe
CPE/ICTBO TMO3BOJIET €ro MCIIOJIL30BaTh ISl PELICHUS KOHKPETHBIX (DM3MUYECKHX 337ady, B TOM YHUCIE KakK 3JIEMEHTa
MIPOrPaMMHOTO KOMILIEKCA.

KiroueBble cjioBa: IBYMEpHas 3a/1ada JJUIMITHYECKOTO THIA, UTEPAIIMOHHBIE METOMBI, PETaKCAllMOHHBIE METOJIBI,
METOJI TIOJTHOW peJaKCcalii, METO 3eHIeNs, METOI BEpXHEH pelaKcaluu

dunancupoBaHue. VccrienoBanue BHITOIHEHO 32 cyeT rpanTa Poccuiickoro Hayunoro gonma Ne 22-11-00295. https://
rscf.ru/project/22-11-00295

BaaropapHocTi. ABTOpPHI BBIpaXalOT Ty OOKYIO TPU3HATENEHOCTD U HCKPEHHIOO 0J1aroAapHOCTh YWICH-KOPPECTIOHICHTY
PAH, nokrtopy ¢u3nko-maremMaTHueckux Hayk, npodeccopy Anekcannpy MBanoBuuy CyxXHHOBY 3a 00CYyKAeHHE
AITOPUTMOB U PE3YJIbTAaTOB MUCCIIEIOBAHNS.

Jas uutupoBanus. Cunopskuaa B.B., Comomaxa J[.A. CHMMETpH30BaHHBIC BApHAHTHI METONOB 3€HIeNs 1 BepXHEH
penaKcaly penieHus] JBYMEPHBIX pa3sHOCTHBIX 3afad sumnrudeckoro tuma. Computational Mathematics and
Information Technologies. 2023;7(3):12—19. https://doi.org/10.23947/2587-8999-2023-7-3-12-19

Introduction. In numerical modeling of technical systems, physical phenomena and technological processes, as
a rule, a significant proportion of the total amount of computational work is the solution of systems of linear algebraic
equations (SLAE) that arise when the corresponding differential or integro-differential equations are discretized.
A special class is represented by systems of linear algebraic equations with symmetric positive definite matrices. Depending
on the proposed approach to constructing the next iterative approximation, several iterative methods for solving these
SLAE are distinguished [1-3]. Among them are the methods of Seidel and Successive OverRelaxation. The popularity
of these methods can be explained by their simplicity and wide popularity among researchers [4]. In this regard, there is
anatural interest in studying various variants of the methods under consideration and the desire to obtain the advantages of
using them.

Inthisarticle, variants of symmetrization of Seidel and Successive OverRelaxation methods for solving two-dimensional
difference problems of elliptic type are considered. Based on the results of numerical calculations of the solution of the
Dirichlet problem for the Poisson equation in a rectangular area, a reduction in the number of iterations compared to the
basic algorithms of these methods is demonstrated. The table, which shows the dependences of the number of iterations
on the number of grid nodes of the computational domain when using the methods under consideration, makes it possible
to visually verify that the symmetrized version of the Successive OverRelaxation method can significantly reduce the
required number of iterations to achieve a given accuracy and, as a result, reduce the calculation time.
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Materials and methods
1. Seidel and Successive OverRelaxation methods. In a finite-dimensional Hilbert space , the problem of finding
a solution to an operator equation is considered:

Ax=f, A: H—> H, ()

where 4 is the linear operator, x is the desired function, f is the known function of the right part.
To find a solution to problem (1), we will use an implicit two-layer iterative scheme:

k+1 k
B 4 =f B:H>H k=0,12,., )
Thst
with an arbitrary approximation y°e H.
Equation (2) uses the notation: B is some invertible operator; & is iteration number; y* is the vector of the &-th iterative
.+, 1s the iterative parameter, 7,,, > 0.
To represent the Seidel iterative method in matrix form, we write the matrix as a sum of diagonal, lower triangular and

approximation; t

upper triangular matrices:

A=D+L+U, 3)
where:
a, 0 0 0 0 0 0
0 a,, 0 a,, 0 0 0
D= , L= .. ,

0 0 An_iN-1 0 Ay Ay 0 0
0 0 0 Ay ay, Ay, e Ay 0

0 a AN a\y

0 0 Ay oy

0 0 0 Ay n

0 0 0 0

Denote by y* = ( yl(") ygk),..., y%‘)) the vector of the k-th iterative approximation.

Using expression (3), we write the Seidel method in the form:
(D+L)y" +y* = f,k=0,1,2,.... 4)
Bringing the iterative scheme (4) to the canonical form of two-layer iterative schemes (2), we find:
(D+L) " =y )+ = £,k =0,12,..., y'e H. ©)

When comparing schemes (2) and (5), it can be seen that they will be identical at B=D+ L, 1,,; =1. Scheme (5), as
well as scheme (2), will be implicit, and the operator is not self-adjoint in space H (here the operator B corresponds to the
lower triangular matrix).

To accelerate the convergence of the Seidel method, it is modified by introducing a numerical parameter ®, into the
iterative scheme (5), so that:

k+1

_ k
(D+oL)X——2 1 4" = £, k=012,.., y'c H. (6)
(0]

For scheme (6), the iterative method is the Successive OverRelaxation, (SOR).

The identity of schemes (6) and (2) can be observed at B=D + oL, 1, = 0. As in the case of using the Seidel method,
the matrix corresponds to the lower triangular matrix. Therefore, the introduction of the parameter @ does not take us out
of the class of triangular iterative methods. The implementation of one iterative step of the scheme (6) is carried out with
approximately the same cost of arithmetic operations as in the scheme (5).

Sufficient conditions for convergence of the considered schemes (5), (6) are self-conjugacy and positive definiteness
of the operator A4 in space H [5]. In the following statement, we assume these conditions for the operator 4 to be fulfilled.

2. Symmetrization of Seidel and Successive OverRelaxation methods. Consider the Dirichlet difference problem
for an elliptic equation. For simplicity, let’s take the Dirichlet problem for the Poisson equation.
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Let on a rectangular grid:

i
o, ={x,.j =(ih, jhy), i=1,.,N,, j=1...N,, h, = N , a:1,2},

o

entered in a rectangle G = {0 <x, <, a=], 2}, is required to find a solution to the difference problem:

nyuxa = f(x), XEW,, (7

Wx)=glx). xev,

where f{x) and g(x) are the given functions, vy is the boundary of the grid ®,, ®, =®,\ y.
When solving system (7) by the Seidel method or the Successive OverRelaxation method, calculations begin at
a point Xy, =X; (i =N,,j= Nz)and are carried out along the rows or columns of the calculated grid ®, to a point

Xyn, =X (i =N,,j= N2) (the image of the grid layout is not given due to the evidence of its representation). Then

.
the calculations start from the starting point and repeat until a solution is reached. The main idea of symmetrization of

iterative methods is to add a new solution vector. Here, after the calculation is made from point x| to point x,, ., it will

continue further from point x,, - to point x,, in reverse order along the columns or rows of the grid and then repeat from

NIN2
the starting point.

We construct symmetrized variants of the Seidel and Successive OverRelaxation methods under the assumption
that a rectangular grid with equal numbers of nodes in each of the coordinate directions is used. Let C be a matrix of

permutations of size N x N (N =N, = N,), of the form:

0 0 0 a,
0 0 ayy 0
0 ay, - 0 0
ay, 0 0 0
The iterative scheme (5) as a result of the symmetrization of the Seidel method takes the form:
(D+ L)y =y )+ Ayt = £,y eH, k=012, k, ®)
(D+L)C (" =y )C+ AT C= £, Y =yh, =k +1k +2... . )

Sufficient convergence conditions of schemes (8)—(9) for the symmetrized Seidel method are determined from the
constraints imposed on the operator (as mentioned earlier, this is a self-adjoint and positive definite operator).

Let’s proceed to the construction of Symmetric Successive OverRelaxation (SSOR).

The iterative scheme (6) as a result of symmetrization takes the form:

k+1

_ k
(D+ol)X——2 4" =, y'eH, k=0,1,2,.., k. (10)
(O]

k+1 k

(D+mL)C%C+ACy’“C =f, V=, k=k +Lk +2,.. . (11)
Sufficient convergence conditions of schemes (10)—(11) for the symmetrized Successive OverRelaxation method at
any initial approximation are inherited by sufficient convergence conditions of schemes (8)—(9). However, in addition to

these restrictions, an additional condition imposed on the iterative parameter is required: ®: 0<w < 2 [5].
3. Complete symmetrization of the Seidel method and the Successive OverRelaxation method. The idea of
complete symmetrization methods is close to the methods of ordinary symmetrization. However, when solving problem
(7) by the method of complete symmetrization, iterations can start from any corner of a rectangular grid ®, and calculations

are performed in rows or columns (i.e., either from point x|, to point Xy _;y,; > or from point Xy _y,_; to pointx,,, or from
point x,y, ; to point Xy, ;> or from point x, ;, to point Xy, ).
The difference scheme corresponding to the complete symmetrized Seidel method can be represented as:
(D+ L)y =4 )+ Ay = £, Y e H, k=0,1,2,.... k, (12)

15
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(D+ L) =" )+ ay* = £, YO e H, k=0,1,2,..., k, (13)
(D+L)C (M =y )+ A =, Y= b, k= + Lk + 2, ky. (14)
(D+L)C(y = y*)C+ AT C= 1, yO=y", k=ky+1k +2.... . (15)

Sufficient conditions for convergence of schemes (12)—(15) for a complete symmetrized Seidel method are determined
from the constraints imposed on the operator 4.

The difference scheme corresponding to the Complete Symmetric Successive OverRelaxation method can be
represented as:

k+l _ Lk
(D+ol)X——2 1 4" = f, y'eH, k=0,1,2,.., k. (16)
w
k+l _ _k
(D+®L)Cu+ACyk =f, Y=y", k=k+Lk+2,..k,. 17
()
1k
(D+ol)l——L Ccrm*C=f, Y=y, k=k,+1Lk, +2... k;. (18)
(O]
Kk
(D+oL) X2 CcraAcy'C=F, =", k=k,+Lk +2... . (19)
w

Sufficient convergence conditions of the Complete Symmetric Successive OverRelaxation method coincide with
sufficient convergence conditions of the complete symmetrized Seidel method, and a restriction on the iterative parameter
isadded: ®: 0 < ® < 2.

Results. We illustrate the calculation results using the described methods on a grid w, at N=N, = N,.

10000
8000
6000

4000

Number of iterations

2000

0 20 40 60 80 100 120

Number of grid nodes

Fig. 1. Graph of the dependence of the number of iterations on the number of grid nodes when solving the problem
using: 1 — the Seidel method and the symmetrized Seidel method (the lines coincide);
2 — the complete symmetrized Seidel method

The problem is solved:
2
Zy;uxu zf(x)’ xe(oh’
a=1

y(x) =0, xevy.
The function of the right part f{x) was chosen in such a way that y(x) = x (x—x )x,(x—x,) is an exact solution to the

problem (20).
For the Symmetric Successive OverRelaxation method and the Symmetric Successive OverRelaxation method, the

(20)

iterative parameter @ was chosen according to the formula [5]:

o2
1+sin(n/n)
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P

0
Il
C

norm C of the discrepancy at the final iteration, at which the specified accuracy is achieved, "rO"C is the norm from the

The calculations are performed until the accuracy € = 10 is reached, where ¢= <, "VN(X)"C is the grid

initial discrepancy.

Figures 1 and 2 show the results of calculations related to the solution of problem (20) using the considered iterative
methods. The dependence of the number of grid nodes on the number of iterations required to achieve the required
accuracy is demonstrated e.

In accordance with the graphs (Fig. 1), a slight decrease in the required number of iterations for the symmetrized
Seidel method should be noted. The complete Symmetric Successive OverRelaxation method requires significantly fewer
iterations compared to its unsymmetrized counterpart. In terms of the costs of arithmetic operations per iteration, the basic
methods and their symmetrized analogues differ slightly.

4000
1
2
-% 3000
E 2
.%
5 2000
e
g
z
1000
0
0 20 40 60 80 100 120

Number of grid nodes

Fig. 2. Graph of the dependence of the number of iterations on the number of grid nodes when solving the problem
using: 1 — the Successive OverRelaxation and the Symmetric Successive OverRelaxation method (the lines coincide);
2 — the complete Symmetric Successive OverRelaxation method

This is confirmed by a comparative analysis of the data obtained, shown in Table 1.

Table 1
Calculation results using various iterative methods
Iterative method N=32 N=64 N=128

Seidel method 757 2947 10420

Symmetrized Seidel method 714 2914 10400

Complete symmetrization of the Seidel 538 2550 9914
method

Successive OverRelaxation method 281 1131 4335

Symmetric Successive OverRelaxation 253 1111 4293
method

Complete Symmetric Successive 101 521 2637

OverRelaxation method

Discussion and Conclusions. The article proposes methods of symmetrization for the Seidel and the Successive
OverRelaxation methods. The use of a complete Symmetric Successive OverRelaxation method can significantly reduce
the number of iterations required to achieve a given accuracy. It helps to halve the required number of iterations without
additional computational costs. This work has practical significance. The developed software tool makes it possible to use
it to solve specific physical problems, including as an element of a software package [6-9].
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