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Abstract

Introduction. Prediction of suspension deposition zones is required to assess and minimize the negative impact on the
ecosystem of the reservoir during dredging within the framework of large-scale engineering projects, prediction of
suspension deposition zones is required to assess and minimize the negative impact on the ecosystem of the reservoir.
It is necessary to build a mathematical model that takes into account many factors that have a significant impact on
the accuracy of forecasts. The aim of the work is to construct a mathematical model of transport of multicomponent
suspension, taking into account the composition of the soil (different diameter of the suspension particles), the flow
velocity of the water flow, the complex geometry of the coastline and bottom, wind stresses and friction on the bottom,
turbulent exchange, etc.

Materials and Methods. A mathematical model for the transport of a multicomponent suspension and an approximation
of the proposed continuous model with the second order of accuracy with respect to the steps of the spatial grid are
described, considering the boundary conditions of the Neumann and Robin type. The approximation of the hydrodynamics
model is obtained based on splitting schemes by physical processes, which guarantee fulfillment mass conservation for
discrete model.

Results. The proposed mathematical model formed the basis of the developed software package that allows to simulate
the process of sedimentation of a multicomponent suspension. The results of the work of the software package on the
model problem of sedimentation of a three-component suspension in the process of soil dumping during dredging are
presented.

Discussions and Conclusions. The mathematical model of transport of three-component suspension is described and
software implemented. The developed software allows to simulate the process of deposition of suspended particles
of various diameters on the bottom, and to evaluate its effect on the bottom topography and changes in the bottom
composition. The developed software package also allows to analyze the process of sediment movement in the case of
resuspension of multicomponent bottom sediments of the reservoir, which causes secondary pollution of the reservoir.
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AHHOTaIHSA

Beeoenue. Tlpu npoBeieHNN AHOYITYOUTENBHBIX pabOT B paMKax pealn3alid MaclITaOHBIX MH)KEHEPHBIX MPOEKTOB
Tpe6yeTc>1 MPOTHO3UPOBAHUE 30H OCAKACHU B3BECHU JIs1 OICHKNU U MUHUMU3AINU HETaTUBHOI'O BJIMAHUA Ha SKOCUCTEMY
Bozoema. Jls peneHust mofoOHBIX 3a/1ad HEOOXOAUMO MOCTPOSHHE MaTeMaTHYeCKOW MOJIENH, YYUTHIBAIONIEH MHOXKe-
CTBO (baKTOpOB, OKa3bIBAIOIHNX CYHIECTBEHHOC BJINAHNE HA TOYHOCTH ITPOTHO30B. ]_IGJ'IB}O pa60TBI ABJIACTCA IMOCTPOCHUC
MaTeMaTHIeCKOW MOJETH TPAHCIIOPTa MHOTOKOMIIOHEHTHOW B3BECH, YUHMTHIBAIOIIEH COCTaB TPyHTa (Pa3jIMUYHBIA IHa-
METp YacTHUI] B3BECH), CKOPOCTh TEUCHUS BOIHOTO IOTOKA, CIOKHYIO T€OMETPHIO OEperoBod JIMHUHM W THA, BETPOBBIC
HaTIpsDKEHUS U TPEHUE O THO, TYpOYJACHTHBI OOMEH U 1Ip.

Mamepuanst u memoodst. OnricaHa MaTeMaTHIeCcKass MOJIENb TPAHCIIOPTa MHOTOKOMITOHEHTHOH B3BECH H aIllIPOKCHMa-
WS TIPEIJIOKEHHON HEMPEepPHIBHOW MOAEIH CO BTOPHIM MOPSIKOM TOYHOCTH OTHOCHTENBHO IIaroB MPOCTPAHCTBEHHON
CETKH C yYETOM I'PAHUYHBIX YCIOBHH BTOPOTO M TPETHETO POAa. ATIPOKCHMAIIHSI MOJICTH THAPOAUMHAMIKH TIPEICTaBICHA
Ha OCHOBE CX€M pacLIeIUICHHs N0 (M3MYECKUM IpoLeccaM, KOTOpash 00ecleyBaeT BHINOJIHEHHE 3aKOHA COXPaHEHHMs
Macchl B pa3HOCTHOU CXeMe.

Pe3ynemamut uccneoosanus. Ilpennaraemas MareMaTnieckasi MOJENb JierIa B OCHOBY pa3pab0OTaHHOTO MPOrpaMMHOTO
KOMILIEKCA, TI03BOJISIOLIETO MOJIETUPOBATh MPOIIECC OCAXICHUS MHOTOKOMIIOHEHTHOM B3BecH. IIpuBeieHb! pe3ynbTraTsl
paboThI MPOrpaMMHOTO KOMIUIEKCa Ha MOJICIBHOM 3ajade OCaXKACHUS TPEXKOMIIOHEHTHOM B3BECH B MPOLIECCE TaMITMHTa
IpYHTa NPH [TPOBEICHUH AHOYTTYOUTENBHBIX Pa0oOT.

Obcysicoenusn u 3akntouenua. Onrcana IporpaMMHasi MaTeMaTHIECKasi MOZEIb TPAHCIIOPTa TPEXKOMIIOHEHTHOH B3BECH.
Pa3pabotaHHbIif TPOTrpaMMHBIN KOMILIEKC ITO3BOJISIET MOJAECINPOBATE POIIECC OCAKACHUS B3BEIICHHBIX YAaCTHII PAa3JIN4-
HOTO AWaMeTpa Ha JHO W OIIEHUBATH €T0 BIMSHUE Ha peibed W M3MEHEHHNe cocTaBa AHA. Pa3paboTaHHBIA POTpaMMHBIN
KOMIUIEKC TakKe MO3BOJISIET aHAIM3UPOBATh MPOIIECC IBIKEHIUS HAHOCOB B CIy4Yae B3MYYHWBaHHUS MHOTOKOMIIOHEHTHBIX
JIOHHBIX OTJIIOKEHHIA BOJJOEMA, BEI3BIBAIOIINY BTOPUIHOE 3arps3HEHUE BOIOCMA.

KiroueBrnle ciioBa: TPAHCTIOPT B3BECHU, MHOT'OKOMIIOHCHTHAA B3BCCh, TPCXMCpPHAA MOACIb TMAPOAUHAMUKU, CXCMBbI pac-
MICTVICHUSA, YU CJIICHHBIC METO/AbI

dunancupoBaHue. VccrienoBanue BHITOIHEHO 3a cueT rpanTta Poccuiickoro HayuHoro ¢gonmga Ne 22-11-00295. https://
rscf.ru/project/22-11-00295/

Jas nutnpoBannsa. CyxunoB A.U., Kysnerosa M.JO. Marematudeckas MoOJeNb TPaHCIOPTa TPEXKOMIIOHEHTHOM
B3Becu. Computational Mathematics and Information Technologies. 2023;7(3):39-48. https://doi.org/10.23947/2587-
8999-2023-7-3-39-48

Introduction. The implementation of large-scale engineering projects, such as the construction of bridges, the
expansion of the water area accessible to navigation, requires work that has a significant impact on both the bottom relief
and the ecosystem of the reservoir as a whole. For example, during dredging, a significant amount of suspension enters
the water, which in the process of settling to the bottom or secondary agitation can negatively affect the productive and
destructive processes of the aquatic ecosystem [1-2]. To assess the possible damage caused to the ecosystem during the
dumping of soil during dredging, it is necessary to pre-assess the areas of the water area in which the suspension will settle
and in which its agitation is possible, which leads to secondary pollution of the water body. To predict the deposition zones
of suspended particles, a mathematical model of suspension transport is proposed based on a system of initial boundary
value problems, including the calculation of hydrodynamic characteristics of the water area and suspension transport.

We describe an approach to the approximation of a continuous model with a second order of accuracy with respect to
the steps of the spatial grid , taking into account the boundary conditions of the second and third kind for the proposed
three — dimensional model of multicomponent suspension transport . The proposed mathematical model of the transport
of suspended particles is supplemented by a three-dimensional model of hydrodynamics, which allows calculating the
fields of the velocity vector of the water flow [3—4]. The proposed mathematical model formed the basis of the developed
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software package that allows modeling the deposition process of multicomponent suspension. The results of the work of
the software package on the model problem of deposition of a three-component suspension in the process of dumping soil
during dredging are presented.
Materials and methods
1. Problem statement. To construct a mathematical model of multicomponent suspension transport, we use the
diffusion-convection equation, which can be written in the following form [3]:
(c, )t' + (ucr)x' + (vcr)y' +(w+w,,) cr)z' = (u(cr )x'j +(u(c,)y' )y + [v(cr)z’) +F, (1

where c, is the concentration of the 7-th fraction of the suspension, mg/l; V={u,v,w} are the components of the velocity
vector of the water flow, m/s; w_is the deposition rate of the r-th fraction of the suspension, m/s; p, v are the horizontal and
vertical components of the turbulent exchange coefficient, respectively, m*/s; ', is the function describing the intensity of
the distribution of sources of the rth fraction of the suspension, mg/ (I-s).

Equation (1) is considered under the following initial ¢ (x, y, z, 0) = ¢, (x, ¥, z) and boundary conditions:

— on the free surface:(¢”), =0;

— near the bottom surface: v(c,) = -w, c,;

— on the side surface: (c,)," =0, if (V, n) >0, and p(c,), =(V,n)c,,if (V, n) < 0, where (V, n) is the normal
component of the velocity vector, n is the normal vector directed inside the computational domain.

The diffusion-convection equation (1) is supplemented with a three-dimensional model of the hydrodynamics of
shallow water bodies [5] to calculate the velocity vector of the water flow:

— equations of motion (Navier-Stokes):

w/ ] Fvul +wu! = -P!/p +(uu;); + (uuy')'y + (Vuz'); ,
v/ Fuv] A v+ wvl ==P/[p+(w)); + (W), + ()., )
W/t uw] +vw) +ww! ==P/[p+(pw]) + (), + (vw!) +g,
— the continuity equation in the case of variable density:

p/+(pu). +(pv), +(pw). =0. 3)

where P is the pressure, Pa; p is the density, kg/m?; g is the acceleration of gravity, m/s%

The system of equations (2)—(3) is considered under the following boundary conditions:

—the entranceu = u,, v=v,, P,'=0,V,/'=0;

— lateral border (shore and bottom) puu, = -7, puv, = -1,V = 0,P/=0;

—upper bound puu, =-t,, puy, = ~Ty, W= —m—P,'/(pg), P’ =0,
where o is the intensity of liquid evaporation, 1, T are the components of the tangential stress.

2. Approximation of the suspended particleé transport problem. Let us consider an approximation of the three-
dimensional problem of transport of a one-component suspension based on the expression (1) (for each individual fraction,
the equation is written similarly):

¢/ +(ue)'+ (ve), +(we). = (uj ; (uc) . [vc;) 3 )

z

where the velocity component w implicitly takes into account the depositiqn rate of the suspension fraction in question w .
We introduce a uniform grid in time ®, = {St" =nt;n=0,N; N1= Ti,where T is the time step, , is the number of
time layers, 7 is the duration of the modeling interval.
Suppose that the calculated area is inscribed in a parallelepiped G = {O<x <L 0<y<L,0<z<L, } we obtain the
closure of the area G by joining the faces of the parallelepiped, that is, we define as G = {O Sx<L,0<y<L,0<z<L, }

Thus, we come to the chain of initial boundary value problems:
(¢") +div(V-c")=div(k - grad ¢"), ®)

where k= {p, u, v} is the coefficient of turbulent exchange, (x,y,z, 1) e Gx[0<t<T], ¢t <t<t, cn(x,y,zt )=c"'
2zt ), (G, 2, ), (x,9,2) € G.

In this case, the initial and boundary conditions will be written as:

—initial condition ¢ (x, y, z, 0) = ¢, (x, y, 2), (x,¥,2) € G;
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— boundary condition on a free surface: (c,). =0;, (x,y,2)€ 25

— boundary condition at the bottom: v(c"). = -w,c", (x,3,2) € £,;

— boundary condition on the lateral surface: (c”), =0, if (V,n)>0and p(c,), = (V,n)c,,,if (V,n) <0,
where £ = {0<x<L,0<y< L,z =_0} is the upper face of the parallelepiped G, 2,=10<x<L,0<y< L,z= Ly} is
the lower face of the parallelepiped G .

Let’s write down a term describing the convective transfer of suspended substances in a symmetrical form. Such an

approach to the discretization of the problem will allow us to construct a difference operator with the property of skew
symmetry [6]:

div(V-c") =% ua—cn+va—cn+wai"+i(uc”)+i(vc" )+6£(ch) (6)

®, ={x:x,=ih; i=0,N; hN, =L},
y = {yj 2y =jhy; j:()’_Ny; hyNy =Ly}’
®. =z 1z, =kh; k=0N; h.N. =L,

where £, hy, h_are the steps in the spatial coordinate directions O, Oy and O_, respectively, N, Ny ,N_, are the numbers
of nodes of the computational grid in each of the spatial directions, L , Ly, L _are the lengths of the computational intervals
in each of the spatial directions..

The set of internal nodes of the computational grid is denoted as @, o, 0.

The approximation of problem (5) on a space-time grid ®, x® is performed by specifying the velocities (convective
transfer coefficients) at the nodes of the grids shifted by half a step along the coordinate directions O_and O .

For the convective transport operator given in symmetric form (6) in equation (5), we have:

Cc" E%(u"(x+O.th,y,z)-E"(x+hx,y,z)—u"(x—O.th,y,z)-E"(x—hx,y,z))+

x

+%(v" (x,y + O.Shy,z)~ c" (x,y + hy,z)— V' (x,y - O.Shy,z)~ c” (x,y - hy,z))+ (7

¥y

+%(w”(x,y,z+0.5hl)~E”(x,y,z+hz)—w”(x,y,z—0.5hz).E" (x,y,z—hZ )) ,

z

where ¢” denotes a grid function ¢" =c¢(x,y,z,t,), (x,¥,z) € ®, and through ¢" denotes a sufficiently smooth function of
continuous variables (x, y, z, ).

For the diffusion transfer operator in equation (5) we have:

b Ehi(“ (x+0.5hx’y,2)c bethoy2)-2"(oyz)

h

X

X

—n(x-05n,,y,z)

—=n _=n _ —=n _=n 8
¢"(x.y.2) ; (x hx’y’Z)J+hi[H(x,y+O.Shy,Z)C (x’y+hy,;) ‘ (x,y,Z)_ ®

y y

+hi[‘/(xay,2+0.5hz)c (x,y,z+hl;)—c (x,y,z)_

z

—u(x,y—O.Shy,z, P

y

E"(x,y,z)— E”(x,y - hy,z)]

z

—v(x,y,2-0.5h)-

c" (x, y,z)— c" (x, v,z—h, )J

z

Taking into account the recorded approximations (7)—(8), we obtain the following type of approximation of equation
(5) in the inner nodes of the grid:
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—n  —n-1
c —¢C

+%(un(x+O.th,y,Z)_Cn(x+hx,Y,Z)—u"(x—O.th,y,z)::n(x—hx,y,z))Jr

X

T

+%(Vﬂ (x,y + O.Shy,z)z" (x,y + hy,z)— Y (x,y - O.Shy,z)_c" (x,y - hy,z)j +

y

1 n 1 n — ~
+E(W (x,7,2+0.5h,)c (x, 3,2+ h, )= w"(x,p,2—0.5h, )c (an’»Z—hZ))— o
:hl[u(x+O'Sh“’y’z);n(x+hx,x’;)_zn(x’y’Z)—M(x—O.th,y,z)zn(x’y’z)_i"(x‘hx,yaz)}r
+i u(x,y+0.5hy’zjc (xayaz)_c (x’yjz)—u(X,y—O.Shv,z)c (x,y,z)—c (X,y—hy,z) N
h, h, ) 0,

+hl{v(x,y,z+0.5hz)-c (x,y,z-i—h};)—c (x’y’z)—v(x,y,z—O.Shz)c (x,y,z)—; (x,y,z—hz)j.

z z z

We supplement the obtained approximation (9) with initial and boundary conditions. To set boundary conditions
on the bottom, free and lateral surfaces of the considered area it is convenient to introduce an expanded grid [7]
© =W, xo,x0,, where

®. ={xx,=ih;i=—1,N +1; h,N =L},
o, ={yj v, =jh; j=-LN,+1; h,N, =L}y_},
®. =z, :z, =kh; k=—1,N_+1; h.N. =L}

In the future, we will assume that:
c"(x,y,2)=0, (10)

where ©"\® are the boundary nodes of the grid ® .

We also consider the values of the components of the velocity vector of the aqueous medium in the grid nodes ® \®
with fractional index values to be known. For grid nodes ® \© , that are located outside the reservoir, the values of the
velocity vector components are set to zero.

In the case of flows on the lateral faces of the region G, coinciding in the direction with the external normals to the
faces (case (V, n) = 0), the Neumann boundary conditions take place. This case can be written as:

u"(0.5h,,y,z)+u"(—0.5h,,y,2) <0,
u"(L.—05h,,y,z)+u" (L, +0.5h,,y,2) >0, (11)
v"(x,0.5h,,2)+v"(x~0.5h,,2) <0,
v"(x,0.5h,,2)+v"(x~0.5h,,2) <0,

We write down an approximation of the boundary conditions of the second kind for the convective transport operator.
Consider the case x=0,0<y < Ly, 0 <z <L_. In this case, the expression can be considered as a difference approximation
of the convective term:

%(u"(O.th, 2,28 (o y,2)— " (= 0.5k, .y, 2)E" (— by y.2))

Expression (12) approximates the convective term with an error O(4* ). In addition to the form (12), the approximation
of the convective term with an error  O(A* ) can be written as:

c" (hxayaz)_gn(_hxayaz)
2h,

—U»
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from where we get:
En(_hxnysz):En(hxay’Z)' (13)

From approximations (12) and (13) we obtain:

C, (c" l » = %E" (hx,y,z)(u"(O.th,y,z)— u"(— O.th,y,z)). (14)

X

Similarly, the cases x =L,y =0, y = Ly, z= 0 (boundary condition on a free surface) are written. We get:

cx(c")x:LX = ZLE (L.~ hoy,2)-(u" (L, +05h,, y.2)~u"(L,~ 0.5k, .2)). (15)
cle] = i e (w,hyz)- (" (6.0.50,,2)-v" (x,-0.5h,.,2), (16)
c, (e LL, = % &L, —hy,z)- (" (6, L, +0.5h,,2)=v"(x,, —0.5h,,2)), (17)
€)= 5T () (07 (058 )= ' (v, y-0.50.). (1)

We write down an approximation of the boundary conditions of the second kind for the diffusion transfer operator.
Consider the casex=0,0 <y < L,0<z<L.In this case, the expression can be considered as a difference approximation
of the diffusion term on an extended grid:

En(hxayaz)_gn(oayaz)
e (19)
E"(O,y,z)—gn(—hx,y,z)j

D" ]0 = hl{u (0.5%,,y,z)

X

—u(—O.th,y,z)~

h

X

When the first condition of (11) is fulfilled, we obtain that ¢"(—A,,y,z)=¢"(h,,,z). Then, taking into account the
last equality and expression (19), we obtain the following approximation of the diffusion transfer operator in the case:

x:0,0<y<Ly,0<z<LZ:
((u(O.th,y,z)+ u(— O.th,y,z))(c?” (hx,y,z)—E" (O,y,z))). (20)

Similarly, the casesx =L,y =0,y = Ly are written. For example, inthe casex =L, 0 <y < Ly, 0 <z <L, when the

second condition from (11) is met and taking into account equality ¢"(L, +4,,y,z)=¢"(L,— h_,y,z), we get:

1

x=L, h 2
x

(L, +0.5h,,y,2)+ (L, —05h,, y.2)€" (L, ~h,,,2)~2" (L., .2))). Q1)
Similarly for y=0andy = L:

D] = hiz((u (x,0.5h,,2)+ 1 (x,~0.5h,,2)(c" (x, 1, 2)- " (x,0,2))), (22)

D, (c” Jy:L‘ = %((u(x, L,+0.5h,, z)+ n (x, L,-0.5h,, z)) (E" (x, L,—h, Z)— c" (x, L, z))) (23)
¥

For a free surface (case y = 0) taking into account v(x, y, — 0,54_) = 0 the approximation of the diffusion operator is

D.(e")

Consider the approximation of the diffusion transfer operator on the bottom surface (z = L) on an extended grid.

written as:

z=

1 —n ~h
o = Ev(x,y,O.ShZ)(C (xayﬁhz)_c (x’y’o)). (24)

Formally , the approximation of the diffusion term can be written as:

D, (c” ]Z:LZ = hi v(x,y,L. +0.5h.) (E” oy L+ h;l)_ ¢"(x.y.L, )) - (25)

z z
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(e Cey.L) -2 (ey L - 1,))

h

z

~v(x,y,L.— 0.5h.)

Let’s use a second-order approximation of the accuracy O(h’) of the boundary condition of the third kind
v(c")! =-w,c", the relation:

( (xy,L +h) (xy,L h))

) Y (26)
v(x,y,LZ 2 w,C (x,y,Lz).
Let ‘s use the ratio:
Wy L) =2 e Lot 05 )+ vy L~ 05h) +0(82). @)
Substituting (27) into (26), we get:
L +h, L —h
(v(x.y, L. +0.5h. )+ v(x,, L. —0.5h.)) NG lh ", ))=—WSE”(x »L.). (28)
From equation (28) we have:
4w h,
c” L +h )= c" L )+c" L —h).
c (x9y9 .t z) ( (x VL +0.5h )+V(x L. —0.5h ))C (x,y, z)+c (xaya - z) 29

Then the approximation of the diffusion term in the diffusion-convection equation of the suspension has the form:

" 1 4w v(x,y,L +0.5h ) —
D = S Z Z L
z(c lz:L ( (xay,Lz+0.5h2)+v(x,y,Lz—O_5hz)c (X,ya z)"r

+hLv(x,y,LZ+ O.ShZ)( (x v,L.—h ) (x v,L, )) (30)

g "(x,y,Lz)—E"(x’y,Lz—hz))],

- 0.5h)
L ‘

z

In a similar way , it is possible to obtain an approximation of the convective operator forz = L :

" 1 4w hw" (x,y,z +0.5h ) =
C = S "z Z L
e lL 2h, [V(x, VL +0.5h )+ v(x, L —0.5h)" (o L)+

(€L

+ (w" (x,y,L. +0.5h. )= w"(x,y,L, —0.5h )) ", y, L. —h. ))

The obtained approximations of the diffusion (30) and convective (31) transfer operators at the boundary nodes
(at z = L) are suitable for bottoms with different morphological characteristics (“liquid” bottom, impermeable bottom,
etc.) when the turbulent exchange coefficient v is set accordingly.

After constructing the scheme, it is necessary to investigate the monotonicity, stability and convergence of the
difference scheme. The study of these properties uses physically motivated constraints of the Peclet grid number and the
Courant number and is based on the maximum grid principle and, due to the limited scope of the article, is not given here.

3. Approximation of three-dimensional hydrodynamics model. To approximate the model (2)—(3), we will carry
out on the calculated grid ® = ®, X ®,.. To approximate the model (2)—(3), we use splitting schemes for physical processes
[8]. According to this method, the initial model of hydrodynamics (2)—(3) will be divided into three subtasks [6, 9].

The first subtask is represented by the diffusion-convection equation, on the basis of which the components of the field
of the velocity vector of the water flow on the intermediate time layer are calculated:

U—u

' ' '
—r =t — — — —
: +uu, +vuy +wu, Z(]J,l/lx)x +(]J.M,)y +(VMZ)Z ,

v —_ v _ _ _ _ ’ _ ! _ ’
+uv, + v+ wv = ( P-Vx')x + (pvv')v + (vvz’)z ,
T - 7

w—w n MWX"F VW},"F WWZ’: (HWX,)X' + (uWy,)y, + (szr) + g[& — J 5
T p
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where u, v, w are the components of the velocity vector on the previous time layer; #,v,w are the components of the
velocity vector on the intermediate time layer; # = ou + (1 —G)u, o € [0,1] is the weighting factor or the weight of the
scheme.
Based on the second subtask, the pressure field is calculated:
— _ Aﬁ !X A; l) AMN/ lz
prapyepy=2op 00 BN (6)

‘C2 T T T

Based on the third subtask, the components of the field of the velocity vector of the water flow on the next time layer
are calculated using explicit formulas:

u-u 1 e 1 w—w 1

where u,v,w are the components of the velocity vector on the current time layer.

The approximation of the problem of calculating the velocity field of the water medium by spatial variables is
performed on the basis of the balance method.

Results. Based on the presented mathematical model of multicomponent suspension transport, a software package in
C++ has been developed that takes into account various factors that affect the accuracy of the forecasts obtained, among
which one can distinguish the complex geometry of the bottom and coastline, wind currents and friction on the bottom,
the presence of a significant gradient in the density of the aquatic environment.
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Fig. 1. Concentration of the suspension in the water column 2 hours after unloading
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The developed software package allows you to calculate:

— the velocity of the water flow based on the system of equations (2)—(3);

— the process of transport of suspended particles in the water column, taking into account the obtained flow velocity
of the water flow;

— the process of settling the suspension on the bottom based on the model (1)—(3).

As an example of the work of the software package, we present the results of numerical modeling of the problem of
transport of three-component suspension when modeling the process of dumping soil during dredging.

Parameters of the calculated area: length — 1 km; width — 720 m; depth — 10 m.

The parameters of the calculated grid: the steps along the horizontal and vertical spatial coordinates were 10 and 1 m,
respectively; the calculated interval was 2 hours, the time step was 5 seconds. The O axis is directed along the calculated
area, the Oy axis is along the width of the calculated area, the O_ axis is along the depth of the calculated area (from
0 to —10 m, where the mark 0 corresponds to the water surface, —10 to the bottom of the reservoir).

Input parameters of the model: the average distance from the point of unloading the soil to the bottom of the reservoir
in the area of dredging is 5.5 m; the area of unloading the soil along the O_axis (along the length of the reservoir) is
placed in the range from 200 to 250 m; the area of unloading the soil along the Oy axis (along the width of the reservoir)
is placed in the range from 300 to 400 m; the flow velocity at depths from 4 to 10 m was 0.075 m/s (currents are directed
from left to right); the density of fresh water under normal conditions is 1000 kg/m?; the density of suspensions is
2700 kg/m?; the particle shape coefficient for all three suspensions is 0.2222 (spherical shape); the initial viscosity of water
is 1.002 MPa /s (at a temperature of 20 °C); the particle diameter of fraction A is 0.05 mm; the deposition rate of fraction
Ais 2.31 mm/s; the percentage of fraction A is 20 %; the particle diameter of fraction B— 0.04 mm; deposition rate of fraction
B — 1.48 mm/s, percentage of fraction B — 30 %); particle diameter of fraction C — 0.03 mm; deposition rate of fraction
C — 0.83 mm/s, percentage of fraction C — 50 %.

Fig. 1 shows the results of modeling the process of transport of three-component suspension in the water column. The
horizontal axis is directed along the flow, the slice is presented in the middle of the calculated area, where the maximum
concentration of suspended particles is observed (in the y = 360 m plane).

Fig. 1 shows that the heavier fraction A is deposited closer to the dredging zone than the lighter fractions B and C. The
smaller fractions B and C are evenly distributed along the bottom of the water area.

Discussion and Conclusions. The paper presents a three-dimensional mathematical model of multicomponent
suspension transport, supplemented by a three-dimensional model of hydrodynamics of a shallow reservoir. The presented
model takes into account the composition of the soil (different diameter of the suspended particles), the flow rate of the
water flow, the complex geometry of the coastline and bottom, overburden phenomena, wind currents and friction on the
bottom, turbulent exchange, which allows to increase the accuracy of modeling.

The approximation of the proposed multicomponent suspension transport model based on the three-dimensional diffusion-
convection equation is performed with the second order of accuracy relative to the steps of the spatial grid, taking into
account the boundary conditions of the second and third kind. Approximation of a three-dimensional mathematical model
of hydrodynamics is performed on a uniform rectangular computational grid using splitting schemes for physical processes.

For the numerical solution of the obtained discrete models, a software package has been developed that allows
simulating the deposition of suspended particles of various diameters on the bottom, and assessing its effect on the bottom
relief and changes in the composition of the bottom. The developed software package also allows you to analyze the
process of sediment movement in the case of agitation of multicomponent bottom sediments of the reservoir, causing
secondary pollution of the reservoir.
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