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Abstract

Introduction. The use of two-dimensional (2D) hydrodynamic models is relevant, despite the development of numerical
methods of marine hydrodynamics focused on the use of three-dimensional spatial models. This is due to the modelling
of hydrodynamic processes in shallow and coastal systems in solving practically important problems of predicting
the transport of pollutants in suspended and dissolved forms. Evaporation for the Southern of Russia marine coastal
systems (the Azov Sea, the Northern Caspian, etc.), and even more so in the coastal areas of the Red Sea, is a significant
factor that affects not only the balance of water masses, but also makes changes in the momentum of the system and
the distribution of the velocity vector of the aquatic environment. This effect is significant for coastal currents and
shallow-water systems.

Materials and Methods. The traditional method of converting the terms of the Navier-Stokes equations containing
differentiation by horizontal spatial variables was used, involving the rearrangement of differentiation operations by
horizontal spatial coordinates and integration by vertical coordinate when constructing a spatially two-dimensional model
of hydrodynamics of marine coastal systems when integrated by vertical coordinate. This made it possible to avoid the
appearance of non-physical sources of energy and momentum in the spatially two-dimensional model, which can be
essential in traditional 2D models with significant depth differences characteristic of coastal systems. The implementation
of the analogue of the law of conservation of the total mechanical energy of the system for the constructed 2D model is
investigated.

Results. Using the correct transformation of the 3D model (integration of the Navier-Stokes equations and continuity
along a vertical coordinate, taking into account evaporation from a free surface), spatially two-dimensional models of
hydrodynamics are constructed, for which the basic conservation laws, including mass and total mechanical energy of
the system, are fulfilled. The implementation of an analogue of the law of conservation of total mechanical energy for
various types of boundary conditions, including at the bottom, is investigated. The evaporation from the free surface
is correctly accounted for not only in the continuity equation, but also in the equations of motion taking into account
wind and waves.

Discussion and Conclusion. 2D model of hydrodynamics has been constructed and studied, taking into account
evaporation not only in the mass balance equation (continuity), but also in the Navier-Stokes equations of motion. The
proposed model can be used for predictive modelling of hydrophysical processes, including the spread of pollutants
in the aquatic environment of coastal systems and shallow reservoirs in relation to marine systems such as the
Azov Sea, the Northern Caspian Sea, coastal areas of the Red Sea, etc. Spatially two-dimensional models of marine
hydrodynamics, without replacing three-dimensional models, can serve as a model basis for operational forecasting of
situations in coastal systems and shallow-water objects using computing systems with relatively low performance and
a moderate amount of RAM (5-10 Tflops, 2—4 TB, respectively).

Keywords: Coastal Systems, Evaporation, 2D Hydrodynamics Models, Mass Conservation Law, Mechanical Energy
Conservation Law
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AHHOTaN NS

Bgeoenue. HecMoTps Ha pa3BUTHE YHCICHHBIX METOAOB MOPCKOM THIPOJMHAMHUKH, OPUCHTUPOBAHHBIX HA UCIIOIb30Ba-
HHUE MPOCTPAHCTBEHHO-TPEXMEPHBIX MOJENeH, MPUMEHEHNE IBYMEPHBIX THIPOJMHAMHYCCKUX MOZAETIEH MO-TIPEKHEMY
ocTaercs akTyanbHbIM. [Ipexkae Bcero 3To kacaeTcsi MOAETUPOBAHUS THAPOANHAMUUYECKUX MPOLECCOB B MENKOBOAHBIX
U NPUOPEXKHBIX CHCTEMaX MPH PEIICHUH MPAaKTHYECKH BaXKHBIX 3371a4 MPOTHO3WPOBAHUS TIEPEHOCA 3arps3HSIOIINX Be-
IIECTB BO B3BELICHHOH M pacTBOpeHHOH (opmax. McnapeHue 11 MOPCKUX MPHOPEKHBIX CHCTEM, PACIIONararolIiXcs
Ha FOre Poccun (A3oBckoe mope, CeBepubiii Kacnmii n np.), a Tem Oonee B mpuOpekHBIX paiioHax KpacHoro mops,
SIBJISIETCSI CYIIECTBEHHBIM (DaKTOPOM, KOTOPBIM BIIHMSET HE TOJIBKO Ha OanaHC BOXHBIX MacC, HO M BHOCHT W3MEHEHHMS
B UMITYJILC CHCTEMBI U pacipeieieHHe BEKTOPa CKOPOCTH BOAHOW cpenbl. DTOT 3P deKT 3aMeTeH [yisi MPUOPEKHBIX Teue-
HUH ¥ MEJIKOBOJHBIX CHCTEM.

Mamepuanst u memoodst. B nannoii paboTe pu OCTPOSHUH IPOCTPAHCTBEHHO-IBYMepHO# (2D) Moaenu rupoqnHaMu-
KM MOPCKHX NMPHOPEKHBIX CUCTEM IIPH MHTETPUPOBAHUH 110 BEPTUKAJILHOM KOOPJMHATE HE MPUMEHSIACH TPAJULIMOHHAS
MEeTOoAMKa ITpeoOpa3oBaHus WieHOB ypaBHeHUi HaBbe-CTokca, conepxkamux AnpGepeHpoBaHme o TOPU30HTATBHBIM
MIPOCTPAHCTBEHHBIM IIEPEMEHHBIM, TIPEAIIONAraroas IepecTaHoBKy onepaiui auddepeHnrpoBanus 0 TOPH30HTATb-
HBIM TIPOCTPAHCTBCHHBIM KOOPAMHATaM M WHTEIPHPOBAHKE 10 BEPTUKAJIBHON KOOpAWMHATE. JTO MO3BOIMIO M30€XaTh
TIOSIBJICHHS B TIPOCTPAHCTBEHHO-IBYMEPHOH MOJEH HE(YUINUECKIX UCTOYHUKOB SHEPTHU U UMITYJIbCA, KOTOPbIE MOTYT
UMETh CyLIECTBEHHOE 3HAYCHUE B TPAIMLUUOHHBIX 2D-MoOEISIX NMpH 3HAYMTENBHBIX Nepenaaax NIyOuH, XapaKTepHBIX
JUISL IPUOPEIKHBIX CUCTEM. JIOTIONHUTENBFHO B PabOTE MCCIIEN0BAHO BBHIIIOJIHEHNE aHAJIOTa 3aKOHA COXPAaHEHUsI MOITHON
MEXaHHYECKON SHEPTUH CUCTEMBI U IOCTPOEeHHOH 2D-Monenn.

Pezynoemamut uccnedosanusn. C OMOIIBIO KOPPEKTHOTO npeoOpa3zoBaHus 3D-Moznenn (MHTErpUpOBaHUS YpaBHEHUH
Hagbe-Crokca 1 Hepa3pbIBHOCTH 110 BEPTUKAJIBHON KOOPAWHATE C YUYETOM MCIApEHHs CO CBOOOAHOM MOBEPXHOCTH) IMO-
CTPOEHBI MPOCTPAHCTBECHHO-ABYMEPHBIE MOAEIH THAPOANHAMUKH, IJISI KOTOPHIX BBIIOJIHSIOTCS OCHOBHBIE 3aKOHBI CO-
XpaHEHHs, B TOM YHCIIE MAcChl M MOJHOW MEXaHW4ECKOH 3HEprHu CHCTeMbl. lMcciaenoBaHO BBIMOMHEHHE aHAora 3a-
KOHA COXPaHEHUS MOJHOW MEXaHMYECKOM 3HEPruM Ul PA3INYHBIX THIIOB IPAHUYHBIX YCIOBUH, B TOM UYUCIIEC Ha JTHE.
BrinonHeH KOPPEKTHBIH y4eT MCHapeHHs cO CBOOOAHOW MOBEPXHOCTH HE TOJNBKO B YPaBHEHHWH HEPa3pbIBHOCTH, HO
U B yPaBHEHHSX JBIKCHUS C YIETOM BETPa U BOJIH.

Oécyscoenue u 3axniouenue. IloctpoeHa U HccieoBaHa JByMEpHasl MOJENIb THAPOJMHAMUKH, YIUTBHIBAIONAs UCIIa-
peHne He TOJIBKO B ypaBHEHHH OanaHca Macc (HEpa3phIBHOCTH), HO M B ypaBHeHHsX 1BrkeHns (HaBve-Ctokca). IIpen-
JIO)KEHHAs! MOJIEJIb MOXKET OBITh MCIOJIB30BaHa JUISl TPOTHO3HOTO MOJIETUPOBAHMS THAPO(U3NUECKUX MPOLIECCOB, B TOM
YHCIIE PACIPOCTPAHCHUS 3arpsI3HSIONINX BEIIECTB B BOAHOW CPEAe MPUOPEKHBIX CHCTEM M MEIKOBOIHBIX BOJOEMOB
MIPUMEHUTETHHO K TaKUM MOPCKHM CHCTeMaM, Kak A3oBckoe Mope, CeBepublii Kacmuii, mpubpexnsie paiionsr Kpac-
HOro mMops u Ap. IIpocTpaHCTBEHHO-ABYMEPHBIE MOAEIN MOPCKON T'MAPOIUHAMUKH, HE 3aMEHSS TPEXMEPHBIX MOJE-
JIeH, MOTYT CIIYy)XHTh MOJEJIbHOM OCHOBOM JUIs ONEPaTHBHOTO NMPOTHO3WPOBAHUS CUTYallMil B MPUOPEKHBIX CHCTEMax
1 MEJIKOBOZHBIX OOBEKTAX C UCTIOIb30BAHUEM BBIYNCIUTEIBHBIX CHCTEM C OTHOCUTEIIBHO HEBBICOKOM MPOU3BOANTEIHHO-
CTBIO H YMEPEHHBIM 00beMoM oneparuBHOM mamsth (5—10 Tdmoric, 2—4 T cooTBETCTBEHHO).

KrodeBble cjioBa: mpuOpeKHbIE MOPCKUE CHCTEMBI, HCIapeHue, 2D-Monenu TruapoIuHaMHUKH, 3aKOHBI COXPAHEHHMS
MaccChl U ITOJTHOM MEXaHUYECKOW SHEPTUU
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Introduction. The use of 2D hydrodynamic models is in demand despite the development of numerical methods of
marine hydrodynamics focused on the use of three-dimensional spatial models, the use of two-dimensional hydrodynamic
models remains in demand [1—4]. First of all, this concerns hydrodynamic processes in shallow and coastal systems
when solving practically important tasks of operational forecasting of the spread of pollutants in suspended and dissolved
forms, the movement of sediments and sediments. Evaporation for Southern Russia marine coastal systems (the Azov Sea,
the Northern Caspian, etc.), and even more so for coastal areas of the Red Sea, is a significant factor that affects not only
the balance of water masses, but also makes changes in the momentum of the system and the distribution of the velocity
vector of the aquatic environment. This effect is very noticeable for coastal currents and shallow-water systems [5—8]. The
aim of the work is to construct a conservative spatially two-dimensional hydrodynamic model for which the laws of
conservation of mass balance and total mechanical energy are fulfilled, taking into account the evaporation of water from
the free surface of a water body.

Coastal systems are characterized by high intensity of movement of the aquatic environment, large depth differences,
a complex shape of the coastline, and in some cases — the presence of various hydraulic structures. Industrial pollution
causes the greatest harm to water resources [9—10]. As a result of the activities of coastal enterprises and the navy,
polychlorinated biphenyls, heavy metals, surfactants, easily oxidized organics, polyaromatic hydrocarbons, etc. enter the
water. Waste from the petrochemical and oil refining industries is particularly dangerous. Oil pollution is one of the most
harmful and intractable emergencies [11-12].

Evaporation is an important process in most oil spills. Light oil changes very dramatically from liquid to viscous. In
conditions when the boundary layer of air is stationary (there is no wind) or has low turbulence, the air directly above the
water is quickly saturated and evaporation slows down [13]. When the wind speed increases, the evaporation rate increases
significantly and is a non-linearly dependent function of wave height. In this paper, a relatively simple evaporation model
is used, which allows us to take these effects into account.

Another feature of the obtained spatially two-dimensional models of hydrodynamics is the consideration of the fact
that the operations of differentiation by spatial variables in horizontal directions are not, as shown by A.I. Sukhinov,
commutative with respect to the operation of integration along a vertical spatial coordinate. In the case of coastal systems,
where there is a significant difference in depth, an arbitrary change in the order of these operations, performed for the
“convenience and simplicity” of obtaining spatially two-dimensional equations of motion of the aquatic environment, can
lead to the appearance of fictitious, physically unreasonable sources of momentum in the Navier-Stokes equations. The
method of constructing two-dimensional equations of motion proposed by the authors makes it possible to exclude this
negative effect.

Materials and Methods. To simulate the hydrodynamic process with evaporation in an open water area, the equations
of conservation of mass, momentum and energy describing the transfer of both liquid and gas phases are used. A rectan-
gular Cartesian coordinate system is introduced. The axis Oz is directed opposite to the direction g from some point on
the undisturbed surface of the liquid, the axis Ox is to the east, the axis Oy is to the north. Since the contribution of the
centrifugal force is = 0.2 % of the contribution of the gravitational force of attraction to the Earth, the angle 3 between
the vector of the angular velocity of rotation of the Earth and the vertical Oz can be considered complementary to /2 the
latitude of the place.

Results. Let’s perform the integration of the 3D continuity equation in the derivation of the 2D model of hydrodynamics

U, +v, +w =0
and the 3D Navier-Stokes equations

u) + (u2 )’x + (uv)’y + (uw)'z =—p'p.—¢ +np" (u’v'v +ul ul, )+ 2Q (vsin9 —wcos 9),

v+ (uv),x + (vz )’y +(w) - =—p'p, —¢) +np” (v;’x +v), +v;’z)— 2Qusin 9,

!

W+ (uw) » + (vw)’y + (w2 )’z =—p 'pl-¢.+np” (w;'x + Wi+ Wl )+ 2Qucos 9
for viscous (in linear approximation) incompressible (density ) liquid rotating at an angular velocity
Q=0 (jcos I+ksin9),
where i, j, k are the unit orts; u=u (x, y,z, 1), v=v (x,y, z, ), w=w (x, y, z, t) are the components of the liquid velocity

vector at point (x, y, z) at time ¢; p is the total hydrostatic pressure; ¢ is the gravitational potential; 1 is the first viscosity
coefficient in a homogeneous gravity field Vo = —g = —gk = const; p =p_ (x,y, #); is the atmospheric pressure,



12

A.L Sukhinov et al. Two dimensional hydrodynamics model with evaporation for coastal systems

p=p,T+pg&—2), Vp= g(C;i + C’yj _k), —h<z<§&,where E=E& (x,),z) is the elevation of the level of the free surface
of the liquid with respect to the undisturbed state;

h=h(x,y, z) is the height of the liquid column under the undisturbed surface.

Substituting the expressions for the gravitational potential and pressure into the 3D Navier-Stokes equations, we
obtain:

’ ' r_
u +v,+w =0,

! ' '
'

u + (uz)x +(uv) y +(u )Z =—gC’ —p! (pa ),x +np ! (u;'x +u;',y +ul )+ 20 (vsin9 —Wwcos 9),
v, + (uv)'x + (v2 ),y +(vw),z =gl —p_l( . ),y +np” (vzx +V VL )— 2Qusin g,

W+ (uw) . + (vw),y + (w2 ),z =np” (wi’x +wy W )+ 2QucosY.

We integrate the obtained equations along the vertical coordinate z from — to & taking into account the relations for
differentiable functions f=f(x,y,z ), =& (x,y,0), h=h(x,, ?):

jﬂ&=[iﬁ%t—ﬂd+ﬁGM%

¢

jﬂ&={fﬁ%x—ﬂg+ﬁ0%9,
¢ 4 '
jﬂﬁ:{jw%y—ﬁg+ﬁkal

¢

[ fidz= 1.~ 1.

where f=1(x,y, &, 1), f,=f(x,y,—h, ), are the values of the function fon the surface and bottom, respectively
We obtain the following equations:

(U ~u, ~uyh )+ (7 =v, L = vkt )+ (w, —w, ) =0,

’ ’

¢ ¢
U —u,l —u,h)+ {J.uzdzJ c—ull —uphl |+ [J‘uvdzJ y—uyv . —uvh + (W, —u,w, )=

~h ~h

’ ’

’

9
H
=—gHC, ~(p,)  + 2 [
p p

¢
J.u;dsz—(u;)SC;—(u;)bh; + [Iu;dz]y—(u'y)sC;—<u_'V)bh; +

—h

+((), = (), )+ 29V sin® - cos 9), (1)

’ ’

¢ ¢
v, —v,C —v,h)+ [Iuvdz c—u v o—uv b |+ [Ivzdz v =V -V, +(v,w, —v,w, )=

~h ~h

’ ’

4 4
! H ¢ ! ! ! ! ’ ! ’ ’ !’ ’
= —gHCy —?(pa)y +£ J‘vxdz} X —(vx )SCX —(vx )bhx + [vadzJ v —(vy )SC}, —(vy )b hy +
—h —h

+((v)), =(v1),)-2QU sing,

2

’ ’

¢

¢
W —w,C —w,h')+ (Iuwdz} c—uwl —u,w bl |+ [vadz} y=vwl —vwh |+
ot

—h
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!

+ )= {iw;dz]x—( D0~ {jwdzJ 1,8 = 0w ), 1 [+

+((w!), =(w)), ))+2QU cos$, )

9 ¢ ¢
wheree U = J.udz, V= IVdZ’ W = | wdz; is the full depth.
—h b

By rearranging the terms, we get:
U + V}f + (— ul - vSC’}, +w, )— (ubh; + vbh; +w, ): 0,

¢ ¢
U/ +[J.u2dzJ x +[J.uvdzJ v —ux(C; +u . +v,C, —wv)—ub(ht' +u, b+ v, b, +Wb):

~h ~h

=_ch;+”((Ur —ul —uh! )x+(U’V—uSC'y—ubh’v)’y)+(FS)x+(F,,)X+ZQ(Vsin9—WcosS),
; , ,

¢ ¢
V;-{Iuvdz] x +[J.v2dz] y C, +ul +vC, —w, ) vb(htl+ubh),r +vyh, +w,,):
h

—h

’ ’

¢ ¢
o). ot 0505 bt st
h

—h

= ﬂ((W; -w.' —wh! )’x + (Wy' -w,', — wbh; )(y)"l' (Fv )Z + (Fb )Z +2QU cos 9,
p

where the boundary viscous stresses on the surface of the liquid are attributed to the friction force of the wind on the
surface
£ = (7)), )= (0 (o ) 6~ ) € ), )i
+(— Hp™ (o, )+ (00,0 - 0 €+ 02), ))J'+ (oo~ (- 02,2 - 0t ) 5+ 002,

and viscous stresses at the bottom are attributed to the friction force on the bottom
By = (7 )i+ (7), 3+ (R k= o (- G = ) = (), Ji+
(00,8 =00 ) 8+ 00), )i+ 00), 80 =00 ), €+ (1), Ji).

Taking into account the kinematic conditions on the surface and bottom

! ! _ -1
—u G =V AW =G op T w kv, b+ w, =~k

where wp™' is the layer of liquid evaporating per unit of time, we get

, ®
H +U +V +—=0.
) b
P
The following empirical equation was used to determine the evaporation rate from a unit area:

o (%j —e(p, -P,),

where P _is the vapor pressure of saturated air, mbar; P, is the partial pressure of water vapor at a given temperature and
humidity, mbar; e is the empirical coefficient, g/m*h/ mbar, which depends on the intensity of spray formation in the pool.

Consider the two-dimensional problem of determining the evaporation rate from the surface of water when air moves
at a constant speed at wind speed ¥, air humidity £, air temperature 7, water temperature 7. The evaporation rate from
the surface of the pool W is determined in g/sec/m? (Fig. 1).

13
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\% @,T,

L

Fig. 1. The boundary between water and air

Let us determine the empirical dependencies for calculating the evaporation rate according to the formula based on the
unit area based on experimental data:

_(4+B-¥)(P-0-P)

= . ,
where P is the saturated steam pressure at water temperature; P is the saturated steam pressure at air temperature; r is
the heat of vaporization (r, = 2.2582 J/kg at normal atmospheric pressure); 4 and B are empirical constants. The spread
of evaporation rates across different sources is +100 % —80 %.

There are a number of standards that give similar results in the middle of this range: WMO (1966) USSR, Sartori (1989),
McMillan (1971), etc. According to the WMO standard (1966) of the USSR, the coefficients 4 = 0.0369, B = 0.0266. It
should be noted that the evaporation rate calculated according to the specified standard for /= 0 m/s is consistent with
the evaporation rate determined according to the VDI 2089 standard for a fixed (undisturbed) surface, with an accuracy
of 10-15 %.

Calculations can be performed in both laminar and turbulent formulations with calibration of the Schmidt number S,
and the turbulent Schmidt number Sc,. This number is calibrated depending on the difference in water and wind speeds in
the area of the interface between the media. Based on the available tools of the STAR-CCM hydrodynamics package, the
velocity in the interface area can be determined as

V,=VV.G'",
where V'V is the velocity gradient determined from the current velocity field; G' is the characteristic cell size calculated
from its volume. The dependence of the turbulent Schmidt number on the velocity in the interface region for predicting
the evaporation rate on waves. For example, with a wave height of 1.5 m, a length of 10 m, and a speed of 3 m/s, we get:

Se,(V,) = (0333 V" + 6.667 V, +3)-3.5.

The above formula is used to predict the evaporation rate in the presence of waves. We do not consider further
refinement of the evaporation process and will continue to obtain a 2D model:

¢ , ¢ '
U[+(J‘u2d2] x +[Iuvdz] v +%us =—gHC' +%((U;’x —-u " —u,h! ) ( ;'y u, C'}',y —ubh;',y))+

—h —h

)2 )+ ). -

|=

(0. ) j}m(ms W coss),

’ ’

g
Vt +{Iuvdz} x +[J.v dzJ v +9vs = —gHC'y +ﬂ((V£x v —vbh;)+(Vv'; —vsg;‘, —vbh;'y))—i-
p p ’ ’

—h

o), C)jJr[(Fb)y—ﬂ(( A )J 20U sing,

p

{03
+{j;uwdzJ r{jvwdz} + 20, —g((W” —w = w )+ —wi g =kt )+
+((Fv) (( )t +(w) j [ B+ (w,) JJ+ZQUCOSC
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Isolating in derivatives
() =00, + ()80 () = (), = ()
(1) =), + 002 () =), = (),

of complex functions f=/1(x,y,&, 1), 0, f, =f(x,y,~h (x,y,?) t) terms having the form and dimension of viscous stresses,
therefore, changing continuously when crossing the boundaries of the “atmosphere — liquid” and “liquid — bottom”
interface, and attributing them to the generalized forces of friction of wind on the surface F and liquid on the bottom

F,”, we obtain: ®
H{+U +V +—=0,
p

! ’

¢ ¢
U, +Uu2dz] x +qudzj e +%us =—gHC' +g((U;’x +U;y)—us(§;’g +(;;y)—ub(hfx +h;y))+
—h —h

#(F7), +(F), +29 (7 sin® —w cos9), @
m[}..% , {i&] R . A AR BEARN 3
«(77), +(F7), —20Usins, (5)
o Jt] o e+ 20203 5 )l )

+(F) ( )+2§2UcosS (6)

B = (), () o+ ) g+ ), (e + 0 ))) i
T c+(i)yc 0.+ e i+
I (A R | (< 1Y
R =(7), o), ( )h # ), 0+ P i
+(<> o (), 12+ )+ 60, ()2 )i+

+(7). o (001, 2 +(w; )b i+ w0, ()74 (2,

they are equal in magnitude and directed opposite to the forces acting from the side of the column of liquid on the column
of atmospheric air above it and the section of the bottom below it. The terms that change abruptly when crossing the
boundaries of the “atmosphere — liquid” and “liquid — bottom” interface are left to the account of the forces of internal

where

viscous friction.

In case of
Wcos 9 << Vsin 9

the solutions of equations (4) and (5) do not depend on the solution of equation (6), which we exclude

H[+U;_+Vyf+2=0, (7
p

’ ’

¢ 4
U/ + (J.u dz}x-i—(juvdz}y—i-ﬂuY —gHC' +— (AU u A —u, Ah)+
p

—h —h

+(F*)X +(Fb*>x +2QV sin 9,

K

’ ’

¢ ¢
| S R
p p
—h —h

«(77), +(F7), —20Usins, @®)

K

15
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where A= 07/ Ox* + 0%/ 0y* is two-dimensional Laplace operator.
C.C.C,C:

uv’ uw’

Introducing coefficients C

uu’ w?

¢ g ¢
j u’dz=C, H'U?, Iuvdz =C, H'UV, jvzdz =C,H'V?, u=CH'Uv,=CH'V,
—h —h ~h

equations (7)—(9) can be rewritten as

H]+U.+V] +(o0/p)=0,
UL C U7 1)+ (Cuv 1)+ (ofp)C U/ )= ~gHE, +(n/p)(AU ~C, (U/H)AG -, ah)+

+(F7) +(F)), + 207 sin9,

Ve (CLUV Y (L 1)+ ofp)C 1/ H) = ~gHE, + (1/p) AV ~C,(7/H)AC-v,h)+
(7)), +(Fy), ~20Usins. ©)

K

Due to the Cauchy-Bunyakovsky inequality, there are the following restrictions for the coefficients C, and C,

2 ¢ 4
U :(J.udz] <H[wdz=C, 21, V* =() < Hj-vzdz:> C, =1,
“n Zh

—h

and due to the positive semi-definiteness of the quadratic form

Hi(u—v)zdz:H[j

—h —h ~h

¢ ¢
uzdz—2juvdz+ J‘vzdzJ =C, U =2C, UV +C, V7?20,
—h

— restriction for c,
c<Cc C

The next stage of the study is to obtain and analyze the balance equation of total mechanical energy with certain

simplifications.
When C =C =C =1 forasimplified model, we get:

v

H+U.+V] +(0/p)=0,
U (U8 )+ UV HY s +(ofp)C (U H) = —gHT. + (n/p)AU - C, (U H)AL — uyAk)+

+(F7), +(F)), +297sin9, (10)
Vv a7 1)+ /o) )= ~gHE + (nfp)AY —C, (7] H A v, Ah) +
+(77), +(F7), ~20Usins. (11)

The law of conservation of total mechanical energy is fulfilled — the sum of the potential energy in the resulting
gravity field and the positive definite quadratic form of the integrals U and V, acceptable as an estimate of the kinetic
energy of a column of liquid.

Multiplying (10) by U/H:

U+ UIH)U* B+ IR0V H) s+ ofp)C (U 1)+ 2UE, =
= (n/p)U/H)AU - C, (U/H)A - u,an)+ (U H)(F), +(F) ), )+ 202sin $(UY /H),
multiplying (11) by V/H:
W+ )01+ @] 1) 0 ), +(ofp) € 1)+ g, =
= (/) /H) AV =, (7 H e —v,am)+ (7 HN(E?), + (7)), )-20sin 9(uv /)

and taking into account the ratios

;= o)) + v /e,
V1) = o).+ en i,
o u). = er )+ (/o fem)).,
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/s Yov ), =02 er v+ (/)0 en))..
v/mYor/a) .= )em ot +(v/m) /).,
viara), =0 er v+ (v (em).,

we will get

(vl (oo o).+ (o o) s oo N vosv s ool 2)
+{ofp)C, 1D/ + o W)~ cUt)-

=(n/p)U/H AU = C,(U/H)A —u,Ah)+ (UJHN(F? ), +(F; ), )+ 2Qsin$(UV/H),
2 /er)). + (/v /em)). + (v /mfem) « 2 er o+, + v + @)+ (13)
+(o/p)C,-1/2)V/H) + g((Vc)'y - CV’) =
= /o)y /H YAV —C, (7 H)A - v,an)+ (P ENES), + (7)), )-2Qsins (UV/H).
Adding (12) and (13), we come to
(v +r2Yem) (v «r* e el (/o + v Yem)s e, +
+(o/(pH))(2c, -1+ @c, - )7 aH)-gtU: +7;)=
= (n/oNU/H)AU + (] H)AY = (C, (U] HY +C,(7/HF We~ (U7 H Yy (7 H o, i)+

Ol )+ () r(E7), + (), )y

Above the fixed (4, = 0) bottom is performed
- gt(Ur+17)= e + (/o) = (6 - 1*)r2). + (e (o1 gt =

= (gH(c=)/2). + o/ o et (- )2+ gH* 12).

As a result, we come to an equation that is an analogue of the equation of the balance of total mechanical energy in
differential form

(K+11)+ (U/H)K+T1+ P)) « + (7/H YK + 11+ P)) , + (o/ (0B )YIT + P)+ (14)
+(o/eH))(2C, -1 +(2C, -1 )(2H) =
~ (/WO AU+ ()Y =(C, (U1 +C. (V[ HY W= (] 1), + ), Joh)+

+ (U((F: )x + (F b )x )+ V((F: )y + (F b )y »/ H,

where K= (U*+V?)/2H),1=gH (- h)/2,P=gH?* 2,11+ P=gHE.
For a positive function E = E (x, y, f) > 0, satisfying the transfer equation

E'+(U/HE'+(VIHE'=0,
equation (4) is also valid for generalizing estimates of kinetic energy

K=E-(U*+V?/(2H).
If we consider the boundary 0G of the region G to be fixed then

j j (K+n)'tdxdy=[” (K+H)dxdy] .

using the Green function

I K((U/H)(K +11+P)) .« +((V/HK + 11+ P)), jdxdy - §(K +T1+ P\Udx ~ Vay )/ H =

17
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= §(K+H+P)(Ui+V,n)dl/H,

oG

”((U/H)AU+(V/H)AV)dxdy=

= f(VK.n)ar - ”HQ v(U/EY + v H ) ey ([ j (K/H)AHdxdy,

oG

where n is the external normal to the boundary 0G of the region G and assuming C, = C, = C, we obtain the balance
equation of the analogue of the total mechanical energy of the liquid in integral form:

’

U J' (K + H)dxdy] + §(K +T1+ P)Ui + Vjn)dl/ H + J' I (/(pH)(2C = 1)K + IT + P)dxdy= (15)

- (n/p)[ (VK,n)di- IHQV(U/H]Z v HY )dxdy— (2c-1) I I (K/H Aldxdy +

G G

+ [/ Hu,+ /1, ))Ahdxdy] +
+ IJ.(U((F: )x + (Fb* )x )"‘ V((F: )y + (Fb* )y ))dxdy/H_

If the conditions of «sticking» are met on the bottom surface

v =w =0,

ub b b

then the term
Ij((U/H)ub +(V/H)v,)Ahdxdy=0
G
there is no balance equation (15), and above the bottom surface, which is a harmonic function
Ah=0 (16)

there is also no term

J I (K/H )Ahdxdy =0

G

and the model
C;+U‘;+V;+(m/p):0 or H,'+U)'(+V;+(co/p)=0, (17)

(U3 /a).+ O], + ofo)CU]H) = ~gHE, + (nfoXaU - CU/HNG)+ (18)
+ (F)x + (Fb)x +2QV sind,

s

ViV [H) o+ 1)+ (ofp)oW H) = ~gHE, +(nfp)Xar - C(v /A + (19)
+(£), +(F), —20Using

s

turns out to be strictly dissipative due to the action of internal viscous friction forces.
The corresponding (17)—(19) system of equations in averaged values of velocities # =U/H and v = V/H will have
the form:

¢+ (Hir) « + (H9) s +(0/p) =0 or H!+(Hir) .« +(H7) s +(o/p)=0. (20)

() + (72 ). + () , + (ofp)CT = —gHT, + (n/p)A(HE) - CTAL)+ @1
+(F7). +(F)), + 208V sing,

(HV)’, + (HW) + (HVZ 'y +(o/p)Cv =—gHC,, +(n/p NA(HV)- CVAG)+ 2)
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+(F7), +(F7), - 20Hsin 9

K]

or, by virtue of the continuity equation:

¢+ (Hir) « + (V) s +(fp)=0 or H!+(Ha) «+(H¥) , +(ofp)=0, 23)

) + i, +vit, +(o/p)C ~ 1)/ H)=—gC, + (n/(pH )\ A(Hu ) - CizAL)+ 24)
+(£7), +(F7). ) H + 205 sins,

v, +itv, + 9, +(o/pNC -1/ H)=—gC, + (n/(pH )A(HY)- CVAL)+ (25)

((F), +(#y), ) 1~ 200 sins.

s

Other spatially two-dimensional hydrodynamic models of coastal systems and shallow waters can also be obtained.
Introducing simplifications

g ’ C ’ g ’ C r
I u'dz— H(UJH) J' uydz— H(U/H) . [vidz— HV/H)., jv;dz S HV/H),
~h ~h —h —h

at stage (1)—(3) and reasoning similarly to the above, we come to the following model
G +UL+V]+(/p)=0, (26)
U+ (U H) 4 VY + @fp)CW] H) = ~gH, +<n/p>[(H<U/H> SN ]
+(F7), + (7)), + 20V sins, @7

VUV [H . H), ol 1) =gt +<n/p{(H<V/H>’xj! +(H<V/H>’y)}j ‘

+(77),+(F7), 20U sin8

s (28)
or in averaged values of velocities
H! +(HT) <+ (HY), +(ofp)=0, (29)
7, + 5+ (ofp O~/ 1) ==+ o) () + 1 )+
+((F), + (7). ) 1 +29¥sin9, (30)
v, + v, + 7V, +(0/p)C - 17/ H )= gt + (n/(pH)) ((HV; )+ (1, )'y)+
((#7),+ (), )1 - 203 sin9, a1

taking into account the equalities and assuming that the analogue of the total mechanical energy balance equation is
fulfilled

[ J'[(U/H) [{H(U/H)'X)Ix n (H(U/H),y)’yj +(v/H) [(H(V/H),x)'x + (H(V/H)’yj'yﬂdxdy -

- §H(V(K/H),n)dl—J.J-HQV(U/HY +|V(V/H)|2)dxdy,

in the form

!

[ J' I (K + n)dxdyJ + f(K +T1+ PYUi+Vj,n)dl/ H +” (/(pH))(2C = 1)K +TT + P)dxdy =

=(n/ p){ r(VK/H)m)ai- [[ 1 (Vw/a) + V7B ddy— (20 -1) [ (K/H)A(;dxdyj ;
([0 ) (0), + ), e

G

Another family of models can be obtained by leaving on account of the forces of internal viscous friction only the
terms that do not interfere with obtaining a balance equation with strict dissipation of the analogue of the total mechanical

19
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energy of the system due to the action of internal viscous friction forces and transferring the remaining terms to the
evaporation intensity, where an excess type term is added (under the surface of the liquid convex upwards) or insufficient
(under the surface of the liquid convex downwards) Laplace pressure:

(U3 1), + OV, +ofp) CUJH) =g, + (/XU —(1/2YU H)AH)+ (32)
( ) (b*) +2QVsind,

UVIHY (721, + (ofp) COJH) =g, + (nfp)AY - (112001 )H) +

+(F), +(F7), —2QUsins, (33)
H+UL+] +(ofp) —(n/p)(1-2C) ')A - an)=0

07+ (ofo) ~pl(1- (o) Jag- (20 an)=o.

The equation of the analogue of the total mechanical energy balance for the model (32)—(34) differs from (15) by
replacing (®/p) with

(/o) - /o)1~ ()" Jarr— ah)= (/o) ~(n/p){(1-(20) - (2) ). (34)

In the course of the work, a two-dimensional model of the hydrodynamic process was constructed and studied, taking
into account the essential features of coastal systems, based on the balance of mass, energy and momentum. The proposed
model can be used for predictive modeling of hydrophysical processes, including the spread of pollutants in the aquatic
environment of marine and coastal systems.

Discussion and Conclusion. The peculiarity of the obtained spatially two-dimensional models of hydrodynamics
takes into account the fact that the operations of differentiation by spatial variables in horizontal directions are not
commutative with respect to the operation of integration along a vertical spatial coordinate. In coastal systems, where
there is a significant difference in depth, an arbitrary change in the order of these operations, performed to obtain spatially
two-dimensional equations of motion of the aquatic environment, can lead to the appearance of fictitious, physically
unreasonable sources of momentum in the Navier-Stokes equations. The method of constructing two-dimensional
equations of motion developed by the authors makes it possible to eliminate this negative effect, and maintaining the order
of operations ensures that evaporation from a free surface is correctly accounted for not only in the continuity equation,
but also in the equations of motion taking into account wind and waves.
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