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Abstract

Introduction. Mathematical modelling of currents is an urgent research topic in the field of hydrodynamics and
oceanography. Despite ongoing research in the field of developing accurate and efficient numerical methods for solving
Navier-Stokes equations that take into account vortex viscosity, the problems of accurate prediction and control of
turbulence remain unresolved. The influence of nonlinear effects in vortex viscosity models on the accuracy of forecasts
and their applicability to various flow conditions also remains relevant. The aim of the study is to study the influence
of linearized and quadratic bottom friction and two turbulence models on the numerical solution of stationary and non-
stationary periodic flows. Special emphasis is placed on comparing numerical results with analytical solutions within the
framework of using various models of bottom friction.

Materials and Methods. The computational models used in this study are based on a simplified two-dimensional
wave model and full three-dimensional Navier-Stokes equations. The classical model of shallow water motion and
the 2D model without taking into account dynamic changes in the geometry of the reservoir surface are derived from
a system of equations for a spatially inhomogeneous three-dimensional mathematical model of wave hydrodynamics of
a shallow reservoir. Analytical solutions were found by linearization of the equations, which obviously has its limitations.
A distinction is made between two types of nonlinear effects — nonlinearities caused by higher-order terms in the equations
of motion, i. e. terms of advective acceleration and friction, and nonlinear effects caused by geometric nonlinearities, this
is due, for example, to different water depths and reservoir widths, which will be important when modelling a real sea.
Results. The results of modelling stationary and non-stationary periodic flows in a schematized rectangular basin using
linearized bottom friction are presented. The influence of linearization on the numerical solution is investigated in
comparison with analytical profiles using models calculating bottom friction in a quadratic formulation. In combination
with quadratic bottom friction, two turbulence models are studied: the constant vortex viscosity and the Prandtl mixing
length model. The results obtained as a result of three-dimensional modeling are compared with the results of two-
dimensional modelling and analytical solutions averaged in depth.

Discussion and Conclusion. New approaches to modelling and studying flows with variable vortex viscosity are
proposed, including analysis of the influence of linearization and the use of various turbulence models. For the linearized
and quadratic formulations of bottom friction, it is proved that the numerical results for the case of stationary flow show
great similarity with analytical solutions, since the surface height is much less than the water depth and advection can
be neglected. The numerical results for the unsteady flow also show a good agreement with the theory. Unlike analytical
solutions, numerical modeling has minor deviations in the long run. The study of flows, within the framework of using
various turbulence models, will make it possible to take into account the influence of nonlinear effects in vortex viscosity
models on the accuracy of forecasts and their applicability to various flow conditions. The results obtained make it possible
to better understand and describe the physical processes occurring in shallow waters. This opens up new possibilities for
applying mathematical modeling to predict and analyze the impact of human activities on the marine environment and to
solve other problems in the field of oceanology and geophysics.
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AHHOTaLUA

Beeoenue. Maremarnueckoe MOJCTUPOBAHNE TEUCHHUH SBISIETCS aKTyaJIbHOW HCCIIEOBATENbCKOW TEMOH B 0OIacTw
THIPOAMHAMHMKH M OkeaHorpaduu. HecMOTpsi Ha HEmpeKpallaroIrecs UCCICAOBaHu B 001acTH pa3pabOTKH TOYHBIX
1 3Q(EeKTHBHBIX YUCICHHBIX METONOB Ul pelieHus ypaBHeHni Hapbe-CTokca, yUHTHIBAIOUIMX BUXPEBYIO BSI3KOCT,
3aJla4ydl TOYHOTO TPEICKA3aHUs U KOHTPOJIS TypOYJICHTHOCTH OCTAIOTCSI HEPEIICHHBIMU. Takke aKTyaIbHBIMU OCTAIOTCS
BOTIPOCHI BITUSTHUS HEIMHEHHBIX 3P ()EKTOB B MOJIEIAX BUXPEBON BA3KOCTH HA TOYHOCTH MIPOTHO30B U HX MPHUMEHUMOCTH
K Pa3IMYHBIM YCIOBHAM TedeHus. Llenpio necneqoBaHus ABISCTCS H3YyUCHNE BIUSHIS TMHSAPH30BAaHHOTO U KBaJApaTHy-
HOTO JIOHHOTO TPEHHS U IBYX MOZAETeH TypOyJIeHTHOCTH Ha YNCICHHOE PelIeHNe CTAIINOHAPHBIX M HECTAIIMOHAPHBIX T1e-
pI/IO)II/I‘IeCKI/IX TC'—IGHI/Iﬁ. OCOGBII\/’I AKIICHT CACJIaH Ha CpaBHeHI/II/I YUCJICHHBIX peByJ'[I)TaTOB C aHAJIMTUYCCKUMHU peH_IeHI/IS[MI/I
B paMKax HUCIIOJIBb30BaAHUA pa:umtmmx MO}I@J’ICIZ JOHHOI'O TpeHl/Iﬂ.

Mamepuanvl u Mmemoosl. BeraucnurenbHble MOJIETH, PUMEHSIEMbIE B 9TOM HCCJIEIOBAaHUM, OCHOBaHbI Ha YIPOLICH-
HOHM ABYMEPHOH BOJIHOBOM MOJENIN U MOJHBIX TpexMepHbIX ypaBHeHUsIX HaBbe-Crokca. Knaccuueckast Moaenb ABHxe-
HUSL MeNKOH Bombl U 2D-Momens 6e3 ydera THHAMHYECKOTO M3MEHEHHs TeOMETPHH MOBEPXHOCTH BOJOEMA ITOTyYEHBI
W3 CUCTEMBbI YPABHEHHUH [UIsl IPOCTPAHCTBEHHO-HEOJHOPOJHON TPEXMEPHON MareMaTHUECKON MOZIETN BOJIHOBOM THIpO-
JUHAMHUKHW MCJIKOBOJIHOT'O BOAOCMA. AHaHI/ITI/I‘IeCKI/Ie pGHIeHI/IH 6I)IJ'II/I HaﬁIIGHI)I HyTeM JmHeapmauI/m ypaBHeHHﬁ, qTo0,
O4YCBHUIHO, UMCCT CBOU orpaHquHym. HpOBOZlI/lTCSI pasnwme MC)K}Iy HeHHHeﬁHOCTﬂMH, BBI3BAHHBIMU YJICHAMU 60.]166
BBICOKOTO TOPS/IKA B YPABHCHUSX JABIDKCHHSA (T. €. WICHAMH aJIBEKTUBHOTO YCKOPCHUSI ¥ TPEHUS ), H TCOMETPUICCKUMHU
HEJNMHEHHOCTSIMH, CBS3aHHBIMH, HAIPUMEp, C PA3IMIHON TITyOMHON BOIBI M IIMPHHOW BOAOEMa, UYTO OyIeT BaXKHO TpH
MOJIEITNPOBAHHUHU PEaTHHOTO MOPSI.

Pesynomamul uccnedosanus. IIpencrapieHsl pe3yasTaTsl MOICIMPOBAHHS CTAIIMOHAPHBIX M HECTAIIMOHAPHBIX IIEPHO-
JMUYECKUX TEYCHUH B CXEMAaTU3MPOBAHHOM MPSMOYTOJILHOM OacceifHe ¢ MCIOIb30BaHUEM JIMHEAPHU30BaHHOTO JOHHOTO
TpeHus. VcciienoBaHo BIMSIHUC JTUHEAPU3AIMY HA YUCIICHHOE PEIICHUE B CPABHCHUU C aHAJIMTUYCCKUMU MPOQUISIMHU,
HCTIIONB3YIOMIMMHU MOJIEITH, PACCUUTHIBAOIIIE IOHHOE TPCHHUE B KBaIpaTHUHOU (hopMynupoBke. B coueranuu ¢ kBampa-
TUYHBIM TPCHHUEM O JTHO U3YYarOTCs JBE MOIEIH TypOYICHTHOCTH: IMOCTOSTHHAS BUXPEBAs BSI3KOCTh M MOJENb JTHHBI
nepeMemmBanus [Ipanarna. PesynsraTel, ONMydYeHHBIE B Pe3yiabraTe TPEXMEPHOTO MOIEITHPOBAHISI, CPaBHHBAIOTCS
C pe3ynbTaTaMy IByMEPHOTO MOACIHPOBAHUS U aHATUTHYECKUMHE PEIICHUAMH, YCPETHEHHBIMH I10 TITyOHHE.
Oodcyscoenue u 3akniouenue. IIpenoXeHbl HOBBIE MOIXOIBI K MOJEITUPOBAHUIO U UCCIICIOBAHUIO TEUCHHUM C TIEpEeMeEH-
HOUW BHXPEBO BA3KOCTBIO, BKIIIOUAs aHAJIU3 BIMSHUS JIMHEApH3aLluK U UCIIOJIb30BAaHHUE PA3IMUHBIX MOJeIeil TypOyIeHT-
HOCTH. [[)1s MMHEapU30BaHHON U KBaIPATUIHON (hOPMYIUPOBOK JOHHOTO TPCHUS JTOKA3aHO, YTO YUCICHHBIC PE3YIBTAThI
JUTS CITy4asi CTAIIHOHAPHOTO TEUCHHS AEMOHCTPHUPYIOT OOIBIIOE CXOICTBO C AaHANUTHICCKUMH PEIICHUSMHE, TI0CKOIBKY
BBICOTA TIOBEPXHOCTH HAMHOTO MEHBIIIE TTyOWHBI BOJBI M aJIBEKIIHEH MOXKHO MpeHeOpedb. YNCIeHHBIE Pe3yabTaThl IS
HECTAIIMOHAPHOTO TEYEHHS TAKXKe MOKA3BIBAIOT XOPOIIee COOTBETCTBUE TEOPHH. B OTIHUYME OT aHATUTHYECKUX perie-
HUHI YUCJIICHHOC MOJICIII/IpOBaHI/IC HUMECT HC3HAYUTCIIBHBIC OTKJIIOHCHHS B )IOJ'IFOCpO‘IHOf/'I HepCHeKTHBe. I/ICCHCI[OBaHI/Ie
TG‘-IGHI/Iﬁ, B paMKax UCIIOJIb30BAHU S pa3m/1qu1x Moaeneﬁ Typ6yﬂeHTHOCTI/I, IIO3BOJIUT OCyIIJ,eCTBl/ITI) yqu BIIUSIHUS HEC-
JMUHEHHBIX 3P (PEKTOB B MOJEISIX BUXPEBOM BA3KOCTH HA TOYHOCTH MIPOTHO30B U UX MPUMEHUMOCTH K Pa3InYHBIM YCIIO-
BHAM TeueHHs. [1oydeHHBIC pe3yabTaThl ITO3BOJISIOT JIyUIlIe MTOHAT M OMUCATh (PU3UICCKHE MPOIIECCHI, TPOUCXOISIINE
B MEJIKOBOIHBIX BOJOEMaX. DTO OTKPHIBAET HOBBIC BOSMOXKHOCTH IPHMEHEHHS MAaTeMaTUIeCKOTO MOIEIUPOBAHUS IS
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MIPOTHO3UPOBAHUS U aHAIN3a BO3ACHCTBUS YEIOBEUECKOM JICITENbHOCTH Ha MOPCKYIO CPEAy U AJIsl PELICHUs] JPYTHX 3a-
Jia4 B 00J1aCTH OKEAHOJIOTHU U Te0()U3UKH.

KioueBble cJI0Ba: THAPOIUHAMUKA, MEIKOBOHBIM BOJOEM, BOTHOBOE JIBUYKEHHE, YMCIIEHHOE MOJICTIMPOBAHHUE
duHancupoBanme. lcciaenoBaHue BBIMOJHEHO 3a cueT rpaHta Poccuiickoro Hayuynoro ¢onma Ne 23-21-00210.
https://rscf.ru/project/23-21-00210/

Jas uutupoBanus. [Iponenxo E.A., [Iponenko C.B. Maremarnieckoe MOIEITHPOBAHIE CTATMOHAPHBIX U HECTAIIMOHAP-
HBIX IEPUOANIECCKUX TEUEHHUH C UCTIONb30BAaHNEM PA3INYHBIX MOJeNel BuxpeBoil Bsskoctu. Computational Mathematics
and Information Technologies. 2023;7(4):30-38. https://doi.org/10.23947/2587-8999-2023-7-4-30-38

Introduction. Mathematical modelling of flows is an important and relevant tool for scientific and engineering
research, allowing to identify possible risks, optimize processes and investigate complex physical phenomena that are
difficult or impossible to study experimentally. The application of the mathematical modeling method makes it possible
to study the main characteristics of currents: velocity, pressure, concentration, temperature, which cannot be measured
directly. For example, modeling can help predict the spread of pollution in water systems or determine the optimal flood
control strategy.

Many scientists are engaged in flow research using various models of vortex viscosity. The analysis of studies [1—10]
related to the development of numerical methods aimed at solving the Navier-Stokes equations for complex periodic
flows in the field of turbulence and fluid dynamics suggests that modeling stationary and nonstationary periodic flows
remains an important scientific and applied problem.

Despite the successes in this direction — the development of more accurate and efficient numerical methods for
solving Navier-Stokes equations that take into account vortex viscosity (these methods allow for more accurate modeling
of complex flows, such as the flow around bodies with a high degree of vortex activity), there are also unsolved problems.
This includes, for example, accurate prediction and control of turbulence. The influence of nonlinear effects in vortex
viscosity models on the accuracy of forecasts and their applicability to various flow conditions also remains relevant.
Such models make it possible to obtain a more accurate and realistic description of the behavior of the fluid flow. This is
especially important when studying turbulent flows, where vortex viscosity is one of the key factors influencing the nature
of fluid movement. Modelling of such flows makes it possible to refine the parameters of vortices, determine their effect
on other physical processes and develop methods for controlling or controlling the flow.

The use of various vortex viscosity models makes it possible to take into account flow features such as flow geometry,
the presence of obstacles, changes in density or viscosity. Each vortex viscosity model has its limitations and its choice
depends on specific factors and modeling goals. Comparing the results obtained using different models allows them to be
refined and verified, as well as to draw more accurate conclusions about the behavior of the flow.

Materials and Methods. The computational models used in this study are based on a simplified two-dimensional
wave model and full three-dimensional Navier-Stokes equations.

A spatially inhomogeneous three-dimensional mathematical model of wave hydrodynamics of a shallow reservoir
includes [1]:

— Navier-Stokes equations of motion:
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— continuity equation: (2
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where V = {u, v, w} is the water flow velocity vector; p is the density of the aquatic environment; P is the hydrodynamic
pressure; g is the acceleration of gravity; u, v are the coefficients of turbulent exchange in horizontal and vertical directions;
n is the vector of the normal to the surface describing the boundary of the computational domain.

2D mathematical model of the motion of the aquatic environment is based on 3D model and includes:

— Navier-Stokes equations:
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— continuity equation (for incompressible fluid): u/+ v;+ w'=0;
— equation of hydrostatics: P =pg (z +§).
In the hydrostatic case, the continuity equation has the form [11, 12]:

0, +(Hu) '« +(Hv), =0,
where 0 = min (y, §); H=h + 0, & is the depth of the reservoir.
From the developed system of equations, it is possible to obtain a classical model of shallow water movement and

a 2D model without taking into account the dynamic change in the geometry of the reservoir surface.
Analytical solutions for a depth-averaged model and a model that contains vertical information are:

UZIZ 1 eiu)t,
l-io,

u=4 '[1 —ltanh(bd)jem’,
bd

where Y is a function only of o, and bd.
Thus, the depth-averaged velocities in both models look very similar and can be described by a function of dimensionless
parameters 6, o, and bd respectively, where:

8 U 8 s iod?
O, ==—C; — G, =——C — bd = .
3t ' wd 3t "2 od v,

Analytical solutions were found by linearization of equations, which has its limitations. A distinction is made between
two types of nonlinear effects:
1. Non-linearities caused by higher-order terms in the equations of motion, i.e. the terms of advective acceleration and

friction. kU friction linearization is based on optimal reproduction of the prevailing singular progressive wave. Although
such linearization is effective for the purposes of this study, it distorts the propagation and generation of other components
of the motion of the aquatic environment.

2. Nonlinear effects caused by geometric nonlinearities that result from the dependence of the cross section on the
height of the surface. This is due, for example, to the different water depth and width of the reservoir, which will be
important when modelling a real sea.

Turbulence modelling. Turbulent viscosity expresses momentum transfer in a turbulent flow. Several models of
turbulent viscosity are available:

— constant vortex viscosity model;

— Prandtl length mixing model;

— k—¢ model;

— Large eddy simulation (LES) [4, 7-8].

The constant vortex viscosity model is a simple model describing vortex viscosity as the product of velocity and length

scale:

v, = lKa’u*.
6

The Prandtl mixing length model uses the mixing length hypothesis, in which the velocity characterizing turbulent
fluctuations is proportional to the velocity difference in the average flow at a distance / , at which mixing or momentum

. . Ou L .
transfer occurs, and is determined as /,, e when reused / as a control length scale, the vortex viscosity can be written
X

as the product of this scale squared by the local velocity gradient [13—15].
The model k—¢ relates the turbulence viscosity to the kinetic energy of turbulence & and the velocity of turbulence

dispersion. The evolution of k£ and € in time is described by the transfer equations.
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When working with large coherent turbulent structures, the method of Large eddy simulation (LES) should be used.
In LES models, large turbulence scales are directly resolved on the computational grid, while smaller scales are accounted
for using the closure formulation.

The simulation is performed using the following boundary conditions:

— losed boundaries on the bottom, embankment or wall (with or without wall friction);

— free surface boundary;

— constant water level at open borders;

— harmoniously changing water level.

The coefficient of friction in the depth-averaged model (c,), differed from the coefficient of friction in the vertical
information model (c,,), while a constant vertical vortex V150051ty was used. In practice, numerical modelling usually uses
a viscosity that varies Vert1cally in accordance with the turbulent mixing model along the length. Using this definition of
vortex viscosity and integrating over water depth provides a logarithmic velocity profile:

u(z) =2 h{ﬂd} 3)

Zy

where u, is the shear stress velocity; « is the von Karman constant (not to be confused with the bottom friction coefficients
K, K,). The parameter z, may be related to the actual roughness:
KN

30

Zy=

where «, is the empirically determined roughness height.
For the depth-averaged model, the shear stress of the formation can be related to the depth-averaged velocity, through
T, =¢; |U |U =u?. in combination with the logarithmic profile of equation (3), an expression for the coefficient of friction
Sl

1 1. (., d
=—In| e’ — | 4)
Cf K Zy

1

is found [

For a 3D model with a vertical dimension, the shear stress of the layer can be related to the coefficient of friction (¢ /2)
through t, = c,, [u,| u,. The bottom voltage is defined as:

U

U = Uy, =
¢
J2

Ty

= U
As a result, an expression for the coefficient of friction will be obtained:

L 1, (245 )
N K %

The ratio between and is found by equating (4) and (5):

gl

Results. Calculations are performed for stationary and non-stationary (periodic flow) flows. In the stationary case, the
gradient of the water level is constant over time. In the non-stationary case, a periodically changing flow is investigated. In
both cases, numerical modelling is performed using linearized bottom friction corresponding to the analytical approach.

The numerical response of horizontal (depth-averaged) velocities should correspond to analytical velocity profiles
averaged over depth. The observed difference can only be caused by numerical approximations, i. e. time integration and
(horizontal) discretization.

For both flow cases, the geometry of the computational domain is represented as a rectangular basin with two open
borders on the short sides and a water depth of 12 m. The width of the pools is small (40 m) compared to the length.
For the case of steady flow, the basin is extended by 20.000 m in length. A pool of this length is necessary for the full
development of the water level gradient.

The boundary conditions for the stationary case determine the water level of 20 cm at the inflow boundary (left),
the water level of 0 m at the outflow boundary (right) and zero normal velocity on the side walls and surface (upper
boundary). Thus, the water level is fixed with a slope i =107 (Fig. 1).



E.A. Protsenko, S.V. Protsenko. Stationary and non-stationary periodic flows mathematical modelling using various vortex viscosity models

i =10
{=20sm

L=20000m
z=-12m

Fig. 1. Steady flow in a long channel

When the 3D results are averaged in depth (3D-DA), they can be directly compared with the corresponding results of
the 2D model. The same values were selected for the roughness coefficient k,, in both models, ¢ ) was chosen to be 0.002,
K, should be 0.086 m, therefore, C, will be equal to 0.0042. This is the input data for a linearized bottom friction model.

Thus, the simulation with quadratic bottom friction was actually performed before the linearized case. This allows
comparison between all models (2D and 3D, linear and quadratic).

In combination with quadratic bottom friction, two turbulence models are studied: the constant vortex viscosity and
the Prandtl mixing length model. Ultimately, both calculations will result in the same velocity averaged over depth,
provided that a certain value is selected for the viscosity of the vertical vortex corresponding to the selected specific

bottom friction coefficients, resulting v,= 0.22 m*/s (Table 1).
Table 1

Input parameters for the case of steady flow

Parameter The calculated value of the
parameter
¢, 0.002
¢, 0.004
K, 29-10°
K, 83-.107
v, 0.22 m?/s

The simulation was performed for a long channel with linearized bottom friction. The values of the input parameters
used for this simulation are summarized in Table 2. Theoretical velocity profiles for steady-state flow with linearized
bottom friction are used to compare numerical results with analytical ones. Unlike analytical solutions, numerical
modelling has minor deviations in the long run.

Table 2

Input parameters for stationary flow with linearized bottom friction

Fundamental parameters Derived parameters
i, =107 Az, =d/nz=2m
d=12m 0.004

Kk, = 0.086 m K, =57-107
nz=6 K,=83-107°
v, v,=0.22 m*/s

In both 2D and 3D, numerical results are consistent with analytical solutions. When constructing the velocity profile
u(z) in AZOV3D, an ideal correspondence to the theoretical parabolic profile was demonstrated (Fig. 2, green shows the
result of AZOV3D, black shows the analytical solution).

The following is an example that examines the effect of linearization on the numerical solution in comparison with
analytical profiles for the same long channel. For this example, AZOV3D models are used that calculate bottom friction
in a quadratic formulation.
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d, m
0
-2
—4 AZOV3D
AZOV3D-DA
—6 AZOV2D
ANALYTE
—8 ANALYTE-DA
—10
—12
0 0.5 1.0 1.5 20 ums

Fig. 2. Parabolic velocity profiles for steady flow with linearized bottom friction and constant vertical vortex viscosity

First, a simulation with a constant vortex viscosity is performed, and then another turbulence model is tested — the
mixing length model. Table 3 shows the values of the input parameters used for this simulation.

Table 3

Input parameters for the stationary case with quadratic lower friction

Fundamental parameters Derived parameters
i, =107 Az, =d/nz=2m
d=12m ¢, =0.002

K, = 0.086 m ¢, =0.0042
nz==6 v, =0.22 m%s
k=04 u,=0.077 m/s
d, m
AZOV3D
AZOV3D-DA
AZOV2D
ANALYTE
ANALYTE-DA
0 0.5 1.0 1.5 20 umis

Fig. 3. Parabolic velocity profiles for steady-state flow with quadratic bottom friction

and constant vertical vortex viscosity

The numerical results are compared with the theoretical velocity profile in a similar way to the linearized case and are
completely consistent with the analytical solution, as shown in Fig. 3 for the case with constant vortex viscosity and in
Fig. 4 for the case with the mixing length model. The velocity profiles are reproduced correctly: in the case of a constant
vortex viscosity, a parabolic velocity profile, and in the case of a mixing length model, a logarithmic profile. Both 2D and
3D modeling correspond to the theory.
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d, m
0
-2
4 AZOV3D
AZOV3D-DA
—6 AZOV2D
ANALYTE
-8
—10
—12
0 0.5 1.0 1.5 2.0 u,m/s

Fig. 4. Logarithmic velocity profiles for steady-state flow with quadratic bottom friction and viscosity determined
by the mixing length model

For both the linearized formulation of bottom friction and the quadratic one, it is proved that the numerical results for
stationary flow, as expected, show great similarity with analytical solutions. Since the surface height is much less than the
depth of the water, advection can be neglected, so that the numerical characteristic is reproduced in full accordance with
the theory, providing a good starting point for unsteady flow.

The numerical results for the unsteady flow show a good agreement with the theory. In addition, the analytical approach
showed that the speed calculated using a 2D model is more likely to be greater than the 3D speed than vice versa. This
behavior is certainly reflected in the numerical examples above, since all calculated ratios are greater than one.

Discussion and Conclusion. Calculations have been performed for stationary and non-stationary (periodic flow)
currents using linearized bottom friction. In both 2D and 3D, numerical results are consistent with analytical solutions.
When constructing the velocity profile in AZOV3D, an ideal correspondence to the theoretical parabolic profile is shown.

The effect of linearization on the numerical solution is studied in comparison with analytical profiles using models
calculating bottom friction in a quadratic formulation. In combination with quadratic bottom friction, two turbulence
models are studied: the constant vortex viscosity and the Prandtl mixing length model. The numerical results are compared
with the theoretical velocity profile in a similar way to the linearized case and are consistent with the analytical solution,
but unlike analytical solutions, numerical modelling has minor deviations in the long run. A parabolic velocity profile is
obtained in the case of a constant vortex viscosity, and a logarithmic one in the case of a mixing length model.

For the linearized and quadratic formulations of bottom friction, it is proved that the numerical results for the case
of stationary flow show great similarity with analytical solutions, since the surface height is much less than the water
depth and advection can be neglected. The numerical results for the unsteady flow also show a good agreement with the
theory. The analytical approach showed that the speed calculated using a 2D model is highly likely to be higher than the
3D speed, which is confirmed by numerical data. The study of flows in various turbulence models makes it possible to
determine the influence of nonlinear effects on the accuracy of forecasts in vortex viscosity models and their applicability
to various flow conditions.
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