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Abstract

Introduction. To prevent the occurrence and mitigate the consequences of hazardous and catastrophic phenomena
associated with sediment transport in natural systems, it is necessary to develop operational and scientifically justified
forecasts, identify critical states at which the emergence of emergency situations is possible. For these purposes, it is
necessary to create an accurate and efficient toolkit, including algorithms for numerical solution of a model problem
that takes into account the specifics of natural systems. In this work, parallel algorithms for numerical solution of
a spatially three-dimensional diffusion-convection problem of sediment are presented, which allow a significant reduction
in computation time (by more than 4 times) compared to calculations conducted using a sequential algorithm.

Materials and Methods. For the parallel solution of the spatially three-dimensional diffusion-convection problem, an
implicit splitting scheme is constructed, in which the original continuous problem is replaced by a chain of two-dimensional
and one-dimensional problems. The splitting schemes proposed in the work are physically justified and take into account
the specifics of coastal marine systems, for which the influence of micro-turbulent diffusion and advective transport of
substances are comparable, and the Peclet number does not exceed unity when approximating real problems. For the
parallel numerical implementation, a method of decomposing the grid domain into two families of vertical planes parallel
to the coordinate planes Oxz and Oyz, combined with the Seidel method for solving two-dimensional grid problems in
horizontal planes and the tridiagonal matrix algorithm when solving one-dimensional three-point problems in the vertical
direction, is used. Within the framework of the parallel computing software implementation, a parallel algorithm is
presented that implements the diffusion-convection problem on a computing system using MPI technology.

Results. A comparative analysis of parallel and sequential algorithms is obtained using a model problem.

Discussion and Conclusions. The developed software allows its practical use for solving specific hydrophysical problems,
including as part of a software complex.
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AHHOTALUSA

Beeoenue. JIns npenynpexacHUs BOSHUKHOBCHUS M YMEHBIIICHUS TOCIEICTBAN OMACHBIX U KaTaCTPO(PHUUCCKUX SBIIC-
HUH, CBA3aHHBIX C IEPEHOCOM B3BECH B IPUPOAHBIX CUCTEMaX, HEOOXOIMMO CTPOUTH OIIEPaTUBHBIC M HAYYHO OIIPABIaH-
HBIC TIPOTHO3bI, BEISBIATh KPUTHUCCKUAE COCTOSHIS, TIPU KOTOPHIX BOBMOXHO MOSBIICHIE YPE3BBIYANHBIX cCUTyanui. s
ATHUX LIEJIeH CIeMyeT co37aTh TOYHBINA U OBICTPO paboTaloOMUi HHCTPYMEHTAPHH, BKIFOYAIOIINA alTOPUTMbI YHCIIEHHOTO
PpeIIeHUs] MONICTBHOM 3a/1auM, YIUTHIBAIONICH crienu(UKy MPUPOIHBIX CUCTEM. B HacTosiiel paboTe mpeIcTaBlIeHbI Ma-
paJuleNibHbIe ANTOPUTMbI YUCIIEHHOTO PEIIeHHUs MPOCTPAHCTBEHHO-TPEXMEPHOH 3a1auu 1] (y3un-KOHBEKIMU B3BECH,
MTO3BOJISFOIINE OIIYTHMO CHU3UTH BpeMs pacuéra (Ooiee yeM B 4 pa3a), IpU CPAaBHCHUHU C pacueTaMH, IPOBOAUMBIMU
C MCITOJIb30BaHUEM ITOCIIEIOBATEIEHOTO AJITOPUTMA.

Mamepuanst u memoowt. J171s1 napajuIeIbHOTO PEILICHHUs IIPOCTPAHCTBEHHO-TPEXMEPHOIT 3a1auu An((y3Un-KOHBEKIUH T10-
CTpO€HA HEesIBHAs CXEMa PacIICIUICHHs, B KOTOPOH MCXOAHAs HENpephIBHAS 3a/ada 3aMEHSeTCS Ha IENOYKy JBYMEPHBIX
¥ OMTHOMEPHBIX 331a4. [Ipemiaraemeie B paboTe CXeMBI pacIICIUICHHS SIBISIOTCS (PU3UIESCKH 000CHOBAHHBIME M YUUTHIBA-
10T crielu(UKy MPUOPEKHBIX MOPCKUX CHCTEM, JUISl KOTOPBIX BIMSIHUE MUKPOTYPOYJISHTHOH Andy3un U aBEKTUBHOTO
mepeHoca CyOCTaHIUI COMOCTaBUMBI, IIPHYEM IMPH alIPOKCHMAIIMY PeajbHBIX 3a7a4 ceTodHoe 4ucio [lexie He mpe-
BOCXOAWT €OMHHUIIBL. J[111 mapaniiensHON YNCIIEHHON pean3aliii NCTIOIb30BaH METO IEKOMITO3UITUH CETOYHON 00JacTu
JIBYMsI CeMeHCTBaMU BEPTUKAIBHBIX INIOCKOCTEH, MapauIeIbHBIMHA KOOPAWHATHBIM TIOCKOCTIM Oxz 1 Oyz, B COUCTaHUU
¢ MeToioM 3eHAers MpH PeIeHNH ABYMEPHBIX CETOYHBIX 3a7a4 B TOPH30HTAIBHBIX TUNIOCKOCTSIX M METOJOM NPOTOHKHU
P PEIICHUH OJHOMEPHBIX TPEXTOYCUHBIX 33]a4 [0 BEPTHKAIBLHOMY HANpaBICHHUIO. B pamMkax mporpaMMHOHN peaiu-
3K MapajuIeIbHOTO CUéTa MPECTARICH NapalIeNbHBIN aJTOpUTM, pealn3yIomui 3anady qudQy3un-KOHBEKINN Ha
BBIYHUCIIUTENIBHON CUCTEME C UCIONIb30BaHUEM TexHosorun MPI.

Pesynomamut uccnedosanusa. 1lorydeH cCpaBHUTEIBHBIN aHATN3 MTAPaJUICIBHOTO W TTOCIEAOBATEIHHOTO aJITOPUTMOB Ha
MIpUMepe PElICHUs MOICIBHOM 3a1a4H.

Obcysicoenue u 3axnwuenus. PazpaboranHoe mporpaMMHOE CPEICTBO MO3BOISET €r0 NPAaKTHUECKH HCIOIb30BaTh IS
pelIeHUs] KOHKPETHBIX THAPO(PU3NUECKUX 33]1a4, B TOM YUCIIE B KAY€CTBE JIEMEHTA IIPOrPAMMHOTO KOMILIEKCA.

KawueBble cioBa: 3aaya 1uddy3un-KOHBEKIMH, Pa3HOCTHAs CXeMa, JBYMEPHO-OHOMEpHAs cxXeMma, rnapajieibHbIe
BBIYKMCIICHUSI, METOT 3eii/1elisi, METOJ] TPOTOHKHU

duHaHcupoBaHMe. ViccienoBanrne BBIOIHEHO 3a CYeT rpaHTa Poccuiickoro Haydaoro ¢onma Ne 23-21-00509,
https://rscf.ru/project/23-21-00509

BbaaronapHocTu. ABTOPHI BEIPAXKAIOT DTyOOKYIO MPH3HATEIHFHOCTh M HCKPEHHIOO OJIaroiapHOCTh WieH-koppecnonaenty PAH,
JOKTOPY (pr3HMKO-MaTeMaTH4ecKux Hayk, npodeccopy Anekcannpy Mpanosuuy CyxHHOBY 3a 00CYXICHHE alTOPUTMOB
U pe3yJIbTaTOB UCCIICJOBAHUSI.

Jast uurupoBanust. Cunopsikuna B.B., Conomaxa JI.A. TlapasuienbHpie alrOPUTMBI YUCIIEHHOTO PELIEHUS TPOCTPAHCTBEHHO-
TpeXMepHBIX 3234 11 y3uH-KOHBEKIMU B3BeCei B PHOPEKHBIX CUCTEMAX Ha OCHOBE cxeM paciueruienust. Computational
Mathematics and Information Technologies. 2024;8(1):29-35. https://doi.org/10.23947/2587-8999-2024-8-1-29-35

Introduction. In numerical modelling of applied substance transport problems, convection-diffusion equations [1-4] serve
as the foundation. The main features of such problems include, in particular, the non-self-adjointness of the problem
operator, as well as significant differences in the spatial-temporal scales of the convective and diffusive transport
difference operators [5—8]. These problem characteristics must be accounted for at the discrete level when constructing an
approximation of the continuous problem.

When solving these problems numerically with a focus on efficient parallelization the perspective of efficient paralleliza-
tion, the method of splitting along geometric directions has proven itself well [9—12]. The considered implicit scheme is
based on splitting the three-dimensional diffusion-convection operator into two-dimensional and one-dimensional operators
and forming a two-dimensional-one-dimensional additive splitting scheme. The solution of the difference three-dimensional
problem reduces to solving a sequence of interconnected two-dimensional and one-dimensional difference problems based
on initial and boundary data, which significantly reduces the time required for exchange operations in a parallel computing
system. For the numerical solution of the two-dimensional difference diffusion-convection problem, a parallel variant of
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the Seidel method is used, based on the decomposition of the three-dimensional grid problem by vertical planes parallel to
the corresponding coordinate planes according to the number of parallel processors. The set of one-dimensional difference
diffusion-convection problems in the vertical direction is solved in each processor independently of the others using
a sequential tridiagonal algorithm. When using such an algorithm, the costs of interprocessor exchanges are significantly
reduced compared to one-dimensional splitting schemes, which are performed according to the five-point template for
boundary nodes included in separate blocks of grid information assigned for processing in individual processors. The
approximation uses a skew-symmetric representation of convective terms, as well as the characteristics of flows in coastal
marine systems, for which, in the vast majority of cases, the Peclet number does not exceed unity. This, in turn, allows
for real problems when choosing a time step (seconds or a few tens of seconds) to ensure strict diagonal dominance in the
matrix corresponding to the problem operator, and the convergence of the Seidel method at a geometric progression rate.
A comparative analysis of parallel and sequential algorithms is carried out using a model problem.

Materials and methods

Difference scheme for the three-dimensional convection-diffusion equation. In the rectangular Cartesian coordinate
system, let us consider the three-dimensional convection-diffusion equation using the skew-symmetric representation of
the convective transport operator:

6c+l{ 6c+v@+wac+8(uc)+6(vc)+6(wc)}_i[ @) i[uh%J+ﬁ(uV@}+f’ (M
y

= u— . = Wy +
o 2| ox oy 0z  Ox Oy oz Ox Ox) Oy oz oz

where ¢, ¢ = c(x,y,z,t) is the concentration of particles at time ¢, ¢ € [0;T]; u,v,w are the components of the water medium

velocity vector U ; bk, are the coefficients of horizontal and vertical particle diffusion, f is the source function, /= f(x,y,z,).
The equation (1) is supplemented by initial conditions and Dirichlet boundary conditions:

c(x,y,z,O) =¢, (x,y,z), (x,y,z) eG, 2)

G={xr2J0sx<l, 0<ys<l, 0<z<L} G=G\G;

cl,y,z,t)=v(x,y,2,t),0<t < T, (x,y,2) € 8G. 3)
Let’s introduce a uniform rectangular space-time grid ® = o,0_, where
®, = {xi =ih,y, = jh,z, =kh., i=UN,,j=LN,, k=LN., N.h, =1 ,N h =1 ,N.h, :12},
o, = {tn = (n +0L/2)T, ae {O,l}; n=01,..,N,; N,1= r},

On the time grid w_we replace the problem (1)—(3) with a chain of two-dimensional-one-dimensional problem of the

form:
1) ) (1) (1) (1) (1) (1)
oc +l u@c +vac +6(uc )+8(vc ) zi W, oc +i w, oc +f(l), (x,y,z)eG, @)
o 2| ox Oy Ox Oy Ox Ox oy Oy
t,<t<t +051, n=01,.,N, -1,
c(l)(x,y, z,O) =c, (x, ¥, z), (x,y, z) eqG, &)
c(l)(x,y,z,t"):c(z)(x,y,z,tn ), (x,y,z)e 5, n=12,..,N, -1 6)
ac® 1] ac®  alwe? 0 ac® @)
- + = + 5 s s G’ 7
| e e e AR S 2R @
t,+05t<t<t,,, n=0L..,N, -1,
c(z)(x,y,z,l” + O.SI) =c(l)(x,y,z,t” + 0.51?), (x,y,z) € (_;, n=0,12,..,N, -1, (3

supplemented with the Dirichlet boundary conditions of the first kind form (3), f = f 04 f @), In terms of the two-
dimensional problem for the substance concentration function ¢ the superscript (1) is used here, and for the one-dimensional
problem — (2). The source function /" is represented as f = f (L f (2) In the further reasoning, we use an overline above
the functions ¢, f (1), f () to denote their grid analogs.
—=n+l/2  —=n —n+l/2 —n+1/2
c -C +l(u(x,y,z)c (x+hx,y,zl;c (x—hx,y,z)+
T

x
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+ (x+hx’y’ ) n+1/2(x+hx’y’ ) (.X' hx’y’ ) "*1/2(x_hx’y’z)]+

2h,
—n+1/2 —n+l/2
+1{V(x,y,z)c (x y+h,v’ lh (x Y- hy’ )+
(xy+h ) n+1/2(x’y+hy, ) (x y h ) n+l/2(x’y_hy,z) B (9)
2h, -
—n+l1/2 n+1/2 —n+1/2 —n+l1/2
=hi(uh(x+hx,y,2)c (x+hx,y,h) (e.2) m, (6,2,2)° (ry.2)-2 . (x_h"’y’z)J+
1 —n+l1/2 X +h n+1/2 X, 0,2 —n+l/2 X, , —n+1/2 X, _h,,Z
+h_[uh(xsy+hy’ ) ( & h) ( Y ) u,,(x,y,z) ( S ) h ( - ) +
y y y
+f1", (x,y,z)e o,, n=0,1,.,N, -1,
t"<t<t"™"? n=01,..,N, -1, (10)
El(x,y,z,O)zco(x,y,z), (x,y,z)e ®,, (11)
c"(x,y,z, ") e (x,y,2,,), (x,y,z)e®,, n=12,.,N,-1. (12)
The difference analogs of equations (7), (8) take the form:
A +1[W(x’y’z) n+l(x y,z+h, ) "H(x,y,z—hz)_'_
T 2 2h,
wlx,y,z+h, )" (x,y, 2+ h. ) =w(x, y,z—h.)e"" (x,y,z— h.) _
2h,
:i[uv(x,)azwt e oy ) -2 y2) Hv(x,y,Z) Myz)-e n+l(x’y’z_h2)]+
hZ hZ hZ
+f_~2n+]/2’ (X,y,Z)EO)h,
t,+05t<¢t<t,, n=0L..,N, -1,
"0 2,208,000 ) =" 2 (0,0, 2,800 ) (6, 9,2)€®,, n=0,1,2,...,N, —1. (14)

Numerical solution of the two-dimensional problem (4)—(6) is carried out by the method of successive over-relaxation,
while the one-dimensional problem (13)—(14) is solved by the tridiagonal matrix algorithm. It can be shown that for
problems with a Péclet number not exceeding unity, the successive over-relaxation method converges geometrically
with a convergence factor of 0.7-0.9 for real problems in the hydrophysics of coastal systems. Similarly, under these
conditions, the tridiagonal matrix algorithm remains stable. Due to these properties, in this paper, we do not delve into
detailed explanations for brevity.

Research Results. Parallel computing implementation. Within this work, a parallel algorithm has been developed to
solve the three-dimensional convection-diffusion problem described by equations (10)—(14) using MPI technology. The
parallel implementation involved techniques for decomposing grid domains for computationally intensive convection-
diffusion problems, considering the architecture and parameters of the computing system. The decomposition of the
computational two-dimensional domain was carried out along two spatial variables, x and y, and a decomposition along
one spatial direction (one vertical coordinate) was also utilized. The parallel algorithm for solving the two-dimensional
problem (10) is illustrated in Fig. 1.
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Fig. 1. Decomposition of the two-dimensional grid domain and the scheme for calculating the solution vector

Model Problem Solution. Let’s demonstrate the results of the parallel algorithm’s operation using a model problem
for equation (1) with Dirichlet boundary conditions. The input data for the problem are as follows:

U= (u,v, w) = (x,2y,3 - 32),

c= klx(lx —x)+ kzy(ly —y)+ k3(1—expl£J+k4(t+0,l),

z

.2
w, =const, u, = ks(l,l + sm%}

ky=ky,=2x+I +2y+l,, ks =const, k, =const, ks = const,
0<¢<10, 1, =1,=1,=10m.

Taking into account the specifics of coastal areas, coefficients k., k, and &, of order 1+5 were selected. Fig. 2 shows
the dependency of the calculation time on the number of nodes in the computational grid for cases when parallel and
sequential algorithms were used.

1200

Time, s
Y]

1000
800
600
400

200

50 100 150 200 250

Number of nodes in the computational grid

Fig. 2. Graphs depicting the dependence of calculation execution time on the number of nodes in the
computational grid: 1 — for the parallel algorithm, 2 — for the sequential algorithm
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Let’s provide a comparative analysis of the calculation execution time (Table 1).

Table 1
Comparison of calculation execution time in the case of parallel and sequential algorithms
Number of Grid Nodes 32x32 64x64 128x128 256x256
Parallel Algorithm Execution 0.111 1.125 17.656 253.561
Time, s
Sequential Algorithm Execution 0.388 5.405 108.180 1203.670
Time, s

The results demonstrate a reduction in calculation time for the parallel algorithm by more than 4 times compared to
the sequential algorithm.

Discussion and Conclusions. Algorithms for parallel and sequential computation have been proposed for solving the
three-dimensional convection-diffusion problem. The application of the parallel algorithm can significantly reduce the
calculation time (by more than 4 times), which is important for cases requiring timely risk analysis and determining the
fate of suspended matter in the sea. The developed software tool enables practical use for solving specific hydrophysical
problems, including as a component of a software complex. [11].
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