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Abstract
Introduction. We present a novel adaptive mesh refinement (AMR) solver, SWqgdAMR, based on the open software 
platform AMReX. The new solver is grounded in regularized shallow water equations. This paper details the equations, 
their discretization, and implementation features within AMReX. The efficacy of SWqgdAMR is demonstrated through 
two test cases: a two-dimensional circular dam break (collapse of a liquid column) and the collapse of two liquid columns 
of different heights.
Materials and Methods. The SWqgdAMR solver is developed to extend the applicability of regularized equations in 
problems requiring high computational power and adaptive grids. SWqgdAMR is the first solver based on the quasigas 
dynamic (QGD) algorithm within the AMReX framework. The implementation and validation of SWqgdAMR represent 
a crucial step towards the further expansion of the QGD software suite.
Results. The AMReX-based shallow water equations solver SWqgdAMR with adaptive mesh refinement is described 
and tested in detail. Validation of SWqgdAMR involved two-dimensional problems: the breach of a cylindrical dam 
and the breach of two cylindrical dams of different heights. The presented solver demonstrated high efficiency, with 
the use of adaptive mesh refinement technology accelerating the computation by 56 times compared to a stationary 
grid calculation.
Discussion and Conclusions. The algorithm can be expanded to include bathymetry, external forces (wind force, bottom 
friction, Coriolis forces), and the mobility of the shoreline during wetting and drying phases, as has been done in individual 
codes for regularized shallow water equations (RSWE). The current implementation of the QGD algorithm did not test the 
potential for parallel computing on graphical cores.
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equations, AMReX
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 Оригинальное теоретическое исследование 
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Аннотация
Введение. Представлен новый решатель с адаптивным измельчением сеток SWqgdAMR на базе открытой про-
граммной платформы AMReX. Новый решатель основан на регуляризованных уравнениях мелкой воды. В рабо-
те описаны уравнения, их дискретизация и особенности реализации в AMReX. Работоспособность SWqgdAMR 
была показана на двух тестовых задачах: двумерная задача прорыва круговой дамбы (распад столба жидкости) 
и задача о распаде двух столбов жидкости, разных по высоте. 
Материалы и методы. Решатель SWqgdAMR написан в рамках расширения применимости регуляризованных 
уравнений в задачах, требующих больших вычислительных мощностей и адаптивных сеток. SWqgdAMR яв-
ляется первым решателем на базе КГД алгоритма в программном комплексе AMReX. Реализация и валидация 
SWqgdAMR является основным шагом на пути дальнейшего расширения комплекса КГД программ. 
Результаты исследования. Детально описан и протестирован решатель AMReX уравнений мелкой воды 
SWqgdAMR с адаптивным измельчением сеток. Для валидации SWqgdAMR использовались две двумерные за-
дачи: о прорыве цилиндрической плотины и о прорыве двух цилиндрических плотин разной высоты. Представ-
ленный решатель показал высокую эффективность, а использование технологии адаптивного измельчения сетки 
позволило ускорить расчёт в 56 раз по сравнению с расчётом на стационарной сетке.  
Обсуждение и заключения. В алгоритм может быть включена батиметрия дна, внешние силы (сила ветра, трение 
о дно, силы Кориолиса), а также учет подвижности береговой линии при осушении-наводнении, как это уже было 
сделано в рамках индивидуальных кодов для РУМВ. В данной реализации КГД алгоритма не тестировались пер-
спективные возможности применения распараллеливания вычислений на графические ядра.

Ключевые слова: уравнения мелкой воды, адаптивное измельчение сеток, квазигазодинамические (КГД) уравне-
ния, регуляризованные уравнения мелкой воды (РУМВ), AMReX

Финансирование. Работа выполнена при поддержке Московского центра фундаментальной и прикладной мате-
матики. Соглашение с Министерством науки и высшего образования РФ № 075-15-2022-283.

Для цитирования. Бут И.И., Кирюшина М.А., Елистратов С.А., Елизарова Т.Г., Тиняков А.Д. Решатель c адап-
тивным измельчением сеток для регуляризованных уравнений мелкой воды. Computational Mathematics and 
Information Technologies. 2024;8(2);9‒23. https://doi.org/10.23947/2587-8999-2024-8-2-9-23

Introduction. Hydro- and gas-dynamics simulations require increasingly precise algorithms and detailed computational 
grids, which consequently demand substantial computational resources, including methods for parallel computing on GPU 
cores. Therefore, there is a need to develop a new solver with adaptive mesh refinement (AMR) based on open platforms. 
This approach offers several advantages over the development of custom codes. Firstly, open platforms typically provide 
well-established and thoroughly tested frameworks, endorsed by the broader scientific community, reducing the risk 
of errors and enhancing overall reliability. Secondly, the use of open platforms promotes functional compatibility and 
reusability, ensuring seamless integration with other tools and facilitating collaboration among researchers. Thirdly, 
employing existing open platforms can significantly reduce development time and costs, as these platforms often offer 
a wide range of functionalities, from data processing to visualization and parallel computing. Fourthly, open platforms 
benefit from continuous development and support from the user community, leading to regular updates, bug fixes, and 
performance improvements. This contrasts with custom codes, which often depend solely on the resources and expertise 
of the individual or team that created them.

Among the available open-source software, AMReX was selected as the most optimal framework. AMReX enables:
1. The use of adaptive mesh refinement (AMR) technology.
2. Parallel computation on GPU cores.
3. The immersed boundary method for simulating solid bodies in flow.
4. The construction of structured grids.
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5. Integration into The High Performance Software Foundation, established by the Linux Foundation in 2023 [1], 
ensuring extensive support and ongoing development of this software package.

Numerical simulations of gas dynamics problems have already been conducted using AMReX, including comparisons 
between AMReX and OpenFOAM [2]. Thus, it was decided to implement a solver for hydro- and gas-dynamics problems 
based on the quasigas dynamic (QGD) equations within the AMReX framework. A similar solver has already been 
implemented in OpenFOAM [3, 4] under the general name QGDsolver, demonstrating high efficiency. Unfortunately, 
as previously noted, OpenFOAM [5] lacks the capabilities for parallel computation on GPU cores and adaptive mesh 
refinement.

This paper describes the implementation of the QGD algorithm in AMReX in a simplified form. The simplification 
involves a barotropic variant of the gas dynamics equation system, which allows for the elimination of the energy equation 
and the equation of state. Under certain assumptions, this barotropic variant takes the form of shallow water equations. It 
is worth noting that the implementation of the SWqgdAMR solver in the AMReX software package is a key step towards 
further expanding the suite of solvers based on QGD equations.

The QGD approach itself has been developed for over 30 years for gas dynamics and incompressible flow prob-
lems [6–10]. In recent years, the QGD approach has been implemented for shallow water approximation problems [11–16].

Mathematical Model and Numerical Method. Regularized Shallow Water Equations (RSWE). The RSWE can 
be expressed in vector form, in the absence of external forces and assuming a flat bottom, as follows:
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where h is the water layer thickness; jm = h (u ‒ w) is the mass flux density vector; u is the velocity vector; g is the 
acceleration due to gravity; П = ПNS + ПQGD is the stress tensor; ПNS is the Navier-Stokes viscous stress tensor; w, ПQGD 
are QGD terms; and ⊗ denotes the tensor product. Here, the nabla operator acting on a scalar denotes the gradient, on a 
vector denotes the divergence, and on a tensor denotes the covariant derivative: ∇T ≡ y|yβ = ∇α Tαβ. The form of RSWE 
considering the shape of the bottom and external forces can be found in [11–16].

Discretization of Regularized Shallow Water Equations.

Fig. 1. Numerical stencil. The values of variables ℎ and u are assigned to the cell centers with coordinates (i, j)

The component-wise form of the QGD shallow water equations is as follows:
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To discretize the equations spatially, we take into account the values at the half-cell points of the grid (Fig. 1):
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Similarly, discretization of velocity components at half-cell points is recorded. Discretization of Mass Flux:
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Discretization of QGD Terms:
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where α is a tuning parameter between 0 and 1; g is the acceleration due to gravity. A similar discretization is applied 
for terms τC , τD. The time step on the base computational grid is chosen to satisfy the stability condition for the explicit 
scheme, expressed as the Courant condition (Courant number  0 < β < 1):
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Discretization of the viscous stress tensor:
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Discretization of the mass conservation equation:
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Discretization of the momentum balance equations:
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Implementation in AMReX. The numerical solution of the shallow water equations is implemented in C++ using 
the open-source software AMReX. This software was chosen as the foundation because it facilitates ready-to-use 
adaptive mesh refinement (AMR) logic and offers straightforward portability of computations to GPU cores via macros, 
significantly reducing computational time.

Figure 2 shows the structure of the developed software.
The main solver class, AmrSWQGD, is declared in the file AmrSWQGD.H and implemented in the file AmrSWQGD.cpp. 

It inherits from the AmrLevel class, defined in the AMReX core. Inheriting from this class allows straightforward adaptive 
mesh refinement across multiple levels.
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AMReX Src/

SWqgdAMR/

Source/

Exec/

AmrCore/

Base/

AMReX_AmrLevel.H

AMReX_Amr.H

AMReX_AmrLevelBld.H

AMReX_ParmParse.H

Make.QGD

Task1/

GNUmakefile

Make.package

inputs

Task1_fillBC.cpp

Task1_init.cpp
AmrSWQGD.H / .cpp

main.cpp

SWQGD_advance.cpp

SWQGD_fillBC.cpp

SWQGD_init.cpp

SWQGDLevelBld.cpp

Fig. 2. Solver structure

The solver iteration logic is defined in the file SWQGD_advance.cpp within the advance method. In this method, 
a ParallelFor loop updates the fields h, ux and uy at each iteration. Here, huOld is the container for old variables, and 
huNew is for new variables. Since the solution occurs on a multi-level grid (Fig. 3), where each level has its own refinement 
(level 0 is the coarsest grid, and higher levels have increased accuracy), each level introduces its own time step (Fig. 4).

For example, if the grid has two levels, 0 and 1, and the grid at level 1 is twice as fine in each direction as at level 
0, then one iteration of the solution proceeds as follows: calculations are performed at level 0 with a time step dt, two 
iterations of calculations are performed at level 1 with a time step dt/2, and then the grids are synchronized. This algorithm 
enhances computational accuracy.

It is important to note that it is not necessary to refine the entire grid at each level, only specific parts of it. To achieve 
this, the solver class defines the errorEst method in the file AmrSWQGD.cpp. This method takes a reference to an instance 
of the TagBoxArray container. Using a ParallelFor loop, each grid cell is examined and marked for refinement if it meets 
certain conditions (defined within an if statement). Additionally, some surrounding cells are marked for refinement. Cells 
that do not meet the condition are marked with the clearval tag and will not be refined.

The computational tasks themselves are located in the Exec directory, which contains the inputs files with initial and 
boundary conditions.

The inputs file contains the settings for the solution, including various parameters that control the behavior of the 
solver. Here are the key parameters and their descriptions:

• max_step: The maximum number of iterations;
• stop_time: The computational time in seconds at which the solution stops. Essentially, the calculations continue until 

either the number of iterations exceeds max_step or the computational time reaches stop_time;
• geometry.is_periodic: An array of three boolean variables (e.g., 0 0 0, 0 1 1, or 1 0 1) that determine whether the 

boundaries in each direction are periodic (1) or not (0);
• geometry.coord_sys: The coordinate system used for the solution. The recommended value is 0, which corresponds 

to the Cartesian coordinate system. There is no guarantee that the solver will work correctly in other coordinate systems;
• geometry.prob_lo: The xyz coordinates of the lower left corner of the physical rectangular domain (e. g., 0.0 0.0 0.0);
• geometry.prob_hi: The xyz coordinates of the upper right corner of the physical domain (e.g., 10.0 10.0 1.0);
• amr.n_cell: An array of three integers representing the grid resolution in each direction at level 0 (e.g., 512 512 1);
• amr.max_level: An integer indicating the maximum allowable level of grid refinement;
• amr.ref_ratio: The refinement ratio of the grid levels;
• amr.regrid_int: An integer representing the number of steps after which the grid should be regenerated;
• amr.max_grid_size: The solver divides the grid into domains, with the size of each domain not exceeding max_grid_size 

in each direction;
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• amr.plot_int: The solver writes output to files every plot_int iterations.
The boundary conditions are defined in the structure SWQGDBCFill located in the file Task1_fillBC.cpp (where 

Task1 is the task name and can be changed to any other name). In this structure: ilo and ihi represent the left and right 
boundaries of the computational domain, respectively, jlo and jhi represent the bottom and top boundaries, respectively.
The equations are solved for the variables h, ux and uy, which represent the water column height, the velocity in the 
x-direction, and the velocity in the y-direction, respectively. The variable dest is a multidimensional array that stores the 
values of all variables throughout the computational domain. To access the variable h at cell (i, j, k) you use dest(i, j, k, 0). 
To access the variable ux in the same cell, you use dest(i, j, k, 1), and for uy, you use dest(i, j, k, 2). ince we are dealing 
with 2D equations, the index k is assumed to be 1. 

Initial conditions are set in the file Task1_init.cpp. Here, the variable snew[bi] acts as a container similar to the 
dest container in the boundary conditions structure. Initial conditions are computed in a loop using amrex::ParallelFor. 
This loop, along with the macro-lambda function AMREX_GPU_DEVICE, allows for the parallel computation of initial 
conditions across the entire domain on GPU cores.

To compile the program, navigate to the task folder (Task1) and then run the command make ‒j n in the terminal, 
where n is the number of cores for parallelization. To run the utility without parallelization, simply run make. After 
make completes, a file named main2d.gnu.MPI.ex (the name may vary slightly) will appear in the folder. To start the 
calculation, execute the following command in the terminal: mpiexec ‒np n ./main2d.gnu.MPI.ex inputs, where n is the 
number of cores for parallelization. This will start the computation.

Results. Two 2D problems are used for the validation and verification of the developed solver:
The dam break problem, for which an analytical solution is well known.
The collapse of two liquid columns of different heights.
Two-Dimensional Circular Dam-Break Problem. The problem of liquid column collapse or the breakthrough of 
a circular dam (Circular Dam-Break) is widely used in the validation and verification of new solvers [17–20]. Consider 

a 2D plane with dimensions 40×40 m, where at the center resides a liquid column with height h = 2.5 m and radius 
R = 2.5 m. The height of the liquid in the rest of the domain is h0 = 0.5 m (see Fig. 5). The computational domain is divided 
into 40,000 uniform cells, i. e., 200 cells in each direction. The time step is chosen as  Δt = 10‒4 s, and the calculation is 
carried out until time t = 4.7 s.  

Visualization in Figure 6 illustrates the liquid column collapse. Initially, the wall is removed, allowing the water to 
move in all directions. As the circular shock wave propagates outward, a rarefaction wave moves inward into the original 
cylinder until it completely converges at the center of the computational domain, where it reflects, causing a height 
gradient and hence a secondary shock wave. Results of numerical experiments compared with the analytical solution from [19] 
at time t = 4.7 s are shown in Fig. 7. Panel (a) of Fig. 7 demonstrates the dependence of the solution on the algorithm 
tuning parameter α. The optimal value is  α = 0.2. Panel (b) of Figure 7 illustrates the convergence of the solution with 
grid refinement. The characteristic Courant number is 0.2.

An example of the adaptive mesh refinement algorithm can be seen in Figure 8. Depending on the chosen adaptation 
criterion (in our case, the gradient of the water column height), the mesh is refined across levels (in our case namr = 4, where 
nam is the maximum level in the current calculation), significantly accelerating the computation. Detailed investigation is 
presented in the section on performance evaluation of the SWqgdAMR solver.

n = 0

n = 1

n = 2

Δt

n = 0

n = 1

n = 2

Δt/2 Δt/2

Δt/4 Δt/4 Δt/4 Δt/4

Fig. 3. Adaptive Mesh Refinement Algorithm Fig. 4. Time Step Splitting Algorithm in Subcycle
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Fig. 5. Initial Conditions of the Circular Dam-Break Problem: a ― Computational domain geometry and initial 
distribution; b ― Height of the liquid column along the white line

t = 0.0

t = 2.0

t = 0.2

t = 3.0

t = 1.0

t = 4.7

Fig. 6. Visualization of Liquid Column Collapse Over Time  α = 0,2, Δt = 10‒4 s. 
Time in seconds on the figure

Fig. 7. Distribution of Liquid Column Height with Time Step Δt = 10‒4 s at t = 4.7 s: 
a ― Dependence on parameter α on a fixed grid Δx = 1024; 

b ― Grid convergence with constant α = 0.2
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Fig. 8. Visualization of Adaptive Mesh Refinement Algorithm at α = 0.2 at time t = 3 s. The first image shows 
the block decomposition, while the second image depicts the adaptive mesh

The collapse of two different-height liquid columns problem allows the solver’s capability to reproduce complex flow 
structures to be tested, similar to the previous test. Considered is a 2D plane of size  2000×2000 m, with the first water 
column located at (875.0) having a radius R1 = 125 m and height h1 = 15 m. At coordinates (1375.0) the second water 
column has radius R2 = 125 m, h2 = 20 m, with the water level in the remaining area set to h1 = 10 m (see Fig. 9). The 
computational domain is divided into 160,000 uniform cells, i. e., 400 cells in each direction. The time step is chosen as 
Δt = 10‒4 s, and the computation concludes at time t = 30 s.  

Fig. 10 and 11 visualize the collapse and subsequent interaction of the two liquid columns. Initially, the walls are 
removed, allowing water to move in all directions from each column. Subsequently, two shock waves collide, resulting in 
significant deformation of the wave fronts.

Fig. 9. Initial Conditions of the Liquid Column Collapse Problem: a — geometry of the computational domain;
b — height of the liquid column along the white line, x1 = 875 m, x2 = 1375 m
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Fig. 10. Visualization of the collapse of two liquid columns over time α = 0.2, Δt = 10‒4 s. 
Time in the figure is in seconds

Fig. 11. Plot of the collapse of two liquid columns over time in the central cross-section. 
Time in the figure is in seconds, Δx = 1024, α = 0.2, Δt = 10‒4 s

Performance of the SWqgdAMR Solver. One of the crucial criteria in developing a new solver is assessing its 
performance and the efficiency of parallelization. For this purpose, the problem of the collapse of two different-height 
liquid columns was utilized. A computational grid of 1.048.576 cells, a time step of  Δt = 10‒4 s, and computation 
completion at t = 0.1 с. Performance evaluation was conducted on an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz with 
8 cores, and the results are presented in Table 1.

Table 1

Performance Evaluation of the SWqgdAMR Solver

Number of Cores Number of Cells Computation Time t, s Efficiency, %
1 1 048 576 71 ‒
2 524 288 40 89
4 262 144 27 66
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Using the same processor with 2 cores, acceleration of computations was investigated through the use of adaptive 
mesh refinement technology. The data are presented in Table 2. The number of computational cells at namr = 0 is 4 194 304, 
with a base grid at namr = 1 of 1 048 576, at namr = 2 of  262 144, at namr = 4 base computational grid of 65 536. In all 
cases, flow resolution remains constant, with quality varying depending on the adaptation criterion (an example of mesh 
refinement algorithm operation is shown in Figure 8). In our calculations, the gradient of the liquid column height was 
chosen as the mesh adaptation criterion. 

Table 2

Computation time in seconds depending on levels of mesh adaptation

Number of Cores Number of Cells namr = 0 namr = 1 namr = 2 namr = 4
2 4 194 304 2288 359 132 41

Thus, the use of adaptive mesh refinement technology allows for significant acceleration of computations. In our case, 
acceleration of up to 56 times was achieved. In [21], it was demonstrated that on identical stationary grids, AMReX is 
4 times faster than OpenFOAM, indicating that with mesh refinement, speed gains of up to 232 times can be achieved.

Discussion and Conclusions. The AMReX solver for shallow water equations (SWqgdAMR) with adaptive mesh 
refinement (AMR) was comprehensively described and tested in this work. Two 2D test cases were used for validation: the 
breach of a cylindrical dam and the breach of two cylindrical dams of different heights. The presented solver demonstrated 
high efficiency, and the use of adaptive mesh refinement technology accelerated computations by a factor of 56 compared 
to computations on a stationary grid.

The SWqgdAMR solver was developed as part of efforts to expand the applicability of regularized equations in 
problems requiring significant computational resources and adaptive grids. It represents the first solver based on the 
shallow water equations algorithm within the AMReX software framework. The implementation and validation of 
SWqgdAMR represent a crucial step towards further expanding the suite of shallow water equations programs. Future 
work will include incorporating quasi-gasdynamic equations into AMReX for simulating gas dynamics problems.

In this implementation, the prospective capabilities of leveraging graphics processing unit (GPU) computing for 
parallel computation were not tested. Additionally, it is noteworthy that the algorithm could be extended to include 
bathymetry, external forces (such as wind force, bottom friction, and Coriolis forces), and consideration of shoreline 
mobility during flooding and drying, as has been implemented in individual codes for hydrodynamic simulations.
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