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Abstract

Introduction. We present a novel adaptive mesh refinement (AMR) solver, SWqgdAMR, based on the open software
platform AMReX. The new solver is grounded in regularized shallow water equations. This paper details the equations,
their discretization, and implementation features within AMReX. The efficacy of SWqgdAMR is demonstrated through
two test cases: a two-dimensional circular dam break (collapse of a liquid column) and the collapse of two liquid columns
of different heights.

Materials and Methods. The SWqgdAMR solver is developed to extend the applicability of regularized equations in
problems requiring high computational power and adaptive grids. SWqgdAMR is the first solver based on the quasigas
dynamic (QGD) algorithm within the AMReX framework. The implementation and validation of SWqgdAMR represent
a crucial step towards the further expansion of the QGD software suite.

Results. The AMReX-based shallow water equations solver SWqgdAMR with adaptive mesh refinement is described
and tested in detail. Validation of SWqgdAMR involved two-dimensional problems: the breach of a cylindrical dam
and the breach of two cylindrical dams of different heights. The presented solver demonstrated high efficiency, with
the use of adaptive mesh refinement technology accelerating the computation by 56 times compared to a stationary
grid calculation.

Discussion and Conclusions. The algorithm can be expanded to include bathymetry, external forces (wind force, bottom
friction, Coriolis forces), and the mobility of the shoreline during wetting and drying phases, as has been done in individual
codes for regularized shallow water equations (RSWE). The current implementation of the QGD algorithm did not test the
potential for parallel computing on graphical cores.
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AHHOTAN NS

Beseoenue. TlpencraBieH HOBBIM pelareNb ¢ afanTHBHBIM H3MenpueHrHeM ceTok SWqgdAMR Ha 0a3e OTKpBITO# mpo-
rpammHO# ardopmel AMReX. HoBrlii pemraTens OCHOBaH Ha PETYIIPH30BaHHBIX YPAaBHEHHUAX MEJKOH Boxmbl. B pabo-
TE€ ONMCAHBI ypaBHEHUS, UX TUCKpeTH3aus u ocodenHoctr peanmzamun B AMReX. Paborocmocoorocts SWqgdAMR
ObLTa IMOKa3aHa Ha JBYX TECTOBBIX 3aJa4ax: ABYMEpHas 3ajava IMpOpBIBAa KPYTOBOW AaMOBI (pacmaa cToida >KUIKOCTH)
W 3aJ1a4a O Pacraje ABYX CTOJIIOOB JKHJIKOCTH, Pa3HbIX 110 BHICOTE.

Mamepuanvt u memoowt. Pemiarens SWqgdAMR Hanmcan B paMKax pacIIMpeHns] IPUMEHHMOCTH PEryJsipH30BaHHBIX
ypaBHEHHI B 3a7a4ax, TPEOYIOIUX OOJbIINX BBIYMCIMTEIBHBIX MOIIHOCTEH W amanTHBHBIX ceTok. SWqgdAMR sB-
nsgercs nepBbIM pemareneM Ha 6aze KT/l anropurma B mporpaMMmHoM komruiekce AMReX. Peanuzanus u Banmmanus
SWqgdAMR sBisieTcsi OCHOBHBIM IIIarOM Ha My TH JalbHeimero pacumperns komruiekca K[ mporpamm.
Pesynomamuvr uccnedosanun. JleranbHo onucaH u nporectupoBaH pemarenb AMReX ypaBHeHH Menkoil BOIbI
SWqgdAMR c apantuBHBIM H3MensdeHueM cetok. st Bamupannun SWqgdAMR ncnons3oBanuch 1Be AByMEpHBIE 3a-
Jla4y: O MPOPbIBE HMIMHAPUIECKON MIOTHHBI U O MPOPBIBE JIBYX [MIMHAPUYECKUX IUIOTUH pa3HOil BeIcOTHL. IIpencras-
JICHHBIN pelareib Mokas3aj BbICOKYIO 3()(eKTHBHOCTb, @ HCIIOJIb30BaHUE TEXHOJIOTUH aalTHBHOTO N3MENIBYCHHS CETKU
MTO3BOJIMJIO YCKOPHUTH PAcU€T B 56 pa3 1o CPaBHEHHUIO C PacyETOM Ha CTAIIMOHAPHOHN CETKe.

Obcyscoenue u 3axnruenus. B anroputM MoXeT OBITh BKITIOUEHA OaTHMETPHS THA, BHEIITHIE CHIIBI (CHJIa BETpa, TPEHUE
0 1HO, cibl Kopronmca), a Takke yueT HOABIKHOCTH OeperoBOH JIMHUY TIPU OCYIICHUH-HABOAHEHUH, KaK 9TO yKe OBLIO
CeNlaHO B paMKaxX MHIMBUAYaIbHBIX kKoI0B 1151 PYMB. B nannoii peanuzauuu KT'Jl anroputma He TeCTUPOBAIUCH MEpP-
CIIEKTHBHBIE BOBMOKHOCTH MIPUMEHEHHSI pacrapajieIMBaHus BBIYUCICHUH Ha rpaduuecKue spa.

KuroueBrble cjI0Ba: ypaBHEHUS MEJIKOM BOABI, aJallTUBHOE U3MENBICHUE CETOK, kBasurazoquHamudeckue (KI'[) ypasne-
HUS, peTyIsIpU30BaHHbIe YpaBHEHUs Mekoi Bonsl (PYMB), AMReX

®uHancupoBanue. PaboTa BEITIONHEHA MTPH TTOIePKKe MOCKOBCKOTO IIeHTpa (pyHAaMEHTAITBHON U MIPUKIIATHON MaTe-
Mmaruky. CortanieHrie ¢ MUHHCTEPCTBOM HayKH | BhIcIIero oopasosanus PO Ne 075-15-2022-283.

Jas mutupoBanus. byt 1.U., Kuprommna M.A., EnuctpatoB C.A., Enuszaposa T.I'., Tunsxos A.Jl. Pemarens ¢ agan-
THBHBIM H3MEJBYCHHEM CETOK Ul PEryisipH30BaHHBIX ypaBHEHUH Menxoi Bousl. Computational Mathematics and
Information Technologies. 2024;8(2);9-23. https://doi.org/10.23947/2587-8999-2024-8-2-9-23

Introduction. Hydro- and gas-dynamics simulations require increasingly precise algorithms and detailed computational
grids, which consequently demand substantial computational resources, including methods for parallel computing on GPU
cores. Therefore, there is a need to develop a new solver with adaptive mesh refinement (AMR) based on open platforms.
This approach offers several advantages over the development of custom codes. Firstly, open platforms typically provide
well-established and thoroughly tested frameworks, endorsed by the broader scientific community, reducing the risk
of errors and enhancing overall reliability. Secondly, the use of open platforms promotes functional compatibility and
reusability, ensuring seamless integration with other tools and facilitating collaboration among researchers. Thirdly,
employing existing open platforms can significantly reduce development time and costs, as these platforms often offer
a wide range of functionalities, from data processing to visualization and parallel computing. Fourthly, open platforms
benefit from continuous development and support from the user community, leading to regular updates, bug fixes, and
performance improvements. This contrasts with custom codes, which often depend solely on the resources and expertise
of the individual or team that created them.

Among the available open-source software, AMReX was selected as the most optimal framework. AMReX enables:

1. The use of adaptive mesh refinement (AMR) technology.

2. Parallel computation on GPU cores.

3. The immersed boundary method for simulating solid bodies in flow.

4. The construction of structured grids.
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5. Integration into The High Performance Software Foundation, established by the Linux Foundation in 2023 [1],
ensuring extensive support and ongoing development of this software package.

Numerical simulations of gas dynamics problems have already been conducted using AMReX, including comparisons
between AMReX and OpenFOAM [2]. Thus, it was decided to implement a solver for hydro- and gas-dynamics problems
based on the quasigas dynamic (QGD) equations within the AMReX framework. A similar solver has already been
implemented in OpenFOAM [3, 4] under the general name QGDsolver, demonstrating high efficiency. Unfortunately,
as previously noted, OpenFOAM [5] lacks the capabilities for parallel computation on GPU cores and adaptive mesh
refinement.

This paper describes the implementation of the QGD algorithm in AMReX in a simplified form. The simplification
involves a barotropic variant of the gas dynamics equation system, which allows for the elimination of the energy equation
and the equation of state. Under certain assumptions, this barotropic variant takes the form of shallow water equations. It
is worth noting that the implementation of the SWqgdAMR solver in the AMReX software package is a key step towards
further expanding the suite of solvers based on QGD equations.

The QGD approach itself has been developed for over 30 years for gas dynamics and incompressible flow prob-
lems [6—10]. In recent years, the QGD approach has been implemented for shallow water approximation problems [11-16].

Mathematical Model and Numerical Method. Regularized Shallow Water Equations (RSWE). The RSWE can
be expressed in vector form, in the absence of external forces and assuming a flat bottom, as follows:

%+V-jm=0,
ey
Ahu) . gh’
. v =
o +V-(j, ®u)+ > VI,

where / is the water layer thickness; j, = & (u — w) is the mass flux density vector; u is the velocity vector; g is the
acceleration due to gravity; IT = I1 .+ II QGDis the stress tensor; I is the Navier-Stokes viscous stress tensor; w, .
are QGD terms; and ® denotes the tensor product. Here, the nabla operator acting on a scalar denotes the gradient, on a
vector denotes the divergence, and on a tensor denotes the covariant derivative: VI = y[yﬁ: Vo Ty The form of RSWE
considering the shape of the bottom and external forces can be found in [11-16].

Discretization of Regularized Shallow Water Equations.
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Fig. 1. Numerical stencil. The values of variables 4 and u are assigned to the cell centers with coordinates (i, /)
The component-wise form of the QGD shallow water equations is as follows:
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To discretize the equations spatially, we take into account the values at the half-cell points of the grid (Fig. 1):
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Similarly, discretization of velocity components at half-cell points is recorded. Discretization of Mass Flux:
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The regularization parameter of the algorithm
aA,

N @)
g

is calculated as

T =T,

3)

where o is a tuning parameter between 0 and 1; g is the acceleration due to gravity. A similar discretization is applied
for terms 7., 7,,. The time step on the base computational grid is chosen to satisfy the stability condition for the explicit
scheme, expressed as the Courant condition (Courant number 0 <3 <1):
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Discretization of the mass conservation equation:
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Discretization of the momentum balance equations:
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Implementation in AMReX. The numerical solution of the shallow water equations is implemented in C++ using
the open-source software AMReX. This software was chosen as the foundation because it facilitates ready-to-use
adaptive mesh refinement (AMR) logic and offers straightforward portability of computations to GPU cores via macros,
significantly reducing computational time.

Figure 2 shows the structure of the developed software.

The main solver class, AmrSWQGD, is declared in the file AmrSWQGD.H and implemented in the file AmrSWQGD.cpp.
It inherits from the AmrLevel class, defined in the AMReX core. Inheriting from this class allows straightforward adaptive
mesh refinement across multiple levels.
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AMReX AmrLevel.H

AmrCore/ AMReX AmrH
AMReX Src/
Base/ AMReX AmrLevelBld.H
AMReX ParmParse.H
- GNUmakefile
Make.QGD Make.package
SWqgdAMR/ Exec/
Task1/ inputs

AmrSWQGD.H / .cpp Taskl_fillBC.cpp

main.cpp Task]_init.cpp

SWQGD _advance.cpp
Source/

SWQGD fillBC.cpp
SWQGD _init.cpp
SWQGDLevelBld.cpp

Fig. 2. Solver structure

The solver iteration logic is defined in the file SWQGD_advance.cpp within the advance method. In this method,
a ParallelFor loop updates the fields h, ux and uy at each iteration. Here, huOld is the container for old variables, and
huNew is for new variables. Since the solution occurs on a multi-level grid (Fig. 3), where each level has its own refinement
(level 0 is the coarsest grid, and higher levels have increased accuracy), each level introduces its own time step (Fig. 4).

For example, if the grid has two levels, 0 and 1, and the grid at level 1 is twice as fine in each direction as at level
0, then one iteration of the solution proceeds as follows: calculations are performed at level 0 with a time step dt, two
iterations of calculations are performed at level 1 with a time step dt/2, and then the grids are synchronized. This algorithm
enhances computational accuracy.

It is important to note that it is not necessary to refine the entire grid at each level, only specific parts of it. To achieve
this, the solver class defines the errorEst method in the file AmrSWQGD.cpp. This method takes a reference to an instance
of the TagBoxArray container. Using a ParallelFor loop, each grid cell is examined and marked for refinement if it meets
certain conditions (defined within an if statement). Additionally, some surrounding cells are marked for refinement. Cells
that do not meet the condition are marked with the clearval tag and will not be refined.

The computational tasks themselves are located in the Exec directory, which contains the inputs files with initial and
boundary conditions.

The inputs file contains the settings for the solution, including various parameters that control the behavior of the
solver. Here are the key parameters and their descriptions:

* max_step: The maximum number of iterations;

* stop_time: The computational time in seconds at which the solution stops. Essentially, the calculations continue until
either the number of iterations exceeds max_step or the computational time reaches stop_time;

* geometry.is_periodic: An array of three boolean variables (e.g., 0 0 0, 0 1 1, or 1 0 1) that determine whether the
boundaries in each direction are periodic (1) or not (0);

* geometry.coord_sys: The coordinate system used for the solution. The recommended value is 0, which corresponds
to the Cartesian coordinate system. There is no guarantee that the solver will work correctly in other coordinate systems;

* geometry.prob_lo: The xyz coordinates of the lower left corner of the physical rectangular domain (e. g., 0.0 0.0 0.0);

* geometry.prob_hi: The xyz coordinates of the upper right corner of the physical domain (e.g., 10.0 10.0 1.0);

« amr.n_cell: An array of three integers representing the grid resolution in each direction at level 0 (e.g., 512 512 1);

» amr.max_level: An integer indicating the maximum allowable level of grid refinement;

» amr.ref ratio: The refinement ratio of the grid levels;

» amr.regrid_int: An integer representing the number of steps after which the grid should be regenerated;

» amr.max_grid_size: The solver divides the grid into domains, with the size of each domain not exceeding max_grid_size
in each direction;
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» amr.plot_int: The solver writes output to files every plot int iterations.

The boundary conditions are defined in the structure SWQGDBCEFill located in the file Taskl fillBC.cpp (where
Task]1 is the task name and can be changed to any other name). In this structure: ilo and ihi represent the left and right
boundaries of the computational domain, respectively, jlo and jhi represent the bottom and top boundaries, respectively.
The equations are solved for the variables 4, u_and u , which represent the water column height, the velocity in the
x-direction, and the velocity in the y-direction, respectively. The variable dest is a multidimensional array that stores the
values of all variables throughout the computational domain. To access the variable 4 at cell (i, j, k) you use dest(i, j, k, 0).
To access the variable ux in the same cell, you use dest(i, j, k, 1), and for uy, you use dest(7, j, k, 2). ince we are dealing
with 2D equations, the index £ is assumed to be 1.

Initial conditions are set in the file Task1 init.cpp. Here, the variable snew[bi] acts as a container similar to the
dest container in the boundary conditions structure. Initial conditions are computed in a loop using amrex::ParallelFor.
This loop, along with the macro-lambda function AMREX GPU_DEVICE, allows for the parallel computation of initial
conditions across the entire domain on GPU cores.

=0
" n=0
n=1
At
n=1
n=2 AY2 A2
n=2
At/4 At/4 At/4 At/4
Fig. 3. Adaptive Mesh Refinement Algorithm Fig. 4. Time Step Splitting Algorithm in Subcycle

To compile the program, navigate to the task folder (Taskl) and then run the command make —j n in the terminal,
where 7 is the number of cores for parallelization. To run the utility without parallelization, simply run make. After
make completes, a file named main2d.gnu.MPL.ex (the name may vary slightly) will appear in the folder. To start the
calculation, execute the following command in the terminal: mpiexec —np n ./main2d.gnu.MPL.ex inputs, where 7 is the
number of cores for parallelization. This will start the computation.

Results. Two 2D problems are used for the validation and verification of the developed solver:

The dam break problem, for which an analytical solution is well known.

The collapse of two liquid columns of different heights.

Two-Dimensional Circular Dam-Break Problem. The problem of liquid column collapse or the breakthrough of

a circular dam (Circular Dam-Break) is widely used in the validation and verification of new solvers [17-20]. Consider
a 2D plane with dimensions 40x40 m, where at the center resides a liquid column with height 2 = 2.5 m and radius
R=2.5m. The height of the liquid in the rest of the domain is /1= 0.5 m (see Fig. 5). The computational domain is divided
into 40,000 uniform cells, i. e., 200 cells in each direction. The time step is chosen as A= 10* s, and the calculation is
carried out until time ¢t =4.7 s.

Visualization in Figure 6 illustrates the liquid column collapse. Initially, the wall is removed, allowing the water to
move in all directions. As the circular shock wave propagates outward, a rarefaction wave moves inward into the original
cylinder until it completely converges at the center of the computational domain, where it reflects, causing a height
gradient and hence a secondary shock wave. Results of numerical experiments compared with the analytical solution from [19]
at time ¢ = 4.7 s are shown in Fig. 7. Panel (a) of Fig. 7 demonstrates the dependence of the solution on the algorithm
tuning parameter a. The optimal value is o = 0.2. Panel (b) of Figure 7 illustrates the convergence of the solution with
grid refinement. The characteristic Courant number is 0.2.

An example of the adaptive mesh refinement algorithm can be seen in Figure 8. Depending on the chosen adaptation
criterion (in our case, the gradient of the water column height), the mesh is refined across levels (in our case n, =4, where
n_is the maximum level in the current calculation), significantly accelerating the computation. Detailed investigation is
presented in the section on performance evaluation of the SWqgdAMR solver.
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Fig. 5. Initial Conditions of the Circular Dam-Break Problem: ¢ — Computational domain geometry and initial

distribution; » — Height of the liquid column along the white line
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Fig. 6. Visualization of Liquid Column Collapse Over Time o= 0,2, At=10"s.
Time in seconds on the figure
h [m] h [m
1.00 0.8 1.00 : o].8
0.75 0.6 0.75
0.50 0.4 0.50 0.4
380 385  39.0 alpha = 0.1 : 380 385 39.0
alpha=0.2
0.25 alpha = 0.4 0.25
ref
X [m
0 ] 0
20 24 28 32 36 40 20 24 28 32
a) b)

18

Fig. 7. Distribution of Liquid Column Height with Time Step A= 10*s att=4.7 s:

a — Dependence on parameter o on a fixed grid Ax = 1024;
b — Grid convergence with constant o = 0.2

Ax =128
Ax =512
Ax =2048

ref X [m]
36 40



Comp ional Mathematics and Information Technologies. 2024;8(2):9-23. eISSN 2587-8999

Fig. 8. Visualization of Adaptive Mesh Refinement Algorithm at o = 0.2 at time ¢ = 3 s. The first image shows
the block decomposition, while the second image depicts the adaptive mesh

The collapse of two different-height liquid columns problem allows the solver’s capability to reproduce complex flow
structures to be tested, similar to the previous test. Considered is a 2D plane of size 2000%2000 m, with the first water
column located at (875.0) having a radius R, = 125 m and height /, = 15 m. At coordinates (1375.0) the second water
column has radius R, = 125 m, 4, = 20 m, with the water level in the remaining area set to 4, = 10 m (see Fig. 9). The
computational domain is divided into 160,000 uniform cells, i. e., 400 cells in each direction. The time step is chosen as
At=10"*s, and the computation concludes at time ¢ = 30 s.

Fig. 10 and 11 visualize the collapse and subsequent interaction of the two liquid columns. Initially, the walls are
removed, allowing water to move in all directions from each column. Subsequently, two shock waves collide, resulting in
significant deformation of the wave fronts.

250m 250 m
25
h [m]
20
2000 m 15
10
5 x1 x2 X [m]
0 500 1000 1500 2000
2000 m
a) b)

Fig. 9. Initial Conditions of the Liquid Column Collapse Problem: a — geometry of the computational domain;
b — height of the liquid column along the white line, x1 = 875 m, x2 = 1375 m

19



20

But L1 et al. An Adaptive Mesh Refinement Solver for Regularized Shallow Water Equations
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Fig. 10. Visualization of the collapse of two liquid columns over time o= 0.2, A= 10"*s.
Time in the figure is in seconds
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Fig. 11. Plot of the collapse of two liquid columns over time in the central cross-section.
Time in the figure is in seconds, Ax = 1024, 0.= 0.2, At=10"*s

Performance of the SWqgdAMR Solver. One of the crucial criteria in developing a new solver is assessing its
performance and the efficiency of parallelization. For this purpose, the problem of the collapse of two different-height
liquid columns was utilized. A computational grid of 1.048.576 cells, a time step of At = 10 s, and computation
completion at ¢ = 0.1 c. Performance evaluation was conducted on an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz with
8 cores, and the results are presented in Table 1.

Table 1

Performance Evaluation of the SWqgdAMR Solver

Number of Cores Number of Cells Computation Time ¢, s Efficiency, %
1 1 048 576 71 -
2 524 288 40 89
4 262 144 27 66
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Using the same processor with 2 cores, acceleration of computations was investigated through the use of adaptive
mesh refinement technology. The data are presented in Table 2. The number of computational cells at .= 0 is 4 194 304,
with a base grid at n, =1 of 1 048 576, atn, =2 of 262 144, atn = 4 base computational grid of 65 536. In all
cases, flow resolution remains constant, with quality varying depending on the adaptation criterion (an example of mesh
refinement algorithm operation is shown in Figure 8). In our calculations, the gradient of the liquid column height was
chosen as the mesh adaptation criterion.

Table 2

Computation time in seconds depending on levels of mesh adaptation

Number of Cores | Number of Cells n =0 n =1 n_ =2 n_ =4

amr amr amr amr

2 4194 304 2288 359 132 41

Thus, the use of adaptive mesh refinement technology allows for significant acceleration of computations. In our case,
acceleration of up to 56 times was achieved. In [21], it was demonstrated that on identical stationary grids, AMReX is
4 times faster than OpenFOAM, indicating that with mesh refinement, speed gains of up to 232 times can be achieved.

Discussion and Conclusions. The AMReX solver for shallow water equations (SWqgdAMR) with adaptive mesh
refinement (AMR) was comprehensively described and tested in this work. Two 2D test cases were used for validation: the
breach of a cylindrical dam and the breach of two cylindrical dams of different heights. The presented solver demonstrated
high efficiency, and the use of adaptive mesh refinement technology accelerated computations by a factor of 56 compared
to computations on a stationary grid.

The SWqgdAMR solver was developed as part of efforts to expand the applicability of regularized equations in
problems requiring significant computational resources and adaptive grids. It represents the first solver based on the
shallow water equations algorithm within the AMReX software framework. The implementation and validation of
SWqgdAMR represent a crucial step towards further expanding the suite of shallow water equations programs. Future
work will include incorporating quasi-gasdynamic equations into AMReX for simulating gas dynamics problems.

In this implementation, the prospective capabilities of leveraging graphics processing unit (GPU) computing for
parallel computation were not tested. Additionally, it is noteworthy that the algorithm could be extended to include
bathymetry, external forces (such as wind force, bottom friction, and Coriolis forces), and consideration of shoreline
mobility during flooding and drying, as has been implemented in individual codes for hydrodynamic simulations.
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