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Abstract

Introduction. The study focuses on modelling the process of ultrasound medical examination in a heterogeneous
environment with regions of significantly different sound speeds. Such scenarios typically arise when visualizing
brain structures through the skull. The aim of this work is to compare possible approaches to determining the interface
between acoustically contrasting media using convolutional neural networks.

Materials and Methods. Numerical modelling of the direct problem is performed, obtaining synthetic calculated
ultrasonic images based on known geometry and rheology of the area as well as sensor parameters. The calculated
images reproduce distortions and artifacts typical for setups involving the skull wall. Convolutional neural networks
of 2D and 3D structures following the UNet architecture are used to solve the inverse problem of determining the
interface between media based on a sensor signal. The networks are trained on computational datasets and then tested
on individual samples not used in training.

Results. Numerical B-scans for characteristic setups were obtained. The possibility of localizing the aberrator boundary
with good quality for both 2D and 3D convolutional networks was demonstrated. A higher quality result was obtained
for the 3D network in the presence of significant noise and artifacts in the input data. It was established that the 3D
architecture network can provide the shape of the interface between media in 0.1 seconds.

Discussion and Conclusions. The results can be used for the development of transcranial ultrasound technologies.
Rapid localization of the skull boundary can be incorporated into imaging algorithms to compensate for distortions
caused by differences in sound velocities in bone and soft tissues.
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convolutional networks
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AHHOTAIMSA
Beeoenue. Pabora mocBsIcHa MOACTUPOBAHUIO MTPOIIECCa YIBTPAa3BYKOBOTO MEAMIIMHCKOTO HCCICIOBAHUS B TETEPO-
TEHHOH cpejie, B KOTOPOU MPUCYTCTBYIOT 00IaCTH C CYIIECTBEHHO Pa3HOM CKOPOCTHIO 3BYKa. Takue MOCTaHOBKY 3a]1a4
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BO3HHUKAIOT, HATPUMED, IPH BU3yaIH3alMU CTPYKTYp Mo3ra yepe3 uepen. Llenbio naHHoit paboThI SIBISIETCS CPAaBHEHHE
BO3MOYKHBIX ITOJIXOJIOB K ONPEACICHHUIO TPAHUIIBI Pa3/ieiia aKyCTUICCKHA KOHTPACTHBIX CPEll ¢ UCIIOIb30BAHHEM CBED-
TOUYHBIX HEMPOHHBIX CETEH.

Mamepuanst u memoost. B paboTe BBITIONHACTCS YUCICHHOE MOJICTHPOBAHUE TPAMOU 33aa4ll — IOJMYyYCHHE CUHTE-
THYECKUX PACYETHBIX YIABTPA3BYKOBBIX M300PaXKEHHIA [0 NU3BECTHOM F€OMETPUH U PEOJIOTUH O0JIACTH, a TAKKE Mmapame-
Tpam aatunka. Ha pacuéTHbix n300paxeHHsX BOCIPOU3BOISTCS HCKAXKEHHSI ¥ apTe(aKThl, THIIMYHBIE IJISl TOCTAHOBOK CO
cTeHKoit uepena. [lyist pemenus: oOpaTHol 3aa4M ONpe/eNIeHNs TPAHUIIBI pa3jielia Cpejl 0 CUTHAIY C IaTYMKa UCTIONb3Y-
10Tcs cBEPTOUHBIE HelipoHHbIe ceT 2D u 3D cTpykTypsl, cienyromme obmien apxurekrype UNet. Cetu oOyuarorcs Ha
HaOopax pacuyETHBIX JJAaHHBIX, IIOCJIE YEro TECTUPYIOTCS Ha OTIENBHBIX IPUMEPaXx, He UCI0JIb30BaHHBIX MTPH 00yUYEHUH.
Pesynomamut uccinedosanusn. IlonydeHsl pacuéTHble B-CKaHBI [UIsl XapaKTEPHBIX MOCTAaHOBOK. [loka3aHa BO3MOXK-
HOCTb JIOKAJIH3AIUU TPaHUIbl abeppaTopa ¢ XOPOILIMM KauecTBOM Kak [yt 2D, tak u mis 3D cBéprounsix cereit. [o-
Ka3aHo 0oJiee BRICOKOE KauecTBO pe3ynbrara st 3D cereil B cilydae HAIUYUs 3HAYUTEIBHOTO [IyMa U apTe(akToB BO
BXOJIHBIX JJAHHBIX. YCTaHOBJICHO, YTO Ce€Th 3D apXUTEKTypbl MOXKET 00ECIIEUUTh MOTyUeHHE (POPMBI TPAHHUIIBI pa3/elia
cpen 3a 0,1 cekyHIbI.

Oocyrcoenue u 3akarouenus. Pe3ynbsrarsl pad0OTHl MOTYT OBITh UCIIOIB30BAHBI [T PA3BUTHS TEXHOJOTHI TPaHCKpa-
HUAJTHHOTO YJIBTPa3BYKOBOTO MCCIICIOBaHUS. BBICTpas JOKamu3anus TPaHUIbl CTCHKU Yeperna MOXKET OBITh BKITIOYC-
Ha B aJITOPUTMBI MOCTPOCHUS U300PAXKEHUS Il KOMIICHCAIIMHM MCKaXEHUH, BRI3BAHHBIX Pa3InIMeM CKOPOCTEH 3ByKa
B KOCTHBIX U B MSITKUX TKaHSIX.

KuroueBsble ciioBa: TpaHcKkpaHuanbHoe Y3, MaTpuuHBIi JaT4WK, abeppaluu, MaTeMaTHYeCKOe MOJCIHPOBAHHUE,
CETOYHO-XaPAKTCPUCTHICCKUI METOl, CBEPTOYHBIC CETH

®dunancnpoBanne. Pabora BoinoHeHa py GUHAHCOBOU nojizepkke Poccuiickoro Hay4gHoro goxaa (ko npoekra 22-11-00142).
Jas uutupoBanusi. BaciokoB A.B. Ompenenenme rpaHHMnbl pasfenia Cped MO JaHHBIM MaTPHUYHOTO YABTPA3BY-

KOBOTO JaTYMKa C HCIOJb30BAaHHEM CBEPTOUHBIX HEHPOHHBIX ceTeit. Computational Mathematics and Information
Technologies. 2024;8(2):60—67. https://doi.org/10.23947/2587-8999-2024-8-2-60-67

Introduction. This study addresses the problem of ultrasound image formation in a heterogeneous medium with
regions of significantly different sound speeds. This setup is aimed at applications in visualizing brain structures through
the skull bones. Despite years of medical technology development, this specific task remains extremely challenging, as
existing methods have many limitations and require highly skilled specialists.

The problem arises from the fact that typical algorithms used in commercially available equipment assume that
the sound speed in the area of interest changes minimally. This assumption is valid for soft tissues. However, when
examining the brain through the skull, this basic assumption fails, leading to highly distorted images using traditional
ultrasound approaches [1].

This study focuses on determining the boundary between two media-rigid (model skull wall) and soft (model brain
tissue). The proposed solution method must operate in near real-time to ensure practical application. In the future, rapid
localization of the skull boundary could be included in imaging algorithms to compensate for distortions caused by
differences in sound velocities between bone and soft tissues.

Convolutional neural networks are considered for this task due to their extensive use in related biomedical tasks
and their ability to operate at high speeds. Previous studies [2—6] have demonstrated the effectiveness of convolutional
networks for ultrasound imaging and elastography. However, using this general approach requires careful calibration
for each specific task [7].

Materials and Methods. For the direct problem, numerical modelling of the ultrasound pulse propagation in
a sample is performed to obtain synthetic calculated ultrasonic images based on known geometry and rheology of the
area and sensor parameters.

The medium is described using the acoustic approximation [8], a significant simplification compared to the full
system of elastic equations, including only longitudinal waves. This approach is widely used for describing ultrasound
pulses in biological tissues, as the attenuation coefficient for shear waves in ultrasound is four orders of magnitude
higher than for longitudinal waves [9].

The numerical solution of the direct problem uses the ray tracing method with wavefront reconstruction [1],
allowing the calculation of ultrasound images qualitatively and quantitatively corresponding to experimental data.
The method describes reflections from extended boundaries and point reflectors. In this study, the boundary between
layers and large pores are modeled as extended boundaries, while small reflectors are considered point sources. After
recording the reflected signal, it is processed, and B-scans are constructed using algorithms from [10].

The inverse problem is to determine the shape of the boundary between acoustically contrasting layers based on
the sensor’s recorded signal. The input data for the inverse problem is the response from the medium registered by the
matrix ultrasonic sensor. The output is the position of the boundary between the two media.

Convolutional neural networks are used to solve the inverse problem of determining the boundary based on the
sensor signal. A synthetic dataset was generated from 1024 direct problem calculations for network training. Separate
examples not included in the training set were used for testing.
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This study investigates both 2D and 3D networks to compare results. All convolutional networks follow the UNet
architecture [11]. The depth of both 2D and 3D networks is four blocks.

For the 2D network, the three-dimensional data is represented as a set of two-dimensional slices. Each slice is
processed with three channels — the target slice and two adjacent slices — providing the network with some three-
dimensional context [12, 13].

For the 3D network, three-dimensional data is input using a patch-based approach [14, 15], allowing flexible
memory management on the GPU when processing large input data.

Results. The direct problem setup involves calculating the propagation of the ultrasound signal in an area
containing a boundary between acoustically contrasting layers. The calculation area is a parallelepiped. The upper
face corresponds to the external boundary of the area where the matrix ultrasonic sensor is located. Outside the contact
zone with the sensor, the upper face is modeled as a free surface. The other three boundaries are set as non-reflective
boundary conditions.

The boundary between the two acoustically contrasting layers is assumed to be smooth and may have an arbitrary
shape. Additionally, the upper layer contains many small reflectors, creating background noise in the final ultrasound
image, and several large pores whose response intensity is comparable to the boundary reflection.

The sound speed in both layers is constant. The upper layer is more rigid, with a sound speed of 30 km/s. The lower
layer is softer, with a sound speed of 15 km/s. The number of small reflectors varied from 100 to 2500, and the number
of large pores from 5 to 50.

The matrix sensor has a square shape of 24x24 elements, emitting a signal at 3 MHz. The sampling frequency for
signal reception is 45 MHz. The final data dimension is 24x24x1024, where 24x24 are the physical dimensions of the
sensor and 1024 are the time samples recorded during the experiment by each sensor element.

Fig. 1 shows the profile of the medium interface in one of the calculations is presented. Four slices of the complete
three-dimensional data are shown — the position of the interface under the rows of sensor elements from the 5th to the
8th. The vertical axis represents the 24 elements of the matrix sensor in the given slice. The horizontal axis represents
time samples. The image is cropped to the first 400 samples out of a full set of 1024 samples.

Fig. 2 shows the raw ultrasound image for this calculation is demonstrated. The overall “noise”, visually seen
as fluctuations in the intensity of the gray background, is associated with a large number of small reflectors in the
medium. The interface between media is visible as an area of intense response with varying amplitude. Individual
bright responses from large pores can be seen at depths of 50, 70, 90, 110, 130, and especially 230 (the last two slices
in the figure). These bright responses significantly interfere with the automatic image processing, as they even exceed
the intensity of the response from the desired boundary.

Figs. 3 and 4 show the results of the 2D convolutional network. Figs. 5 and 6 present the results for the 3D network.

Slice 5
0
20
0 50 100 150 200 250 300 350
Slice 7
0
20
0 50 100 150 200 250 300 350
Slice 6
0
20
0 50 100 150 200 250 300 350
Slice 8
0
20
0 50 100 150 200 250 300 350

Fig. 1. Location of the medium interface



Vasyukov A.V. Locating the interface between different media based on matrix ultrasonic sensor data

20

20

20

20

20

20

20

20

50

50

50

50

50

50

50

50

Slice 5

100 150 200 250 300
Slice 7

100 150 200 250 300
Slice 6

100 150 200 250 300
Slice 8

100 150 200 250 300

Fig. 2. Ultrasound image (B-scan)
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350

350

350

350

350

350

350

350

63



64

I Math tics and Information Technologies. 2024;8(2):60—67. eISSN 2587-8999

20

20

20

20

20

20

20

20

50

50

50

50

50

50

50

50

Slice 5
100 150 200
Slice 7
100 150 200
Slice 6
100 150 200
Slice 8
100 150 200

Fig. 4. Predictions of the 2D network after binarization

Slice 5
100 150 200
Slice 7
100 150 200
Slice 6
100 150 200
Slice 8
100 150 200

Fig. 5. Predictions of the 3D network in the original form

250

250

250

250

250

250

250

250

300

300

300

300

300

300

300

300

350

350

350

350

350

350

350

350



Vasyukov A.V. Locating the interface between different media based on matrix ultrasonic sensor data

Slice 5
0
20
0 50 100 150 200 250 300 350
Slice 7
0
20
0 50 100 150 200 250 300 350
Slice 6
0
20
0 50 100 150 200 250 300 350
Slice 8
0
20
0 50 100 150 200 250 300 350

Fig. 6. Predictions of the 3D network after binarization

Discussion and Conclusions. The results show that the 3D convolutional network significantly outperforms the
approach of processing three-dimensional data as slices using 2D networks in determining the shape and position of the
boundary. Qualitatively, the boundary is generally correctly identified in both scenarios, but the 3D network exhibits
substantially less blurring. Notably, the 3D network is almost unaffected by noise and interference in the input signal,
both random and those caused by the presence of large bright reflectors. The results of the 2D network (Figs. 3 and 4)
show a significant number of detections in the area before the desired boundary — where large pores were located in the
object. This is not a random error; the network solves the segmentation task by aiming to detect acoustically contrasting
boundaries, and the boundaries of the pores also fall into this category. However, this effect is undesirable. When using
the 3D network (Figs. 5 and 6), such problems are virtually eliminated. This is because the three-dimensional structure
of the input data allows the convolutional network to fully utilize the spatial information about the reflectors and learn to
ignore geometrically small objects.

The total processing time for a single three-dimensional image using the 3D network was about 0.1 seconds on
commercially available GPUs. Thus, the possibility of real-time localization of the aberrator boundary with good quality
has been demonstrated. This fact can be further used to create new ultrasound imaging algorithms employing methods for
compensating distortions caused by differences in sound speeds in tissues.
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Kongnuxm unmepecog
ABTOp 3asBIs€T 00 OTCYTCTBHH KOH(IUKTA HHTEPECOB

Aemop npouuman u 0006puUs OKOHYAMENbHBLU 8APUAHNT DYKORUCH.
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