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Abstract

Introduction. Many mathematical problems are reduced to solving partial differential equations (PDEs) in domains of
complex shapes. Existing analytical and numerical methods do not always provide efficient solutions for such problems.
Recently, neural networks have been successfully applied to solve PDEs, typically addressing boundary value problems
for domains with simple shapes. This paper attempts to construct a neural network capable of effectively solving boundary
value problems for domains of complex shapes.

Materials and Methods. A method for constructing a neural network to solve the Dirichlet problem for regions of complex
shape is proposed. Derivatives of singular solutions of the Laplace equation are accepted as activation functions. Singular
points of these solutions are distributed along closed curves encompassing the boundary of the domain. The adjustment
of the network weights is reduced to minimizing the root-mean-square error during training.

Results. The results of solving Dirichlet problems for various complex-shaped domains are presented. The results are
provided in tables, comparing the exact solution and the solution obtained using the neural network. Figures show the
domain shapes and the locations of points where the solutions were determined.

Discussion and Conclusion. The presented results indicate a good agreement between the obtained solution and the exact
one. It is noted that this method can be easily applied to various boundary value problems. Methods for enhancing the
efficiency of such neural networks are suggested.
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AHHOTAIHSA

Beeoenue. Muorue 3amauy B MaTeMarhKe CBOIATCS K pelieHHo nudepeHInalbHbIX YPaBHEHUI B YaCTHBIX MPOM3-
BOJIHBIX JUts obnacteil crnoxHOM ¢opMmbl. He Beerna cylnecTByole aHaIUTHUECKHE U YUCIICHHBIE METOIbI TIO3BOJISIOT
3¢ GEKTHBHO MOTYyYUTH PELIeHNe TON00HBIX 3a1a4. B mocnennee BpeMs JOCTAaTOYHO YCIENTHO Ay pemeHus auddepen-
LUaJIbHBIX YPAaBHEHUI B YaCTHBIX MPOU3BOJHBIX IIPHMEHSIOTCS HEHpoHHBIE ceTH. [Ipn 3ToM 00BIYHO paccMaTpHUBarOTCs
KpaeBble 3aJa4n Uil o0nacTeil, nMeronux npocryio Gopmy. B nannoit pabore npennpuHUMaeTcs! HONBITKA TOCTPOUTH
HEHPOHHYIO CeTh, CIOCOOHYI0 3(h(heKTHBHO pelaTh KpaeBble 3a7a4u JUIs 00aacTel CIOKHON GOpMBI.
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Mamepuanst u memoost. ITpennaraeTcst METOA MOCTPOCHUS HEMPOHHOU CETH UIs penieHus 3anaun Jupuxie s oma-
CTel CIOKHOW QOopMEL. B kKauecTBe aKTHBAIIMOHHBIX (PYHKIMHA MPHHAMAIOTCS POU3BOIHBIE OT CHHTYJSPHBIX PEIICHUI
ypaBHeHus Jlamnaca. CHHTYApHBIE TOUKU 3TUX PELIEHUI pacIpeAeIeHbI 10 3aMKHYTHIM KPHUBBIM, OXBATHIBAIOLIUX IPa-
Huiy obnactu. Hactpoiika BecoB ceTH CBOANTCS K MUHUMHU3AIMN CPEJHEKBAAPATHYECKON OMIMOKH 00yUeHHSI.
Pe3ynomamut uccnedosanus. IlpencrapieHsl pe3ybTaTsl pellieHus 3a1a4 JJupuxie a1 pa3InuHbIX o0IacTell CIoxKHON
(dopmbl. Pesyabrarel MpeaCTaBiCHBI B BH/C TAOJHII, COACPIKAIINX TOYHOC PEIICHHE W PEIICHHUE, MOIYYCHHOE MPU T0-
MoIy HelpoHHOH ceTn. Ha pucyHKax mpeacTaBieH BHI 0OMacTel M PacloiioKeHHE TOYEK, B KOTOPHIX ONPEAeIsIoch
pelIeHue.

Oocyscoenue u 3axknovenusn. IIpeacTaBIeHHbIE Pe3yabTaThl CBUAETENBCTBYIOT O XOPOIIEM COBHAJECHUH MOIy4YEHHOTO
pemieHus ¢ To4HbIM. OTMeUaeTcs, 4YTO JaHHbIM METOA JIETKO IPUMEHUM K Pa3IHMYHBIM KPaeBbIM 33/lauaM. YKa3bIBarOTCA
CIOCOOBI MOBBIIEHUS PPEKTUBHOCTHU ITOJOOHBIX HEHPOHHBIX CETEH.

KuaroueBble cioBa: 3a1a4a Jlupuxire s 001acTH CI0KHOM (HOpMBI, HEHPOHHEIC CETH

Jos nurupoBanus. [anaOypaun A.B. IlpumeHenne HeWpoHHBIX cereil aisl pemieHus 3agauu upuxie ans o0-
nmacteir  crmoxHOM  (opmer.  Computational Mathematics and  Information  Technologies. 2024;8(2):68-79.
https://doi.org/10.23947/2587-8999-2024-8-2-68-79

Introduction. Differential equations in partial derivatives are often used in modelling various phenomena. The
domains in which these differential equations are defined often have sufficiently complex shapes, making it difficult or
impossible to apply known methods effectively. The rapid development of computer technology has allowed for the use
of various machine learning methods in solving PDEs.

Recently, the neural network method, whose theoretical foundations were laid in the mid-20th century by
AN. Kolmogorov, has been increasingly used to solve such problems. These methods typically use well-studied
differential equations that are relatively simple to solve. Many developers apply boundary value problems for the Laplace
equation for this purpose.

For example, the work [2] assesses the quality of approximate solutions to the Laplace equation constructed using
neural networks. In [3], a neural network is used to solve the problem of membrane deflection. The article [4] discusses
the numerical solution of the Poisson equation in a two-dimensional domain using the Galerkin method and the Ritz
method with deep neural networks. Various approaches to training radial-basis neural networks for solving the Poisson
equation are discussed in [5].

The study [6] proposes a network architecture that allows solving Laplace, Poisson, heat conduction, and wave
equations for rectangular domains. Methods for solving PDEs using radial-basis neural networks, feedforward networks,
and modified neural networks are considered in [7]. Using a perceptron-type neural network with a single hidden layer, [8]
obtains an analytical approximation of solutions for parabolic-type PDEs.

The use of radial-basis functions in implementing the finite element method with neural networks is explored in [9].
Studies [10, 11] vary the parameters of radial-basis functions when training radial-basis neural networks.

The method of physics-informed neural networks is currently gaining popularity for solving PDEs [12]. The study [13]
describes algorithms for using physics-informed neural networks to solve classical mechanics problems.

Artificial neural networks were used to solve the Navier-Stokes equations in [14]. The article [15] investigates
approaches to solving heat and mass transfer problems based on a perceptron-type neural network.

The examples above illustrate a wide range of problems solved using neural networks and the various approaches to
applying neural networks to solve different boundary value problems. Neural networks are more commonly applied to
solving boundary value problems for domains of simple shapes. This study aims to propose an approach for using neural
networks to solve boundary value problems for complex-shaped domains.

Materials and Methods. Consider the Dirichlet problem for a plane region G, bounded by a smooth closed curve y. One
effective method for solving this problem is the boundary integral equation method. To obtain the corresponding boundary
integral equation, Green’s formula can be used:

1 [ou Ud 1 (Ou

——|—u

u= —
21 Jyon 21 yon

Here, U is the singular solution of the Laplace equation.

Using a quadrature formula for calculating integrals, this relationship can be repre-sented as:

u; = 1 ’ Ck[ﬁ_u} [U]ik l : Ck[”]k [G_U} ’ (M
k ik

P o Lkl on otk on

where u, is the value of u at the i-th point of the boundary vy, C_are the coefficients of the quadrature formula.
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In this expression, [U ] # and Y can be considered as activation functions, while C, u and C, [u]k can be
. . on | on
considered as weights. ik k
By requiring the fulfillment of the relationship in each point of the boundary for all functions of the training set, a
system of equations for determining the weights can be obtained using the least squares method. However, these systems

of equations are ill-conditioned. To improve the conditioning of these systems, the singularity of [U ],.k and {a—U} , can
be increased by shifting the integration contour some distance away from the boundary y. on Jy
The Dirichlet problem solution can then be sought in the form:
N N
u(x)= D wif (s )U e o, )+ D v f (5, )V (o),
k=1 k=

1

where f'(s,) is the value of the unknown function u on the boundary; U (x, 5, ) u V (x, 1, ) are activation functions; o, and
T, are points on closed curves y, and v,, encompassing the boundary v; x is a point in the domain G.

The curves y, and v, are similar to the contour y and are obtained by shifting each point in the direction of the outward
normal to the boundary by distances ¢, and ¢, respectively.

During network training, weights are adjusted and the values ¢, and ¢,, are determined by minimizing the error
functional:

M N (N 2
J(Wk»"kaepsz)zz Z {Zwkfij(xiack)+V/cJ[ij(xisTk)_fij} >
' =

j=1 =1 =

where x, is the coordinate of the i-th point of the boundary contour v; // is the boundary value of the j-th function in the
training set at point x, .

From the relations
obtained.

The values ¢, and ¢, are determined by simple iteration. Assuming €, = £ +1, the values of ¢ = a + &, j =1,2,...L are
chosen. The value of ¢, that provides the best result is selected. After that, all neural network parameters are determined
and its configuration is completed.

The accuracy of the obtained solution can be assessed by comparing the values of u on the boundary calculated using
the neural network:

oJ =0 " o =0, m =1,2,...Na system of linear equations for determining w_and v, can be

ow,, ov,,

706)= 3w 60U 60+ 07 (6,07 (55

1

with the given boundary conditions f(s).
The defined network parameters do not always ensure the desired accuracy of the neural network solution. In this case,
the required accuracy can be achieved by iterative refinement of the obtained result:

Auo(si):f(si)’ u, (Si):f(si)’
AV (sl.):z]i:kau”(sk)U(si,Gk)+Z]i:VkA“n ()7 (515 70)

Au™! (Si):AuM1 (Si)_AV’Hl (Si)’ ”t}1+l (Si):”t”+l (Si)""A”nH (Si)’

n+l

u, (S,-) are the values of the refined solution at the boundary of the region. " Ay (s, 1|

The refinement process continues until the specified accuracy is achieved, i. e. m < orthevalue
t i

starts to increase.
After this, the value of the solution at any point x in the domain G can be computed using the formula:

u (x)z Zszl Wil U, (Sk )U (x, O )"' Zszl Vildy (Sk )V (x, Tk)v

where u (s,) are the refined values of the unknown function on the boundary .

The training set used functions that are solutions to the Laplace equation:
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r¥cos [karccos(in + r*sin (karccos (KD =Xt + Y7,
r r

where k=0,1,2,3,...M.

These functions were specified in different coordinate systems, each rotated relative to the others by an angle that is
a multiple of 2/5.

Results. The presented method was utilized to solve the Dirichlet problem for regions whose boundary y was defined as:

= t)+ t
{x aC(')S( ) gc'os (oc ) e [0, 27r],
y=bsin (t) +gsin (oc 1),
where a, b, g, g, oc are variable parameters.
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Fig. 1. Region G1

Figure 1 shows the region whose boundary correspondstoa=1,b=1,g=0.1, g =-0.1, «c = 4. The numbered stars
indicate the locations of points in region G1 where the exact Dirichlet problem solutions and the values obtained using
the neural network with & =5 are calculated.

Table 1 presents the calculation results corresponding to the solution

u = e** cos2.45y. @)
The table includes the point numbers in region G1, their coordinates, the exact solution of the Dirichlet problem, and

the solution obtained by the neural network.
Table 2 presents the calculation results corresponding to the solution

X' +xpt +x’ -yt +5x+5
u= 1 2 ' 3)
(x + 1) +y
in region G1.
Figure 2 shows the region correspondingto a=1,b=1,g=0.1,¢=0.1, c = 5. Tables 3 and 4 present the calculation
results corresponding to solutions (2) and (3) in region G2 for €, = 6.45. Figure 3 shows region G3, corresponding to
a=1,b=1,g=0.2,q=-0.2, c = 2. The calculation results corresponding to solutions (2) and (3) in region G3 for (3)

g, = 6.3, are presented in Tables 5 and 6.
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Table 1
The calculation results

Point number 1 2 3 4 5 6 7
X 1.0351 0.6510 0.2626 -0.3216 —0.8728 —0.8497 —0.8020
y 0.0602 0.5496 1.0030 0.7890 0.5597 —0.0620 -0.6571
The exact solution 12.4909 1.0954 —1.4745 —-0.1611 0.0234 0.1233 —0.0055
The HC solution 12.477 1.1020 —-1.4730 -0.1630 0.0240 0.1240 —-0.0090
Point number 8 9 10 11 12 13 14
X -0.2036 0.3771 0.7239 0.7804 0.4546 0.1996 -0.2272
y —0.8273 —0.9658 —0.4493 0.0437 0.3866 0.7557 0.5518
The exact solution 0.2675 —1.7992 2.6689 6.7272 1.7790 -0.4516 0.1244
The HC solution 0.2736 -1.7670 2.6512 6.7282 1.7803 —-0.4501 0.1245
Point number 15 16 17 18 19 20 21
b —-0.6570 —-0.5950 —0.6056 —0.1406 0.2827 0.5081 0.4747
y 0.4233 —0.0455 —0.4941 —0.5800 -0.7287 -0.3129 0.0239
The exact solution 0.1017 0.2313 0.0800 0.1058 —0.4254 2.5011 3.1943
The HC solution 0.1023 0.2312 0.0817 0.1020 -0.4318 2.4936 3.1933
Point number 22 23 24 25 26 27 28
X 0.2190 0.1240 —0.1139 —0.3981 —0.2894 -0.3700 —0.0650
y 0.1909 0.4589 0.2673 0.2597 -0.0257 —0.2984 —0.2831
The exact solution 1.5265 0.5851 0.6001 0.3033 0.4912 0.3007 0.6557
The HC solution 1.5259 0.5857 0.5997 0.3032 0.4903 0.3003 0.6527
Point number 29 30 31
X 0.1694 0.2492 0.0744
y —0.4441 -0.1493 0.0000
The exact solution 0.7030 1.7196 1.1998
The HC solution 0.6961 1.7160 1.1980

Table 2
The calculation results

Point number 1 2 3 4 5 6 7
X 1.0351 0.6510 0.2626 -0.3216 —0.8728 —0.8497 —0.8020
y 0.0602 0.5496 1.0030 0.7890 0.5597 —-0.0620 -0.6571
The exact solution 3.9985 3.8121 3.1740 4.1404 7.0650 9.9034 5.9459
The HC solution 4.0010 3.8210 3.1740 4.1330 7.0860 9.8590 5.9370
Point number 8 9 10 11 12 13 14
X -0.2036 0.3771 0.7239 0.7804 0.4546 0.1996 -0.2272
y -0.8273 -0.9658 —0.4493 0.0437 0.3866 0.7557 0.5518
The exact solution 3.8595 3.2536 3.8810 4.0331 4.0649 3.7186 4.8021
The HC solution 3.8675 3.2293 3.8793 4.0297 4.0655 3.7168 4.7974
Point number 15 16 17 18 19 20 21
X -0.6570 —-0.5950 -0.6056 —-0.1406 0.2827 0.5081 0.4747
y 0.4233 —0.0455 —0.4941 —-0.5800 —0.7287 -0.3129 0.0239
The exact solution 6.8777 7.6080 6.2579 4.5410 3.7216 4.0829 4.2223
The HC solution 6.8790 7.5937 6.2519 4.5407 3.7254 4.0835 4.2207
Point number 22 23 24 25 26 27 28
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Continuation of table 2
X 0.2190 0.1240 -0.1139 —0.3981 —0.2894 —-0.3700 —-0.0650
y 0.1909 0.4589 0.2673 0.2597 -0.0257 —0.2984 —0.2831
The exact solution 4.4902 4.3447 5.1277 6.1527 5.9413 5.9450 4.9773
The HC solution 4.4883 4.3425 5.1237 6.1467 5.9351 5.9387 4.9750
Point number 29 30 31
X 0.1694 0.2492 0.0744
y —0.4441 —0.1493 0.0000
The exact solution 4.3023 4.4661 4.8261
The HC solution 4.3041 4.4653 4.8236
Table 3
The calculation results

Point number 1 2 3 4 5 6 7
X 1.0403 0.6832 0.2463 —0.3558 -0.7924 —1.0403 —0.6832
y 0.0633 0.5522 0.9914 0.9278 0.4881 —0.0633 —0.5522
The exact solution 12.6374 1.1533 —1.3835 -0.2702 0.0526 0.0772 0.0406
The HC solution 12.5300 1.1510 -1.3230 —0.2480 0.0360 0.1000 0.0290
Point number 8 9 10 11 12 13 14
X —0.2463 0.3558 0.7924 0.7591 0.4985 0.1798 -0.2596
y -0.9914 -0.9278 —0.4881 0.0462 0.4029 0.7235 0.6771
The exact solution —0.4138 —1.5445 2.5519 6.3819 1.8691 -0.3111 —0.0465
The HC solution —0.4635 —1.4973 2.5558 6.3787 1.8724 —0.3007 —0.0338
Point number 15 16 17 18 19 20 21
X —0.5782 -0.7591 —0.4985 -0.1798 0.2596 0.5782 0.4217
y 0.3562 —0.0462 -0.4029 —0.7235 -0.6771 —0.3562 0.0257
The exact solution 0.1559 0.1547 0.1625 -0.1290 —0.1660 2.6505 2.8047
The HC solution 0.1554 0.1509 0.1558 —0.1404 -0.1775 2.6392 2.8042
Point number 22 23 24 25 26 27 28
X 0.2770 0.0999 —0.1442 -0.3212 -0.4217 -0.2770 —0.0999
y 0.2238 0.4019 0.3761 0.1979 -0.0257 —0.2238 -0.4019
The exact solution 1.6820 0.7064 0.4246 0.4027 0.3551 0.4329 0.4331
The HC solution 1.6832 0.7097 0.4288 0.4031 0.3514 0.4279 0.4261
Point number 29 30 31
X 0.1442 0.3212 —0.0282
y -0.3761 -0.1979 0.0000
The exact solution 0.8608 1.9437 0.9332
The HC solution 0.8512 1.9369 0.9308

Fig. 4 and Fig. 5 show graphically obtained results of solving the Dirichlet problem in G3 for solution (3).
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Fig. 4. HC solution in G3 corresponding to (3)
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Fig. 5. The exact solution in G3 corresponding to (3)
Table 4
The calculation results
Point number 1 2 3 4 5 6 7
X 1.0403 0.6832 0.2463 —0.3558 —0.7924 —-1.0403 —0.6832
y 0.0633 0.5522 0.9914 0.9278 0.4881 —0.0633 —0.5522
The exact solution 3.9985 3.8023 3.1994 3.5918 7.2276 12.5939 6.2589
The HC solution 3.9990 3.7940 3.1690 3.6220 7.2120 12.488 6.2450
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Continuation of table 4

Point number 8 9 10 11 12 13 14
X —-0.2463 0.3558 0.7924 0.7591 0.4985 0.1798 —-0.2596
y -0.9914 -0.9278 —0.4881 0.0462 0.4029 0.7235 0.6771
The exact solution 3.2856 3.3263 3.8398 4.0402 4.0187 3.7979 4.4638
The HC solution 3.3086 3.3405 3.8291 4.0326 4.0107 3.7853 44515
Point number 15 16 17 18 19 20 21
X -0.5782 -0.7591 —-0.4985 -0.1798 0.2596 0.5782 0.4217
y 0.3562 —0.0462 -0.4029 —0.7235 -0.6771 —0.3562 0.0257
The exact solution 6.7562 8.9677 6.1858 4.1803 3.8289 4.0072 4.2753
The HC solution 6.7422 8.9594 6.1844 4.1866 3.8342 4.0038 4.2690
Point number 22 23 24 25 26 27 28
X 0.2770 0.0999 —0.1442 -0.3212 -0.4217 -0.2770 -0.0999
y 0.2238 0.4019 0.3761 0.1979 -0.0257 —0.2238 -0.4019
The exact solution 4.3835 4.4688 5.0283 5.9328 6.5585 5.7193 4.8676
The HC solution 4.3760 4.4594 5.0170 5.9234 6.5537 5.7168 4.8675
Point number 29 30 31
X 0.1442 0.3212 -0.0282
y -0.3761 -0.1979 0.0000
The exact solution 4.4325 4.3410 5.0723
The HC solution 4.4321 4.3377 5.0668
Table 5
The calculation results

Point number 1 2 3 4 5 6 7
X 1.1387 0.6789 0.1404 -0.4339 -0.7355 —0.7488 -0.7213
y 0.0610 0.4697 0.7826 1.0207 0.5615 -0.0620 -0.6858
The exact solution 16.0958 2.1517 —0.4790 -0.2769 0.0320 0.1579 -0.0187
The HC solution 16.055 2.1310 —0.4540 —0.2700 0.0420 0.1780 —0.0090
Point number 8 9 10 11 12 13 14
X -0.3119 0.2489 0.7847 0.8836 0.4897 0.0792 -0.3416
y -0.9953 -0.7209 -0.4028 0.0444 0.3136 0.5423 0.7854
The exact solution —0.3552 —0.3575 3.7699 8.6620 2.3870 0.2911 —0.1498
The HC solution —0.3695 —0.3003 3.7043 8.6771 2.3820 0.3008 —0.1382
Point number 15 16 17 18 19 20 21
X -0.5300 -0.4937 -0.5321 —-0.2508 0.1566 0.5793 0.5776
y 0.4312 —0.0454 -0.5297 —0.7550 —0.4856 —0.2725 0.0244
The exact solution 0.1343 0.2965 0.0732 —0.1490 0.5459 3.2463 4.109099
The HC solution 0.1459 0.3115 0.0881 —0.1402 0.5636 3.2274 4.1094
Point number 22 23 24 25 26 27 28
X 0.2626 0.0059 -0.2309 -0.2835 -0.1876 -0.3050 -0.1775
y 0.1262 0.2540 0.5029 0.2748 -0.0254 —0.3423 —0.4667
The exact solution 1.8128 0.8243 0.1887 0.3903 0.6302 0.3166 0.2683
The HC solution 1.8150 0.8318 0.2004 0.4015 0.6414 0.3311 0.2834
Point number 29 30 31
X 0.0459 0.3328 0.1744
y -0.2032 —-0.1161 0.0000
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Continuation of table 5

The exact solution 0.9832 2.1689 1.5329
The HC solution 0.9924 2.1689 1.5373
Table 6
The calculation results

Point number 1 2 3 4 5 6 7
X 1.1387 0.6789 0.1404 -0.4339 —-0.7355 —0.7488 -0.7213
y 0.0610 0.4697 0.7826 1.0207 0.5615 -0.0620 -0.6858
The exact solution 4.0101 3.8766 3.6988 3.1990 6.4195 8.8530 5.4894
The HC solution 4.0110 3.8840 3.6990 3.2160 6.4370 8.8080 5.4920
Point number 8 9 10 11 12 13 14
X -0.3119 0.2489 0.7847 0.8836 0.4897 0.0792 —-0.3416
y -0.9953 -0.7209 -0.4028 0.0444 0.3136 0.5423 0.7854
The exact solution 3.2886 3.7558 3.9008 4.0079 4.0963 4.2640 4.1824
The HC solution 3.2830 3.7587 3.8986 4.0062 4.0998 4.2648 4.1807
Point number 15 16 17 18 19 20 21
X -0.5300 -0.4937 -0.5321 -0.2508 0.1566 0.5793 0.5776
y 0.4312 —0.0454 -0.5297 —0.7550 —0.4856 —0.2725 0.0244
The exact solution 6.2152 6.9516 5.7855 4.1727 4.2569 4.0602 4.1378
The HC solution 6.2154 6.9378 5.7897 4.1682 4.2566 4.0600 4.1380
Point number 22 23 24 25 26 27 28
X 0.2626 0.0059 -0.2309 —-0.2835 -0.1876 -0.3050 -0.1775
y 0.1262 0.2540 0.5029 0.2748 -0.0254 —0.3423 —0.4667
The exact solution 4.4559 4.8437 4.9521 5.6575 5.5545 5.5934 49136
The HC solution 4.4563 4.8424 4.9498 5.6532 5.5499 5.5904 49112
Point number 29 30 31
X 0.0459 0.3328 0.1744
y -0.2032 —-0.1161 0.0000
The exact solution 4.8040 4.3626 4.6270
The HC solution 4.8022 4.3624 4.6263

In all cases, when clarifying the decision, M = 75, & = 0.00025 were taken and the Euclidean norm was used.The
following activation functions were taken

86 85 85
9y, V(eyits)= Y- Y,
'10°s (5.7.1:5) 10°s 0'1d’s

Y:In%, R=y(x—1F +(y—s).

Discussion and Conclusion. he presented results convincingly demonstrate that the proposed method for
constructing a neural network to solve the Dirichlet problem for regions of complex shapes is highly effective.
This method can also be utilized for solving other partial differential equations. It can be easily adapted for solving
three-dimensional problems and boundary value problems for multiply connected regions. Its efficiency can be
further enhanced by appropriately selecting activation functions (by choosing parameters ¢, and ¢,), by optimizing
the training set selection, and by fine-tuning the weights. All of the above indicates the considerable potential of the
proposed method.

U(x,p,t,5)=
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06 asmope:
Anexkcannp BacuibeBnu lanadypaun, kananaar Gpusnko-MareMaTHYeCKUX HaykK, TOLEHT Kadeapbl MaTeMaTHKU U
nH(popMaTHKH JJOHCKOTO TocynapcTBeHHOro TexHI4Yeckoro yauepcutera (PO, 344003, . Poctos-na-/{ony, . ['arapuna, 1),

ORCID, Galaburdin@mail.ru

Kongnuxm unmepecos
ABTOD 3asBJseT 00 OTCYTCTBHH KOH(IUKTa HHTEPECOB

Aemop npoyuman u 0006pusL OKOHUAMETbHbIU 8APUAHI PYKONUCU.

79


https://orcid.org/0000-0003-0411-6724
mailto:Galaburdin%40mail.ru?subject=

	Кнопка 1: 


