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Abstract

Introduction. The paper considers the solution of boundary value problems on an interval for linear ordinary differential
equations, in which the coefficients and the right-hand side are continuous functions. The conditions for the orthogonality
of the residual equation to the coordinate functions are supplemented by a system of linearly independent boundary
conditions. The number of coordinate functions m must exceed the order n of the differential equation.

Materials and Methods. To numerically solve the boundary value problem, a system of linearly independent coordinate
functions is proposed on a symmetric interval [—1,1], where each function has a unit Chebyshev’s norm. A modified
Petrov-Galerkin method is applied, incorporating linearly independent boundary conditions from the original problem
into the system of linear algebraic equations. An integral quadrature formula with twelfth-order error is used to compute
the scalar product of two functions.

Results. A criterion for the existence and uniqueness of a solution to the boundary value problem is obtained, provided
that # linearly independent solutions of the homogeneous differential equation are known. Formulas are derived for the
matrix coefficients and the coefficients of the right-hand side in the system of linear algebraic equations for the vector
expansion of the solution in terms of the coordinate function system. These formulas are obtained for second- and
third-order linear differential equations. The modified Bubnov-Galerkin method is formulated for differential equations
of arbitrary order.

Discussion and Conclusions. he derived formulas for the generalized Bubnov-Galerkin method may be useful for
solving boundary value problems involving linear ordinary differential equations. Three boundary value problems

with second- and third-order differential equations are numerically solved, with the uniform norm of the residual not
exceeding 107",
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AHHOTANHUSA

Beeoenue. PaccmarpuBaeTcs pelieHHe KpaeBbIX 3a/1a4 Ha OTPE3Ke € IMHEHHBIMU OOBIKHOBEHHBIMH AN epeHIInaTbHbI-
MH YPaBHEHHSIMH, B KOTOPBIX KOA(QUIMEHTHI U NpaBast 4acThb SIBJSIFOTCS. HENPEPBIBHBIMUA (PYyHKUUAMU. YCIOBHS OPTO-
TOHAJIPHOCTH HEBSI3KU YPABHEHUS KOOPAWHATHBIM (QYHKIMSM JIOTIOIHSIOTCS CHCTEMOM JIMHEHHO HE3aBUCUMBIX KPAeBbIX
yCcImoBHiA 3a1a9u. YHCII0 KOOPIMHATHBIX (DYHKITHH 7 TOIDKHO OBITH OobIie mopsiaka 7 1 depeHnanIbHOr0 YpaBHEHHS.
Mamepuanst u memoosl. []J1s YNCICHHOTO PEIICHNS KPAeBOH 3a1a4uM MPEUIOKEHA CUCTEMA JIMHEHHO HE3aBHCUMBIX KO-
OpIMHATHBIX (QYHKIMI HA CHMMETPHYHOM oTpeske [—1,1] ¢ exnandHOMi HOpMO# YeOblmeBa Kaskaoi QyHKIMN CHCTEMBI.
[Tpumenen monudunupoBannslii Metox [lerpoBa-l"anepkuHa ¢ BKIIIOUEHHEM JIMHEIHO HE3aBUCHMBIX KPAeBbIX YCIOBHN
UCXOJJHOM 3a/1auyl B CHCTEMY JIMHEHHBIX alreOpanyeckux ypaBHeHHH. [IpuMeHeHa nHTerpaibHas KBaaparypHas Gopmy-
JIa ¢ IBEHAJNAThIM TOPSAKOM IOTPEIIHOCTH JUIsl BBIYUCICHUS CKAJISIPHOTO MPOM3BEACHUS IBYX (YHKIIHUIL.

Pezynomamut uccnedosanusn. I1omydeH KpuTepuil CymecTBOBaHUS U €IMHCTBEHHOCTH PEIICHUS KPAcBOW 3a/adu, TPH
YCIIOBUH, YTO M3BECTHBI /# JIMHEHHO HE3aBUCHMBIX PEHICHUH OIXHOPOAHOTO AnddepeHnaabHoro ypasHenus. [lomyde-
HBI (POPMYJTBI JUT MAaTPUYHBIX KO3()(UIMEHTOB U KOX(P(HUIIMEHTOB PaBOil YaCTH CHCTEMBI TMHEHHBIX anreOpandecKux
YpaBHEHHI JJIs1 BEKTOPA PA3JIOKEHUs PEIICHHs II0 CUCTEME KOOPAMHATHBIX (DYHKIMHA. DOpMyYITbl MOTy4EHbI TSt JTMHEH-
HBIX AU PepeHINaTbHBIX YPaBHEHUI BTOPOTO U TPEThEro NopsakoB. MoauduimpoBanHblii Meton byOHoBa-I"anepkuna
c(OpMYIIMPOBaH JUIsl ypaBHEHHUS IPOM3BOJILHOTO MOPSIKA.

Obcyscoenue u 3axnouenue. llonydaennsie popmyinsl o6obmennoro Meroga byOHoBa-I anepkiHa MOTYT OBITH ITOJIE3-
HBIMH ISl pELICHUs] KPaeBhIX 3a7a4 C JMHCHHBIMU OOBIKHOBEHHBIMHU IU((epeHINaTbHBIMI ypaBHEHHAMH. YHCICHHO
pEILIeHBI TPH KPaeBbIX 33/1a4 C YPaBHEHUSIMH BTOPOTO M TPETHETO IOPSAKOB, paBHOMEPHAsi HOpMa HEBS3KH HE TPEBHI-
nraet 107!

KioueBble ciioBa: 4KCICHHBIE METOIbI, OOBIKHOBEHHBIE NU(QepeHIHaibHble YPaBHEHHUS, KpaeBble 3aJa4yu, METOJ
T'anepkuna, runpoguHamMuKa

Jas nurupoBanus. Bomocosa H.K., Bomocos K.A., Bomocosa A.K., Ilactyxos A.®., Ilactyxosl0.®. Momu-
¢umupoBaHHbld Meton bByOHoBa-I'anmepkuHa aiIs pelIeHHS KpaeBBIX 3alad C JIMHEWHBIM OOBIKHOBEHHBIM JAU(}-
¢depennmansHbiM - ypaBHeHueM. Computational Mathematics and Information Technologies. 2024;8(3):23-33.
https://doi.org/10.23947/2587-8999-2024-8-3-23-33

Introduction. Boundary value problems involving ordinary differential equations can be classified by the order of
the equation. For instance, in hydrodynamics problems, these equations may be of the first [1], second [2], or third
order [3-4].

The most well-known methods for solving boundary value problems on an interval with ordinary differential equations
are the sweep method and the shooting method [5]. In these methods, the unknown function is sought on a given grid (the
so-called grid function). In this study, the solution is found in a functional form using a system of linearly independent
coordinate functions that are smooth and bounded in absolute value on the symmetric interval [—1, 1]. The unknown solution
function is expanded in a basis of linearly independent coordinate functions. Using the Bubnov-Galerkin method [6], where
the residual of the differential or integral equation is orthogonal to the coordinate functions, the expansion coefficients of
the solution are determined from the orthogonality conditions.

In [7], it was shown that in the simplest classical variational problem (a boundary value problem), the solution must
be sought in the class of admissible functions defined by the boundary conditions. This idea was used by the authors in
the modified Bubnov-Galerkin method, incorporating n—1 (where # is the order of the equation) linearly independent
boundary conditions into a system of m linear algebraic equations. The number of orthogonality conditions is thus
m—n+1 (where m is the number of coordinate functions). In this study, the modified Bubnov-Galerkin method is applied
to boundary value problems involving second- and third-order equations.
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Materials and Methods. Let the unknown function u(x) € C"[a,b], which is continuously differentiable » times,
be the solution of a boundary value problem with an ordinary differential equation of order n with variable coefficients
g:,(x),i=0,n

Llu(x)]= f(x), x € (a,b),

B n d[ (1)
Llu(x)] = [Z g (x)ﬁjuu).
> (e @) =1, n=1LE.
o @)

(B (®)) =71, u=k+1,n.

In the boundary value problem (1)—(2), the functions g,;(x)(i =0,n), f(x) € C[a,b] are given and continuous on the
segment [a, b]. The first k equations in the system (2) represent the boundary conditions at point x = g, and the last n—k
equations represent the boundary conditions at point x = b. For the closure of problem (1), it is necessary that the total
number of boundary conditions be equal to 7. The coefficient matrices ocL,[SL,i =0,n—-1,u= 1,_n, as well as the numbers
Yu» W=1,n are given.

Boundary conditions of the form (2) are called separated. The relationship between the numbers of boundary conditions
OLL 5 BL determines the existence and uniqueness of the solution of the boundary value problem (1)—(2).

Statement 1. Let 7 linearly independent particular solutions of the homogeneous equation (1) U, (x),j = I,_n be
given. Then the boundary value problem (1)—(2) has a unique solution if and only if the following condition
detA4, #0,u= l,_n,j =1,n is satisfied:

n—1

ZOLLU/('i) (a)ap- =Lk
=

A

12

n—1
Z BLU () =k+Ln.
i=0

Proof. Let us write the general solution of equation (1) as u(x) = ZU S(X0)D; +u(x), j = 1,n, where D, are arbitrary
_ Jj=1
integration constants, u(x) is a particular solution of the non-homogeneous equation (1), and U (x) are linearly independent
particular solutions of the homogeneous equation (1).

Substituting this solution u(x) into the boundary conditions (2):

n—

| (o0 (0) :i ! [Z U @)D, +u”_(a)] =7, <,
()

n—1 n—1 _
[z alU" (a)ij =y, - Za;u“) (a),1n=1k.
i=0 i=0

Similarly, for the point x = b, we obtain:

i(iBLUﬁi)(b)JDj :Yu_iﬁim,}l:k-ﬂ,n. (4)
J=E\ =0 i=0

P

n
J=1

The resulting non-homogeneous system of 7 linear algebraic equations (3)—(4) with respect to the » unknowns D,j=1,
n as a unique solution if and only if the determinant of the matrix det 4, # 0, = 1,n, j = 1,n, where

n—1
Z OLLUj('i) (Cl), w= Lk
A4,=1"" (5)
D> BUY Bhu=k+1Ln.
i=0
Statement 1 is proven.

Let us now consider a simple case of problem (1) involving a second-order ordinary differential equation (ODE) with
Dirichlet boundary conditions:
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Lu(x)]= f(x), x € (a,b)
PN
Llu(x)] = {gz (x) 0

u(a)=u,,u(b)=u,.

g, (x>%+go (x)}u(x) ©)

Let us generalize the Bubnov-Galerkin method, as proposed in work [6] for solving Fredholm integral equations of the
second kind, to the solution of the Dirichlet problem with the second-order ODE (6).
We begin by selecting a system of basis (coordinate) functions ¢, (x):

{o,(0}, = {(%j xelabli= W} ©

Statement 2. The coordinate functions of the system (7) ¢,(x) € C*[a,b] are bounded in modulus, differentiable any
number of times, and linearly independent. r—a—b

Proof will be conducted by contradiction. We use a linear mapping z = e e[-1,1], x € [a,b], which bijectively
maps the interval x e[a,b] onto a symmetric interval z €[~1,1]. Such a straightforward method is employed by the
authors of the textbook [5] in the task of constructing integral quadrature formulas. Assume that the system of coordinate
functions is linearly dependent, and taking into account the variable z it takes the form {(p,.(z) =z ,ze[-11]i= O,m}.
If the system of functions is linearly dependent, then there exists a non-trivial solution (o, o, ... & ) to the equation
oy +a,z+a,z +. o, 2" =0Vz e[-1,1].

The last equation has no more than m real solutions, whereas a solution is required for all points of the interval
z €[-1,1]. This contradiction proves the linear independence of the functions in system (7). The functions in (7) are
infinitely continuously differentiable with respect to the variable x as they are polynomials of finite degree, and they are

also bounded since ||(p,. || c= rr[lal)i]|z" | =1. Statement 2 is proven.
ze[-1,

We will apply the Bubnov-Galerkin method using the system of linearly independent coordinate functions (7) to solve
the Dirichlet boundary value problem (6). The symmetric interval z € [-1,1] in our problem results in a consistent order of
error at the nodes symmetrically located with respect to the midpoint of the interval ¢ = (¢ +b) /2 and generally reduces
the norm of the error.

Let us express the solution as a series expansion in terms of the linearly independent system of coordinate functions:

u(x) =u(@)+ )0, (C, =u(c)+Z(2[§x_—_ac) c, ®)

In equation (8), the coefficients Cj are unknown and need to be determined.

From equation (8), we derive the identity u(c) = u(c), which resembles the expansion of an unknown function in a
Taylor series centered at some point x = ¢ = (a+b)/ 2, although we do not know either the function itself or its derivatives.
Substituting equation (8) into equation (6), we obtain the residual (discrepancy) of equation (6):

J=1 J=1

R(u((x)) = Llu(x)]— f (x) = L[u(c) +> 0,0, j —f(x)=L(u(0))+ Y Lo, (x)C; - £(x).

The Bubnov-Galerkin method is orthogonal, so we require the residual to be orthogonal to the maximum number of
coordinate functions, {1, z,2%,..,2""2 } Specifically, we impose orthogonality with respect to m—1 functions that contribute
the most to the residual of equation (6):

(R(u(x)),,(x))=0,i=0,m—-2 < Z"XL@]. (x), 0, (x)>Cj =(f ()~ L(u(c)).0,(x)).i =0,m-2. )

In equation (9), we introduce the notation:
(f.q)= J‘f (g (x)dx, L(u(c))=gy(x)u(c) = gy(x)u,.

Unlike the method described in [6, p. 140], the last condition, numbered m, for the system of linear algebraic equations
(SLAE) with respect to m unknowns C,,j=1m, will be derived from the boundary conditions

C _,,m=2l
m—1 m (10)
C .m=2l+1.

m?2

ub _ua

=C +C, +...+{
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Let us demonstrate the validity of equation (10). At the endpoints of the interval, specifically at the points x = a, x = b,
we can use the expansion given in equation (8) to obtain:

u(a)Eua=u(c)+i(%j L =u, +z C],u(b) ub—u(c)+Z(Mj j=uc+zm:Cj.

By summing the two most recent equations and expressing u(c) = u , we obtain

uc=(ua;ub)—cg_c4_ {Cm’m 2 (11)

C ..m=2+1.

m-1°

B

Similarly, by subtracting the first equation u, from the second equation u_ and expressing —~ 5 ¢ we obtain equation

(10). Next, we substitute the value u(c) obtained from equation (11) into the right-hand side of equation (9). Then, we
move all terms involving C] to the left-hand side of equation (9) to obtain the system of linear algebraic equations (SLAE)
for the coefficients Cj

m

> a,,Cr=f,i=0,m-1 (12)

=

The elements of the matrix @, ;,i=0,m-1,j= 1,m and the coefficients on the right-hand side f,- in the system of
equations (12) are defined as follows:

L(pj o, ,ecm/l]_l(modZ)l—Om 2
L((p/ 1), (pl ,ECIHN ] = 0(m0d2)z—0m 2

Lecmni=m—1, j =1(mod?2)
0,ecu i =m—1, j =1(mod 2)

o f(x) L j,(p[(x)>,ecmi:0,m—2
f 9

U, —u

L ecmmi=m—1

(2242

Remark 1. It is not possible to use both Dirichlet boundary conditions u(a), u(b) directly in the system of linear
algebraic equations (12) because these conditions are linearly dependent.
Proof. Let us substitute the value of u(c) = u, from equation (11) into the expressions for u(a), u(b):

u, +u, C,.m=21 u, +u, C,om=21
=| < -C,-C,—...— U + | C +C,+...+ .
u(c) ( 2 j 2 {C m=2k 410 Z 2 1 C . m=20+1

m=1>

The last expression is equivalent to (10).

L C ,,m=2l
— +ZC (u +ubj+C1+C3+...+{ "

J C,.m=2l+1.

The last equation is equivalent to equation (10), which proves the linear dependence of the boundary conditions.

Remark 2. In equations (12), for the matrix coefficients a, in even columns, the differential operator L acts on the non-
positive function 9, (x)-1, and in odd columns on the alternatmg coordinate function 9 (x). If the determinant of the matrix
in the SLAE (12) is non-zero, then the numerical solution of (12) is unique. Let us now write the differentiation formulas
for the linear operator L as defined in equation (6), applied to the coordinate functions from equation (8):

Lo, = gy(x),ecinj =0,

_28( 2x—a—-b - o)
¢ = b-a) +g,(x )(—a ),ecnyl] L

—Ai(i_ (2x—a-by’ Q2x—a-b)"" 2%—a->bY _
Lo, =4j(j l)gz(x)—(b_a) +2)g(x )—(b_a) +g(x )( - ) ,eciu j > 2.
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Considering (11), the numerical solution of the Dirichlet problem (6) can be reduced to expression (14) by converting

formula (8): . |
ol e e o

It follows from (12) that the vector C included in formula (14) has the form C = 4 71]7.
Let us estimate in absolute value u(x) based on the given formula C = 4~ f

|u(xﬂ 2:E:k?|<

u

a

+|u
Ll ey, <l

|”b|
+2mmaxC
Jj=lm

+amla’] 7] =

e <

It is known that the norm ||B || of an arbitrary square matrix B(mxm) is determined by the formula |B || - =max z |b |

i=l,m

= 7]

In [9], a composite quadrature integral formula with a uniform step and with the 12th order of error O(h'?) i is obtamed,
which is used by the program to calculate all matrix elements a; as well as the coefficients of the right side: f; of SLAE
(12) through the scalar product of two functions:

(11.3,) IM@WAWh MZL“xWAHC+OMu)m—mgh—é—npeN, (15)

i=0 ny

where the weight coefficients of the integral quadrature formula (15) are determined by the value of the remainder modulo
10 of the node number of the uniform grid i:

16067 . .
————.ecmu [ =0mnmm i = n,
299376
ﬂ,ecnu i=0(mod10)u (0 <i<n,),
149688
20575 ,eciu i =1 (mod 10 Jumm i =9 (mod10),
74844
C = ﬂ,ecnn i=2(mod10 Jum i =8 (mod10),
99792
> ,ecin i =3 (mod10 Jum i =7 (mod10),
6237
1825 ,ecii i =4 (mod 10 ) i =6 (mod10),
5544
17807

,ecm i =5 (mod10).

Here are examples of numerical solution of boundary value problems by the algorithm (12)—(15).
Example 1 [10]. Solve the Dirichlet boundary value problem (16)

Yy —y=2x,(0)=0, y(1) =-1,x [0,1]. (16)

The exact solution y(x) = sh(x)/sh(1)—2x.

A program in the Fortran language, where functions and variables are set with double precision according to the
algorithm (12)—(15), gives the Chebyshev vector norm of the difference between the exact and approximate solution
||y—u||c =4,218847493575595E — 015, if the number of coordinate functions m = 11, the number of intervals for

calculating the scalar product of functions by formula (15) on a uniform grid is »n, =50,
—a

. b
||y—u||c :ggr)llc|y(xi)—u(xl.)|,xi =a+hih=

nl

The inverse matrix A~ n the system of linear algebraic equations (12) is calculated by the msimsl linear algebra library
to find the vector of expansion coefficients C o J = 1,m.

Example 2 [9]. Solve the Dirichlet problem for the Poisson equation on a rectangle

— oV
u,+u, =e sinx, 0<x<m0<y<n

=0.

y=n

u

x=0 y=0
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We are looking for a solution to the problem in the form u(x) =sin(x) (). This choice of solution automatically
fulfills two boundary conditions u|y:0 = u|y:n =0. Substituting the solution u(x) into the Poisson equation
sin(x) ( -1 y)) = ¢’ sin(x), Vx € (0, ), we obtain the Dirichlet boundary value problem for f(y):

" _ — Y
{f M-S =e a7
f(0)= f(m)=0.
The last Dirichlet boundary condition f(0) = f(x) =0 in (17) fulfills the boundary conditions of the original problem

o=t =0.

The general solution of the homogeneous equation (17) 1" (y)— f(») = 0 canbe written as Jyo(¥)=Ach(y)+ Bsh(y),
and the partial solution of the inhomogeneous equation is sought in the form

ul

L. :Cyey,ﬁ"(y) =Ce” (y+2),fq" —f. =Ce” (y+2)—Cyey = & 2C:1,C:%.

Let’s write down the general solution of the inhomogeneous equation (17) as

T

—Te
2sh(m)’

Jou(¥)= Ach(y)+Bsh(y)+%y,ﬁ),H(0) =0=4=0,/,,(0)=0=B=

ye” sh(m) — me" sh(y) u(x,y) = ye” sh(m) — me" sh(y)
2sh(m) T 2sh(m)

fO)= Jsin(x) the exact solution of the problem from Example 2.
Solving numerically the boundary value problem (17) using the algorithm (12)—(15), we obtain the Chebyshev
norm for the difference between the numerical and approximate solutions with the number of coordinate functions
m=11, the number of intervals for calculating the scalar product of functions on a uniform grid » =100,
I = frum||. =8.079448221565144E —011.
Let’s estimate the uniform rate of computational error in Example 2 using the algorithm (12)—(15)

¢ I = Funle IsinGe =1 = frun ] = 8-107".
In hydrodynamics [3, 4], boundary value problems with a third-order differential equation are encountered. Consider
example 3.
Example 3.

e — e

num

u' (x)+u (x) = -2sin(x),x € (0,), (18)
u(0) = 0,1'(0) =0, y(m) = 0.

Let ‘s solve the homogeneous equation u"(x)+u (x)=0. Its characteristic equation and eigenvalues are equal
A +L=0< ) =0,A,, =+i =++/-1, which correspond to 3 partial linearly independent solutions

{U,(x) = 1,U, (x) = sin(x),U; (x) = cos(x)},{U} (x) = 0,U, (x) = cos(x),U; (x) = —sin(x)},

{U] (%) = 0,U} (x) = =sin(x), U; (x) = —cos(x)} .

Let’s check the existence and uniqueness of the solution of the boundary value problem (18). Write down the elements
of the matrix according to the formula (5):

a) =la; =00, =0;09 =0;0) =105 =0;B) =1;B =0;B; =0,

n—1

Z(XLU;D (a),n=1k

i=0

n—1

ZB;U;”(b),u =k+Ln k=2n=3.
i=0

4,=11+0-0+0-0=1,4,, =0-1+1-0+0-0=0,4;, =1-1+0-0+0-0=1,
A, =1-5in(0)+0-cos(0) +0- (—sin(0)) = 0, 4,, = 0-5in(0) +1-cos(0) + 0 - (—sin(0)) =1,
A4, =1-sin(n)+0-cos(w) + 0 (—sin(n)) = 0, 4, =1-co0s(0)+0-(—sin(0)) + 0- (—cos(0)) =1,
Ay, =0-cos(0)+1-(—sin(0))+0-(—cos(0)) = 0, 4;; =1-cos(w) + 0 (—sin(r)) + 0- (—cos(w)) = —1.
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1 0 1
Since [0 1 0]|=-2#0, the boundary value problem (18) has a unique solution.
1 0 -1

By direct verification, we will make sure that the exact solution of the boundary value problem (18) is the function
u(x) = xsin(x),u (x) = sin(x) +xcos(x),u (x) =2 cos(x) —xsin(x),
u'(x) = =3sin(x) —xcos(x),u (x)+u (x) = =3sin(x) — x cos(x) +sin(x) + x cos(x) = =2 sin(x),u(0) = u(w) = u (0) = 0.

Statement 1 for boundary value problem (18) is fulfilled, therefore, the solution of the problem is unique and coincides
with u(x) = xsin(x). There are no other solutions.

Let’s calculate the first derivative u(x) by formula (8) and equate it to zero at the point x = a.

X=a

, N N 2j 2x—a-bY" .
“(x)=Z‘Pf(x)C/=Z(b_Ja)(( > j C,=0& G ~2C,+3C, +..+ m(-1)""C, =0. (19)
Jj=1 Jj=1 =

For a boundary value problem with a third-order differential equation (18), we obtain a system of equations

>a,C =7 i=0m-1. (20)

J=1

(Lo, ¢,),ifj=1(mod2),i=0,m~3
<L((pj—1),(pi>,ifj50(mod2),i=m
a,; =11, if i=m—-2, j=1(mod2)

0, if i=m—2,=0(mod2)

J) T ifi=m—1

B

<f(x)—L[u" ;”b),cpi(x)>, if i=0,m—3

YU ifimm—2 :
2
0,ifi=m-1

|
[

Lo, = g,(x),ifj =0,

g =25 +go(X)(—2x_a_bj,ifj=l,

" (b-a) b-a
Lo, =8g2(x)(b_;a)z+4gl(x)%+go(x)(%jz,ifj=2, 21)
Lo, =8~/ (x)%+
47D, (x>%+ 2e, (x>%+ % (x)%,ifj >3,

/=

u(x) = (%} N iﬂ(zz—_aa_bjx J{—l + (2—1)f+1 H ¢ -

The inverse matrix 4™ is calculated by the msimsl linear algebra library to find the vector of expansion coefficients
C;,j=1,m, using the coeflicients of the system of linear algebraic equations (20). A program using formulas
(14), (20), (21), (22) gives a numerical ™" and exact u;™" = x, sin(x,) solution to problem (18) on a uniform grid

b-a
n
exact solution of this problem is presented in Table 1.

x,=a+h-i,i=0,n,h=

,n, =50,a =0,b = The number of coordinate functions is m = 15. The numerical and
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Table 1
Problem solution (18)

X, " et U — g
0.000000000E+000 0.0000000000E+000 0.00000000000E+000 0.00000000E+000
0.12566370614359 1.5749838632E-002 1.5749838632E-002 3.36702887793E-013
0.25132741228718 6.2502585803E-002 6.2502585803E-002 —7.5051076464E-014
0.37699111843077 0.1387796868382 0.1387796868384 —2.2543078515E-013
0.50265482457436 0.2421558085434 0.2421558085436 —2.5310309403E-013
0.62831853071795 0.3693163660978 0.3693163660980 —2.3742119381E-013
0.75398223686155 0.5161363581649 0.5161363581652 —2.1926904736E-013
0.87964594300514 0.6777788480392 0.6777788480394 —2.0117241206E-013
1.00530964914873 0.8488110105527 0.8488110105529 —1.7474910407E-013

1.13097335529233

1.0233352874866

1.0233352874867

—1.4477308241E-013

1.25663706143592

1.1951328658964

1.1951328658966

—-1.3122836151E-013

1.38230076757951

1.3578164206656

1.3578164206658

—1.4432899320E-013

1.50796447372310

1.5049888502957

1.5049888502959

—1.6875389974E-013

1.63362817986669

1.6304045878204

1.6304045878205

—1.7497114868E-013

1.75929188601028

1.72812998993818

1.72812998993833

—1.5254464358E-013

1.88495559215388

1.79269929884481

1.79269929884493

—1.2145839889E-013

2.01061929829747 1.81926273330968 1.81926273330979 —1.1013412404E-013
2.13628300444106 1.80372339742481 1.80372339742493 —1,2212453270E-013
2.26194671058465 1.74285989495849 1.74285989495861 —1.2412293415E-013
2.38761041672824 1.63443180085643 1.63443180085651 —8.038014698286E-014
2.51327412287183 1.47726546439236 1.47726546439237 —-5.1070259132E-015
2.63893782901543 1.27131799485423 1.27131799485419 4.50750547997E-014
2.76460153515902 1.01771770348181 1.01771770348179 2.17603712826E-014
2.89026524130261 0.71877973673595 0.71877973673604 —9.7144514654E-014
3.01592894744620 0.37799612718318 0.37799612718362 —4.3676173788E-013

3.07876080051800

0.193316990170226

0.193316990171009

—7.8290152139E-013

3.14159265358979

3.8472143247E-016

—1.0104259667E-015

1.39514739920E-015

The first column of Table 1 shows the value of a node x, of a uniform grid, the second column contains a numerical

solution ", and the third column contains the exact solution " in nodes x,. The last column contains their difference
num exact
u™" —u
In Example 3, the program gives the error rate [u" —u " . = max u"" —u ~7.829E - 013.
i=0,n

Results. The authors have developed the following algorithm for the modified Bubnov-Galerkin method:

— in the boundary value problem with an ordinary differential equation of order # it is necessary to select a system of
m+1 coordinate functions {l,z,zz,..., z"m> n};

— from the n boundary conditions, choose a system of linearly independent conditions (in the case of specified function
values u , u, there are n—1), independent conditions) and include the independent boundary conditions in the system of
linear algebraic equations (SLAE);

— require that the first m—(n—1) = m—n+1 coordinate functions should be orthogonal to the residual of the differential
equation. Then, the non-homogeneous system of linear algebraic equations will have m—n+1+n—1 =m rows and m
unknowns C,, j = 1,m.

Discussion and Conclusions. The main results obtained by the authors are as follows:

1. A system of coordinate functions is proposed that is infinitely differentiable, bounded, and linearly independent on
the interval [—1,1], designed for solving boundary value problems with a linear differential equation of order .

2. For the first time, a modified Bubnov-Galerkin method is introduced, in which the system of linear algebraic
equations (12), (20) includes n—1 boundary conditions of the problem.
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3. A criterion (5) for the existence and uniqueness of the solution to the boundary value problem with separated
boundary conditions is obtained for the case where n linearly independent solutions of the linear homogeneous differential
equation are known (Statement 1).

4. The modified Bubnov-Galerkin algorithm is proposed for boundary value problems with second- and third-order
equations (12)—(15) and (20)—(22).

5. Three examples have been numerically solved using the modified algorithm, achieving a uniform error norm of no
more than 1071,
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