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Abstract
Introduction. This paper addresses an initial-boundary value problem for the transport of multifractional suspensions 
applied to coastal marine systems. This problem describes the processes of transport, deposition of suspension particles, 
and the transitions between its various fractions. To obtain monotonic finite difference schemes for diffusion-convection 
problems of suspensions, it is advisable to use schemes that satisfy the maximum principle. When constructing a finite 
difference scheme that adheres to the maximum principle, it is desirable to achieve second-order spatial accuracy for both 
interior and boundary points of the domain under study.
Materials and Methods. This problem presents certain difficulties when considering the boundaries of the geometric 
domain, where boundary conditions of the second and third kinds are applied. In these cases, to maintain second-order 
approximation accuracy, an “extended” grid is introduced (a grid supplemented with fictitious nodes). The guideline 
is the approximation of the given boundary conditions using the central difference formula, with the exclusion of the 
concentration function at the fictitious node from the resulting expressions. 
Results. Second-order accurate finite difference schemes for the diffusion-convection problem of multifractional 
suspensions in coastal marine systems are constructed.
Discussion and Conclusion. The proposed schemes are not absolutely stable, and a detailed analysis of stability and conver-
gence, particularly concerning the grid step ratio, remains an important problem that the author plans to address in the future.
Keywords: coastal marine systems, multifractional suspension, diffusion-convection problem, difference scheme, 
approximation error
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Аннотация
Введение. Рассматривается начально-краевая задача транспорта мультифракционных взвесей применительно к при-
брежным морским системам. Данная задача описывает процессы переноса и осаждения частиц взвеси, а также взаим-
ный переход между её различными фракциями. С целью получения монотонных разностных схем для задач диффу-
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зии-конвекции взвесей целесообразно использовать разностные схемы, удовлетворяющие принципу максимума. При 
построении разностной схемы, для которой будет выполнен принцип максимума, желательно получить второй порядок 
аппроксимации по пространственной переменной как для внутренних, так и для граничных точек исследуемой области.
Материалы и методы. Данная задача вызывает определенные трудности при рассмотрении границ геометри-
ческой области, для которых выполнены граничные условия второго и третьего рода. В этих случаях, чтобы со-
хранить второй порядок погрешности аппроксимации, вводится «расширенная» сетка (сетка, дополненная фик-
тивными узлами). Ориентиром служит аппроксимация указанных граничных условий по формуле центральных 
разностей и исключение из полученных выражений функций концентрации взвеси в фиктивном узле.
Результаты исследования. Построены разностные схемы второго порядка точности для задачи диффузии-кон-
векции мультифракционных взвесей в прибрежных морских системах.
Обсуждение и заключение. Предложенные схемы не являются абсолютно стабильными и подробный анализ 
устойчивости и сходимости, связанный с отношением шагов сетки, является важной проблемой, которую автор 
планирует решать в будущем.

Ключевые слова: прибрежные морские системы, мультифракционная взвесь, задача диффузии-конвекции, раз-
ностная схема, погрешность аппроксимации
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Introduction. Suspended matter (suspension) is a natural component of marine systems. Changes in the quantitative 
and qualitative composition of the suspension can shape the landscape, negatively affect ecological communities, and 
shorten the lifespan of infrastructure. To address these issues, a clear understanding of the transport processes of suspended 
matter, accounting for spatial and temporal variations, is necessary. Typically, mathematical and numerical modelling 
methods are employed for these purposes [1–4].

In this article, we present a mathematical model of suspension transport based on a three-dimensional diffusion-
convection equation. The model considers the multifractional composition of the suspension, water flow velocity, 
hydraulic particle size, complex bottom geometry, wind stress, bed friction, and other factors [5–8]. Special attention is 
paid to the approximation of the proposed model at both internal and boundary points of the computational domain. The 
proposed methods enable the construction of a finite difference scheme that approximates the model with second-order 
accuracy in relation to the spatial grid steps, taking into account boundary conditions of the second and third kinds.

Materials and Methods
1. Formulation of the Diffusion-Convection Problem for Multifractional Suspensions. In a rectangular Cartesian 

coordinate system, we consider the three-dimensional diffusion-convection equation using a skew-symmetric form of the 
convective transport operator [5–7]:
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where  ( ), , , ,r r rс c c x y z t=  is the concentration of particles at time  t, t ∈ [0; T]; u, v, w are the components of the velocity 
vector of the water medium  U



;  ,,r r g rw w w w′ ′ = +  are the hydraulic sizes of the particles;  , ,,h r v rµ µ  are the horizontal and 
vertical diffusion coefficients of the particles, respectively; Fr is the source term; αrβr are the coefficients describing the 
intensity of conversion of particles from one fraction to another, and  0, 0r rα ≥ β ≥ ; γr is the external source power of 
particles. Here, the subscript r indicates that the particle belongs to fraction number r.

(1)

https://rscf.ru/project/23-21-00509
https://doi.org/10.23947/2587-8999-2024-8-3-43-59


Computational Mathematics and Information Technologies. 2024;8(3):43−59. еISSN 2587-8999

45

The equation (1) is supplemented by the initial conditions:
 ( ) ( ) ( ),0, , ,0 , , , , , ;r rc x y z c x y z x y z G= ∈

and the boundary conditions:
− on the lateral faces of the parallelepiped G:

 , if 0;r r nc c u′= <

 0, if 0;r
n

c u
n

∂
= ≥

∂


( nu  is the projection of the velocity vector onto the outward normal  n  at the boundary, and  rc′  represents known con-
centration values);

− on the upper surface of the parallelepiped G:
 0;rc

z
∂

=
∂

− on the lower surface of the parallelepiped G:

 .r
r r

c c
z

∂
=−ε

∂

Using the methods described in [9], a transformation with a “time lag” on the time grid   { }, 0,1,..., ,n t tt n n N N Tτω = = τ = τ=  
was performed, along with a transition to a new coordinate system  [ ], 0;1Oxyθ θ∈  according to the formulas:

 , , ,z x x y y
h θ θ

−η
θ= = =

where h is the depth and η is the height of the free surface relative to the mean free surface [10].
Equation (1) is then transformed as follows:
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The initial and boundary conditions (2)–(6) will be transformed as follows:

 ( ) ( )

( ) ( ) ( )

1
,0

1
1 1

, , ,0 , , , ,

, , , , , , , 2,..., , , , ;

r r

n n
r n r n t

c x y c x y G

c x y t c x y t n N x y G−
− −

θ = θ ∈

θ = θ = θ ∈

 , if 0;n
r r nc c u′= <

 
0, if 0,

n
r

n

c u
n

∂
= ≥

∂


 
0;

n
rc∂
=

∂θ

 
.

n
nr

r r
c c∂
=−ε

∂θ

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)



Sidoryakina V.V. Construction of Second-Order Finite Difference Schemes for Diffusion-Convection Problems of Multifract Suspensions ...

46

2. Second-Order Finite Difference Scheme for the Diffusion-Convection Problem of Multifractional Suspensions 
at Internal Nodes. Let us assume the existence of continuous (bounded) fourth-order partial derivatives with respect to 
the spatial variables (x, y, θ) for the functions  , 1,2,3n

rc r= , and continuous second-order partial derivatives with respect 

to the time variable t. In other words, the derivatives 
 4 4 4 2
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For the approximation of the problem (8)–(13), we will use the following grids:
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Next, in the notation of the grid functions for   and n n
r rc F  we will use a bar over them. Based on the assumptions 

introduced, we arrive at the approximation of equation (8):
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We will verify that the finite difference scheme (14) has second-order accuracy. To this end, we will substitute the 
exact solution  ( ) ( ) ( ), , , , , , , , , , 0,1,...,n
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the following relationship holds:
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We express the function  1n
rc −  in a Taylor series expansion around the node  ( ), , ,i j k nx y tθ :
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To estimate the approximation error of the convective transport operator from equation (15) we utilize the Taylor 
series expansions  , , ,n n n n

r rc u v w′  around the node  ( ), , ,i j k nx y tθ :
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To estimate the approximation error of the diffusion transport operator from equation (15), we utilize  , ,, ,n
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the Taylor series expansions around the point  ( ), ,i j kx y θ :

 
( ) ( ) ( ) ( ) ( ) ( )

2 32 3
4

2 3

, , , , , ,
, , , , ,

2 6

n n n
r i j k r i j k r i j kn n x x

r i x j k r i j k x x

c x y c x y c x yh hc x h y c x y h O h
x x x

∂ θ ∂ θ ∂ θ
± θ = θ ± + ± +

∂ ∂ ∂
 
( ) ( ) ( ) ( ) ( ) ( )

2 32 3
4

2 3

, , , , , ,
, , , , ,

2 6

n n n
r i j k r i j k r i j ky yn n

r i j y k r i j k y y

c x y c x y c x yh h
c x y h c x y h O h

y y y
∂ θ ∂ θ ∂ θ

± θ = θ ± + ± +
∂ ∂ ∂

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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( ) ( ) ( ) ( ) ( ) ( )

2 32 3
4

2 3

, , , , , ,
, , , , ,

2 6

n n n
r i j k r i j k r i j kn n

r i j k r i j k

c x y c x y c x yh hc x y h c x y h O hθ θ
θ θ θ

∂ θ ∂ θ ∂ θ
θ ± = θ ± + ± +

∂θ ∂θ ∂θ

 ( ) ( ) ( ) ( )2
, , ,0.5 , , 0.5 , , 2 , , ,h r i x j k h r i x j k h r i j k xx h y x h y x y O hµ + θ +µ − θ = µ θ +

 
( ) ( ) ( ) ( ), 3

, ,

, ,
0.5 , , 0.5 , , ,h r i j k

h r i x j k h r i x j k x x

x y
x h y x h y h O h

x
∂µ θ

µ + θ −µ − θ = +
∂

 ( ) ( ) ( ) ( )2
, , ,, 0.5 , , 0.5 , 2 , , ,h r i j y k h r i j y k h r i j k yx y h x y h x y O hµ + θ +µ − θ = µ θ +

 
( ) ( ) ( ) ( ), 3

, ,

, ,
, 0.5 , , 0.5 , ,h r i j k

h r i j y k h r i j y k y y

x y
x y h x y h h O h

y
∂µ θ

µ + θ −µ − θ = +
∂

 ( ) ( ) ( ) ( )2
, , ,, , 0.5 , , 0.5 2 , , ,v r i j k v r i j k v r i j kx y h x y h x y O hθ θ θµ θ + +µ θ − = µ θ +

 
( ) ( ) ( ) ( ), 3

, ,

, ,
, , 0.5 , , 0.5 .v r i j k

v r i j k v r i j k

x y
x y h x y h h O hθ θ θ θ

∂µ θ
µ θ + −µ θ − = +

∂θ

By substituting the corresponding expressions from equations (29)–(37) into the expression for  n
rDc  we obtain:

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

( )

2
, ,

, 2

2
,

, ,2 2

2

2

, , , , , , , , , ,
, ,

, , , , , ,1, , , ,
,

, ,

n n n
h r i j k r i j k r i j k h r i j k r i j kn

r h r i j k

n n
r i j k h r i j k r i j k

h r i j k h r i j k
i j

n
r i j k

x y c x y c x y x y c x y
Dc x y

x x x y y

c x y x y c x y
x y x y

y H x y

c x y

∂µ θ ∂ θ ∂ θ ∂µ θ ∂ θ
= +µ θ + +

∂ ∂ ∂ ∂ ∂

∂ θ ∂µ θ ∂ θ
+µ θ + +µ θ ⋅∂ ∂θ ∂θ

∂ θ 
⋅ ∂θ 

( )2 2 2 .x yO h h hθ+ + +

From the equalities (18), (28), and (38), it follows that the overall order of the approximation error of the finite 
difference scheme (14) at the grid nodes  τω ×ω  is equal to  ( )2 2 2 2 2, x yO h h h h hθτ+ = + + .

It is important to note that the initial condition (9) is set exactly on the grid  τω ×ω .
3. Second-Order Finite Difference Scheme for the Diffusion-Convection Problem of Multifractional Suspensions 

at Boundary Nodes. We will assume the existence and continuity of the derivatives 
 4 4 4 2

4 4 4 2, , , ,
n n n n
r r r rc c c c

x y t
∂ ∂ ∂ ∂
∂ ∂ ∂θ ∂

 r = 1,2,3 

as well as the continuity of the second-order partial derivatives: 
 22 2

2 2 2, , ,rwu v
x y

′∂∂ ∂
∂ ∂ ∂θ

 
 2 2 2

, , ,
2 2 2, , ,h r h r v r

x y
∂ µ ∂ µ ∂ µ
∂ ∂ ∂θ

  Additionally, we 

assume the existence and continuity of mixed partial derivatives. We will consider that the following conditions are satisfied:

 2 2 2 4 4 4 4 4 4 4 4 4

3 3 3 3 3 3 3 3 3, , , , , , , , , , , ,
n n n n n n n n n n n n
r r r r r r r r r r r rc c c c c c c c c c c c

x t y t t t x t y t y x x x y y x y
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂θ∂ ∂ ∂ ∂ ∂ ∂ ∂θ ∂ ∂ ∂θ∂ ∂ ∂ ∂θ∂ ∂ ∂θ ∂ ∂θ

 5 5 5 5 5 5

2 3 2 3 2 3 2 3 2 3 2 3, , , , , ,
n n n n n n
r r r r r rc c c c c c

y x x x y y x y
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂θ ∂ ∂ ∂ ∂θ ∂ ∂ ∂θ ∂ ∂θ

 2 2 2 2 2 2 2 2 22 2 2 2
, , , , ,, , , , , , , , , , , , .

n n n nn n n n
h r h r h r h r v r r r r rw w w wv v v v

x y x y x x y x y y y x y x y x y
∂ µ ∂ µ ∂ µ ∂ µ ∂ µ ′ ′ ′ ′∂ ∂ ∂ ∂∂ ∂ ∂ ∂
∂ ∂ ∂ ∂θ ∂ ∂ ∂θ∂ ∂ ∂θ ∂ ∂ ∂θ∂ ∂ ∂ ∂ ∂θ ∂ ∂θ ∂ ∂θ ∂θ∂ ∂θ∂

We will assume that the following conditions are satisfied:

 
11 12 21 22 31 32, , ,x

y x y

h h hk k k k k k
h h h

θ θ≤ ≤ ≤ ≤ ≤ ≤

  11 12 21 22 31 32, , , , ,k k k k k k represents some positive constants.
To approximate the boundary conditions, we introduce an extended grid:

 ( ){

}

, , , 1,0,..., 1, 1,0,..., 1, 1,0,..., 1,

; ; ; ; ; 1 .

i j k x y

i x j y k x x x y y y

x y i N j N k N

x ih y jh kh N h L N h L N h

+
θ

θ θ θ

ω = θ =− + =− + =− +

= = θ = = = =

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)
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For the nodes of the  \+ω ω  we assume the values of the components of the velocity vector are equal to zero:

 ( ), , 0, n
r i j kc x y θ =  if  ( ), , \i j kx y +θ ∈ω ω

furthermore, we consider the values of the components of the velocity vector of the water medium and the 
hydraulic diameter of the particles in the suspension at the grid nodes  \+ω ω  with fractional indices to be known: 
 ( ) ( )0.5 , , , 0.5 , , ,n n

x j k x x j ku h y u L h y− θ + θ   ( ), 0.5 , ,n
i y kv x h− θ   ( ), 0.5 ,n

i y y kv x L h+ θ ,  ( ), , 0.5 ,n
r i jw x y hθ′ −   ( ), ,1 0.5n

r i jw x y hθ′ + .
The boundary conditions (10) are approximated as follows:

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

0, , , if 0.5 , , 0.5 , , 0,

, , , if 0.5 , , 0.5 , , 0, , , ;

,0, ,  if ,0.5 , , 0.5 , 0,

, , , if , 0.5 ,

n n n
r j k r x j k x j k

n n n
r x j k r x x j k x x j k i j k

n n n
r i k r i y k i y k

n n
r i y k r i y y

c y с u h y u h y

c L y с u L h y u L h y x y

c x с v x h v x h

c x L с v x L h

+

′θ = θ + − θ >


′ θ = − θ + + θ < θ ∈ω

′θ = θ + − θ >

′θ = −( ) ( ) ( ), 0.5 , 0, , , .n
k i y y k i j kv x L h x y +



 θ + + θ < θ ∈ω

 

In the case of flows on the lateral surfaces of the domain G, that coincide in direction with the external normals to the 
surfaces, i. e., when the conditions are met:

  ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

0.5 , , 0.5 , , 0,

0.5 , , 0.5 , , 0, , , ;

,0.5 , , 0.5 , 0,

, 0.5 , , 0.5 , 0, , ,

n n
x j k x j k

n n
x x j k x x j k i j k

n n
i y k i y k

n n
i y y k i y y k i j k

u h y u h y

u L h y u L h y x y

v x h v x h

v x L h v x L h x y

+

+

θ + − θ <

− θ + + θ > θ ∈ω

θ + − θ <

− θ + + θ > θ ∈ω

Neumann boundary conditions are applicable.
Let us proceed to the construction of the difference scheme for the case when condition (11) is satisfied.
The condition (11) is equivalent to the following in case of xi = 0: 

 ( )0, ,
0.

n
r j kc y

x
∂ θ

=
∂

On the grid  \+ω ω the node   is internal (Fig. 1).

Fig. 1. Construction of the extended grid at the left end of the segment 0 ≤ xi ≤ Lx

The difference scheme at the nodes  ( )0, ,j ky θ  will be written as follows:

 ( ) ( ) ( ) ( ) ( ) ( ))(

( ) ( ) ( )( ( )( ) ( )

( ) ( )

10, , 0, , 1 0.5 , , , , 0.5 , , , ,
2

1 10, 0.5 , 0, , 0, 0.5 , 0, ,
2 2 0,

0, , 0.5 0, , 0, , 0.

n n
r j k r j k n n n n

x j k r x j k x j k r x j k
x

n n n n
j y k r j y k j y k r j y k

y j

n n n
r j k r j k r j k

c y c y
u h y c h y u h y c h y

h

v y h c y h v y h c y h
h H y h

w y h c y h w y

−

θ

θ θ

θ − θ
+ θ θ − − θ − θ +

τ

+ + θ + θ − − θ − θ + ⋅

′ ′⋅ θ + θ + − θ −( ) ( ))( ( )( ,2

15 0, , 0.5 , ,n
r j k h r x j k

x

h c y h h y
hθ θθ − = µ θ ⋅

 ( ) ( )( ) ( ) ( ) ( )( )), 2

1, , 0, , 0.5 , , 0, , , ,n n n n
r x j k r j k h r x j k r j k r x j k

y

c h y c y h y c y c h y
h

⋅ θ − θ −µ − θ θ − − θ + ⋅

(40)

(41)

(42)

(43)

x–1 = –hx

0.5 hx

x0 = 0 x1 = hx x2 = 2hx

0.5 hx

 hx

0

(44)
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 ( ) ( ) ( )( )( ( ) ( )(

( )) ( ) ( ) ( ) ( )( )(

( ) ( ) ( )( ))

( )

, ,

,2 2

,

0, 0.5 , 0, , 0, , 0, 0.5 , 0, ,

10, , 0, , 0.5 0, , 0, ,
0,

0, , 0.5 0, , 0, , ,

0, , , 1,

n n n
h r j y k r j y k r j k h r j y k r j k

n n n
r j y k r j k r j k r j k

j

n n n
r j k r j k r j k r

j k

y h c y h c y y h c y

c y h y h c y h c y
H y h

y h c y c y h F

y r

ν θ θ
θ

ν θ θ

+

⋅ µ + θ + θ − θ −µ − θ θ −

− − θ + µ θ + θ + − θ −

−µ θ − θ − θ − +

θ ∈ω = 2,3, 1,..., .tn N=

In our reasoning, we focus on the approximation of the given boundary condition using the central difference formula 
and the exclusion of values at the fictitious node  ( ), ,x j kh y− θ  from the resulting expression and equation (44). The functions   
 ( ), ,n

r x j kc h y− θ  will be included in the expressions

 ( ) ( ) ( ) ( )( )1 0.5 , , , , 0.5 , , , ,
2

n n n n
x j k r x j k x j k r x j k

x

u h y c h y u h y c h y
h

θ θ − − θ − θ

 ( ) ( ) ( )( ) ( )( ( ) ( )( ), ,2
1 0.5 , , , , 0, , 0.5 , , 0, , , , ,n n n n

h r x j k r x j k r j k h r x j k r j k r x j k
x

h y c h y c y h y c y c h y
h

µ θ θ − θ −µ − θ θ − − θ

which we will denote as  0 0i

n
r x

C c
=

 and  
0i

n
r x

Dc
=

.

We will write condition (43) as follows:

 ( ) ( ), , , ,
0

2

n n
r x j k r x j k

x

c h y c h y
h

θ − − θ
=

and from this, we obtain:
 ( ) ( ), , , , .n n

r x j k r x j kc h y c h y− θ = θ

Substituting the value  ( ), ,n
r x j kc h y− θ  obtained from formula (46) into the expression for  0 0i

n
r x

C c
=

, we find:

 ( ) ( )( ) ( )0 0

1 0.5 , , 0.5 , , , , .
2i

n n n n
r x j k x j k r x j kx

x

C c u h y u h y c h y
h=

≅ θ − − θ θ

Preliminary calculations showed that when using equality (45), the approximation error of the expression for   0 0i

n
r x

C c
=  

will be О(h2), while the expression for  
0i

n
r x

Dc
=

 will be О(hx). To determine the overall order of the approximation error 
О(h2) of the difference scheme, a different approach will be proposed for the operator  

0i

n
r x

Dc
=

.
By expanding the functions  ( ), ,n

r x j kc h y± θ  in a Taylor series around the point  ( )0, ,j ky θ  we obtain:

 
( ) ( ) ( ) ( ) ( )

( ) ( )

2 32 3

2 3

4 4
5

4

0, , 0, , 0, ,
, , 0, ,

2 6

0, ,
.

24

n n n
r j k r j k r j kn n x x

r x j k r j k x

n
r j k x

x

c y c y c yh hc h y c y h
x x x

c y h O h
x

∂ θ ∂ θ ∂ θ
± θ = θ ± + ± +

∂ ∂ ∂

∂ θ
+ +

∂

Using relation (48), we will explicitly write the leading term of the residual:

 ( ) ( ) ( ) ( ) ( )
3 2

4
3

, , , , 0, , 0, ,
.

2 6

n n n n
r x j k r x j k r j k r j k x

x
x

c h y c h y c y c y h O h
h x x

θ − − θ ∂ θ ∂ θ
= + +

∂ ∂

The last expression, taking into account the condition 
 ( )0, ,

0
n
r j kc y

x
∂ θ

=
∂

 can be written as:

 ( ) ( ) ( ) ( )
32

4
3

, , , , 0, ,
.

2 6

n n
r x j k r x j k j kx

x
x

c h y c h y c yh O h
h x

θ − − θ ∂ θ
= +

∂

Using equality (49), we will find the value of the function  1n
rc −  at the fictitious node  ( ), ,xh y− θ  from the expression:

 
( ) ( ) ( ) ( )

33
5

3

0, ,
, , , , .

3
j kn n x

r x j k r x j k x

c yhc h y c h y O h
x

∂ θ
− θ = θ − +

∂

(45)

(46)

(47)

(48)

(49)

(50)
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Further reasoning will focus on the approximation of the derivative 
 ( )3

3

0, ,n
r j kc y

x
∂ θ

∂
.

We will differentiate both sides of equation (8) with respect to the variable and express the derivative 
 3

3

n
rc

x
∂
∂


 from the 

resulting equality. Next, we will take the limit as x → 0 and considering that  ( )0, ,
0

n
r j kc y

x
∂ θ

=
∂

, we find:

 ( )
( )

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( ) ( ) ( )

3 2 2

3 2
,

2 2

0, , 0, , 0, , 0, , 0, ,1 0, ,
0, ,

0, , 0, , 0, , 0, ,1 10, , 0, ,
0, 0,

n n n n n
r j k r j k r j k j k r j kn

j k
h r j k

n n n n
r j k r j k r j k r j kn n

j k r j k
j j

c y c y c y v y c y
u y

x y x t x x y

c y w y c y c y
v y w y

x y H y x H y x

∂ θ ∂ θ ∂ θ ∂ θ ∂ θ
= + θ + +∂ µ θ ∂ ∂ ∂ ∂ ∂

′∂ θ ∂ θ ∂ θ ∂ θ
′+ θ + + θ +

∂ ∂ ∂ ∂θ ∂ ∂θ

 ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2

2

2 2 3
, ,

,2 2 2 2

0, , 0, , 0, ,1 1 10, , 0, , 0, ,
2 2 2 0, ,

0, , 0, , 0, , 0, , 10, ,
0,

n n n
j k j k r j kn n n

r j k r j k r j k
j

n n n
h r j k r j k h r j k r j k r

h r j k
j

u y v y w y
c y c y c y

x x y H y x

y c y y c y cy
x x x y x y H y

′∂ θ ∂ θ ∂ θ
+ θ + θ + θ −

∂ ∂ ∂ ∂ ∂θ

∂µ θ ∂ θ ∂µ θ ∂ θ ∂
− − −µ θ − ⋅

∂ ∂ ∂ ∂ ∂ ∂





 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
, , ,

2

3

, 2

0, , 0, , 0, , 0, , 0, , 0, ,

0, ,
0, , , 1,2,3, 0, , .

n n n
v r j k r j k v r j k r j k v r j k r j k

n
r j k

v r j k j k

y c y y c y y c y
x x x

c y
y r y G

x

∂ µ θ ∂ θ ∂µ θ ∂ θ ∂µ θ ∂ θ
⋅ + + + ∂ ∂θ ∂θ ∂θ ∂ ∂θ ∂ ∂θ

∂ θ 
+µ θ = θ ∈∂ ∂θ 

It is evident that the equality holds:

 ( ) ( ) ( )1 2 30, , 0, , 0, ,
0.

n n n
j k j k j kF y F y F y

x x x
∂ θ ∂ θ ∂ θ

= = =
∂ ∂ ∂

For the reader’s convenience, we will approximate the expression in parentheses from the right side of expression (51) 

for each term separately. Initially, we note that for the coefficient  
( ),

1
0, ,h r j kyµ θ

, which stands before this parentheses, we 
will use the expression:

 
( ) ( ) ( ), , ,

1 2 .
0, , 0.5 , , 0.5 , ,h r j k h r x j k h r x j ky h y h y

=
µ θ µ θ +µ − θ

Let us consider the derivative 
 ( )2 0, ,n

r j kc y
x t

∂ θ

∂ ∂
. For it, we have:

 ( ) ( ) ( ) ( )
2

20, , , , , , , ,1 1
2 2

n n n
r j k r x j k n r x j k n

x
x x

c y c h y t c h y t
O h

x t h t t h
∂ θ ∂ θ ∂ − θ 

= − + = ⋅  ∂ ∂ ∂ ∂ 

 ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2

, , , , , , , , , , , ,
2 2

, , , , , , , , , , , ,1
2 2 2

n n n n n n n
r x j k n r x j k r x j k r x j k

n n n n n n n n
r x j k r x j k r x j k r x j k

x
x x x

c h y t c h y t c h y t c h y t
O

c h y t c h y t c h y t c h y t
O h

h h h

 θ +τ − θ −τ − θ +τ − − θ −τ
⋅ − + τ +  τ τ 

 θ +τ − − θ +τ θ −τ − − θ −τ
+ = − +  

 

 ( ) ( )2 21 .
2 x

x

O O h
h

+ τ +

Using equality (50), the relationships can be written as:

 ( ) ( ) ( ) ( )
32

4
3

, , , , , , 0, , ,
.

2 6

n n n
r x j k n r x j k n r j k nx

x
x

c h y t c h y t c y th O h
h x

θ ±τ − − θ ±τ ∂ θ ±τ
= +

∂

(51)

(53)

(54)
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With the help of equality (54), we will transform equality (53):

 ( ) ( ) ( ) ( )
3 322

2 2
3 3

0, , , 0, , ,1 1 .
2 6 2

n nn
r j k n r j k nxr

x
x

c y t c y thc O O h
x t x x h

∂ θ +τ ∂ θ −τ ∂
= − + τ +  ∂ ∂ τ ∂ ∂ 

Introducing the notation 
 
( ) ( )3

3

0, , ,
0, , ,

n
r j k n

j k n

c y t
y t

x
∂ θ ±τ

ϕ θ ±τ =
∂

, we will write the last equality as:

 ( ) ( ) ( ) ( )
22

2 20, , , 0, , , 1 .
6 2 2

n
j k n j k nxr

x
x

y t y thc O O h
x t h

ϕ θ +τ −ϕ θ −τ ∂
= + τ +  ∂ ∂ τ 

From which it follows:
 ( ) ( ) ( ) ( )

22
2 2 20, , , 1 .

6 2

n
j k nxr

x
x

y thc O O O h
x t t h

∂ϕ θ ∂
= + τ + τ +  ∂ ∂ ∂ 

In accordance with the Courant condition [11], the quantity   is bounded, and we can assume that the equality holds:
 ( ) ( )21
2 x

x

O O h
h

τ = . Taking this into account, we have:

 ( ) ( )
22 0, , ,

.
6

n
j k nxr

x

y thc O h
x t t

∂ϕ θ∂
= +

∂ ∂ ∂

Considering relation (56) and the boundedness of the derivative 
 ( ) ( )4

3

0, , , 0, , ,n
j k n r j k ny t c y t

t t x
∂ϕ θ ±τ ∂ θ ±τ

=
∂ ∂ ∂

 the expression
 ( )2 0, ,n

r j kc y
x t

∂ θ

∂ ∂
 is equal to zero up to О(hx).

Next, we will show that the derivative 
 ( )3

2

0, ,n
r j kc y

x y
∂ θ

∂ ∂
 when approximated with an error of О(hx) also tends to zero.

Taking into account the inequality 
 

11 12
x

y

hk k
h

≤ ≤  from (39), we have:

 ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

3 2 2
2

2 2 2

2

2 2
2

0, , , , , ,1
2

, , 2 , , , ,1
2

, , 2 , , , ,

n n n
r j k r x j k r x j k

x
x

n n n
r x j y k r x j k r x j y k

x y

n n n
r x j y k r x j k r x j y k

y x
y

c y c h y c h y
O h

x y h y y

c h y h c h y c h y h
h h

c h y h c h y c h y h
O h O h

h

∂ θ ∂ θ ∂ − θ 
= − + =  ∂ ∂ ∂ ∂ 

+ θ − θ + − θ
= −



− + θ − − θ + − − θ 
− + + =



 ( ) ( ) ( ) ( )
2

, , , , , , , ,1 2
2 2

n n n n
r x j y k r x j y k r x j k r x j k

y x x

c h y h c h y h c h y c h y
h h h

+ θ − − + θ θ − − θ
= − +



 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

2

2

, , , , 1
2 2

, , , , , , , ,1 2
2 2

, , , ,
.

2

n n
r x j y k r x j y k

y x
x x

n n n n
r x j y k r x j y k r x j k r x j k

y x x

n n
r x j y k r x j y k

x y
x

c h y h c h y h
O h O h

h h

c h y h c h y h c h y c h y
h h h

c h y h c h y h
O h h

h

− θ − − − θ 
+ + + =



+ θ − − + θ θ − − θ
= − +



− θ − − − θ 
+ + +



Based on equality (57), the relationship can be written as:

 ( ) ( ) ( ) ( )
32

4
3

, , , , 0, ,
.

2 6

n n n
r x j y k r x j y k r j y kx

x
x

c h y h c h y h c y hh O h
h x

± θ − − ± θ ∂ ± θ
= +

∂

Using equalities (58), we will transform relationship (57):

 ( ) ( ) ( ) ( ) ( )
3 3 3 32

2
2 2 3 3 3

0, , 0, , 0, , 0, ,1 2 .
6

n n n n
r j k r j y k r j k r j y kx

x y
y

c y c y h c y c y hh O h h
x y h x x x

∂ θ ∂ + θ ∂ θ ∂ − θ 
= − + + +  ∂ ∂ ∂ ∂ ∂ 

(55)

(56)

(57)

(58)
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Let 
 
( ) ( ) ( ) ( )3 3

3 3

0, , 0, ,
0, , , 0, ,

n n
r j y k r j k

j y k j k

c y h c y
y h y

x x
∂ ± θ ∂ θ

ϕ ± θ = ϕ θ =
∂ ∂

. Then the last equality can be written as:

 ( ) ( ) ( ) ( ) ( )
3 2

2
2 2

0, , 0, , 2 0, , 0, ,
.

6

n
r j k j y k j k j y kx

x y
y

c y y h y y hh O h h
x y h

∂ θ ϕ + θ − ϕ θ +ϕ − θ 
= + +  ∂ ∂  

From equality (59), it follows that:

 ( ) ( ) ( ) ( )
3 22

2 2
2 2

0, , 0, ,
.

6

n
r j k j kx

y x y

c y yh O h O h h
x y y

∂ θ ∂ ϕ θ 
= + + +  ∂ ∂ ∂ 

The last equality can be transformed into the form:

 ( ) ( ) ( )
3 22

2 2

0, , 0, ,
.

6

n
r j k j kx

x

c y yh O h
x y y

∂ θ ∂ ϕ θ
= +

∂ ∂ ∂

Considering relation (60) and the boundedness of the derivative 
 ( ) ( )2 5

2 2 3

0, , 0, ,n
j k r j ky c y

y y x
∂ ϕ θ ∂ θ

=
∂ ∂ ∂

 with respect to О(hx) the 

expression 
 ( )3

2

0, ,n
r j kc y

x y
∂ θ

∂ ∂
 is equal to zero.

By applying similar reasoning for the derivatives 
 ( )3

2

0, ,n
r j kc y

x
∂ θ

∂ ∂θ
, 

 ( )2 0, ,n
r j kc y

x y
∂ θ

∂ ∂
, 

 ( )2 0, ,n
r j kc y

x
∂ θ

∂ ∂θ
 it can be easily verified 

that when the inequalities from (40) are satisfied, these derivatives are equal to zero up to  О(hx).

Let us consider the derivative  ( )2

2

0, ,n
r j kc y

x
∂ θ

∂
. We have:

 ( ) ( ) ( ) ( ) ( )
2

2
2 2

0, , , , 2 0, , , ,
.

n n n n
r j k r x j k r j k r x j k

x
x

c y c h y c y c h y
O h

x h
∂ θ θ − θ + − θ

= +
∂

In the last equality, the value of the function  n
rc  at the fictitious node  ( ), ,x j kh y− θ  will be replaced using expression (50). 

We obtain
 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

2 33
5

2 2 3

33
2 2

2 3

0, , 0, ,1 , , 2 0, , , ,
3

0, ,1 2 , , 0, ,
3

n n
r j k r j kn n n x

r x j k r j k r x j k x
x

n
r j kn n x

x r x j k r j k x
x

c y c yhc h y c y c h y O h
x h x

c yhO h c h y c y O h
h x

 ∂ θ ∂ θ 
= θ − θ + θ − + +    ∂ ∂  

∂ θ 
+ = θ − θ − +  ∂ 

or

 ( ) ( ) ( )( ) ( )2 3

2 2 3

0, , 0, ,2 , , 0, , .
3

n n
r j k r j kn n x

r x j k r j k
x

c y c yhc h y c y
x h x

∂ θ ∂ θ
≅ θ − θ −

∂ ∂

The terms 
 

( ) ( )2

2

0, ,
0, ,

n
r j kn

j k

c y
u y

x
∂ θ

θ
∂

 and 
 ( ) ( )2

,
2

0, , 0, ,n
h r j k r j ky c y

x x
∂µ θ ∂ θ

∂ ∂
 from equality (51), which include the factor 

 ( )2

2

0, ,n
r j kc y

x
∂ θ

∂
, are approximated by the expressions using relation (62):

 
( ) ( ) ( ) ( )( ) ( ) ( )( )

( )

2

2 2

3

3

0, , 1 20, , 0.5 , , 0.5 , , , , 0, ,
2

0, ,
;

3

n
r j kn n n n n

j k x j k x j k r x j k r j k
x

n
r j kx

c y
u y u h y u h y c h y c y

x h

c yh
x

∂ θ 
θ ≅ θ + − θ θ − θ −∂ 

∂ θ 
− ∂ 

 ( ) ( ) ( ) ( )( ) ( )(

( )) ( )

2
,

, ,2 2

3

3

0, , 0, , 1 20.5 , , 0.5 , , , ,

0, ,
0, , .

3

n
h r j k r j k n

h r x j k h r x j k r x j k
x x

n
r j kn x

r j k

y c y
h y h y c h y

x x h h

c yhc y
x

∂µ θ ∂ θ 
≅ µ θ −µ − θ θ −∂ ∂ 

∂ θ 
− θ − ∂ 

(59)

(60)

(61)

(62)

(63)

(64)
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When approximating the derivative 
 ( )2

2

0, ,n
r j kc y

y
∂ θ

∂
, we obtain:

 ( ) ( ) ( ) ( ) ( )
2

2
2 2

0, , 0, , 2 0, , 0, ,
.

n n n n
r j k r j y k r j k r j y k

y
y

c y c y h c y c y h
O h

y h
∂ θ + θ − θ + − θ

= +
∂

Approximating the term 
 ( ) ( )2

,
2

0, , 0, ,n
h r j k r j ky c y

x y
∂µ θ ∂ θ

∂ ∂
 from equality (51), which includes the factor 

 ( )2

2

0, ,n
r j kc y

y
∂ θ

∂
, 

using relation (65), we get:

 ( ) ( ) ( ) ( )( ) ( )(

( ) ( ))

2
,

, ,2 2

0, , 0, , 1 0.5 , , 0.5 , , 0, ,

2 0, , 0, , .

n
h r j k r j k n

h r x j k v r x j k r j y k
x y

n n
r j k r j y k

y c y
h y h y c y h

x y h h

c y c y h

∂µ θ ∂ θ
≅ µ θ −µ − θ + θ −

∂ ∂

− θ + − θ

The approximation of the form (66) is carried out with an accuracy of O(hx). Indeed, it is not difficult to verify:

 
( ) ( ) ( ) ( ) ( )

2
2 3

2

0, ,
0, , 2 0, , 0, , ,

n
r j kn n n

r j y k r j k r j y k y y

c y
c y h c y c y h h O h

y
∂ θ

+ θ − θ + − θ = +
∂

 
( ) ( ) ( ) ( ), 3

, ,

0, ,
0.5 , , 0.5 , , .h r j k

h r x j k h r x j k x x

y
h y h y h O h

x
∂µ θ

µ θ −µ − θ = +
∂

Taking into account equalities (67) and (68) for relation (66), we obtain:

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
, , 3 2 3

2 2 2

2
,

2

0, , 0, , 0, , 0, ,1

0, , 0, ,
.

n n
h r j k r j k h r j k r j k

x x y y
x y

n
h r j k r j k

x

y c y y c y
h O h h O h

x y h h x y

y c y
O h

x y

∂µ θ ∂ θ ∂µ θ ∂ θ  
= + + =    ∂ ∂ ∂ ∂  

∂µ θ ∂ θ
= +

∂ ∂

When approximating the derivative 
 ( )2

2

0, ,n
r j kc y∂ θ

∂θ
, we obtain:

 ( ) ( ) ( ) ( ) ( )
2

2
2 2

0, , 0, , 2 0, , 0, ,
.

n n n n
r j k r j k r j k r j kc y c y h c y c y h

O h
h

θ θ
θ

θ

∂ θ θ + − θ + θ −
= +

∂θ

Then for the term 
 

( )
( ) ( )2

,
2 2

0, , 0, ,1
0,

n
v r j k r j k

j

y c y
H y x

∂µ θ ∂ θ

∂ ∂θ
 from equality (51), which includes the factor 

 ( )2

2

0, ,n
r j kc y∂ θ

∂θ
, 

we find:
 

( )
( ) ( )

( ) ( )( ( ))

( ) ( ) ( )( )

2
,

, ,2 2 2 2

0, , 0, ,1 1 0.5 , , 0.5 , ,
0, 0,

0, , 2 0, , 0, , .

n
v r j k r j k

v r x j k v r x j k
j x j

n n n
r j k r j k r j k

y c y
h y h y

H y x h h H y

c y h c y c y h

θ

θ θ

∂µ θ ∂ θ
≅ µ θ −µ − θ ⋅

∂ ∂θ

⋅ θ + − θ + θ −

The error of the approximation of the expression  
 

( )
( ) ( )2

,
2 2

0, , 0, ,1
0,

n
v r j k r j k

j

y c y
H y x

∂µ θ ∂ θ

∂ ∂θ
 using relation (71) is O(hx). 

Indeed, taking into account the equality

 
( ) ( ) ( ) ( ) ( )

2 2
3

2

0, ,
0, , 2 0, , 0, , 2 ,

2

n
r j kn n n

r j k r j k r j k

c y hc y h c y c y h O hθ
θ θ θ

∂ θ
θ + − θ + θ − = +

∂θ
we obtain:

 

( )
( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
, , 3 2

2 2 2 2 2

2
,3

2

0, , 0, , 0, , 0, ,1 1
0, 0,

0, , 0, ,
.

n n
v r j k r j k h r j k r j k

x x
j x j

n
h r j k r j k

x

y c y y c y
h O h h

H y x h h H y x

y c y
O h O h

x

θ
θ

θ

∂µ θ ∂ θ ∂µ θ ∂ θ 
= + +  ∂ ∂θ ∂ ∂θ 

∂µ θ ∂ θ+ = + ∂ ∂θ

(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(73)
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Next, let us consider the derivative 
 ( )0, ,n

r j kc y
y

∂ θ

∂
. When approximating it with central differences, we get:

 ( ) ( ) ( ) ( )20, , 0, , 0, ,
.

2

n n n
r j k r j y k r j y k

y
y

c y c y h c y h
O h

y h
∂ θ + θ − − θ

= +
∂

Then for the term 
 ( ) ( )0, , 0, ,n n

j k r j kv y c y
x y

∂ θ ∂ θ

∂ ∂
 from equality (51), which includes the factor  

 ( )0, ,n
r j kc y

y
∂ θ

∂
, we find:

 ( ) ( ) ( ) ( )( ) ( )(

( ))

0, , 0, , 1 0.5 , , 0.5 , , 0, ,
2

0, , .

n n
j k r j k n n n

x j k x j k r j y k
x y

n
r j y k

v y c y
v h y v h y c y h

x y h h

c y h

∂ θ ∂ θ
≅ θ − − θ + θ −

∂ ∂

− − θ

Here

 ( ) ( ) ( ) ( )20, , 0.5 , , 0.5 , ,
.

n n n
j k x j k x j k

x
x

v y v h y v h y
O h

x h
∂ θ θ − − θ

= +
∂

It is not difficult to verify that the approximation error for expression 
 ( ) ( )0, , 0, ,n n

j k r j kv y c y
x y

∂ θ ∂ θ

∂ ∂
, carried out using 

relation (75), is  ( )2
xO h  and the equality holds:

 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 3

2

0, , 0, , 0, , 0, ,1 2
2

0, , 0, ,
2 .

n n n n
j k r j k j k r j k

x x y y
x y

n n
j k r j k

x

v y c y v y c y
h O h h O h

x y h h x y

v y c y
O h

x y

∂ θ ∂ θ ∂ θ ∂ θ  
= + + =    ∂ ∂ ∂ ∂  

∂ θ ∂ θ
= +

∂ ∂

When approximating the derivative 
 ( )0, ,n

r j kc y∂ θ

∂θ
, we obtain:

 ( ) ( ) ( ) ( )20, , 0, , 0, ,
.

2

n n n
r j k r j k r j kc y c y h c y h

O h
h

θ θ
θ

θ

∂ θ θ + − θ −
= +

∂θ

Then for the terms 
 

( )
( ) ( )0, , 0, ,1

0,

n n
r j k r j k

j

w y c y
H y x

′∂ θ ∂ θ

∂ ∂θ
  and  

 
( )

( ) ( )2
,

2

0, , 0, ,1
0,

n
v r j k r j k

j

y c y
H y x

∂ µ θ ∂ θ

∂ ∂θ ∂θ
 from equality (51), 

which include the factor 
 ( )0, ,n

r j kc y∂ θ

∂θ
, we find:

 

( )
( ) ( )

( ) ( ) ( )( )

( ) ( )( )

0, , 0, ,1 1 0.5 , , 0.5 , ,
0, 2 0,

0, , 0, , ;

n n
r j k r j k n n

r x j k r x j k
j x j

n n
r j k r j k

w y c y
w h y w h y

H y x h h H y

c y h c y h

θ

θ θ

′∂ θ ∂ θ
′ ′≅ θ − − θ ⋅

∂ ∂θ

⋅ θ + − θ −

 

( )
( ) ( )

( ) ( )(

( )) ( )( ( ))

( ) ( )( )

2
,

,2 2 2

, , ,

0, , 0, ,1 1 0.5 , , 0.5
0, 2 0,

0.5 , , 0.5 0.5 , , 0.5 0.5 , , 0.5

0, , 0, , .

n
v r j k r j k

v r x j k
j x j

v r x j k v r x j k v r x j k

n n
r j k r j k

y c y
h y h

H y x h h H y

h y h h y h h y h

c y h c y h

θ
θ

θ θ θ

θ θ

∂ µ θ ∂ θ
≅ µ θ + −∂ ∂θ ∂θ

−µ − θ + − µ θ − −µ − θ − ⋅

⋅ θ + − θ −

Here, the equalities used in writing relations (79) and (80) are:

 ( ) ( ) ( ) ( )20, , 0.5 , , 0.5 , ,n n n
r j k r x j k r x j k

x
x

w y w h y w h y
O h

x h
′ ′ ′∂ θ θ − − θ

= +
∂

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)
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 ( ) ( ) ( )

( ) ( ) ( ) ( )

2
, , ,

, , 2 2

0, , 0.5 , , 0.5 0.5 , , 0.51

0.5 , , 0.5 0.5 , , 0.5 1 .

v r j k v r x j k v r x j k

x

v r x j k v r x j k
x

x x

y h y h h y h
x h h

h y h h y h
O h O h

h h

θ θ

θ

θ θ
θ

∂ µ θ µ θ + −µ − θ +
= −∂ ∂θ 

µ θ − −µ − θ − 
− + +



Taking into account the inequality 
 

21 22
x

hk k
h
θ≤ ≤  from (39), we can assert that the approximation of the form (80) is 

carried out with an error of O(hx).

When approximating  ( )0, ,n
r j kc y θ , we replace it with its grid analog  ( )0, ,n

r j kc y θ .

Then for the terms 
 ( ) ( )

2

2

0, ,1 0, ,
2

n
j k n

r j k

u y
c y

x
∂ θ

θ
∂

, 
 ( ) ( )

2 0, ,1 0, ,
2

n
j k n

r j k

v y
c y

x y
∂ θ

θ
∂ ∂

 and 
 

( )
( ) ( )

2 0, ,1 0, ,
2 0,

n
r j k n

r j k
j

w y
c y

H y x
′∂ θ

θ
∂ ∂θ

, 

which include the factor  ( )0, ,n
r j kc y θ , we find:

 ( ) ( ) ( ) ( ) ( ) ( )( )
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2

2 2
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n
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n
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θ ≅ θ − θ + − θ ⋅

∂

⋅ θ

 ( ) ( ) ( ) ( )( )

( )( ( )) ( )
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v y
c y v h y h v h y h

x y h h

v h y h v h y h c y

∂ θ
θ ≅ + θ − − + θ −∂ ∂

− − θ − − − θ θ

 
( )

( ) ( ) ( ) ( )(

( )( ) ( )( ( )) ( )

2 0, ,1 10, , 0.5 , , 0.5
2 0, 2 0,

0.5 , , 0.5 0.5 , , 0.5 0.5 , , 0.5 0, , .

n
r j k n n

r j k r x k
j x j

n n n n
r x j k r x j k r x j k r j k

w y
c y w h y h

H y x h h H y

w h y h w h y h w h y h c y

θ
θ

θ θ θ

′∂ θ
′θ ≅ θ + −∂ ∂θ

′ ′ ′ − − θ + θ − − − θ − θ

It is evident that expression (83) is obtained with an accuracy of O(h2
x).

In writing relations (84) and (85), the equalities used are:

 ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

0, , 0.5 , 0.5 , 0.5 , 0.5 ,1

0.5 , 0.5 , 0.5 , 0.5 , 1 ,

n n n
j k x j y k x j y k

y x

n n
x j y k x j y k

y x
x x

v y v h y h v h y h
x y h h

v h y h v h y h
O h O h

h h

∂ θ + θ − − + θ
= −∂ ∂ 

− θ − − − θ 
− + +



 ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2 2

0, , 0.5 , , 0.5 0.5 , , 0.51

0.5 , 0.5 , 0.5 , 0.5 , 1 .

n n n
r j k r x j k r x j k

x

n n
r x j y k r x j y k

x
x x

w y w h y h w h y h
x h h

w h y h w h y h
O h O h

h h

θ θ

θ

θ

′ ′ ′∂ θ θ + − − θ +
= −∂ ∂θ 

′ ′− θ − − − θ 
− + +



Considering equalities (86) and (87), we obtain that the error of the approximations (84) and (85) is O(hx).
Thus, we have obtained the approximations for all terms located in the parentheses on the right side of equality (51). 

As a result of substituting into equality (51) the approximations carried out by expressions (63), (64), (66), (71), (75), (79), 
(80), (83)–(85) with an error of O(hx) ((or higher), we obtain:

 ( ) ( )
3

13

0, ,
,

n
r j k

x

c y
O h

x
∂ θ

=ϑ +
∂

where
 ( ) ( )( ( ) ( ) ( )

( ))
1 10 11 12 13 14 15

16

, , 0, , 0, , 0, , 0, ,

0, , ,

x j k j y k j y k j k j k

j k

с h y с y h с y h с y h с y h

с y

θ θϑ =ϑ ϑ θ +ϑ + θ +ϑ − θ +ϑ θ + +ϑ θ − +

+ϑ θ

(82)

(83)

(84)

(85)

(86)

(87)

(88)
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 ( ) ( )( )
( ) ( ) ( ) ( )( )

, ,
10

, ,

3 0.5 , , 0.5 , ,
;

4 0.5 , , 2 0.5 , , 0.5 , , 0.5 , ,
h r x j k h r x j k

n n
h r x j k h r x j k x j k x j k x

h y h y
h y h y u h y u h y h

µ θ +µ − θ
ϑ =

µ θ + µ − θ − θ + − θ

 ( ) ( )( ) ( ) ( )( )11 , ,2 3

1 20.5 , , 0.5 , , 0.5 , , 0.5 , , ;n n
x j k x j k h r x j k h r x j k

x x

u h y u h y h y h y
h h

ϑ = θ + − θ − µ θ −µ − θ

 ( ) ( )( ) ( ) ( )( )12 , ,2

1 10.5 , , 0.5 , , 0.5 , , 0.5 , , ;
2

n n
x j k x j k h r x j k v r x j k

x y x y

v h y v h y h y h y
h h h h

ϑ = θ − − θ − µ θ −µ − θ

 ( ) ( )( ) ( ) ( )( )12 , ,2
1 10.5 , , 0.5 , , 0.5 , , 0.5 , , ;

2
n n

x j k x j k h r x j k v r x j k
x y x y

v h y v h y h y h y
h h h h

ϑ = θ − − θ − µ θ −µ − θ

 ( ) ( )( ) ( ) ( )( )13 , ,2

1 10.5 , , 0.5 , , 0.5 , , 0.5 , , ;
2

n n
x j k x j k h r x j k v r x j k

x y x y

v h y v h y h y h y
h h h h

ϑ =− θ − − θ − µ θ −µ − θ

 
( ) ( ) ( )( ) ( ) ( )(

( )) ( ) ( )( ( )

( ) ( ))
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, , ,2 2

, ,
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2 0, 0,

10.5 , , 0.5 , , 0.5 0.5 , , 0.5
2 0,

0.5 , , 0.5 0.5 , , 0.5 ;
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r x j k r x j k v r x j k

x j x j

v r x j k v r x j k v r x j k
x j

v r x j k v r x j k

w h y w h y h y
h h H y h h H y

h y h y h h y h
h h H y

h y h h y h

θ θ

θ θ
θ

θ θ

′ ′ϑ = θ − − θ − µ θ −
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( ) ( ) ( )( ) ( ) ( )(

( )) ( ) ( )( ( )

( ) ( ))

15 ,2 2

, , ,2 2

, ,

1 10.5 , , 0.5 , , 0.5 , ,
2 0, 0,

10.5 , , 0.5 , , 0.5 0.5 , , 0.5
2 0,

0.5 , , 0.5 0.5 , , 0.5 ;

n n
r x j k r x j k v r x j k

x j x j

v r x j k v r x j k v r x j k
x j

v r x j k v r x j k

w h y w h y h y
h h H y h h H y

h y h y h h y h
h h H y

h y h h y h

θ θ

θ θ
θ

θ θ

′ ′ϑ =− θ − − θ − µ θ −

−µ − θ + µ θ + −µ − θ + −

−µ θ − +µ − θ −

 ( ) ( )( ) ( ) ( )(

( ) ( )) ( )( ( )

( ) ( )) ( )

16 2 2
1 20.5 , , 0.5 , , 0.5 , ,

0,

12 0, , 0.5 , , 0.5 , 0.5 , 0.5 , 0.5 ,
2

10.5 , 0.5 , 0.5 , 0.5 , 0.5 ,
2 0,

n n n
x j k x j k x j k

x x j

n n n n
j k x j k x j y k x j y k

x y

n n n
x j y k x j y k r x j

x j

u h y u h y u h y
h h H y

u y u h y v h y h v h y h
h h

v h y h v h y h w h y
h h H yθ

ϑ =− θ + − θ + θ −

− θ + − θ + + θ − − + θ −

′− − θ + − − θ + ( )(

( ) ( ) ( ))

( ) ( ) ( )( ), ,3 2 2 2

, 0.5

0.5 , , 0.5 0.5 , , 0.5 0.5 , , 0.5

1 1 12 0.5 , , 0.5 , ,
0,

k

n n n
r x j k r x j k r x j k

h r x h r x j k
x x y x j

h

w h y h w h y h w h y h

h y h y
h h h h h H y

θ

θ θ θ

θ

θ + −

′ ′ ′− − θ + − θ − + − θ − +

 
+ + + µ θ −µ − θ ⋅  
 

Using equality (88) for  
0i

n
r x

Dc
=

, we can construct the expression:

 ( ) ( )( ) ( ) ( )( )

( )

, ,20

, 1

1 0.5 , , 0.5 , , , , 0, ,

0.5 , , .
3

i

n n n
r h r x j k h r x j k r x j k r j kx

x

x
h r x j k

Dc h y h y c h y c y
h

hh y

=
≅ µ θ +µ − θ θ − θ −

−µ − θ ϑ

Ultimately, the difference scheme (44), taking into account relations (47) and (89), will take the form:
 ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ( ) ( )

1

,2

1 0.5 , , 0.5 , , , ,
2

1 10, 0.5 , 0, , 0, 0.5 , 0, ,
2 2 0,

10, , 0.5 0, , 0, , 0.5 0, , 0

n n
n n nr r

x j k x j k r x j k
x

n n n n
j y k r j y k j y k r j y k

y j

n n n n
r j k r j k r j k r j k h r

x

c c u h y u h y c h y
h

v y h c y h v y h c y h
h H y h

w y h c y h w y h c y h
h

−

θ

θ θ θ θ

−
+ θ − − θ θ +

τ

+ + θ + θ − − θ − θ + ⋅

′ ′⋅ θ + θ + − θ − θ − = µ ( )( .5 , ,x j kh y θ +

(89)
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 ( )) ( ) ( )( ) ( ) ( )(, , 1 ,2
10.5 , , , , 0, , 0.5 , , 0, 0.5 ,

3
n n x

h r x j k r x j k r j k h r x j k h r j y k
y

hh y c h y c y h y y h
h

+µ − θ θ − θ −µ − θ ϑ + µ + θ ⋅

 ( ) ( )( ) ( ) ( ) ( )( ))

( ) ( )( ( ) ( )( ) ( )

( ) ( )( )) ( )

,

, ,2 2

0, , 0, , 0, 0.5 , 0, , 0, ,

1 0, , 0.5 0, , 0, , 0, , 0.5
0,

0, , 0, , , 0, , , 1,2,3, 1,..., .

n n n n
r j y k r j k h r j y k r r j y k

n n
r j k r j k r j k r j k

j

n n n
r j k r j k r j k T

c y h c y y h c y c y h

y h c y h c y y h
H y h

c y c y h F y r n N

ν θ θ ν θ
θ

+
θ

⋅ + θ − θ −µ − θ θ − − θ +

+ µ θ + θ + − θ −µ θ − ⋅

⋅ θ − θ − + θ ∈ω = =

The error of the approximation of scheme (90) at the boundary nodes of the grid  +ω  in case of xi = 0 is equal to 
 ( )2

xO hτ+ .
For the case when the boundary condition (11) is satisfied and xi = Li, as well as for the cases of boundary conditions 

(12) and (13), the methods for constructing the difference scheme for the problem (8)–(13) are analogous to those described 
above, starting from relation (43). Due to the complexity of their description within this article, they are not provided.

Discussion and Conclusion. A second-order difference scheme for approximation on a uniform grid is proposed, 
which approximates the initial-boundary value problem for the three-dimensional diffusion-convection equation of 
multifractional suspensions at all nodes of the uniform grid, including boundary nodes. Special attention is given to the 
description of the approximation methods at the boundary nodes of the grid using an extended grid. The proposed scheme 
has an approximation error in the norm of the grid space C: second order with respect to the spatial grid steps and first 
order accuracy with respect to the time step. Further research is focused on proving the stability and convergence of the 
constructed difference scheme based on the grid maximum principle under mild constraints on the grid Peclet number, the 
satisfaction of the Courant condition, the aforementioned smoothness conditions, and other restrictions that are naturally 
satisfied for discrete models of hydro-physical coastal systems.
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