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Abstract

Introduction. This paper addresses an initial-boundary value problem for the transport of multifractional suspensions
applied to coastal marine systems. This problem describes the processes of transport, deposition of suspension particles,
and the transitions between its various fractions. To obtain monotonic finite difference schemes for diffusion-convection
problems of suspensions, it is advisable to use schemes that satisfy the maximum principle. When constructing a finite
difference scheme that adheres to the maximum principle, it is desirable to achieve second-order spatial accuracy for both
interior and boundary points of the domain under study.

Materials and Methods. This problem presents certain difficulties when considering the boundaries of the geometric
domain, where boundary conditions of the second and third kinds are applied. In these cases, to maintain second-order
approximation accuracy, an “extended” grid is introduced (a grid supplemented with fictitious nodes). The guideline
is the approximation of the given boundary conditions using the central difference formula, with the exclusion of the
concentration function at the fictitious node from the resulting expressions.

Results. Second-order accurate finite difference schemes for the diffusion-convection problem of multifractional
suspensions in coastal marine systems are constructed.

Discussion and Conclusion. The proposed schemes are not absolutely stable, and a detailed analysis of stability and conver-
gence, particularly concerning the grid step ratio, remains an important problem that the author plans to address in the future.
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approximation error
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AHHOTALUA

Beeodenue. PaccmarprBaeTcs HauabHO-KpaeBas 3ajiada TPAHCIIOPTa MYIBTH(PAKIIMOHHBIX B3BECEH MPHUMEHUTEIHLHO K TIPH-
OpeKHBIM MOPCKMM cucTeMaM. J[aHHast 3a/1a9a OMUCHIBACT MPOIIECCHI MEPEHOCA U OCKICHHS YaCTHUI] B3BECH, a TAKXKE B3aUM-
HBII Tepexon MeXy ¢€ pa3nuuHbIMU (pakipsiMi. C IIE/IbI0 TOMyYCHHs] MOHOTOHHBIX Pa3HOCTHBIX CXeM I 3amad auddy-
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3WU-KOHBEKIIMH B3BECEH I1eImeco00pa3Ho MCHOb30BaTh PA3HOCTHBIE CXEMBI, YIOBICTBOPSIOININE MIPUHIMITY MakcumyMma. [Ipn
TTOCTPOCHUH Pa3HOCTHOM CXEMBI, ISl KOTOPO# OyAeT BBITOTHEH MIPUHIAIT MAKCHMYMA, JKEIaTeITbHO ITOTyYUTh BTOPOI OPSIIOK
aIIPOKCUMAIIMH IO TPOCTPAHCTBEHHOM ITEPEMEHHO# Kak JUIsi BHYTPEHHHMX, TaK U JUISl TPaHMYHBIX TOUEK UCCIIeLyeMOit 001acTH.
Mamepuanvl u memoownl. JJanHas 3a7a4a BbI3BIBAET ONPEIECIICHHbBIE TPYIHOCTH IIPU PACCMOTPEHUM I'PAHUL] TEOMETPH-
YeCKo# 00J1acTH, Il KOTOPBIX BEIIONIHEHBI TPAaHUYHBIC YCIOBHS BTOPOTO M TPETHETrO poaa. B 3Tux ciaydasx, 9ToOBI co-
XPpaHUTb BTOPOH MOPSI0K OTPELUIHOCTH alPOKCUMAINH, BBOAUTCS «PACIIMPEHHAs» CeTKa (CeTKa, JONOoJIHeHHas QHK-
TUBHBIMU y371aMH). OPHEHTHPOM CIYXKHUT allPOKCUMAIHS YKa3aHHBIX TPAHUYHBIX YCIOBHHU MO (OpMYysie IEHTPAITHHBIX
pa3HOCTEH U UCKITFOYCHUE U3 MTOMyYCHHBIX BBIPAKCHUN (DYHKITUI KOHIICHTPAIMH B3BECH B (PUKTHBHOM Y3JIC.
Pezynemamut uccineoosanus. I1ocTpoeHbl pa3HOCTHBIE CXEMbI BTOPOTO NOPS/IKa TOYHOCTH JUIs 3a1a4u Au((Py3uu-KOH-
BEKIIMU MYIBTH(PAKIIMOHHBIX B3BECEH B MPHOPEKHBIX MOPCKUX CHCTEMAX.

Obcyscoenue u 3axnouenue. [IpeUIOKCHHBIE CXEMBI HE SBISIOTCS aOCONIOTHO CTAOWIBHBIMH M TIOAPOOHBIA aHaIH3
YCTOWYMBOCTH M CXOAMMOCTH, CBS3aHHBIN C OTHOLIEHUEM IIIarOB CETKH, SIBJSIETCS] BaXKHOU MPOOIeMOi, KOTOPYIO aBTOpP
IUTAHUPYET PEeIIaTh B OyayIIeM.

KaioueBble cioBa: npuOpeXHbIE MOPCKHE CHCTEMBI, MYIIBTH(PAKIIMOHHAS B3BECh, 3aa4a AN Py3UH-KOHBEKIIUH, Pa3-
HOCTHAas CXeMa, MOTPELIHOCTh AllPOKCUMAIIH

duHancupoBanme. lcciemoBanue BBIONHEHO 3a cueT rpaHTa Poccumiickoro HayuHoro domma Ne 23-21-00509,
https://rscf.ru/project/23-21-00509

Mo uurupoBanusi. Cunopsikuna B.B. [locTpoeHne pa3HOCTHBIX CXeM BTOPOTIO MOPSsi/IKa TOYHOCTH JUIs 3a1a4 Auddy-
3UH-KOHBEKIINH MYIbTH()PAKIIMOHHBIX B3BECEH B MPHOPEXKHBIX MOpckux cucrtemax. Computational Mathematics and
Information Technologies. 2024;8(3):43-59. https://doi.org/10.23947/2587-8999-2024-8-3-43-59

Introduction. Suspended matter (suspension) is a natural component of marine systems. Changes in the quantitative
and qualitative composition of the suspension can shape the landscape, negatively affect ecological communities, and
shorten the lifespan of infrastructure. To address these issues, a clear understanding of the transport processes of suspended
matter, accounting for spatial and temporal variations, is necessary. Typically, mathematical and numerical modelling
methods are employed for these purposes [1-4].

In this article, we present a mathematical model of suspension transport based on a three-dimensional diffusion-
convection equation. The model considers the multifractional composition of the suspension, water flow velocity,
hydraulic particle size, complex bottom geometry, wind stress, bed friction, and other factors [5—8]. Special attention is
paid to the approximation of the proposed model at both internal and boundary points of the computational domain. The
proposed methods enable the construction of a finite difference scheme that approximates the model with second-order
accuracy in relation to the spatial grid steps, taking into account boundary conditions of the second and third kinds.

Materials and Methods

1. Formulation of the Diffusion-Convection Problem for Multifractional Suspensions. In a rectangular Cartesian
coordinate system, we consider the three-dimensional diffusion-convection equation using a skew-symmetric form of the
convective transport operator [5—7]:

660; +C,c,=Dc,+F.,r=1,2,3, (x,y,z)e@, é:{OSxSLX,OSySLy,OSzSLZ};

Cocr El u%_’_vac’, } acr +wr' a(uc’) } a(Vcr) I a(W'Cr) i
Lo e oy o

0 oc,\ 0O oc ) 0O oc,
Dcr = ”’h,r - ”’h,r +— ”'v,r 4
ox ox) Oy oy) Oz 0z
1

F =(a,6,(x,,2,0) B¢ ) 47,6,

F; =(Blcl (X,y,ZJ)—%Cz)"‘(%C; (xayyz,t)_BZCZ)_PYZCZ s
F :(Bzcz (x,y,z,t)—a3c3)+y3c3,

where ¢, ¢, =c (x,y,z,t) is the concentration of particles at time ¢, ¢ € [0; T1; u, v, w are the components of the velocity
vector of the water medium U ; w/, w.=w+w, . are the hydraulic sizes of the particles; W,,.H,, are the horizontal and
vertical diffusion coefficients of the particles, respectively; F', is the source term; o 3 are the coefficients describing the

intensity of conversion of particles from one fraction to another, and o, >0, B,>0; v, is the external source power of

particles. Here, the subscript » indicates that the particle belongs to fraction number .
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The equation (1) is supplemented by the initial conditions:
c(%,20)=c¢.(x,,2), (x,y,2)e G;

and the boundary conditions:
— on the lateral faces of the parallelepiped G:

— A 1 .
¢ =¢, if u-<0;

oc,

=0, if u20;

n

()

€)

“4)

(u, is the projection of the velocity vector onto the outward normal 7 at the boundary, and ¢, represents known con-

centration values);
— on the upper surface of the parallelepiped G:

— on the lower surface of the parallelepiped G:

r

oz

=—g.cC,.

©)

(6)

Using the methods described in [9], a transformation with a “time lag” on the time grid ®_ ={t, =nt,n=0,1,...,N,, N,t=T}

was performed, along with a transition to a new coordinate system Oxy9, 0€[0;1] according to the formulas:

-
GZTT]: Xg =X, Vo=V>

where / is the depth and 1 is the height of the free surface relative to the mean free surface [10].

Equation (1) is then transformed as follows:

acll
6’+C0cr" =Dc'+F",r=1,23,t  <t<t
t

n=L2,..,N,,

> -1 n?

ox oy 'HeO ox oy H 00

. 0 oc') 0 o'y 1 0 oc!
Dcr = ”‘h,r_ +— “’h,r_ +_2_ “’v,r_ >
Ox Ox ) Oy dy ) H” 00 00

F'=(0,¢,™ (x,.0.8,,)-Byel J+vie],

el El["ac: 0y Lae o) o) 1 6(w;c:>},

E 2([5101"’l ()c,)/,e,tlﬂ)—(>czc§)+(oc3c§”l (x,y,e,tnfl)—Bzcg)—i-y;E; ,
E=(B,67 (6,208, )—0u¢ J+75¢]
The initial and boundary conditions (2)—(6) will be transformed as follows:
c (x,9,0,0)=c,, (x,y,@)eé,
' (x,3,0t,)=c"(x,»,0,t, ), n=2,...,N,, (x,,0)eG;
o =c, if u-<0;

% L0, if u >0,

n

n
oc,

00
oc”

L=—g (.

ae rr

(7

®)

)

(10)

(11)

(12)

(13)
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2. Second-Order Finite Difference Scheme for the Diffusion-Convection Problem of Multifractional Suspensions
at Internal Nodes. Let us assume the existence of continuous (bounded) fourth-order partial derivatives with respect to
the spatial variables (x, y, 0) for the functions c’,7=1,2,3, and continuous second-order partial derivatives with respect

to the time variable . In other words, the derivatives ﬂ, o'e ,64—0:, E
. ox'” oyt 08' or & Py e
(x,,0)eG, 1, <t<t,, n=1,..,N,. andwealsoassume the continuity of second-order partial derivatives: ;g”, ;’2”'", a:‘z"r,
o'u v o'W ’ g
ox*’ oy”” 00
For the approximation of the problem (8)—(13), we will use the following grids:

are continuous and thus bounded for all

O=0, XO X0y, O=O, XD Xy,

o, ={x:x=ih;i=1,...N ~L;(N,~)h =L ~h|,
o, ={y: y=jh; j=l,..N,~1; (N, <) =L, ~h ),
o, ={0: 0=khy; k=1,...,Ny—1; (N, =1)h,=1-h,},
o, ={x:x=ih;i=0,1,..,N;Nh =L},
®,={y:y=jh; j=0L...N s Nh =L,
®, ={0:0=kh,; k=0,1,...,.N,; N B, =1}.

Next, in the notation of the grid functions for ¢ and F" we will use a bar over them. Based on the assumptions
introduced, we arrive at the approximation of equation (8):

& (4:3,:00)-8" (%,5,.6)
T

+C,c' =Dc +17,,",r:1,2,3, (xl.,y/.,ek)em, t en,

Gy’ =%(u" (x,. +0.5h,,y,,6, )Er” (xl. +h.,y; ,Gk)—u" (xl. -0.5h,.y,.9, )E,_" (x,. —h..y;.9, ))+

x

+%(v" (., +0.51,,0, )" (x,,y,+h,.0,) V" (x,¥,-0.5h,,0, )& (x,.3,~h,.0,))+

y
] n —n m —n
S 508 OO SR (5.0, ) (5,3, 0,-0. 51 (5.3,0, ),

1
DErn :ﬁ(”’h,r (xt +0'5hx 5 76/:)(5: (xi +hx Y ’ek)—Er" (xi’yj ’ek))_“h,r (x: _O'th Y ’ek)' (14)

x

1
(& (%.3,.0)-¢ (xi—hv,y,,ek)))+h—2(uh!, (3.3, +0.5h,.0,)(@" (3.3, +1,.0, )-8 (x,.,.0,)) -

p

—-n —n 1
My (xz ’yj _O'Shy 7ek )(Cr (xi 7yj ’ek)_cr (xz ’yj _hy 7ek))>+m(uv,z~ (xz ayj ’ek +0'5h9)'

(07 (620 + ) =2 (32370, )) 1y, (3370, =058 ) (€ (3.9,,0, )= (53,6, ~14 )
F'=(0,8" (2,900, )-B@')+15,
B =B (600, 1) =08 JH{0:8 (6,.04,)-B,& 415
F=(B,6 (2,900, )—0u )43
We will verify that the finite difference scheme (14) has second-order accuracy. To this end, we will substitute the

exact solution ¢’ (xl.,yj,ek)zcr (xi,yj,ek,tn), (xi,yj,é)k)eG, t,.en ,n=0,1,...,N, of the problem (3)—(8) into equation (14) and
demonstrate that for the approximation error

c (xi Y ’ek)_cfil (xf’yj ’ek)
T

v (x.,.8,)=

Gl (x[,yj,G,()+Dcf (x[,yj,Gk)+F,” (x,.,yj,ek) 15)

¥
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the following relationship holds:
' (xi,y/.,ek):0(r+h2), n=0,1,...,N,,
where 1’ =R +h} +h; .
We express the function ¢’ in a Taylor series expansion around the node (x,- BICA J,Z):

ac,'j(x[.,yj,ek,tn)Hach(x,»yz,,Gk,tn)Tz : O(TS)‘
ot ot 2

n—1

Cr (xz ﬂyj ’ek ﬂtn—l):C: (x[’yj 9ek 7tn)

Using relation (17) for the first term from the left-hand side of equation (15), we find:

c’n (x' Y ’ek ’t")_C:H <xi 24 ’e]‘ ’t"_l) 1|:C: (xz Y sek ,ln)_[cf (x,- Y >ek ,tn)_aC: (Xi ,gj ’e_k ’tn)‘t+
’ t

T T

: ¢! (x[,yzj,ek,t,,)rz : O(TS)J:IZM"'O(T)’

(16)

)

(18)

To estimate the approximation error of the convective transport operator from equation (15) we utilize the Taylor

series expansions ¢”,u",v", w" around the node (xl., V;,0; ,tn):

0c!(x,7,0,), ! (%70, )

5,02 1,0, L0y FECr O o
oc'(x,y..0 0’ (x,,y,,0, )
c:’(xi,yjihy,@k):c;’(xi,yj,@k)i i (x;a;" k)hx : ‘ (gyzy" k)z :O(h;’),

n , oc’(x,y,,0 o (x.,y.,0, )i
C, (x,-,yj,ek ihe):Cr (x,.,yj,ek)i ( ae] /c)he+ (692/ k)hze +O(hg),

u'(x,+0.5h,,y,.6, )+u" (x,—~0.5h,,y,.6,)=2u"(x.,y,.6,)+O(k}),

ou’ (7,,0,)

u”(xl.+0.5hx,yj,6k)—u" (xl. —O.th,yj,ek):
x

h,+O0(h}),
V" (xl.,yj +0.5hy,9k)+v" (x,.,yj —O.Shy,Gk)=2v"(xi,yj,9k)+0(hj),

v (x, yj+0.5hy,ek)—v"(x,.,yj—o.5hy,ek):%yyf’e")hy+o(hj),

W (%,,3,.0,+0.58 )+w" (x,,3,,0,—0.5h, ) =2w/"(x.,¥,.6,)+O(h; ),
w" (xi »Y;:0, +0,5h9)+ w'" (xl. Y50, —O,She):2wr'" (xl. Y, ,Gk)+0(h92),
By substituting the corresponding expressions (19)—(27) into expression (15) for C,c we obtain:

100" (x,,.8,) , 0 (02,0, 107 (%.3,.0,) ,

Cocr":2 ax Cr ('xi’yj’ek)-‘r ax 2 ay \_,: ('xi’yj 7ek)+Vn (xi,yj,ek).
ooy, 0), 1 (8, U ey 02000
Oy I 2H(x,.y,) 00 “r (xi’y_f’ek)JrH(x”yj)Wr (x.,-0,) 2w

+O(hf +h +h92)

(19)

(20)

1)

(22)

(23)

24

(25)

(26)

@7

(28)

To estimate the approximation error of the diffusion transport operator from equation (15), we utilize ¢/, W,,,H,, in

the Taylor series expansions around the point (x,., Y ,Gk):

oc, (x,.,yj,Gk)h : 0’ (4,0 ) iascrn (26.2,-0,) 2

39, 00) = 1,02 L0y T O D50, O
o (x.,v,.0,) " (x.y 0 ) T (x,y,.0,)
C:‘(xpyj ihy,ek)ch(xnyj;ek)i Cr (XIa;j k)hy t < (;yzyj k) 2 + 5 (;ygjj k)6 {O(hj)a

29

(30)

47



48

Sidoryakina V.V. Construction of Second-Order Finite Difference Schemes for Diffusion-Convection Problems of Multifract Suspensions ...

80'_1(xi,y/.,9k)h0 0 (x,:0) 1, 0 (%0, )

& (5.3, 0 by )=el (37,0, )= === o ot e toW) (1)
o, (% +0.5h,,,.0, )41, (% -0.5k,,7,.8,)=2m,, (x.,v,.8,)+O(R7), (32)
uh,y(xi+0.5hx,yj,Gk)—p_hJ(xi—O.th,yj,ek)zwhx+0(hj), (33)

X
W, (%2, +0.5h,,6, )+w,, (x.»,-0.5h,.6,)=2u,, (x.,,6,)+O(k;), (34)
uh,r(x[,y/+0.5hy,9k)—uh’,,(x,.,yj—O.Sh},,ek):%j}j’ek)hy-kO(hi), (35)
My (557,60, 0.5k )1, (%,3,.8,-0.5h,)=2u, , (x.,7,,6,)+ O ), (36)
om,, (%-7,-60,) . 37
p.v‘r(xl.,yj,ek+0.5h6)—;,tv,r(x,.,yj,9k—0.5h6)=‘6—6‘h9+0(he). (37)

By substituting the corresponding expressions from equations (29)—(37) into the expression for Dc’ we obtain:

o Oy, (%.3,.0,)0¢] (x,.,.6;) 10 (%,,,6,) 0w, (%,0,,6,)9¢! (%,3,.8)

De: ox Ox THar (x,., %) ox’ oy oy
Fc(x,y,.8 1 (0w, (x.v.8,)0c"(x,v .8
o ) (O D), (0 3
iV
2 n
T \x0,.9) (;f(;zy i )}ro(hj +h+ ).

From the equalities (18), (28), and (38), it follows that the overall order of the approximation error of the finite
difference scheme (14) at the grid nodes ®_x® is equal to O(r+h2), B =h.+h+h -

It is important to note that the initial condition (9) is set exactly on the grid ® xo .

3. Second-Order Finite Difference Scheme for the Diffusion-Convection Problem of Multifractional Suspensions
o'c d'c o'c! o
o'’ oyt 00t ot

2. 2 2 1 2 2 2
5—‘2’, 6—5, 0 iy g By 0 “g’r,a Pir - Additionally, we
ox~ oy~ 00 Ox~ oy 00
assume the existence and continuity of mixed partial derivatives. We will consider that the following conditions are satisfied:

at Boundary Nodes. We will assume the existence and continuity of the derivatives

r=123

as well as the continuity of the second-order partial derivatives:

o’ o o ot dler ol ol ol ot ol ol ot
oxot” dyot 900t otox> 0tdy* o108’ dyox’” 00dx’ oxdy®” 908y° 6xd0® 8yde’”

o o o o o o
ol Vaox alifol s o> aliifor o) il s) allits> ool MiNs) Vas s i

o, Oy, 0w, Fw,, dp,, A PV AV S Fw" Fw Ow"
oxdy” ox00  oyox’ 900x dyo0  oxdy 903y Oydx dyo0 dxd0  dyo0’ d00x SO0y

We will assume that the following conditions are satisfied:

h, hy hy
ku gh_gkm k21 Sh—Sk22, k}l —h_gkn’ (39)
Y X Y
ks ki okyys Ky s Ky Ky, represents some positive constants.

To approximate the boundary conditions, we introduce an extended grid:

®" ={(x.,,0,).i==1,0,...,N,+1,j==1,0,...N, +1k==10,....N,+1,

x,=ih;y,=jh 0, =kh;N,h,=L;Nh =L ;N =1}.
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For the nodes of the @ \@ we assume the values of the components of the velocity vector are equal to zero:
E,"(xi,yf,ek)=o, if (xl.,yj,E)k)E(Tf\(T) (40)

furthermore, we consider the values of the components of the velocity vector of the water medium and the

hydraulic diameter of the particles in the suspension at the grid nodes ® \@w with fractional indices to be known:
u'(~0.5h,,y;,6,), u" (L +0.5h,,.0,), v"(x,=0.5h,,6,), v"(x.L,+0.5h,.0,), w"(x.y,,~0.5k), w/"(x,y,.1+0.5h,).
The boundary conditions (10) are approximated as follows:

¢'(0.y,,8,)=c.,if u"(0.5h,.y,.6,)+u"(~0.5h,.,.6,)>0,

¢'(L,.y;.0,)=c.,if u"(L,~0.5h,,y,.0,)+u" (L,+0.5h,,y,.0,)<0, (x,»,.6,)€®"; )
¢’ (x,0.8,)=c., if v'(x,,0.5h,.6,)+"(x,,~0.5A,.6,)>0,

' (x.L,.0,)=c.,if v'(x,,L,~0.5h,,0,)+V"(x,,L,+0.5k,,6,)<0, (x,y,.6, ) .

In the case of flows on the lateral surfaces of the domain G, that coincide in direction with the external normals to the
surfaces, i. ., when the conditions are met:

u" (O.th,yj,ek)+u” (—O.th,yj,ek)<0,

u'(L,—0.5h,,y,.0,)+u" (L,+0.5h,.y,.6,)>0, (x.y,.6,)ed;

(42)
V' (x,0.5k,,6, )+ (x,,~0.5h,.6,)<0,
Vv (x,.,Ly —O.Shy,ek)+v" (x,.,Ly+0.5hy,9k)>O, (xi,y_/.,ek)e(T)+
Neumann boundary conditions are applicable.
Let us proceed to the construction of the difference scheme for the case when condition (11) is satisfied.
The condition (11) is equivalent to the following in case of x,= 0:
oc(0.7,:6,)_, 43)
ox
On the grid ' the node is internal (Fig. 1).
X, =—h, x,=0 x, =h x, =2h
0
05h 05h
hX
Fig. 1. Construction of the extended grid at the left end of the segment 0 <x, <L
The difference scheme at the nodes (0, Y, ,Ok) will be written as follows:
E’n (O’y"ek)_E’W] (O’y"ek) 1 (,n —n n —n
! . 2y A% (O.th,y/.,ek)cr (hx,yj,ek)—u (—O.ShX,y/.,Gk)cr (—hx,y/.,ek))+
1 1
+—(v"(0,y,+0.54,6,)c"(0,y,+h ,0,)-v"(0,y,—0.54 .6, )(c"(0,y,—h .0, ) J+————
2hy( ( Vi v k) V( y;h, k) ( Y Bl k)(r( Yi—h k)) 2H(0,yj)he (44)

—n m —n 1
-(w;" (0,9,,0,+0.5h)¢" (0,,,6, +h,)—w" (0,,,6, =0.5h )" (0, yj,ek—he))zh—z(uh, (0.5h,,y,.6,)

—n —n —n —n 1
'(Cr (hxayjaek)_cr (O’yj’ek))_”'h,r(_o'th’yj 7ek)(cr (anj ’ek)_cr (_hx’yjaek)))—i_ﬁ'
>
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(1, (0,3 +0.5h,.0,)(@ (0.9, +4,.,0,)= (07,6, )=t (0,3, =0.55,.0,)(@ (0.7,.6,)-
1
2 (0.3, ~h,.0,))+ m(%( 3,0, +0.5h)(S7 (0.7,.0,+,)57(0.7,.0,))-

—u,,(0.y,.6,~0.5%)(c"(0.,.6,)-2" (0.7,.8,~h )+ F
(O’y,f’ek)eaf,V=1,2,3,n:l,...,M

In our reasoning, we focus on the approximation of the given boundary condition using the central difference formula
and the exclusion of values at the fictitious node (—h)C 2V ,Gk) from the resulting expression and equation (44). The functions
¢’ (—hx,yj,ek) will be included in the expressions

1
—h(u”(O.th, ¥,.0,)¢" (,.y,.6,)-u"(-0.5h,.y,.0, )¢ (h,.»,.6,))

x

1
L, 0503, 0 (3,020,301, (058,00 (0.,0.) 5 (.3,)

which we will denote as COEr"| . o
b= b=

We will write condition (43) as follows:

& (h.y,,8,)-¢" (~h,.y,8,)
2h

X

=0 (45)

and from this, we obtain:

&' (~he.y,0,)=C" (h,.,.6,). "

Substituting the value ¢ (—hx, yj,ek) obtained from formula (46) into the expression for C;c' L:O , we find:

—n
0 Cr

1
27(u" (0.5h,.,y,.6,)—u"(<0.5h,.y,.6,))c; (h,.,.6; ). (47)

x

=0

Preliminary calculations showed that when using equality (45), the approximation error of the expression for C 5"|
_, Will be O(h). To determine the overall order of the approximation error
O(h?) of the difference scheme, a different approach will be proposed for the operator Dc; |

By expanding the functions c; ( h..y,.9; ) in a Taylor series around the point ( BICH ) we obtain:

0c;(0,3,8,), 0 (0.3,.0,)? , 2°¢/ (07,0, )

crn (ih»r’yj’ek)ch (O’yf’ek)i Ox hx I 8)62 2 - axs 6 l (48)
I 64cf (O’i}j,ek)h‘j I O(hf)
ox 24 ’
Using relation (48), we will explicitly write the leading term of the residual:

% ey, 8 oy, 8)_060(0,8) P 00,08 o

2h, ox a6

The last expression, taking into account the condition M:O can be written as:

X

& (h-y,0,)-¢ (~he., ,ek):hf 0'c(0.y, ’e")+0(hx4). (49)

2h 6 ox’

X

Using equality (49), we will find the value of the function ¢/ at the fictitious node (~h,,»,0) from the expression:

1 0°c(0,y,,0
& (3, 0,)=2 (17,0, 20210

e} (50)
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. . o o "(0,y.,0
Further reasoning will focus on the approximation of the derivative M .

(3x3 3 ~n
We will differentiate both sides of equation (8) with respect to the variable and express the derivative ——- from the
n X
resulting equality. Next, we will take the limit as x — 0 and considering that MZO , we find:
Ox
G0y:0) 1 [@¢(0.9,.0,) (0, \0°¢(0,,,8,) @v'(0,,,6,)0¢! (0,y,.6,)
o’ w,,(0.v,.0,)  axor RS ox oy
o°c’(0,y.,0, ow"(0,y.,6,)oc!(0,y.,0 o*c"(0,y,,0
+Vn<0’y_’ek) "( y./ ’t)} 1 r ( y] k) '( yJ k)} 1 Wrm(o’y.’ek) ’( y./ 1‘)+
’ oxdy  H(0y,)  ox 0 H(0,y)) ! ox00

L 10(0.0,6,) , 107V(0.,.6,) ,

2. m
< (O’y/’ek)+_ ) 1 ow (O’yj’ek) 0

¢ (O’y.f ,Ok)—

2 r ( ’y'79k} !
ox 2 Oxdy / 2H(0,y;,)  0xd0 51)
O, (020006 (0.3,0) o 00 0)0GON0) - o102 1
ox ox’ Ox oy’ I ooyt H? (0, y j)
(@1, (0.7,.8,)0c (0.y,.6, ) ou,,(0,5,,6,)0°¢(0,7,.6,) an,,(0,y,.6,)°¢(0,y,.6,)
0x00 00 00 0x00 Ox 00’
o (O,y.,Gk) _
+””(O’yf"6")Taej2 ,r=1,2.3,(0,y,.6,)<G.
It is evident that the equality holds:
OF" (O,yj,ek)zaFZ" (O,yj,ek)zaﬁgﬂ (O,yj,ek)zo
Ox Ox Ox
For the reader’s convenience, we will approximate the expression in parentheses from the right side of expression (51)
for each term separately. Initially, we note that for the coefficient ! , which stands before this parentheses, we
will use the expression: By (0.0,
1 _ 2
Mh,r (O’yj ’ek) “’h,r (OSh\' 9yj !ek )+H'h,r (_Oth ’yj ’ek>
0’/ (0.7,.6,)

Let us consider the derivative . For it, we have:

OxOt

Oxot ot ot h

x

azc: (O’yj ﬁkL%[aErn (hg 5y .0, ’tn) ac!’ (_hx9y] 0, Jn)}+0(hf)=2L'

. Erﬂ (hx’yj vek L, +T)_E;~n (hv g ’ek gt —T) Ern (_hx’yj’ek A +T)_Erﬂ (_hx’yj ’ek al _T)+0(T2) +
" 21

)2 2h, 2h,

x

+0(h2):L(r(X’y/’e t+T) ( hey; 0 tn—"_r) Ern( hesy; Bt~ ) r( heoy Bt )JJ,- (53)

1
+Eo(r2)+0(hj).

X

Using equality (50), the relationships can be written as:

¢’ (hx Y5500, ir)—Er" (—hx,y/ ,0,.t, +'c) h’f oc (O,yj 0., ir) . .
2hx 6 6)63 ' O(hx ) (54)
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3*c/(0,y,.6;)

With the help of equality (54), we will transform equality (53):

o 1 R3¢ (0,,.0,08,+1) 8°¢(0,,.8,.4,-7)) 1 o) +o(i)
oxdr 216 o’ o’ ) 2h, 4
_— | TG00t .
ntroducing the notation q)(O, ;50,58 it)—T , we will write the last equality as:
azcj _h_x2 (p(O,yj,Ok,tn+r)—(p(0,yj,9k,tn—r)\I 1 5 )
ey . Jraoteeof) =
From which it follows:
e =5(5“’(°’yf’e“t") 0(2) [+ o))
oot 6 ot ) 2h,

In accordance with the Courant condition [11], the quantity is bounded, and we can assume that the equality holds:
1

EO(IZ):O(hX) . Taking this into account, we have:

/ o 1w 09(0,y,.9,.1,)
aor 6 o

+0(h,). (56)

00(0,y,,0,., 1) °¢/(0,y,,0,.1,*7)
ot - otox’

Considering relation (56) and the boundedness of the derivative the expression

is equal to zero up to O(h).

oxor (0.0,
Next, we will show that the derivative —f2
Ox0Oy

Taking into account the inequality &, Sh—xéklz from (39), we have:

y

83Cf(o’yj’ek):L 0 (h-y,8,) 0T (~h.y,.9,) +O(R)=
oxdy’  2h oy oy’ i

when approximated with an error of O(# ) also tends to zero.

1 (Ern (hx 2y th, ,Gk)—zan (hx Y :ek)"'an (hx .y, =h, aek)

=2_hx hf
Ern (_hx Y +hy =9k)_25rn (_hxz’yj =9k)+Ern (_hx g _hy’ek)+0(h2)j+0(h2):
5 ’ *
(@ 0T oy 1 0) 2 (A, )2 (o, 0,) -
" 2h, 2h, '

2h

x x

& (hy —h 0)-" (<hy,~h 0,)) 1
: (o2 =h0) = (o, =, ")J+2—O(hj)+0(hj):

1 [E;n (hx’yj+hy’ek)_5rn (_hx’yj +hy :ek) 2?}" (hx Y 76k)_5rn (_hx’yj76k)

hy 2h, 2h,
I E:! (hx :yj _hy>ek)_z.r” (_hx :yj _hy aek) +O(hf +h )
2h, !
Based on equality (57), the relationship can be written as:
& (3, £h,0,)-T (<hoy, +h,0,) I (O,yj;thy,ek) (). (58)

2h, 6 Ox
Using equalities (58), we will transform relationship (57):

3 n 3 n 3 n 3 n

oc (o,yjz.,ek): 12 G (O,yj:—hy,ek) ,0¢ (o,{j,ek) o (O,yj;hy,ek) 01
oxdy n 6l ox ox ox ’
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3¢’ (0,y,.6;)

ox’

ox’

63cf(0,yj,6,()zﬁ (0.3, +1,.0,)-26(0.y,.6,)+¢(0.y,~4,.6,) +O(I2 +h) (59)
oxoy’ 6 h; ror

Let 9(0,y,£h,.6,) ,9(0,,.6,)= . Then the last equality can be written as:

From equality (59), it follows that:

0 (0,y,,6,) n2(°¢(0.y,.6
G(xayjz k):?( (ayZ/ ot )J+O(h‘2+hy)'

The last equality can be transformed into the form:

836‘: (O,yj ’ek ) :h‘? aZ(P(Osyj ’ek)

+O(h,).

3*9(0,y,.6,) °c(0,y,.6,)
2 - 3

oy oy*ox

Considering relation (60) and the boundedness of the derivative with respect to O(h ) the

3 n
oc (O’y_f 2 ) is equal to zero.

6x6y2 3 n 2 n 2 n
By applying similar reasoning for the derivatives ¢ (O’y’z' ’e") , oq (O,y i ) , oc (O’yf ’9")
0x00 Ox0y 0x00

that when the inequalities from (40) are satisfied, these derivatives are equal to zero up to O(h).

expression

it can be easily verified

2 n
Let us consider the derivative M . We have:
ox

o'c (o,yj,ek):a" (hx,y,.,ek)—za_" (o,yj,ek)+a" (_hr’yj’ek) , O(hz) (1)
ox’ i TN

In the last equality, the value of the function ¢ at the fictitious node (—hx Y ,Gk) will be replaced using expression (50).
We obtain

¢ (0,y,,0,) 1(_, . ., o (0,,,0
%:F[Cr (hx,yj,ek)—Zc, (O,yj,ek)+[cr (hx,yj,ek) ; (5x3j k) : O(hj)Jj+

x

3 n
) 2,05 0.,00) -0 o

or

A ox’
¢ (0,,,6,) 2., . hoc(0,y,,0
C(Tyfk);ﬁ(c, (h,3,.0,)-2"(0, yj,ek))—i%. (62)
2 n 2 n
The terms u" (0, yj,Gk)a i (g’fj ’ek) and Ot (g’yj ’9")8 s (g’i}" ’ek) from equality (51), which include the factor
X x x
M , are approximated by the expressions using relation (62):
ox
0°c'(0,.,6,) 1 2. _
u”(O,yj,Gk)%;E(u” (O.th,yj,Gk)+u” (—O.Shr,yj,ﬁk))(h—z(c,” (hx,yj,ek)—c," (O,yj,ek))—
' (63)
1 2(0.3,,0,))
3 ox’ ’
ow, (0,.,0,)8%"(0,y.,0,) 1 2.,
B, (axyj k) ‘ (axijj k)gh_(“h,r(O‘thayj:ek)_“h,r(_O'th’yjaek))(h_z(cr (hx’yj’ek)_
' ’ (64)
. ho'c'(0,y,,0
—C, (O’yj ’ek))_?x (6x3j k)J
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2 n
When approximating the derivative W , We obtain:
Y
azc:(o’i}f’ek) r( ’y/+h 9) ( ’2)}/’9) Er”(O Vi~ h 9) O(hz) (65)
oy hy
2 n n
Approximating the term o, (0.7,.0,)0°¢ (O’fj ) from equality (51), which includes the factor M,
. . ) Ox oy oy’
using relation (65), we get:
o, (0,y,,6,)8°c"(0,y,,0 1 -
h, (axyj A) ¢ (ayi’/ k);h h2\uhr(0 5h, ,yj,Gk)—uv)r(—O.ShY,yj,Gk))(cr (O,yj+h},,9k)— )

~2¢/(0.3,,6,)+¢ (0., ~h,.6,))

The approximation of the form (66) is carried out with an accuracy of O(h ). Indeed, it is not difficult to verify:

2 n
Ern(o yj +h e ) 251( ’yj’ek)_'_a"(()’yj _hyaek):%hj*—O(hj’)’ (67)
t,, (0.5h,,7,,0,) -1, (0.5, y,,ek)zwhx+o(hj). (68)

X

Taking into account equalities (67) and (68) for relation (66), we obtain:

oW, (OJ’] ’ek)ach (O’yj ’ek): 1 (auh,r (O’yj ’ek)h +O(h3)J{82an (Osyj’ek)hz J"O(h})J:
x x y Y

ox o’ hi\ ox )
(69)
0w, (0.5,,6,)0°27(0.,.6,) o)
ox oy’ SO
When approximating the derivative w, we obtain:
o (O,yj,ek):a” (O’yj’ek +hy)=25(0,9,.0,)+¢" (O»y/vek ‘he) { O(hez) (70)
00’ B
2 n n
Then for the term L on, (O’y" ’ek)a & (O,y/. ’ek) from equality (51), which includes the factor w,
H(0,y)) ox 06’ 20’
we find: I
1 auvr(o’ypek)azc: (05.}’,"61() 1 (
: = . .0, )—u, (—0. . . 71
0y o YT (o,yj.)\“v"(o 5h,.5,.8,) M, (-0-5h,.y,.6,)) (71)

(E(0.9,.0,+1) =227 (0.9,.0,)+2" (05,0,

1 om,(0.,.6,)0°¢(0.y,.6,)

The error of the approximation of the expression using relation (71) is O(h).

2 2
Indeed, taking into account the equality " (O’y’ ) ox o
o°c'(0,y.,0, )12
Ey"(O,yj,Gk+h9)—25r”(O,yj,ek)+5r"(0,yj,9k—%):2%%+O(h§), (72)
we obtain:
Lo, (00,0)0¢(0,8) 1 (ow,(0.5,8), +O(R) UACEIRR (73)
H(0,y)  ox 00’ g0y )\ ax Y 00’

om,,(0,y,.6,)0°c(0,y,.6,
+0(h;)]= “’(axy ) (aef )rom)
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Next, let us consider the derivative w When approximating it with central differences, we get:
Y
0¢/(0.,.6,) _&'(0.y,+h,.0,)-c (0, yj—hy,ek)w (i) 74
oy 2h, !
Then for the term o (O’yj ’ek)ac: (O’yj ’ek) from equality (51), which includes the factor M, we find:
Ox oy oy
0V (0.3,,0,)2/(0.3,.8,) =y (0.5h,.y,.6,)—v"(~0.5h,.y,.6,))(c" (0., +h,.6,)- (73)
ox dy 2hh, R O A TR
(0,0

Here

o' (O,yi,ek)zv” (O.th,y/. ,Ok)—v" (—O.th,y/. ,Ok) { O(hf) (76)

ox h

X

ov'(0,y,,6,)c! (0,y,.6,)

It is not difficult to verify that the approximation error for expression , carried out using

relation (75), is O(hj) and the equality holds: ox o
203, 0)0¢02,0) 1 [O2:8), o[O3, o) )
Ox oy 2hxhyk Ox oy i’ !
L, (0.,.6,)ac; (0, yj,ek)w ).
ox oy ’
When approximating the derivative % , We obtain:
dc, (o,yj,ek):a"(o,yj,ek+he)—5;’ (O’J’f’ek_he)LO(hg) (78)
o0 2h, ' '
m n 2 n
Then for the terms — o' (0.,,0,)2c!(0.,.6,) and — L 0, (09,0,)0¢(0,6,) from equality (51),
H(0,y,)  ox 00 H*(0,y,)  ox00 00
which include the factor % , we find:
1 awrm (Oﬂyj aek)ac: (O’yj ’ek)~ 1 (i _am(_ .
H(O,yj) Ox 00 :2@}191‘1(0,)//)\% (O.Sh“yj’ek) " ( G )) (79)
(Ern (anj ’ek +he)_Ern (O’yj ,ek _he));
1 ', (0.,.6,)0¢(0,y,.6,) 1 .
H(0,y,)  oxd0 20 :2hxhezH2(0,yj)L(M oo (0-5h02,,0,+0.50 )=
(80)
-, (-0.5h,.y,.0,+0.5h))~(u,,(0.5%,.y,.6,~0.5h }-u,,(0.5h,.y,;.6,—0.5h,)) |
(€(0.,.6,+h,)~"(0.9,.8,~y))
Here, the equalities used in writing relations (79) and (80) are:
Gwr"’(O,yj,ek):wr'" (O.th,yj,ek)—wr'" (—O.th,yj,ek) I O(hxz) (81)

ox h

x
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O'w,, (03,0, _1(w,,(0-5k,.,.0,+0.5k)-p,, (-0.5h.y,.6,+0.5h,)
0x00 hy h

x

(82)

h

X

l’lv," (Osh)» ’yj’ek _O'She)_”'v,r (_OSh ’yf’e 0. She)J 0(h9)+0(h2)

GF

Taking into account the inequality &, <—<k,, from (39), we can assert that the approximation of the form (80) is
carried out with an error of O(# ).

=

When approximating ¢’ (0, yj,Gk) , we replace it with its grid analog ¢ (O, v j,ek).

18%4°(0,5,.6,) , 18v'(0.,,6,)

1 &w'(0,,.6,)
Then for the terms — 0,y,,6,), ’ j
ox’ c,( Vi k) 2 oxoy

2H(0,y,)  ox00

c’(0,y,,6,) and (0,5,,6,),

which include the factor ¢ (0, y j,ek) , we find:

1

162u"(0,y,,9k)c,1(0 ) 1
r )

SR )(u"(O.th,yj,ﬁk)—Zu"(O,yj,ek) u'(-0.5h,,y,., ))

0.542H(0,y,

c' (07yj ’ek);

(83)

l@zv" (O,yj,Gk)
2 Ox0Oy

¢/ (0.3,0,)23 W [(v(0.5h,.y,+0.5h,.6, )=V (~0.5h,.y,+0.5h,.6, ))- ”

~(v"(0.5h,.y,-0.5h,,0,)—v"(~0.5h,,y,—0.5h,.6,)) ¢/ (0.7,.6; )

1 azwrm(o’yj’ek) n
20(0,y)  x0 (0,9

It

1 ~
W(O’yj)[(wy (Oth,y,ek +05h9) (85)

~(w"(<0.5h,.y,.0,+0.5h,))(w!" (0.5h,.,.0,—0.5h }—w/"(<0.5h,.,.0,~0.5h,)) [ (0.5,.6, ).

It is evident that expression (83) is obtained with an accuracy of O(4?).
In writing relations (84) and (85), the equalities used are:

aV'(0,y,,8,)  1(v'(0.5h,,y,+0.5h,,8,)=V"(=0.5h,,y,+0.5h,.8,)
oxdoy h,
(86)
v(0.5h,.y,-0.5h,.0,) " (<0.5h,.y,~0.5h,.6,)) 10(h2)+0<h2)

h ) h

x

" (0,y,,6,) 1(w"(0.5h,,y,,8,+0.5k)—w/"(<0.5h,,y,.0,+0.5h)
oxd0  h h,

(87)

p +h—0(h§)+0(hj).

x X

w"(0.5h,,y,=0.5h,,60,)—w"(-0.5h,.y,~0.5h, ,ek)J !

Considering equalities (86) and (87), we obtain that the error of the approximations (84) and (85) is O(%)).

Thus, we have obtained the approximations for all terms located in the parentheses on the right side of equality (51).
As aresult of substituting into equality (51) the approximations carried out by expressions (63), (64), (66), (71), (75), (79),
(80), (83)—(85) with an error of O(h ) ((or higher), we obtain:

7% (03,0,

=9, +0(h) 9

where

9,=9,,(9,2(1,.,.6,)+9,,¢(0,y,+4,,6,)+9,,¢(0,y,~,.0,)+9,,2(0,y,.0, +/1,)+9,,(0,y,.0, ~h))+

x

+9,,¢(0,y,.6,)).
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o = S(uh,r(O.th,yj,Gk)+uh,r (—O.Slzx,y,.,ﬁk))
© 4p, (0.5h,,y,.6,)+2u,,(<0.5h,.y,.6,)~(u" (0.5h,.y,.6, )+u" (<0.5h,.y .6, ))A,

>

1 2
9, =§(u" (0.5h,.y,.0,)+u"(<0.5h,,y,.6, ))—E(um (0.5,.y,.8,)-m,,(~0.5,.y,.,));

1 1
9]2 =2h i (\}n (05]’!)(7)’, aek)—vn (_Oshxsy/ ’ek))_ﬁ(“h,r (OShV ’yj ’ek)_uv,r (—OShV ’yj’ek )),
Xy oty
1 1
Yo=5 (v"(0.5hxayj,Gk)—v"(_O.th,yj,ek))—W(ph,r(O.th,yj,ek)—},tv’y(—O.th, ,.0,));
Xy S
1 1
=0 (v'(0.5h,.y,.6,)-" (_o.shr,y,,ek))—ﬁ(uh, (0.5h,.,y,.6,)—,,(-0.5%,.y,.6,));
Xy N,
1 m R _ 1 _
Su=g oy W (o,y_,)(w’ (0.5h,.y,.6,)-w"(-0.5h,,,.0,)) ) (o,yj)(““" (0.5h,.y,.6,)

1
-u,,(~0.5h,.,.6,)) o >(uv,, (0.5h,.y,.6,+0.5h,)—n,,(~0.5h,.y,.6,+0.5h,)—
>

2 IH
-u,,(0.5%,,,,6,-0.5h,)+p,,(~0.5k,,y,,6,—0.5h,));
1

1
9 = ﬁ(wrm (O.th,y].,ek)—w,f" (_O'thsyj’ek))

15 _thhe[—] O,J/j , —m(uv,r(O.ShﬂyﬂOk)_

1
-u,,(~0.5%,.,.6,)) ( )(uvgr(O.ShX,yj,Gk+0.5h9)—uw(—O.th,yj,ek+0.5he)—

+2hxh62H2 0.y,
-u,,(0.5k,,y,,6,-0.5h,)+p,,(~0.5h,,y,.6,—0.5h,));

1
816:—?(u"(O.th,yj,ek)-i—u”(—O.ShX, ,.6,))

x

+W(I/In (0.5hx,yj,9k)—

n n 1
20 (0.9,.0, ' (<0.5h,.7,.0, )+ =

xy

(v"(0.5h,,,+0.5h,,6,)—V"(~0.5h,,y,+0.5h,.0,)-

—"(0.5h,,y,-0.5h,,0,)+v" (<0.5h,,y,~0.5h,,0,))+ (w"(0.5h,.y,.0,+0.5h,)—

2h iy H(0,y,)

058,005 (05,7, 0,05k (05,30, 0.5k )

11 1
+2(h'3 . o0 R (ijj)J(ph,, (0.5h,,y,0)-p,, (~0.5h,, yj,e,())-

Using equality (88) for Dc” ,» We can construct the expression:

x, =

1 _ -
7 ly=0 ;h_xz(uh,r (Oth 9yj 99k)+“’h,r (_O'th ’yj 5ek ))(C;n (hx ’yj 7ek)_crn (anj aek ))_ (89)

h
My, (_O'Sh,v Y :ek )?81 .

Ultimately, the difference scheme (44), taking into account relations (47) and (89), will take the form:

—n _—n-1 1
= :r 4 (1 (0.5h3,.0, )" (0555, .0 ))e; (h.,.0,)+
1 n —n n —n 1
+2hy(v (0,y,+0.54,,6,)c" (0., +h,.8,)—v"(0,y,-0.54,.6, )" (0, yj—h),,ek))+w.

1
(w"(0,y,.8,+0.5k,)c"(0,,.0, +h )—w" (0,y,,0,~0.5k,)c" (0, yj,ek—he):ﬁ(ph, (0.5h,.,,.0,)+

57



58

Sidoryakina V.V. Construction of Second-Order Finite Difference Schemes for Diffusion-Convection Problems of Multifract Suspensions ...

hoo 1
+a,, (<0.5,,3,.0,))(E” (,.,.0,)-¢"(0.5,.6,))—m,, (<05, y,.,ek)?xs;1 +?(uh,,(0, ,+0.5h,.0,)- (90)

;
(S (034,,0,)-27(0,3,0,)) ., (0,7, =0.5h,.0,)(€ (0.9.0)= (0.7, =, 0, ))}+

1
+—
Hz(oﬂyj)hez

(€(0.5,.6,)-2 (0,,.6,—hy)))+ F". (0.3,,6,)e®", r=1,2.3, n=L,....N,.

(1, (0,3,,8,+0.5R)(€" (0,0, +1 )2 (0,6, )1, (0,56, ~0.5h, )

The error of the approximation of scheme (90) at the boundary nodes of the grid ®" in case of x, = 0 is equal to
O(t+k) -

For the case when the boundary condition (11) is satisfied and x, = L, as well as for the cases of boundary conditions
(12) and (13), the methods for constructing the difference scheme for the problem (8)—(13) are analogous to those described
above, starting from relation (43). Due to the complexity of their description within this article, they are not provided.

Discussion and Conclusion. A second-order difference scheme for approximation on a uniform grid is proposed,
which approximates the initial-boundary value problem for the three-dimensional diffusion-convection equation of
multifractional suspensions at all nodes of the uniform grid, including boundary nodes. Special attention is given to the
description of the approximation methods at the boundary nodes of the grid using an extended grid. The proposed scheme
has an approximation error in the norm of the grid space C: second order with respect to the spatial grid steps and first
order accuracy with respect to the time step. Further research is focused on proving the stability and convergence of the
constructed difference scheme based on the grid maximum principle under mild constraints on the grid Peclet number, the
satisfaction of the Courant condition, the aforementioned smoothness conditions, and other restrictions that are naturally
satisfied for discrete models of hydro-physical coastal systems.
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