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Abstract

Introduction. Many practically significant tasks reduce to nonlinear differential equations. In this study, one of the
applications of neural networks for solving specific nonlinear boundary problems for complex-shaped domains is consid-
ered. Specifically, the focus is on solving a stationary heat conduction differential equation with a thermal conductivity
coefficient dependent on temperature.

Materials and Methods. The original nonlinear boundary problem is linearized through Kirchhoff transformation. A neural
network is constructed to solve the resulting linear boundary problem. In this context, derivatives of singular solutions to the
Laplace equation are used as activation functions, and these singular points are distributed along closed curves encompassing
the boundary of the domain. The weights of the network were tuned by minimizing the mean squared error of training.
Results. Results for the heat conduction problem are obtained for various complex-shaped domains and different forms
of dependence of the thermal conductivity coefficient on temperature. The results are presented in tables that contain the
exact solution and the solution obtained using the neural network.

Discussion and Conclusion. Based on the computational results, it can be concluded that the proposed method is
sufficiently effective for solving the specified type of boundary problems. The use of derivatives of singular solutions to
the Laplace equation as activation functions appears to be a promising approach.
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AHHOTANHSA

Beeoenue. MHorHe IPaKTUUECKN Ba)XKHBIE 3a[]a4M CBOISTCS K HEJIMHEHHBIM TuddepeHranbHpiM ypaBHeHUsIM. B Ha-
cToslIed paboTe pacCMOTPEH OJMH U3 BAPHAHTOB MPUMEHEHHs HEHPOHHBIX CETeH K PELICHHI0 HEKOTOPBIX HEMHEHHBIX
KpaeBBIX 3aad Ui 00JacTelt CI0KHOM (POPMBI, @ IMEHHO K PEIISHHIO CTAIIHOHAPHOTO TU(GepeHINaTHHOTO YPaBHEHUS
TEIUIONIPOBOTHOCTH C KO3 (PHUIIMEHTOM TETIIONPOBOAHOCTH, 3aBUCSIIIM OT TEMIIEPaTyphl.
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Mamepuanst u memoost. Vicxonnas HelnHEHHas KpaeBasi 3a/1a4a CBOIUTCS K JTMHEHHOW C IOMOIIBIO ITPeoOpa3oBaHuUs
Kupxroda. HeiliporHas ceTb CTpOUTCA IS PELICHUS OTyIeHHON JIMHEHHOM KpaeBol 3amgaun. [Ipu 3ToM B KauecTBe ak-
THUBALMOHHBIX (QYHKIMH IPUHUMAIOTCS IPOU3BOJHBIC OT CHHTYIISIPHBIX pelleHui ypaBHeHUs Jlamnaca, a cHHTYIspHbIC
TOYKHM 3THX PEUICHUH pacrpeieIeHbI 10 3aMKHYTHIM KPUBBIM, OXBATHIBAIOIINM I'paHMILy 001acTH. [lJ1s1 HACTPOHKH BECOB
CeTH MUHMMH3UPOBAIACH CPEAHEKBAIpaTUYECKas OIHNOKa 00yYeHUs.

Pesynomamut uccnedoganus. 11omyueHsl pe3ynbTaThl PEICHHs 3aa41 TETIONPOBOIHOCTH A Pa3IMYHbIX 00IacTeH CIoXK-
HOI1 (hOpMBI 1 pa3IIHBIX (POPM 3aBUCHMOCTH KO3(h(HUIMEHTA TEIIONPOBOAHOCTH OT TeMIIeparypsl. [1omydeHHbIe pe3yabTaTsl
TIPEJICTABIICHBI B BUJIE TAOJINILI, KOTOPHIE COAEPIKaT TOYHOE PEIIEHHE U PEIIeHHE, MTOIyYeHHOE TIPX TOMOIIN HEHPOHHOI CEeTH.
Obcyrcoenue u 3axknroyenue. 11o pesynsraraM MPOBEJEHHBIX PACUETOB MOXKHO CAENATh BBIBOJ O TOM, YTO IPEIOKEHHBII
METOJ SIBJISIETCS] JOCTATOYHO (D PEKTHBHBIM JUIsl PELICHHs] YKa3aHHOTO THIA KpaeBbIX 3a1ad. Vcrons3oBaHue B KadecTBe
AKTUBAIIMOHHBIX q)yHKLIl/Iﬁ MPON3BOAHBIX OT CUHI'YJISIPHBIX peH_leHl/Iﬁ YpaBHECHUA MPEACTABISACTCA BE€CbMa IEPCIICKTUBHBIM.

KioueBble ciioBa: HeJMHEHHbIC KpaeBbIe 3a1a4u JUisl 001acTell CI0KHON (GopMbl, HEWPOHHBIE CETH

BaarogapHocT. ABTOp BEIpaXkaeT OJ1arolapHOCTh COTPYAHNUKAM PEIAKIMHU 33 YKa3aHHbIE 3aMeYaHus 110 0()OPMIICHHUIO,
KOTOpBIE TIO3BOJIMIIH CLIEJIaTh CTAThI0 OoJiee YI0OHO IS BOCIPHATHSI.

Jas ourupoBanus. [anaOypnua A.B. [IpuMeHeHne HEHpPOHHBIX CeTeH U PEIICHHUS HEIWHEHHBIX KpPAacBBIX 3a-
mad ans obnmacted ciokHou Gopmel. Computational Mathematics and Information Technologies. 2024;8(4):35-42.
https://doi.org/10.23947/2587-8999-2024-8-4-35-42

Introduction. In constructing models of various natural phenomena, the apparatus of differential equations is often
employed. The complexity of the modeled phenomena leads to complex systems of differential equations with intricate
domain shapes. Currently, in solving such boundary problems, the method of neural networks is increasingly utilized.

It should be noted that the theoretical foundations of the neural network method were laid in the mid-20th century by
A.N. Kolmogorov [1]. The development of the theory in [2] is applied to solving the problem of membrane deflection.
In [3], a neural network structure is proposed that allows solving Laplace, Poisson, and heat conduction equations.
The numerical solution of the Poisson equation in a two-dimensional domain, obtained by the Galerkin method and
Ritz method with deep neural networks, is presented in [4]. In article [5], approaches to solving heat and mass transfer
problems based on a perceptron-type neural network are explored.

Recently, there has been a frequent use of physically-informed neural networks to solve partial differential equations
[6]. Article [7] presents solutions to classical mechanics problems through the application of physically-informed neural
networks. In [8], an approach to solving direct and inverse scattering problems using radial basis function neural networks
is discussed. In article [9], based on the method of trust regions, a training method for RBF networks with a customizable
functional basis is developed for solving boundary problems in mathematical physics. Article [10] studies the use of
physically-informed neural networks in solving unsteady nonlinear differential equations describing the motion of a one-
dimensional heat-conducting gas. In works [11, 12], neural networks are applied to solve the Navier-Stokes equations.
In works [13, 14], radial basis functions are used as activation functions in the neural network, and their parameters are
varied during training.

This work is a development of the approach to solving partial differential equations using neural networks as presented
in article [15]. The aim of this study is to develop a method for applying neural networks to solve nonlinear boundary
problems for complex-shaped domains.

Materials and Methods. Consider the boundary problem for the nonlinear differential equation

on the planar domain G bounded by a closed curve y.

This equation describes a stationary thermal field. In this context, W represents the temperature and k(W) represents
the thermal conductivity coefficient. Using the Kirchhoff transformation [16, 17], this problem is reduced to a linear form.
The essence of the transformation is to introduce a function u(#), such that

_au(w)
Cdw

grad(u(W)) grad(W).

Then we have
du (W)
aw

where the original differential equation takes the form of Au(x, y) = 0.

=k(W) )
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From equation (2) we obtain
w
= [k(w)aw

where W_is an arbitrary initial quantity.
If the boundary conditions are given for the values of W = W, on the boundary of the domain, then for u we obtain
boundary conditions:

Expressing W, gives the solution to the original boundary problem.
Thus, the original nonlinear problem is reduced to a Dirichlet problem, which is solved using a neural network [15].
The basis of the neural network is the relationship:

1 & ou 1 & ou
= — _— U _— .
“ 2m kzz;Ck |:an ilk [ ]ik 2n kZ;Ck [u]k |: on lk

In this expression [U], and {z—(n]} can be viewed as activation functions, and c, {—u} and c,[u], as weights.

ik k
Using the least squares method and requiring the specified relationship to hold at each point of the boundary for

all functions of the training set, a system of equations can be obtained for determining the weights. To improve the

oUu

conditioning of this system of equations, it is necessary to increase the singularity of the quantities [U], and { } ,

shifting the contour integration a certain distance from the boundary of the domain vy. on Ju
The solution to the Dirichlet problem is sought in the form:

N
u(x)=2wkp(sk) xck kap Sk xck),
k=1

where p(s,) — is the value of the unknown function u at the boundary of the domain; U(x, 6,) and ¥(x, 6,) are activation functions;
o, and t, are points on the closed curves y, and 1v,, that cover the boundary of the domain; v, x are points in the domain G.

The closed curves v, and v, are similar to the contour y and are obtained by displacing each point in the direction of the
outward normal to the boundary by distances p, and p, respectively. During the training process, the weights and values
p, and p, are determined. To do this, the error functional is minimized:

M N 2
H(Wkavkapppz):ZZ{ZWkpk xmck +Vkka(x=Gk)_p/{}

Jj=1i=1

where x, is the coordinate of the i-th point on the boundary contour y; p/ is the boundary value of the j-th function of the
training set at the point x,.
g p k o7

From these relationships, for 6_17 and 8_ =0 ,m=12,..N a system of linear equations is obtained to
m V

determine w, and v . The value p, is determined by simple enumeration, and p,= p +1.
To assess the accuracy of the obtained solution, the values of u on the boundary of the domain, calculated using the
neural network

N
zZ(si):Zwkp(sk) sl,ck kap sk sl,ck)
k=1

are compared with the specified boundary conditions u(s).
The obtained network parameters do not provide the desired accuracy of the obtained solution. The accuracy can be
increased by iterative refinement of the obtained result according to the following scheme:

Au(s) = p(s), 4°(s) = p(s),
n+l _ < n
Av (s,.)—ZWkAu (s,)U(s;,0,) Zv,(Au (s )V (s557)

37



38

Galaburdin A.V. Application of Neural Networks for Solving Nonlinear Boundary Problems ...

Aunﬂ(si):AMHH(SI-)—AV”H(SI-), utrl+1(si) :AM:+1(Si)_Aun+l(Si),

where 4! (s,) represents the values of the refined solution at the boundary of the domain.

The process of refining the solution continues until the value
s
n+l
™ (s,)|

will not be small enough (less than the set value 3 ) or until it starts to grow. The results below are obtained at 5 = 0.0025.
To determine the value of u at any point x in the domain G use the formula:

N

u(x)= iwkut (s,)U(x,0,)+ ZVkut (s )V (8557,

k=1

For the training set, a set of functions that are solutions to the Laplace equation was used
x . X
r cos(k arccos (—ﬂ +7*sin (k arccos (—ﬂ, r=4x"+y
r r

where k= 0,1, 2, 3, ..., M. Calculations were conducted for M = 75.

The specified functions were defined in various coordinate systems rotated relative to each other by angles that are
multiples of 2/5.

Activation functions:

B° —10B°6” + 5P3* +8° —108°B” + 5P

U(x,y,t,s)z R

BT —21B°8% +358°8* —~7BS° & —218°B +358°B* — 76p°
RIO nx + R]O n,V

V(x,y,t,s) =

where 8=x—1£;B=y—s; R=48+ [32 jn;n are the coordinates of the outward normal vector to the boundary of the domain.
Research Results. The proposed method was applied to solve equation (1) for domains whose boundary y was defined as

x=acos(t)+gsin(ot)
y=a,cos(t)+g sin(or) te[0,2n],

where a, a, g, g,, ® are variable parameters.
Task 1. Consider the domain G1, corresponding to the parameter values: a = 1.15; @, = 1.15; g = 0.05; g, =-0.05; o =7 (Fig. 1).
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Fig. 1. Domain G1
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Stars indicate the locations of points in domain G1, where the exact solution values and those obtained using the neural
network for p, =7, p, = 8 were calculated.
The equation (1) was considered for the case k(W) = th(5W), which has the exact solution:

W, = arch(11.25((x—1.5)> +(y —1.5)*)".

The computational results are presented in Table 1.

Task 2. Let us consider domain G2 (Fig. 2), corresponding to parameter valuesa = 1;a,= 1; 2= 0; g,= 0.3; 0 = 3;
p,=10.51; p, = 11.51.

In equation (1), k(W) = ch(5W), was used, with the exact solution:

W, = arsh(5¢™ sin5y)/5.

The computational results for this case are presented in Table 2.
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X
Fig. 2. Domain G2
Table 1
Calculation Results
Point No. 1 2 3 4 5 6 7
X 1.0534 0.6865 -0.1869 0.8848 -0.9709 -0.3193 0.5811
y 0.1275 0.8240 1.0218 0.3939 -0.3832 —0.9998 —-0.9001
Exact Solution 3.0529 2.6521 2.3621 2.8550 3.3731 3.8462 4.1520
Neural Network Solution 3.0535 2.6479 2.3629 2.8491 3.3771 3.8434 4.1566
Point No. 8 9 10 11 12 13 14
X 0.6937 0.4521 0.1231 -0.5826 | -0.6035 —0.1984 0.3612
y 0.0839 0.5426 0.6729 0.3252 -0.2382 -0.6215 —0.5595
Exact Solution 3.2590 3.0804 2.9504 3.1696 3.4495 3.7625 3.9935
Neural Network Solution 3.2584 3.0790 2.9487 3.1681 3.4494 3.7628 3.9947
Point No. 15 16 17 18 19 20 21
X 0.3340 0.2176 -0.0592 -0.2805 | -0.2361 -0.0776 0.1413
y 0.0404 0.2612 0.3240 0.1566 —-0.0932 -0.2431 -0.2189
Exact Solution 3.5104 3.4526 3.4064 3.4820 3.5887 3.7314 3.8544
Neural Network Solution 3.5100 3.4520 3.4058 3.4815 3.5885 3.7315 3.8547
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Table 2
Calculation Results
Point No. 1 2 3 4 5 6 7
X 0.9085 0.6728 -0.1902 -0.8641 -0.9230 -0.3228 0.5679
y 0.1291 0.8320 0.6703 0.5138 -0.4025 -0.7484 0.8587
Exact Solution 0.3489 0.6987 0.6948 0.5361 0.3820 0.2615 0.1561
Neural Network Solution 0.3510 0.6982 0.6941 0.5346 0.3850 0.2666 0.1589
Point No. 8 9 10 11 12 13 14
X 0.5983 0.4430 -0.1253 -0.5690 -0.5737 -0.2006 0.3530
y 0.0850 0.5479 0.4414 0.3383 -0.2502 -0.4652 -0.5338
Exact Solution 0.1849 0.5233 0.5761 0.4537 0.3508 0.29214 0.1806
Neural Network Solution 0.1879 0.5231 0.5753 0.4533 0.3521 0.29578 0.1836
Point No. 15 16 17 18 19 20 21
x 0.2880 0.2133 -0.0603 0.2739 -0.2245 -0.0785 0.1381
y 0.0409 0.2638 0.2125 0.1629 -0.0979 -0.1820 —0.2088
Exact Solution 0.0585 0.2897 0.3780 0.3021 0.2534 0.2496 0.1573
Neural Network Solution 0.0607 0.2901 0.3780 0.3026 0.2544 0.2512 0.1591
Task 3. Consider equation (1) in domain G3 (Fig. 3).
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Fig. 3. Domain G3

For this case, the parameters are set as follows: a=1;a4,=1;g=0,g,=0.3; 0 =5; p, = 11.65; p, = 12.65.
K(W) = W3, the exact solution is given by:

0.4

W, = {2.5<<x2 -y’ )cosl.chhl,Sy +2xy sinl.sthl.Sy) + 25\/5}

The results of the calculations are presented in Table 3.
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Table 3
Results of Calculations

Point No. 1 2 3 4 5 6 7
X 0.9090 0.4788 -0.1752 -0.8421 -0.9238 -0.2642 0.4126
y 0.1524 0.5207 1.0491 0.5014 -0.4754 —0.9563 -0.6755
Exact Solution 4.9224 5.0814 49816 47718 4.7525 4.9738 5.0741
Neural Network Solution 5.0164 5.0845 5.0215 4.8410 4.7800 5.0122 5.1008
Point No. 8 9 10 11 12 13 14
X 0.5986 0.3153 —0.1154 —0.5546 | —0.5742 —0.1642 0.2564
y 0.1004 0.3429 0.6908 0.3962 —-0.2955 -0.5944 -0.4199
Exact Solution 4.9672 4.9862 4.9595 4.9035 4.8956 4.9575 4.9874
Neural Network Solution 5.0201 5.0286 5.0030 4.9507 4.9375 4.9987 5.0289
Point No. 15 16 17 18 19 20 21
X 0.2882 0.1518 —0.0555 -0.2671 -0.2246 —0.2246 0.1003
y 0.0483 0.1651 0.3326 0.1910 —-0.1156 -0.2326 —0.1643
Exact Solution 4.9643 49616 4.9576 4.9483 4.9471 4.9575 4.9625
Neural Network Solution 5.0060 5.0049 4.9998 4.9910 49893 4.9988 5.0040

Fig. 4 and 5 illustrate the comparison between the exact solution of Problem 3 and the solution obtained using the

neural network.
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Fig. 4. Exact solution of Problem 3
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Fig. 5. Solution of Problem 3 obtained using the neural network

Discussion and Conclusion. The presented results advance the approach to solving partial differential equations
using neural networks, as outlined in [15]. They convincingly demonstrate the effectiveness of the proposed method for
constructing a neural network to solve boundary value problems in domains of complex shape.

This method shows significant potential, making it amenable to further development and refinement for solving a wide
range of boundary value problems.
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