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Abstract

Introduction. Detecting oil spills is a critical task in monitoring the marine ecosystem, protecting it, and minimizing
the consequences of emergency situations. The development of fast and accurate methods for detecting and mapping oil
spills at sea is essential for prompt assessment and response to emergencies. High-resolution aerial photography provides
researchers with a tool for remote monitoring of water discoloration. Artificial intelligence technologies contribute to
improving and automating the interpretation and analysis of such images. This study aims to develop approaches for
identifying oil spilled on water surfaces using neural networks and machine learning techniques.

Materials and Methods. Algorithms capable of automatically identifying marine oil spills were developed using computer
image analysis and machine learning methods. The U-Net convolutional neural network was employed for image segmentation
tasks. The neural network architecture was designed using the PyTorch library implemented in Python. The AdamW optimizer
was chosen for training the network. The neural network was trained on a dataset comprising 8,700 images.

Results. The performance of oil spill detection on water surfaces was evaluated using metrics such as IoU, Precision,
Recall, Accuracy, and F1 score. Calculations based on these metrics demonstrated identification accuracy of approximately
83—-88%, confirming the efficiency of the algorithms used.

Discussion and Conclusion. The U-Net convolutional network was successfully trained and demonstrated high accuracy
in detecting marine oil spills on the given dataset. Future work will focus on developing algorithms using more advanced
neural network models and image augmentation methods.

Keywords: marine systems, oil spill detection, aerial photography, deep learning, image segmentation, U-Net,
AdamW optimizer
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AHHOTALUSA

Beeoenue. OOHapyxeHHE Pa3TUBOB HE(PTH SABISCTCS BAKHOU 3aaveld B 1eie MOHUTOPUHTA COCTOSTHHS MOPCKOM 3KOCHCTe-
MBI, 3aIUTHl 1 MUHUMH3AIMH TOCIIEICTBIH aBapUiHbIX CUTyauid. JIIsi onepaTnBHOM OLIEHKH M pearupoBaHMs HA YPE3BhI-
YaifHbIe CUTyal[M1 He0OXoMMa pa3paboTKa OBICTPHIX M TOYHBIX METO/IOB OOHAPY)KEHUS M KapTUPOBAHUSI Pa3IMBOB HEPYTH
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B Mope. [laHHbIe a3p0(OTOCHEMKH C BHICOKMM IPOCTPAHCTBEHHBIM Pa3peIICHUEM MPETOCTABISIOT HCCIEA0BATEISIM BO3-
MOXKHOCTb YAAJICHHOTO HAaOJIOJCHUS 32 IBETHOCTHIO BOJ. YIYYIICHHIO M aBTOMAaTH3allMy MPOLEAYpP WHTEPIPETAlNU U
aHaJM3a CHUMKOB CIIOCOOCTBYIOT TEXHOJIOTMH MCKYCCTBEHHOTO MHTEIUIEKTa. Llenbio HacTosmeil paboTel sBIsieTcs pas-
paboTKa IMOIX0M0B K MJICHTU(HKAIMH PA3JIMBIICHCS Ha BOJHOM MMOBEPXHOCTH HE(TH C UCIIOIb30BaHNEM HeHpoceTel 1
MAIIIMHHOTO 00yUYeHHS.

Mamepuansvt u memoowvt. MeTonaMu KOMIIBIOTEPHOTO aHAJIM3a H300paKEHUI U MAITUHHOTO 00yYCHHSI CO3aHbI aITOPUT-
MBI, CIOCOOHBIE aBTOMATHUYECKH UACHTU(HUINPOBATh MOPCKUE Pa3nuBbl HeTu. IIst 3a1a4u CerMeHTauy H300pakeHnH
MIPUMEHSUIaCh CBepTouHas HelipoHHast ceTh U-Net. [ pa3paboTku apXUTEKTypHI HelipoceTr ObLIa HCIOIb30BaHa Ono-
mmoteka PyTorch, Harmmcannas Ha si3bike Python. B kadectBe ontumusaropa Heifpocern Ob11 BoIOpan AdamW. OOy4denue
HEHPOHHOM CeTH MPOBOANIIOCH C TIOMOLIBIO JAaTaceTa, Co31aHHOro Ha ocHOBe 8700 n3o0pakeHHH.

Pesynomameut ucciedosanus. OleHKa MPOU3BOAUTEILHOCTH OOHAPY)KEHHS Pa3IUuTON HE(TH Ha BOMHOW MOBEPXHOCTH
BBINMOJIHEHA HA ocHOBe MeTpuk [oU, Precision, Recall, Accuracy u F1 score. [IpoBeneHHbIC pacueThl ¢ HCIOIL30BAHUEM
YKa3aHHBIX METPHUK JEMOHCTPUPYIOT TOYHOCTh UAECHTU(HKAINH 0KOJI0 83—88 %, 4TO MO3BOISIET ClIENaTh BBIBOA 00 3(-
(hEeKTHBHOCTH UCIIOIb3YEMBIX AITOPUTMOB.

Oécysncoenue u 3axniouenue. Ceprounas cetb U-Net ycriemHo oOydeHa U criocoOHa J1aBaTh BBICOKYIO TOYHOCTH MPH
00OHapy>XeHNH MOPCKHX pa3iIMBOB HE(TH Ha 3aJaHHOM Jaracere. [lepcriekTnBaMu JanpHEHIINX paboT aBTOPOB SBISAETCS
CO3/IaHHE AJITOPUTMOB C MCIIOJIL30BAHUEM 0O0JIee CIIOKHOW HEHPOCETEeBOM MO U METOJJOB ayrMEHTAIMU N300paKEHHUI.

KiroueBble c10Ba: MOpCKHE CHCTEMBI, OOHApY)KCHUE Pa3inBa HEPTH, a3poPOTOCHUMKH, IITyOOKoe 00ydYeHHe, CerMeH-
tarus n3oopakennit, U-Net, ontumuzarop AdamW
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Introduction. Oil spills are one of the primary sources of marine pollution, exerting a negative impact on aquatic
ecosystems. Toxic chemicals present in oil can persist in the water column for extended periods and may even settle on
the seabed, influencing sedimentation rates. Oil spills may occur intentionally, for example, when cargo ships transporting
oil discharge waste oil and bilge water into the sea. However, most oil spills are accidental and generally result from
emergencies whose time, location, and scale are difficult to predict. Examples include tanker accidents and leaks from
offshore installations. Detecting and promptly addressing the consequences of oil spills require a set of modern monitoring
methods for marine ecosystems, characterized by high accuracy and efficiency [1, 2].

The identification of marine oil spills using neural network technologies has gained significant importance in recent
years for monitoring the ecological status of water bodies. Neural networks enable the efficient processing of large
volumes of data, allowing for real-time detection of changes on the ocean surface [3]. Deep learning algorithms can
identify patterns characteristic of oil spills, even in the presence of complex backgrounds and noisy data. The use of
such technologies not only enhances the speed of detection but also facilitates more accurate predictions of potential
contamination zones.

Significant progress has been made in global research on identifying oil spills on water surfaces using neural network
technologies [4-9]. Despite these advancements, challenges remain in the recognition of such structures in marine
environments, necessitating further research and development. This study is dedicated to addressing these challenges
within this field of research.

Materials and Methods. To address the task of segmenting images of oil spills on the sea surface, the study employs
the U-Net convolutional neural network for deep learning. This choice was made based on a comparative analysis of
U-Net with other networks such as FCN32, SegNet, and DilatedSegNet for recognizing structures on water surfaces [10, 11].
The network architecture was developed using the PyTorch library, implemented in Python.

Optimization methods play a crucial role in artificial neural networks, significantly influencing the training process.
The final accuracy of a neural network depends on aligning the weights of artificial neurons with the loss function,
which must be minimized with each epoch. Faster convergence to the global minimum enhances recognition accuracy
and reduces training time. AdamW, one of the most effective optimization algorithms for training neural networks, was
selected as the optimizer. AdamW adjusts the learning rate for each network weight individually during training. A
modified gradient descent algorithm was applied to minimize the loss function. The following parameters were used:
batch size — 64, momentum — 0.9, and learning rate — 0.001.

The neural network was trained on a dataset comprising 8,700 images obtained through aerial photography. Before
training, the data were split into the following subsets: 90 % for training, 5 % for validation, and 5 % for testing.
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Fig.1 and 2 present the accuracy and loss graphs during the training and validation stages of the neural network model.
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Fig. 3. Numerical experiments conducted on aerial photographs:
a — Input images; b — Image masks; ¢ — Segmentation results
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For color-based segmentation, the RGB model was used, incorporating the following values: Rainbow oil (55, 255,
255), silver oil (155, 255, 255), brown oil (180, 180, 180), black oil (0, 0, 0), and background (255, 255, 255). A specific
spectrum was selected to identify each oil type.

To evaluate the performance of the automated classifiers, widely used metrics in detection and segmentation tasks
were applied, including IoU, Precision, Recall, Accuracy, and F1 score.

Table 1
Model Accuracy for the Dataset Under Study
Neural Network Model IoU Precision Recall Accuracy F1 score
Detection Accuracy of Qil 0.83 0.86 0.88 0.85 0.87
Spills from Aerial Photographs

The data from Table 1 indicates that the achieved accuracy using the mentioned metrics ranges from 83 % to 88 %,
demonstrating not only successful detection of oil spills but also their type identification — an aspect that is significantly
overlooked in this field of study. Calculations were performed using an NVIDIA GeForce RTX 4090 graphics processor.

Discussion and Conclusion. The results of this study address the challenge of detecting and segmenting marine oil
spills using deep learning structures. Semantic segmentation was performed using a fully convolutional U-Net network.
The recognition accuracy for these structures on the water surface was over 83 % (as calculated using metrics such as loU,
Precision, Recall, Accuracy, and F1 score), showcasing the effectiveness of the employed algorithms.

Future work by the authors includes the development of algorithms using more complex neural network models
and image augmentation methods. The authors extend their gratitude for the extensive dataset provided by international
colleagues [12], which enabled the experimental part of this study.
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