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Abstract

Introduction. In the modern development of intelligent transportation systems (ITS), an urgent task is the accurate
estimation of the velocity limit of traffic flow on a highway. Despite existing solutions to this problem based on statistical
mechanics methods and stochastic models, gaps remain in adapting these theories to real road segments of limited length.
The traditional thermodynamic limit formula, used to calculate the average velocity of traffic flow, becomes inaccurate
for small road segment lengths, limiting its applicability in practical traffic monitoring tasks. The aim of this study is a
comparative analysis of various approaches to estimating the average velocity limit of traffic flow.

Materials and Methods. The study was conducted using the method of statistical mechanics and a stochastic model on a
one-dimensional finite lattice. Numerical experiments with various parameter values (number of cells, traffic density, and
movement probability) were used for analysis.

Results. The study revealed significant discrepancies between the results obtained using the statistical mechanics method
and other approaches when the road segment length was small. The efficiency of the second and third approaches was
confirmed for limited road segments, where they demonstrated greater accuracy and applicability.

Discussion and Conclusion. The research results have practical significance for the development of intelligent traffic
management systems, especially for short road segments. The proposed approaches can be successfully integrated into
modern monitoring systems to improve their accuracy. The theoretical significance of this work lies in advancing the
methodology for traffic flow estimation while accounting for the specific conditions of real-world environments.
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AHHOTAIHUSA

Beeoenue. B cOBpeMEHHBIX YCIOBHUAX Pa3BUTHS HHTEIICKTYAIBHBIX TPaHCIIOPTHEIX cucTeM (ITS) Bo3HuKaeT akTyanpHas
3a7ja4a TOYHOH OIIEHKHU NPEJEIbHOW CKOPOCTH TPAaHCIIOPTHOTO MOTOKAa Ha Marucrpanu. HecMoTps Ha cymiecTByronye
peleHuns TaHHOU TPOOJIeMbl, OCHOBaHHBIC HA METO/IaX CTATHCTHYECKOM MEXaHUKN M CTOXaCTHYECKUX MOJIEIISIX, OCTAIOTCS
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TIpoOeITBl B aJanTaluy 3TUX TEOPUH AT pealbHbIX CETMEHTOB JJOPOT C OTPaHUYCHHOH NPOTHKEHHOCTHI0. TpaguinoHHas
¢dopMyna TEPMOAMHAMUYECKOTO IPEAENa, WCIIONb3yeMasl A pacueTa CpeJHeld CKOpOCTH TPAHCIOPTHOTO MOTOKa,
CTaHOBUTCSI HEKOPPEKTHOW NMPH MaJbIX 3HAUYCHMSX JUTMHBI JJOPOXKHOHM MOJIOCHI, YTO OTPAaHUYMBACT €€ NMPUMEHUMOCTH B
MIPaKTHYECKHX 3a/1a9aX MOHUTOPUHTA TpaHCTopTa. L{esbIo HacTOsIIero NcCIea0BaHus SIBISICTCS CPAaBHUTEIILHBII aHAIIN3
Pa3IMYHBIX OJXO0/I0B K OL[EHKE CpeIHeH MpeaeabHON CKOPOCTH TPAHCIOPTHOTO MOTOKA.

Mamepuanst u memoowl. VccnenoBanue MpoBeACHO HA OCHOBE METOJ]a CTATUCTUYIECKON MEXaHUKH U CTOXACTHUECKOM
MOJIETTH HAa OJHOMEPHON KOHEYHOH pemeTke. {1t aHam3a NCIoJIb30BAINCh YUCICHHBIE 3KCIIEPUMEHTHI C PA3IHIHBIMA
3HA4YEHUSAMH [1apaMeTPOB (YHCIIO KIIETOK, INIOTHOCTH MTOTOKA, BEPOSITHOCTD JBYKECHUS).

Pezynomamut uccnedosanus. IIpoBeieHHOE NCCIIeJOBAaHNE ITOKA3aJI0 3HAYUTEIBHBIC PACXOXKICHUS MEXKIY PE3YIIbTaTaMu
METO/la CTATUCTUYECKOH MEXaHWKM W JPYTMMH NOAXOAaMH NPH MalbIX 3HAYCHUSX JUIMHBI JOPOXKHOH ITOJIOCHI.
D¢ heKTUBHOCTh BTOPOTO U TPETHETO MOJXOJ0B OblIa MOATBEPKAEHA Ul O'PAaHUYEHHBIX CErMEHTOB JIOPOT, I'Ie OHU
JEMOHCTPHPYIOT OOIBIIYI0 TOYHOCTh U IPUMEHUMOCTb.

Oécyscoenue u 3axniouenue. Pe3ynpTaTel MCCIEAOBAHUS MMEIOT MPAKTHYECKOE 3HAYEHHWE ISl pa3pabOTKM HHTE-
JIEKTYaJIbHBIX CHCTEM YNPABIICHUS TPAHCIIOPTHBIMU ITOTOKaMH, 0COOEHHO Ha KOPOTKHUX ydacTKax fopor. IIpemnnokeHnbre
MTOJIXO/Ib MOTYT OBITH YCIEIITHO HHTETPUPOBAHBI B COBPEMEHHbIE CHCTEMbl MOHUTOPHHTA JUIS TOBBIMICHUS UX TOYHOCTH.
Teopernyeckast 3HAYUMOCTH PabOTHI 3aKIIIOYACTCS B PA3BUTHH METOAOJIOTHH OLEHKH TPAHCIIOPTHBIX OTOKOB C YYETOM
crienu(UKN pealibHbIX YCIOBHIL.

KaroueBble c10Ba: TPaHCIOPTHBIE ITOTOKH, TEPMOAMHAMHYECKHI Ipeler, Clly4aifHble IPOLECCHl € 3alpeTamu,
ACHMIITOTHYECKOE IOBECHIE CPEHEI CKOPOCTH, CTAIMOHAPHBIC PEIICHHUS, BEPOSATHOCTHAS MOAENb TpadHKa, CUCTEMBI
MaccoBOTO 00CITyKHBaHHS

s nurupoBanus. Kyreitnnkos N.A. OueHka npenensHONH CKOPOCTH OJHOHANPABICHHOTO TPAHCIOPTHOTO MOTOKA C
BBICOKOH BEIYUCTIHTENLHOM 3 PekTuBHOCTEI0. Computational Mathematics and Information Technologies.2025;9(1):39-51.
https://doi.org/10.23947/2587-8999-2025-9-1-39-51

Introduction. The complexity of traffic flow modeling arises from the need to account for numerous factors,
such as driver behavior, weather conditions, and the technical characteristics of vehicles and infrastructure. Despite
significant progress in the development of mathematical traffic flow models, existing approaches often face a number
of limitations that reduce their applicability in real-world conditions.

Mathematical models based on physical concepts traditionally describe physical media using methods from
solid mechanics, hydrodynamics, and gas dynamics. These approaches are formulated as systems of differential
equations, which impose smoothness requirements on their solutions. For example, the Navier-Stokes equations in
hydrodynamics assume that the velocity and pressure of a fluid change smoothly, allowing for the description of
fluid flow across a wide range of conditions. However, such models, based on differential equations, often lack the
flexibility needed to describe complex and nonlinear processes, such as traffic flows, where abrupt changes in density
and velocity are observed.

One of the fundamental properties of many controlled, interacting many-body systems is the emergence of shocks. A
shock in a system of classical flowing particles represents a sudden transition from a low-density region to a high-density
region. A well-known example of a shock is the onset of a traffic jam on a highway (Fig. 1), where incoming vehicles
(almost freely flowing particles in a low-density regime) must rapidly decelerate over a short distance, subsequently
becoming part of a high-density congested area. A remarkable feature of such shocks is their stability over long periods,
meaning they remain localized over distances comparable to the size of individual particles. In a certain sense, these
shocks can be viewed as soliton-like collective excitations of the particle system.

The difference between fluid (or gas) flow and traffic flow is too significant to employ a continuous approach and
accurately describe traffic flow using macroscopic models [1]. Inaccuracies arise in situations where, for example,
very few vehicles are present in the region affecting the movement of a given vehicle, compared to the vast number
of particles in thermodynamic problems. Unlike mathematical physics, where molecules obey physical laws that are
typically simple and constant, drivers exhibit diverse behavior and adapt their actions, introducing a human factor.
While molecules move chaotically, drivers share similar goals (same direction, similar desired speeds) and generally
prefer to avoid frequent acceleration and deceleration, making their behavior more varied than that of particles in a
fluid or gas.

To address these challenges, this study proposes an evaluation of the velocity limit of unidirectional traffic flow
based on various modelling approaches.
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Fig. 1. Illustration of the Discontinuity (Stepwise Change) in Traffic Flow Density

Lighthill-Whitham-Richards (LWR) Model. One of the most popular approaches to traffic modelling since the mid-
1950s has been the network hydrodynamic model and its various modifications, which liken vehicle flow to the motion
of a continuous fluid. Hydrodynamic-based models (Payne [2], Kerner-Konhauser [3], Aw-Rascle [4], Zhang [5]) account
for additional factors such as driver behavior, flow heterogeneity, phase transitions, and others.

In the 1955 work by Lighthill and Whitham [6] and the 1956 work by Richards [7], the dependence of flow functions
on density was likened to fluid flow, where the density p(x,?), is defined as the number of vehicles per unit road length,
and the flow rate g(x,f), represents the number of vehicles crossing a given section x, where xe G. Considering the law of
mass conservation, the number of vehicles remains constant within a closed system. In the case of an open system, we
have g +p,= 0 and g +p,= g(x,?). The function g(x,f) represents the rate of vehicles entering or exiting the system. The
velocity of traffic flow at a point x at time # is denoted as v(x,f), and in the LWR model, it is assumed that velocity depends
only on density. This model corresponded well with real-world observations, particularly at low traffic flow intensities.

Thus:

dp d(pu(p)) _
at T a (1)
v(t,p) = F(p)

where F(p) is a non-increasing function, not necessarily convex.

Mathematically, this model is analogous to the equation of motion for a compressible fluid, where the fluid density
corresponds to traffic density, and the particle flow pv(p) is analogous to mass transport flow in hydrodynamics. Although
hydrodynamic-type models are widely used to describe traffic flows, they have several limitations that become apparent
when analyzing real-world data:

1. Lack of Discreteness in Vehicle Representation. Hydrodynamic-type models assume that traffic flow behaves
as a continuous medium, whereas in reality, vehicles are discrete entities. This limits the models’ ability to describe
microscopic phenomena such as gaps or density jumps, which are characteristic of real road conditions.

2. Inaccurate Representation of Abrupt Density Changes. The equations of hydrodynamic-type models are based
on the assumption of density function smoothness, making it impossible to model discrete or sudden changes, such as
unexpected traffic jams.

3. Limitations in Modelling Complex Vehicle Interactions. These models assume that a vehicle’s speed depends solely
on local density, ignoring factors such as individual driver characteristics, perception delays, and long-range interactions.

4. Limited Adaptability to Real-World Conditions. The models do not account for external influences such as weather
conditions, accidents, or variable speed limits.

5. Inability to Describe Phase Transitions. Real traffic flows exhibit phase transitions between free-flowing traffic,
stable flow, and congestion. These phenomena are difficult to accurately describe within hydrodynamic-type models
without additional assumptions or modifications.

Gas Dynamic Models. Researchers have attempted to address the shortcomings of hydrodynamic models by
introducing additional functions into the right-hand side of the equations. One of the most successful models in this
regard is the quasi-gas-dynamic (QGD) model, developed under the guidance of Academician B.N. Chetverushkin [8].

The QGD model for traffic flows and its numerical implementation are discussed in detail in [9]. It is based on analogies
between vehicle behavior and gas movement, allowing the application of gas dynamics approaches and methods. The
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main advantage of this model is that, unlike gases where molecules are distributed in three-dimensional space, in traffic
flows, the particles (vehicles) have finite sizes and move along constrained road lanes. In the one-dimensional case, the
QGD system of equations for describing vehicular traffic flows takes the following form:

2
@+8pV:££6(pV +P)+Fp, 2
o ox 0x2 ox

2 3
6pV+8pV _ f—gradP+ 0 1t o(pV +PV)+F.

ot Oox ox 2 ox g

3)

ﬂ} represents the flow density and V[k—m} represents the vehicle speed.
kmxlane h
Equation (2) defines the flow density, while equation (3) defines its speed.

For the case of low density, when the distances between vehicles are significant and their interaction is minimal,
a simplified model can be used, analogous to incompressible fluid flow. In this case, the density of the traffic flow is
considered constant, and changes only occur in the speed and direction of the flow. However, this approach is rarely used
in traffic models, as density plays a key role in the formation of traffic jams and other phenomena.

Connection between Microscopic and Macroscopic Models. In more complex microscopic models, where a particle
corresponds to a vehicle, the ratio of the number of particles to the number of cells in a section of the grid is a variable
quantity. The average speed of the particles and the flow intensity also depend on the location of the grid section. The
local state of a section can be characterized by the particle flow density and flow intensity. When the distribution of
one of these characteristics is given on the grid, the distribution of the other characteristics is typically studied through
simulation modelling.

In a macroscopic model of vehicle traffic flow, the relationship between density, speed, and intensity is described
using partial differential equations (equations of mathematical physics). The relationship between the distribution of these
characteristics and their dynamics is determined by these differential equations, which are usually solved using numerical
methods under given boundary conditions.

Both microscopic and macroscopic traffic models are similar to or directly correspond with statistical physics models. In
microscopic models of statistical physics, particles correspond to molecules or elementary particles, while in macroscopic
models, distributions of characteristics such as pressure, temperature, flow velocity, and gas or liquid density are defined.

Microscopic models of traffic flows, described by random processes of various types [10], have advantages over
macroscopic models as they allow the individual behavior of each vehicle to be considered. This is especially important
for analyzing complex situations such as traffic jams, flow merging, or intersections. These models provide a more
detailed description of the movement dynamics at the level of individual objects, making them useful in developing real-
time traffic management strategies and creating intelligent transportation systems.

Probabilistic Traffic Model on a One-Dimensional Lattice. This work examines the implementation of a microscopic
model on a single traffic lane. To obtain stationary solutions, we will investigate it on a closed ring lattice.

Let there be a ring lattice containing N cells, with M < N particles (Fig. 2). Time is discrete. At each moment r=0,1,2...
each particle occupies one of the cells. Each cell can contain no more than one particle at a time. The cells are numbered
0,1,...N—1 with the numbering directed along the direction of particle movement modulo N.

If at time ¢ = 0,1,2... a particle is in cell i and cell i + 1 (mod N) is free, then at time 7+ 1 the particle will, with
probability 0 < p < 1 be in cell i + 1 and with probability 1— p the particle will remain in cell. If cell i + 1 is occupied, the
particle cannot move.

We introduce the concept of the state space of a ring lattice S = {so,sl,...,s

In this second-order model p[

} , where the total number of possible

-1
states Cy is the number of combinations of N elements out of M. Each state S, J= 0,1,...,Cy =1 can be represented
by a vector of length N(x, x, X,,..., X, |, X,, X, ,..., X, ), where element x =1 if cell i is occupied and x =0, if cell i is free.
N-1
Thus le. =M.

i=0
The transition matrix P has dimensions Cy x Cy’ .

Let’s consider an example for N=4, M =2 .
States of the system:

S =1{{1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)}.
Let’s consider the initial state s,= (1,1,0,0). The possible transitions are:

« (1,1,0,0) > (1,1,0,0) with probability 1 — p;
« (1,1,0,0) — (1,0,1,0) with probability p.
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Now consider the initial state s, = (1,0,1,0). The possible transitions are:
*(1,0,1,0) — (1,0,1,0) with probability (1 — p)%

* (1,0,1,0) — (0,1,1,0) with probability p(1 — p);

* (1,0,1,0) — (1,0,0,1) with probability (1 — p)p;

*(1,0,1,0) — (0,1,0,1) with probability p2.

Next, consider the initial state s,= (1,0,0,1). The possible transitions are:
*(1,0,0,1) — (1,0,0,1) with probability 1 — p;

*(1,0,0,1) — (0,1,0,1) with probability p.

Now consider the initial state s,= (0,1,1,0). The possible transitions are:
*(0,1,1,0) > (0,1,1,0) with probability 1 — p;

*(0,1,1,0) - (0,1,0,1) with probability p.

Consider the initial state s,= (0,1,0,1). The possible transitions are:
*(0,1,0,1) = (0,1,0,1) with probability (1 — p)*

*(0,1,0,1) — (0,0,1,1) with probability p(1 — p);

* (0,1,0,1) — (1,1,0,0) with probability (1 — p)p;

*(0,1,0,1) = (1,0,1,0) with probability p.

Finally, consider the initial state s, = (0,1,0,1). The possible transitions are:
*(0,0,1,1) > (0,0,1,1) with probability 1 — p;

*(0,0,1,1) — (1,0,1,0) with probability p.

Meaning 1 0 1 1 . 1
X
Cell number 0 1 2 3 N-1
0 1 2 3 N-1

Fig. 2. Visualization of Cell Arrangement on a Ring

Thus, for N=4, M =2 we get the transition matrix P

S, s, s, 8y S, S5
So( 1-p p 0 0 0 0
s| 0 (1-p’ pl-p) A-pp P’ 0
Fus=5%| 0 0 I-p 0 P 0
Sy 0 0 0 1-p p 0
s, A=p)p P’ 0 0 (-p?* pd-p)
S 0 p 0 0 0 1-p

Let m be the stationary probability of state s; P; be the probability of transitioning from state s, to state s,
i, j=0,1,..,Cy —1.
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The stationary probabilities of the states satisfy the system of equations:

cl 41 -1
P M
nizpjj: Z"T,-jp_,-,-a l,j=0,...,CN -1, (4)
=0 =0
-1

D om=1 (5)

i=0

Let k(s)) be the number of “clusters” in the state s, of the chain. A cluster is defined as a group of neighboring cells
occupied by particles, separated from other clusters by free cells. If the chain is in state s, the number of particles that
can move equals the number of clusters (s ), 0 < k(s ) < M. There are 2¥ states into which the chain can transition from
state s,. Let the system, starting from state s, be able to reach state s, 1<j< Cy —1 in one time step by moving I(s, sj)
particles, 0 < (s, sj) < k(s)). Then

py = A= p) T (s s) =0, ©)

The probability that the system remains in state s, at this step is the probability that none of the k(s,) particles will
move, p; =(1-p)"*", so
¥ -1
D py=1-0-p)|. (7)
J=0,j#i
Let S(k, N, M) be the number of states with 0 < k£ < M clusters for a given number of cells N and particles M.
Lemma 1. The following equality holds:

N o1 ke .
—C,,_Cy_y  k<min(M,N -M),
S(k,N,M)=v =4 f M1NM )

0,k > min(M,N —M).

Proof. Let R(k, M) be the number of ways, taking into account the order, to represent the number M as a sum of & natural
summands (k < min(M, N — M)). This number is equal to the number of ways to choose (k — 1) elements from M — 1:

R(k,M)=C}". ©))

Next, consider the number A(k, N, M) of states in set A, that contain k clusters and where cell 1 is free, and cell 2 is
occupied. This number is the product of the number of ways to distribute M particles among k clusters R(k, M) multiplied
by the number of ways to choose the lengths (k— 1) of the gaps (intervals between clusters R(k, N — M. Therefore, if
k <min(M, N - M):

A(k, N, M) = R(k, M) R(k, N — M). (10)

From Equations (9)—(10), we conclude that:
Ak, N,M)=Cy Cy - (11)

Leta=(i..., i,) be an arbitrary state from the set 4. Define b(a,d) the state corresponding to a by rotating it by d cells,
i, b(a,d)=(iy_g1>iy_gizse-eriysipse-aniy_g ). Any state with k clusters coincides with b(a,d) for k different ordered
pairs (a,d), where a is an element of the set 4, and d is one of the numbers 0,1,..., N—1. The total number of such distinct
pairs is N-A(k, N, M). Thus, we have:

S(k,N,M) :%A(k,N,M). (12)

From equations (11) and (12), it follows that equation (9) holds. The lemma is proven.
Theorem 1. The system (4)—(5) has a solution

C . "
Gy O G 1)
where the constant is
min(M,N-M) -1
N _ _ 1
C:( Z I'C}\I;—IICII:/—IM—] W} : (14)
k=1
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Proof. Let’s rewrite (4) in the form

-1 c¥ -1
Zn[p[j:znjpﬂ.,i,jzo,...,c%—l. (15)
Jj=0 Jj=0

Let F{(s)) be the set of states that can be reached from state s, in one step; F(s,, /) is a subset of the set /(s,) containing
states that can be reached from state s, by transitioning / particles; B(s)) is a subset of B(s), containing states that can
transition into state s, in one step; B(s,, /) is a subset of B(s,), containing states that can transition into state s, by transitioning
particles.

We have

i

[0 F(s)inj=0,....CY -1,
P (= Y e s I),i, j=0,...,CY —1,1 =1,...,k(s,), (16)

{o,je B(s)i,j=0,...Ch-1,
ji =

$)- 17
P a=p)7 jeB(s, )i, j=0,...,CY¥ =11 =1,....k(s,). a7
Taking into account (16) and (17), we rewrite (15) in the form:
k(s) k(s;)
cardF (s, [)m, p' (1— p) ) = Z Z cardB(s,, [)n,p' (1= p)**7,i=0,...,C)f -1, (18)
1=1 I=1 jeB(s;,l)
where “card” denotes the number of elements in the set 4.
Substituting (13) into (18), we rewrite (18) in the form
k(s;) k(s;)
D cardF (s, 1)p' (1= p)~ = cardB(s,,[)p'(1- p)"". (19)

1=1 1=1

Due to the symmetry card B(s,,/) = card F(s,,1),] =1,...,k(s,),i = O,...,Cﬁ‘f -1.

Thus, the solution (13) satisfies the system (19), and consequently, also satisfies the system (4)—(5). The formula (14)
for calculating the constant follows from (6), (13), and Lemma 1. Theorem 1 is proven.

Estimation of the Average Speed Based on Statistical Mechanics. In [11], the hypothesis is proposed that the
average speed of particles follows the formula

RSN ey o)
2p
where p = M/ N is the particle flow density.

In [12], it is shown that for finite systems (finite ) correlations between vehicles and their mutual influence on
movement cannot be fully accounted for by the formula (20). This is because in finite systems, there is a limited number
of vehicles, and their motion can be more complex due to interactions.

In the limit as N — o (thermodynamic limit), the system becomes infinitely large, and correlations between vehicles
become local. In this case, the formula (20) becomes exact, as the influence of boundary conditions and the finiteness of
the system vanishes.

In [13], a rigorous proof of the formula for the average speed in a model based on asymmetric exclusion processes
(Asymmetric Simple Exclusion Process — ASEP) on a ring is presented. This proof relies on the use of recursive formulas
for the distribution function and hypergeometric functions, which allow obtaining an exact expression for the average
speed as a function of density p and the probability p.

It is worth noting that for the creation of intelligent transport systems (ITS), short sections of highways are especially
important, as monitoring traffic flows using cameras mounted on lighting masts or traffic lights has a limited coverage
area of the lane.

Estimation of the Average Speed Based on the Stochastic Model. Since in real-world conditions the traffic
analysis task is carried out on finite sections of highways, formulas based on probability theory can be used to estimate
the average speed.

Let H(?) be the average total number of particle movements over a time interval (0,f). As follows from the ergodic
theorem of Markov processes theory, the limit

. H(@®)
=1lim
v=lim— 1)
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exists and does not depend on the initial configuration of the particles. The value v is called the particle speed.
Thus, the amount of movement of the system under consideration in one step is:

oy -1
0= mk(s)p. (22)
i=0
In [14], the following explicit formula for estimating the average speed of particles is obtained:
min(M ,N-M)
_ﬁ L_Ckfl Ckfl p
= BRI SR
M k=1 (1 - p)k :
min(M ,N-M) N 1 -1 (23)
C= Nt ,
[ ; k M-1“N-M-1 ( —p)k_l j

where C}/ is the number of combinations of N elements chosen from M.

The formula follows from the statement of Theorem 1, Lemma 1, and formula (22). In [15], an alternative derivation
of formula (23) is given.

Estimation of Average Speed Based on Queueing Systems. A research team led by Doctor of Technical Sciences
M.V. Yashina, which includes the author of this article, discovered that for calculating the average speed, a formula based
on queueing systems, presented in [16], can be applied.

The average speed is equal to the limit of the ratio of recursive procedures:

r(N—M,M)
=, (24)
rl(N_MsM)
where g = 1 - p, and r (N — M, M) and r,(N — M, M) are recursive procedures:
=L ps, 25)
p
N-M 1
rl(N—M,l)z[ij S N-M>1, (26)
p q
nemy =Ly @7
R(N-M,M) =rl(N—M,M—1)+ir2(N—M—1,M)+r1(N—M—1,M—1), N-M2>2,M >2, (28)
p
rn(N-M,M) =r1(N—M—l,M—l)+ir2(N—M—1,M), N-M2>3,M>1. (29)
p

Comparison of Average Speed Estimates from Proposed Methods. Let’s compare the dependencies of the average
speed estimate v on the density p for different values of the probability p using the formulas (20), (23), and (24) (Fig. 3).

The average speed estimate according to formulas (23) and (24) gives the same value, so the graphs overlap. From the
graphs, it can be seen that for small values of N the average speed calculated using formula (20) differs from those using
formulas (23) and (24). As N increases, the difference between the values decreases.

Figure 4 shows the dependency of the average speed v, calculated using formulas (20), (23), and (24), on the probability
pe[0,01, 0,99] and the number of particles Me[1, N—-1].

Graph of dependence of v by formulas (1), (2), (3) from rho at N=5 Graph of dependence of v by formulas (1), (2), (3) from rho at N= 10
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Graph of dependence of v by formulas (1), (2), (3) from rho at N =20
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Fig. 3. Average speed estimate according to formulas (20), (23), and (24)
fora —N=5;b—N=10;¢c—N=20;d— N=200
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Fig. 4. Dependency of the average speed v, calculated using formulas (20), (23), and (24), on the probability
p€[0,01, 0,99] and the number of particles Me[1, N-1] fora — N=5;b—N=10;c — N=20;d— N=200

From the graphs, we can evaluate the nature of the change in the average speed v, calculated using formulas (20), (23),

and (24), with respect to the probability pe[0,01, 0,99] and the number of particles Me[1, N—1].

In Fig. 5, the difference in the values of the average speed v, calculated using formulas (20) and (23), is presented as a
function of the probability pe[0,01, 0,99] and the number of particles Me[1, N-1]. Formula (24) is not considered, as its

values coincide with the average speed values calculated using formula (23).

From the graphs, the nature of the error growth is visible in two directions: when the probability p approaches 0.5, and
at low particle density, as well as when the particle density p, approaches 1, and the particle density p, approaches 0.5. At

low values of N the error is within the hundredths, while as N increases, the error decreases to thousandths.
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Fig. 5. The difference in the values of the average speed v, calculated using formulas (20) and (23), as a function of the
probability p[0,01, 0,99] and the number of particles Me[1, N-1] fora— N=10,b—N=10,c— N=20,d— N=200

Comparison of Average Speed Estimation with Computer Simulation. For the numerical estimation of average
speed values calculated by formulas (20), (23), and (24), a computer simulation was implemented, modelling the
movement of particles on a closed lattice. The user specifies the number of cells N the number of particles M, which are
uniformly distributed across all cells, the probability of a particle moving to the next cell p if the next cell is empty, the
number of iterations #, and the number of simulation runs 7.

At each iteration, the instantaneous speed v is calculated as the number of particles that moved divided by the total
number of particles, and the average speed is the sum of all instantaneous speeds over the number of iterations.

Upon completion of all runs, the average speed , is calculated as the sum of all average speeds at the end of each
simulation run divided by the number of simulation runs. The average speeds were calculated for = 2000, 7= 10.

Tables 1-4 show the results of average speed calculations based on formulas (20) and (23) (formula (24) is not shown
as the values computed by it are identical to those of formula (23)), as well as results from the computer simulation (sim)
for different numbers of cells N.

Table 1
Average speed for N=5

plp p=03 p=0.5 p=0.7 p=0.9

(20) (23) sim (20) (23) sim (20) (23) sim (20) (23) sim
p=0.1| 0.081 0.100 0.101 0.062 0.076 0.074 0.041 0.051 0.050 0.020 0.025 0.025
p=03 ] 0253 0.300 0.302 0.195 0.238 0.237 0.130 0.159 0.159 0.063 0.075 0.074
p=05 1] 0438 0.500 0.500 0.349 0.417 0.418 0.232 0.278 0.275 0.110 0.125 0.125
p=07 ] 0.643 0.700 0.700 0.534 0.619 0.622 0.356 0.413 0.415 0.161 0.175 0.173
p=0.9 | 0.872 0.900 0.896 0.789 0.859 0.862 0.526 0.573 0.572 0.218 0.225 0.225
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Table 2

Average speed for N =10

plp p=0.1 p=03 p=0.5 p=0.7 p=0.9

(20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim

p=0.110.091 | 0.100 | 0.100 | 0.072 | 0.079 | 0.079 | 0.051 | 0.057 | 0.057 | 0.031 | 0.034 | 0.034 | 0.010 | 0.011 | 0.011

p=030.278 | 0.300 | 0.299 | 0.225 | 0.247 | 0.243 | 0.163 | 0.180 | 0.182 | 0.097 | 0.106 | 0.104 | 0.031 | 0.033 | 0.032

p=0.50472 | 0.500 | 0.503 | 0.397 | 0.429 | 0.429 | 0.293 | 0.320 | 0.320 | 0.170 | 0.184 | 0.183 | 0.052 | 0.056 | 0.055

p=0.710.676 | 0.700 | 0.705 | 0.597 | 0.633 | 0.632 | 0.452 | 0.491 | 0.490 | 0.256 | 0.271 | 0.269 | 0.075 | 0.078 | 0.078

p=090.889 | 0.900 | 0.897 | 0.843 | 0.867 | 0.866 | 0.684 | 0.736 | 0.734 | 0.361 | 0.372 | 0.371 | 0.099 | 0.100 | 0.100

Table 3

Average speed for N =20

plp p=0.1 p=03 p=0.5 p=0.7 p=0.9

(20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim

p=0.110.091 | 0.095 | 0.093 | 0.072 | 0.075 | 0.075 | 0.051 | 0.054 | 0.053 | 0.031 | 0.032 | 0.031 | 0.010 | 0.011 | 0.010

p=0310278 | 0.289 | 0.285 | 0.225 | 0.235 | 0.232 | 0.163 | 0.171 | 0.171 | 0.097 | 0.101 | 0.101 | 0.031 | 0.032 | 0.031

p=051]0472 | 0486 | 0.478 | 0.397 | 0.413 | 0.411 | 0.293 | 0.306 | 0.305 | 0.170 | 0.177 | 0.179 | 0.052 | 0.054 | 0.054

p=0.7)0.676 | 0.688 | 0.691 | 0.597 | 0.615 | 0.615 | 0.452 | 0.471 | 0.472 | 0.256 | 0.264 | 0.263 | 0.075 | 0.076 | 0.076

p=090.889 | 0.895 | 0.892 | 0.843 | 0.856 | 0.855 | 0.684 | 0.708 | 0.706 | 0.361 | 0.367 | 0.366 | 0.099 | 0.099 | 0.099

Table 4

Average speed for N =200

plp p=0.1 p=03 p=05 p=0.7 p=0.9

(20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim

p=0.110.091 | 0.091 | 0.091 | 0.072 | 0.072 | 0.070 | 0.051 | 0.052 | 0.051 | 0.031 | 0.031 | 0.030 | 0.010 | 0.010 | 0.010

p=03)0.278 | 0.279 | 0.279 | 0.225 | 0.226 | 0.225 | 0.163 | 0.164 | 0.163 | 0.097 | 0.097 | 0.096 | 0.031 | 0.031 | 0.031

p=050472 10474 | 0.474 | 0.397 | 0.399 | 0.399 | 0.293 | 0.294 | 0.294 | 0.170 | 0.171 | 0.170 | 0.052 | 0.053 | 0.052

p=0.710.676 | 0.677 | 0.674 | 0.597 | 0.599 | 0.598 | 0.452 | 0.454 | 0.453 | 0.256 | 0.257 | 0.256 | 0.075 | 0.075 | 0.074

p=090.889 | 0.890 | 0.887 | 0.843 | 0.845 | 0.842 | 0.684 | 0.686 | 0.685 | 0.361 | 0.362 | 0.361 | 0.099 | 0.099 | 0.074

From the tables, it is evident that the value of the average speed calculated using formulas (23) and (24) is closer to
the simulation results for small values of N. In general, the error between the results for formulas (20) and (23)—(24) fully
correlates with the results shown in Fig. 5. The obtained results also coincide with the results of the comparison between
formulas (20) and (23) in [17, 18]. It can be concluded that as N increases, the results calculated using formula (20)
increasingly approach the results obtained from formulas (23), (24), and computer simulation.

Computational Complexity Estimation of Average Speed Calculation Formulas. Let’s estimate the computational
complexity of calculating the average speed using formula (20). Since formula (20) does not contain loops or recursions,
and its computation depends only on basic operations and constants, its computational complexity is constant — O(1).

Now, let’s estimate the computational complexity of calculating the average speed using formula (23). The sum
iterates over all values of k£ from 1 to min(M, N — M). Let K = min(M, N — M) be the number of terms. Then the sum
has K terms.

For each term in the sum, we need to compute C},",, which requires O(k) operations, and Cy_',_, , which also requires
O(k) operations. Computing the remaining values and multiplying all these values together requires O(1) operations. Thus,
the overall computational complexity for one term in the sum is O(k). Since the sum has K terms, the total computational

K
complexity for calculating the entire sum is O(Z k)=O0(K?).
k=1
The total computational complexity of formula (23) is determined by the complexity of computing the normalization

coefficient C and the expression for v. Since both of these computations have a complexity of O(K?), the total complexity
is also O(K?), where K = min(M, N — M).
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Let’s estimate the computational complexity of calculating the average speed using formula (24). Both functions |
and r, depend on two parameters: N — M and M. Therefore, the total number of unique states (or nodes in the recursion
tree) equals the number of possible combinations (M, N — M), where N — M can take values from 1 to N— 1, and M can
take values from 1 to min(M, N — M). Consequently, the total number of states is O(N?).

The recursion depth for each function is determined by the maximum value of N — M or M. In the worst case, the
recursion depth is O(N). At each recursion level, simple arithmetic operations are performed, requiring O(1) operations.
Thus, the total number of operations is proportional to the number of unique states.

Considering the above factors, the total computational complexity of formula (24) is O(N?). This is because each
state (M, N — M) is computed exactly once, and the total number of states is O(N?). Therefore, formula (20) is the most
computationally efficient. Formulas (23) and (24) have identical computational complexities.

Discussion and Conclusion. The paper presents an estimation of the limiting speed of one-way traffic flow with high
computational efficiency. The main conclusions are as follows:

1. For small values of N, which are most representative of real highway sections captured by cameras, formulas (23)
and (24) are the most suitable for estimating the average speed v. These formulas provide equivalent results that closely
match the outcomes of computer simulations..

2. For estimating the average speed v for large N computer calculations with formula (23) are constrained by memory
usage due to the need to calculate large factorials. When N < 310 exceeds a certain threshold, memory overflow occurs on

the used computer system p ~ % . In such cases, formula (24) can be used as an alternative.

3. For estimating the average speed v for large N computer calculations with formula (24) are constrained by the
maximum recursion depth for the values of r, and r,. As a result, even when using dynamic programming methods, the
computation may take longer than when using formula (23) and may lead to a stack overflow.

4. From the obtained results, it is clear that as increases, the estimate of the average speed using formula (20) will
approach the values computed using formulas (23) and (24), while requiring significantly fewer computational resources. Thus,
formula (23), yielding an equivalent result to formula (24) for N — oo, can be applied in problems related to queuing systems.
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