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Abstract

Introduction. The development, analysis, and modification of finite difference schemes tailored to the specific features of
the considered problem can significantly enhance the accuracy of modeling complex systems. In simulations of various
processes, including hydrodynamic phenomena in shallow water bodies, it has been observed that for problems with third-
type (Robin) boundary conditions, the theoretical error order of spatial discretization drops from second-order to first-
order accuracy, which in turn decreases the overall accuracy of the numerical solution. The present study addresses the
relevant issue of how the approximation of third-type boundary conditions affects the accuracy of the numerical solution
to the heat conduction problem. It also proposes a finite difference scheme with improved boundary approximation for
the heat conduction equation with third-type boundary conditions and compares the accuracy of the numerical solutions
obtained by the authors with known benchmark solutions.

Materials and Methods. The paper considers the one-dimensional heat conduction equation with third-type boundary
conditions, for which an analytical solution is available. The problem is discretized, and it is shown that under standard
boundary approximation, the theoretical order of approximation error for the second-order differential operator in
the diffusion equation is O(%). To improve the accuracy of the numerical solution under specific third-type boundary
conditions, a finite difference scheme is proposed. This scheme achieves second-order accuracy O(/?), for the differential
operator not only at interior nodes but also at the boundary nodes of the computational domain.

Results. Test problems were used to compare the accuracy of numerical solutions obtained using the proposed scheme
and those based on the standard boundary approximation.

Discussion and Conclusion. Numerical experiments demonstrate that the proposed scheme with enhanced boundary
approximation for the heat conduction equation under specific third-type boundary conditions exhibits an effective
accuracy order close to 2, which corresponds to the theoretical prediction. It is noteworthy that the scheme with standard
boundary approximation also demonstrates an effective accuracy order close to 2, despite the lower theoretical order of
boundary approximation. Importantly, the numerical error of the proposed scheme decreases significantly faster compared
to the scheme with standard boundary treatment.

Keywords: heat conduction equation, third-type boundary conditions, numerical solution, approximation error

Funding. This research was supported by the Russian Science Foundation, grant no. 22-71-10102,
https://rscf.ru/project/22-71-10102/

For Citation. Chistyakov A.E., Kuznetsova I.Yu. A Finite Difference Scheme with Improved Boundary Approximation
for the Heat Conduction Equation with Third-Type Boundary Conditions. Computational Mathematics and Information
Technologies. 2025;9(2):7-21. https://doi.org/10.23947/2587-8999-2025-9-2-7-21

© Chistyakov A.E., Kuznetsova I.Yu., 2025


https://orcid.org/0000-0002-4717-2403
https://orcid.org/0000-0003-1996-1605
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.23947/2587-8999-2025-9-2-7-21&domain=pdf&date_stamp=30.06.2025 
https://doi.org/10.23947/2587-8999-2025-9-2-7-21
mailto:ikuznecova@donstu.ru
https://rscf.ru/project/22-71-10102/
https://doi.org/10.23947/2587-8999-2025-9-2-7-21

Chistyakov A.E. et al. A Finite Difference Scheme with Improved Boundary Approximation ...

OPMZMHLUZbHoe meopemudecKkoe ucciedosamue

Pa3HocTHaa cxema ¢ yJIy‘lIHeHHOﬁ annpoxchauneﬁ Ha rpanmue 1Jist ypaBHCHUSA
TEIJIONMPOBOJAHOCTH C TPAHUYHBIMHA YCJIOBUSIMU TPETHET0 pojaa

A.E. Yuctakos , I.1O. Ky3nenoa [

JloHCKOM rocy1apCTBEHHbIN TEXHUYECKUI yHUBEPCUTET, T. PocToB-Ha-Jlony, Poccuiickas deneparnust

P4 ikuznecova@donstu.ru

AHHOTALUA

Beeoenue. IlocTpoeHne pa3HOCTHBIX CXEM, UX MCCIIEIOBAHNE U MOJU(PHKAIHS C YUETOM ClielU(UKH paccMaTpuBaeMon
3aJ1a4H [MO3BOJISIET MIOBBICUTH TOYHOCTH MOJEIMPOBAHUS CIOXKHBIX cUcTeM. [Ipn MoienpoBaHIH pa3IMYHBIX IPOLIECCOB,
BKJIIOYasi THAPOAMHAMHUYECKHE MPOLECCHl B MEJKOBOAHBIX BOAOEMax, OBIJIO OTMEYEHO, YTO IPU PEIICHWH 334ad C
TPaHUYHBIMU YCJIOBHSIMH TPETHETO POAA TEOPETHUECKas OLEHKa MOpPsAKAa MOTPEIIHOCTU aNMpOoKCUMAalUU MajaeT co
BTOPOTO TMOPSAAKA IOTPEIIHOCTH OTHOCUTEIHHO MPOCTPAHCTBEHHBIX IIarOB PACUETHOM CETKH J0 IEepBOTO MOpAIKa, a,
CJIC/IOBATEINBHO, MTa/IaCT ¥ TOYHOCTD YHCIICHHOTO pelIeHns 3aaa4yn. HacTosmas paboTa mocBsIieHa akTyaJlbHOH mpobieme
HCCJIEIOBAHMSI BIUSHUS allPOKCUMAIIIY TPAHUYHBIX YCIOBUH TPETHEro pojia Ha TOYHOCTh YHCICHHOTO PELIeHUs 3a1a4n
TEIUIONPOBOAHOCTH, a TAK)KE IIOCTPOCHUIO PA3HOCTHOM CXEMBI ¢ YJIyYLIEHHON alnlpOKCHMalUed TPaHUYHBIX yCIOBUI
JUId ypaBHEHHUS TEIJIONPOBOJHOCTH C TPAHUYHBIMH YCIOBUSIMH TPETBEr0 poJa M CPaBHEHHIO TOYHOCTH YHMCIECHHBIX
pellIeHNH, IOTy4YEeHHBIX aBTOPaMHU, C U3BECTHBIMU PEIICHUSIMH.

Mamepuanst u memoowi. PaccmaTpuBaeTcsi ypaBHEHHE TETJIONPOBOJIHOCTH ¢ TPAHUYHBIMU YCIOBUSIMU TPETHETO POJa,
JUI1 KOTOPOTO MONYy4€HO aHAINTHYeCKoe pemeHue. IIpoBeneHa anmmpokcuManus pacCMOTPEHHON 3aJjadd M MOKa3aHo,
YTO NpPU CTaHJAPTHOW anmpoKCHMalu¥ 3aJadd Ha TpPaHulle PacueTHOW 00JacTH TeOpeTHYecKas OLIeHKa IOpsIKa
MOTPEUTHOCTH alIPOKCUMAINH TU(PepeHIINATBHOTO OIlepaTopa BTOPOro HOPsIIKa B ypaBHEHNUH AU y3UH COCTABISIET
O(h). Anst IOBBIMIEHUS] TOYHOCTH YHCICHHOTO PELICHUS B CIIydae TPaHUYHBIX YCIOBHH TPETHETO poJia CHENHATBHOTO
BUJa NpEAJIOKEHa pa3HOCTHAas CXeMa, MMEIOIIas MOTrPENIHOCTh allpoKCHMaluu Ju(QepeHHaIbHOr0 onepaTopa
Broporo mopsizka O(h?), Kak BO BHyTPEHHHUX, TAK M B TPAHHYHBIX y3JIaX PaCUCTHOMN 00IacTH.

Pesynomamut uccneoosanus. Ha tecToBbIX 3aJa4aX IPOBEAECHO CPABHEHHE TOYHOCTH YUCIEHHBIX PEIICHUH, TOTYYeHHBIX
Ha OCHOBE MpeAIaraeMoi CXeMbl U CXEMBI CO CTaHJapTHOM aNpoKCUMAalUed IPaHuLbl.

Oécyscoenue u 3akniouenue. V13 TpOBENECHHBIX YHCICHHBIX 3KCIEPHMEHTOB BHJHO, YTO MPENTIOKEHHAs CXeMa C
YIIy4IICHHOW amnmpoKCHMAalWeil Ha TPaHUIE PACUeTHOW 00JIACTH A ypaBHEHHs TEIIONPOBOMHOCTH MPU TPAHMYHBIX
YCIIOBUSIX TPETHEr0 pojia CHELMAIBHOTO BHAA UMeeT 3(P(EeKTUBHBINH MOPAIOK TOYHOCTH OKOJIO 2, YTO COOTBETCTBYET
NIOJIy4EHHO! TEOPETUUECKOM OLleHKE. [Ipr 3TOM CTOUT OTMETHUTB, UTO PA3HOCTHAS CXEMA CO CTaHAAPTHOM alnpoKCUManuei
Ha TpaHHIE PACUETHON 001acTH TaKke nMeeT 3G PEKTUBHBIA MOPSIIOK TOYHOCTH, OM3KHHN K 2, HECMOTPS Ha ITOJTyYEHHYIO
TEOPETUYECKYIO OLIEHKY MOpsAJKa MOTPELIHOCTH aNlpOKCUMAlMU JUIs TPaHWYHBIX Y3JI0B. BakHO OTMETUTh, 4TO IJIs
MIPEIOKEHHON CXEMBI pacueTHas MO PELTHOCTH YHCIIEHHOTO PELICHHUS [TaAaeT CYIIECTBEHHO OBICTpee, UeM AJIS PELICHUs
HA OCHOBE CXEMBI CO CTAaHIAPTHOH allIPOKCUMALUEN HA TPAHHULIE.

KiioueBbie ciioBa: YpaBHCHHUC TCIUIOMPOBOAHOCTHU, TPAaHUYHBIC YCJIIOBUA TPETHET0 poJaa, YUCICHHOC PCHICHUC,
NOrpCIHOCTL AIIIPOKCUMAIINHN

duHaHcupoBaHue. lccienoBaHue BBIIOJIHEHO 3a c4eT rpaHta Poccuiickoro Hay4dHoro ¢ouma Ne 22-71-10102,
https://rscf.ru/project/22-71-10102/

Jast umrupoBanus. Yuctakos A E., Kysnenosa W.10. PazHocTHas cxeMa ¢ yiIydieHHOW anmpoKcUMaliel Ha TpaHulle
JUIA YpaBHEHHs TEIUIONPOBOAHOCTH C TPAaHMYHBIMH YCIOBUSAMH TpeThero pona. Computational Mathematics and
Information Technologies. 2025;9(2):7-21. https://doi.org/10.23947/2587-8999-2025-9-2-7-21

Introduction. The heat conduction equation is widely used to describe a broad class of problems related to the
modeling of three-dimensional diffusion processes [1]. This diffusion equation has been extensively studied, and its
solutions are broadly applied in practice to describe many physical phenomena. Analytical approaches to solving this
equation are presented in [2, 3], while numerical methods for solving the heat conduction equation with first- and second-
type boundary conditions are discussed in [4, 5].

When designing complex engineering structures, it is necessary to account for the impact of ambient temperature
regimes. In many cases, heat propagation in such systems is described using the heat conduction equation with third-type
(Robin) boundary conditions [6]. Therefore, the goal of this study is to develop a finite difference scheme with improved
boundary condition approximation and to evaluate the performance of the proposed scheme on benchmark problems.
This approach allows for a comparison of the accuracy of numerical solutions obtained from various finite difference
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schemes under different initial and boundary conditions. In [7, 8], the Burgers equation is used as a test case; in [9, 10],
the transport equation; and in [11, 12], the convection-diffusion equation.

The problem of improving the accuracy of numerical solutions has been addressed by many prominent Russian
and international researchers. Notably, P.N. Vabishchevich [13, 14] studied finite difference schemes for solving
second-order parabolic-type equations involving specially structured non-self-adjoint operators. B.N. Chetverushkin
has contributed significantly to the development, analysis, and parameter tuning of difference schemes for applied
problems, particularly in the context of high-performance computing architectures [15, 16]. V.F. Tishkin explored
the modification of discontinuous Galerkin methods for gas and hydrodynamic modeling [17, 18]. The use of a
regularized finite difference scheme for hydrodynamic problems was discussed in [19], with its accuracy analyzed
in [20]. Methods to improve the order of accuracy in the grid-characteristic method for two-dimensional linear
elasticity problems are addressed in [21], and extended to three dimensions in [22]. A numerical approach for heat
and mass transfer in two-phase fluids is presented in [23], while [24] proposes a finite difference scheme for
single-phase filtration in fractured media, and [25] investigates two-phase filtration in complex environments.

Developing finite difference schemes and modifying existing ones with consideration of problem-specific features
enables improved modeling accuracy of complex systems [26]. In simulations of various processes, including hydrodynamic
flows in shallow water bodies, it has been observed that, for problems with third-type boundary conditions, the theoretical
order of approximation error for spatial discretization drops from second order to first order. Consequently, the accuracy
of the numerical solution is reduced. A.I. Sukhinov [27] recommended a more detailed study of the approximation of
problems with third-type boundary conditions. Accordingly, this work is devoted to examining the impact of third-type
boundary condition approximation on the accuracy of the numerical solution to the heat conduction problem. It also
presents the construction of a finite difference scheme with improved boundary approximation and compares the accuracy
of solutions obtained with the proposed scheme against those derived using a standard boundary approximation scheme
on benchmark problems.

Materials and Methods

1. Analytical Solution of the Heat Conduction Equation

Let us consider the homogeneous heat conduction equation

2
a—uzaa—f,0<x<l,0<t<T, (1)
ot ox
subject to the initial condition
u(x, 1),y = (%) 2

and third-kind (Robin) boundary conditions

=B 3)

x=I

%u(x,t) - au(x,t)xxzo _B, (%u(x,t) + om(x,t))

To find the analytical solution of the boundary value problem (1)—(3), we introduce a transformation
u(x,t) = v(x,t)— P/ o, which reduces the problem to one with homogeneous third-kind boundary conditions:

ov o B
—=a—7,0<x<,0<t<T,v(x,t)  =u,(x)+-,
or ox’ (6o =10() o
P P “)
—v(x,t)— ocv(x,t)x =0, (—v(x,t) + ocv(x,t)){ =0.
ox x=0 ox x=I
We seek the solution of (4) in the form:
v(x,1) = X ()T (?). (5)
Substituting (5) into the differential equation (4) and separating variables yields:
lﬂ = & =2
aT(t) X(x) ’ (6)
The boundary conditions in (4) transform into:
(X'(0) X (0)T(1) = 0, (X'() + aX ()T (1) =O. ™

Thus, taking (7) into account and assuming that v(x,f) # 0 we arrive at the Sturm—Liouville problem for the function X(x):

X"+MX=0,0<x<],

X'(0)—oX(0) =0, X'(7)+0X(l)=0. ®
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The general solution to (8) is:
X(x)=C, cosix+C,sin\x. 9)
Considering the boundary conditions in (8) and the general form (9), the eigenfunctions X,(x) are written as:
X, (x) =~ cosh, x+oasinh,x, k=1, 2,..., (10)
where A, k=1, 2,... are the eigenvalues of the problem (8), which are the positive roots of the transcendental equation

Ao
2ctg M ==—=.
g o« (11)

For the function 7(#) based on equation (6) and under the condition A = A, we arrive at the following problem:
T'(O)+ar,T(t)=0,
the general solution of which is given by
T,(t) = Cyexp(—arjt), k=1, 2,.... (12)
Then, taking into account equations (5), (10), and (12), the solution to problem (4) can be written in the form:
v(x,t) = ZCk (A, cosh,x +asin, x)exp(—akt), (13)
k=1
where A, k=1, 2,... are the positive roots of equation (11).
To determine the coefficients C, we use the initial condition of problem (4):

> C, (h, cosh,x+asink,x) =u,(x)+p/a,
k=1

i. e., this represents the expansion of a function f{x) = u (x) + /o for 0 < x < [ into a Fourier series in terms of the
eigenfunctions of the Sturm-Liouville problem (8). Then, assuming the eigenfunctions X (x), k= 1, 2,... are orthogonal on
the interval 0 < x </ the coefficients C, are given by:

If(x) L, cosA, x +osin), x)dx, (14)

k=

IIX o
where f{x) = u (x) + p/a,

Mt 2o
2 40,

]
Ix.J’ :J-(kk cosh,x +asink,x)’ dx = sm2k I-= cosZ?» 1+ > (15)
0

Taking into account the condition (11) for A =4, k= 1, 2,... and the trigonometric identities

sin2x = 2 igf , Cos2x:1_tg2x
X

the expression for the norm squared of the eigenfunctions X (x) in (15) becomes:

(A +a?)l+2a

2
Kl == (16)
Thus, expression (14) for the coefficients C,, k= 1, 2,... can be rewritten in the form:
2 f B
C, =———+——||u,(x) == |(A, cosir,x +asink, x)dx =C" +C?,
, (K§+a2)l+2a~[( o) oc)( ) , (a7
where
1
2 .
CY=— = |u, (x)(N, cosA, x +asin, x)dvx,
R PP T G )
2B f 2 (. o
c? = k cosA,x+osini, x)dx = sinA [ ——(cosA,l-1)|= (18
g (X2+a )ocl+2a2'([ ) (X2+a )ocl+2oc2k ‘ kk( d=1 (18)
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% (a a B [o M )
_(Xi+oc )al+2ot \?» Fsink l[l A, ctgh ID (X2+a2)al+2a2k7\k+ 207 \/1+Ctg27»kl h

2[3 ( k+1
(M o)+ 200 1+ ™),

Thus, for k= 2n the coefficients C{” = 0. Then the expression for the coefficients C{” will be written as:

€0 =0.C =0, =12
2n+1 (7\’2n+1 +a )l + 27\'2n+la‘

(19)

Then, the analytical solution of the original problem (1)—(3), taking into account the substitution and expressions (13),
(18), and (19), can be written as:

u(x,t) = —g+ ZCk (A, cosh, x+ ocsinkkx)exp(—a?uit), (20)
=1

where C, =C;"” +C;”, the coefficients C" and C® are defined by expressions (18) and (19), respectively, and
A, k=1,2,.. are the positive roots of equation (11).
In the case of solving the nonhomogeneous analog of the heat conduction equation (1):

ou _
ot 8
with the initial and boundary conditions (2)~(3), the solution will be sought in the form wu(x,7) =v(x,r)+w(x,t)— B/,

where v(x,?) is the solution to problem (4), defined by formula (13) with coefficients (18)—(19), and w(x,¢) is the solution
to the following problem:

2+f(xt) 0<x<l 0<t<T (21)

8W_aa—w+f O<x<l,0<t<T, w(xt)| 0,

ot ox?

(%W(x,t) - otw(x,t))

(22)

=0, (gw(x,t) + otw(x,t)X =0.
x=0 ax

x=l

The function w(x,?) is sought as an expansion in terms of the eigenfunctions of the corresponding homogeneous
Sturm—Liouville problem:

w(x,t) = ZC(”)(t) L, cosh, x+asink,x). (23)

We also expand the function f{x,?) over the considered interval as 0 <x < [:

f(x,t)= ;C,Ef) (1)(A, cosh, x+asink,x), (24)

where

C (1) = If(x 1)1, cosh,x +asinh, x)dx, (25)

IP(kII
where [|X||* is defined by formula (16).
Substituting (23) and (24) into (22), we obtain:
Z((c,ﬁ‘” (t))' +alC™ (t))(xk cosh,x +asink,x)= > C(£)(r, cosh,x +asini,x). (26)
k=1 k=1

Due to the completeness of the orthogonal system of eigenfunctions X (x), k=1, 2,..., equality (26) holds if and only if:

(G @) +anic () =C ). @7

Given (23) and the homogeneous initial conditions in (22), we have:

C(0)=0. (28)

11
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Thus, we obtain a Cauchy problem for an ordinary differential equation (27) with the initial condition (28). The
solution to this problem can be found, for example, by the method of variation of arbitrary constant (Lagrange method):

c 0= [ @esplan (e ), @

where C\/(1) is defined by formula (25).
Thus, the solution to the nonhomogeneous heat equation (21) with third-kind boundary conditions (3) can be written as:

u(x,t)= —g+ D C (A coshx+ asinkkx)exp(—akzt) + 2 CM (#)(h, cosh,x+asink,x), (30)
k=1 k=1

where C, =C,"” +C,”, the coefficients C{", C!* and C(t) are defined by formulas (18), (19), and (29), respectively,
and A, k=1, 2,... are the positive roots of equation (11).

2. Approximation of the Second-Order Differential Operator in the Diffusion Equation

Assume we need to consider the approximation of the nonhomogeneous heat conduction (diffusion) equation:

ou _ 0u
—=a—+ f(x,1),0<x<[,0<t<T,
o Yo S(x,0) (31)
with the following initial condition:
t=0 = uO ()C) (32)
and third-kind (Robin) boundary conditions:
0 0
—u(x,t)—ou(x,t)] =0, |=—u(x,t)+au(xt)] =0. (33)
6)6 x=0 ax x=[

To obtain a numerical solution to the problem (31)—(33), we divide the computational domain using a uniform grid
® =0, X®,, where

o, ={t” =nt, n=0.N,, N[‘C=T}, ®, ={xi =ih,i=0.N_, N h =l}, (34)

where 1 is the time step size; N, is the number of time steps; /4 is the spatial step size; N, is the number of spatial nodes.
The analytical solution of the problem (31)—(33), according to equation (30), can be written as:

u(x,t)= i(Ck(,l) exp(—ahjt)+ C,E"’)(t))(kk cosh,x +asinA, x), (35)
=

where the coefficients C{” and C;"(¢) are defined by expressions (18) and (29), respectively, and A,, k=1, 2,... are the
positive roots of equation (11).
To simplify further calculations, let us introduce the following notation:

Ci(t) = C{" exp(—akjt) + C (1). (36)

We now write the approximation of equation (31) at the interior nodes of the computational grid (34) as:

w—u' ul =2u +ul
=a

i i

. e S 37

where u, =u(t", x,,), u =u(t", x,).
Then, taking into account expressions (24), (35), and (36), the approximation (37) can be written in the form:
N

Z(C(u)(th C,Eu)(tn ))(7\% COS)\.kX + asinka) =

L:

TR ZC(H)(f" (hpcos(hy (x, +h))+asin(r, (x, + h)) =22, cosh,x, — 2asink, x, + (38)

N-1
+1, cos(h, (x, —h))+asin(k, (x, —h)))+ D_C" (") (k, cosh,x, +asink,x,).

k=1

Using the transformations
A, cos(h, (x, +h))+ A, cos(h, (x, —h)) = 2%, cosh,x,cosh,h,

asin(, (x, + #))+asin(r, (x, — k) = 20sin ., x, cos A, /i,
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expression (38) becomes:

N
Z:(C(“)(t"*1 C(”)(t”))(k cosh, x +osini, x) = as ZC(")(t )(cosA, h—1)(A, cosh, x, +asin,x,)+
T =1

k=1

N-1
+> C(t") (M, cosh,x, + asink,x,).

k=1

Taking into account the orthogonality of the basis functions X,(x), k= 1, 2,..., defined in (10), the final expression can
be written as:

CH (™= C™(t") _ aZ(cos?»kh -1)

T+ (). (39)
T

Let us find the second derivative of the function u(x,f) with respect to the spatial variable:

0’ 0’ (& . 0 [~ .
6_);{:@[;@( "(O(r, coskkx+as1nkkx)j=a[;clﬁ '(0)(=Af sink, x + ok, coskkx)jz
(40)

==Y M C (1) (A, cosh, x +asini, x).
=1

From formulas (39) and (40), it follows that in the approximation of problem (31)—(33) on the computational
grid (34) using scheme (37), the obtained solution for each harmonic deviates from the exact value by the quantity

a =1-2(1- cos?»kh)/(kkh)z.

Let’s consider the resulting value separately o.”:

z(mhf 0’ )J
* _ 2(1 _COS}\’kh) —1— 2 24 — (}\'kh)z + O(h4) (41)
(k) (Aeh) 12 .

From (41), we can conclude that when approximating the spatial variable using scheme (37), the numerical solution
at the interior grid nodes (34) deviates from the exact solution by O(A?).

Let us now consider the approximation of the function u(x,f) with respect to the spatial variable at the boundary nodes of
the spatial grid (34). We construct this approximation based on the integro-interpolation method (the balance method). Without
loss of generality, let us consider the approximation of u(x,) on the left boundary of the computational grid (i. e., at x = 0):

A, cosh h+osind, h—A,
h2

u' —u ou’ “ al

210 -2—0=2% (") -2) (") —~=

e p Z ( Z L=
e A -1 ink,h—,h) rh)Y (AR

=23yl ORA D oleinds *ZC“‘)(r )( ( 2) e +0(h6)—1]+ “2)
k=1

u 7\’ h >\’kh ’ 7 N u n 3 3 h 2
Zc< (" )[x o 6) %Jro(h )—k,{hJ:;C,ﬁ (1 )(—kk—kk%+0(h )).

To increase the order of approximation error for the spatial derivative of the function u(x,f) at the boundary nodes of
the grid (34), we consider the following approximation:

2”1 h_2u0 _zaY1

Uy -;yzul" :2§C,f”)(t")kk cosAh +ho§sin7»kh—k . NZiC(“)(t"‘yl}L ¢ TYah, cos?;l Jryosinkh

ZC(")(t Y(1=v,ah)(h, cosh h+asini, i ——ch(z W (1+y,ah) =

2 = Ah? 7\,5}14 7\.3h3 Ah
==(1- och C(") M| A, —=E arh—a +a=t—+0(n%) |- 4

(l+y1ah)ZC(")(t W, = p (y2+1 y,0h — yl)ZC(")(t W, Zc““(t")x

2 S 2BYE ) ivn 3 L RS ) iy S 3
o3| O a0 e ZC (" +—Zc ("M, +O(n’).
k=1
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The coeficients y, and v, in (43) are found as a solution to the system:

{Yz +1-v,0h—v, =0,
1 h
——+y,0==0,
Y2 3 Y2 3
from which we obtain the values of the coefficients y, = 2/(3 + ak) and v,= 1/(3 + ah).

Thus, we obtain the following approximation for the spatial derivative of the function u(x,?) at the boundary nodes of
the grid (34):

ul" —u(')’ 4o n 200 n _N_I (u) 4n 3 Kihz 3
27 h(3+ah)”° h(3+ah)u1 N ;ck (t )( M+ +0(h )j. (44)
Results. Assume we need to compare the computational accuracy of the spatial approximations (42) and (44) by
solving test problems. We consider three test problems. The first is a steady-state problem with a constant right-hand side.
The second is also a steady-state problem, but with a harmonic right-hand side corresponding to an eigenvalue A . The
third problem involves solving the heat conduction equation with a stepwise right-hand side.
Test Problem 1. Find the solution to the following problem:

ou _0u
—=—+2,0<x<2,
o o (3
with the initial condition:
u(x,t)|t:0 =0 (46)
and boundary conditions of the third kind
0 _ 0 _
—u(x,t)-2u(x,t)| =0, |=—u(x,t)+2u(x,t)| =0. (47)
ﬁx x=0 ax x=2

Problem (45)—(47) is a steady-state problem.

The analytical solution to problem (45)—(47) can be written in the form: u(x,f) =—*+2x+ 1.

Figure 1 shows the analytical solution of problem (45)—(47), as well as numerical solutions of Test Problem 1 obtained
using: the first-order finite difference scheme in space (42), and the second-order finite difference scheme in space (44),
for different spatial step sizes.

2.1 2.1
1.8 1.8
215 215
= =
1.2 1.2
0.9 0.9
~0.10 045 1.00 1.55 2.10 ~0.10 045 1.00 1.55 2.10
X X
a) b)

Fig. 1. Results of solving Test Problem 1:
red line — exact solution; blue dots — numerical solution using the first-order spatial approximation scheme (42);
green triangles — numerical solution using the second-order spatial approximation scheme (44);
a — spatial step size & = 0.5; b — spatial step size 7 = 0.1
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In addition to the approximation error, we compute the effective order of accuracy of the scheme [28]:

R
eff _ N
p” =log, }R—N{ (48)

where R) is the error of the numerical solution on the grid with step size 4, R , is the error on the grid with step size h/r.
Table 1 presents the computational error of the numerical solution for Test Problem 1 based on schemes (42) and (44)

N
for different spatial step sizes. The error was measured in the grid space norm P” = Z|u(xi,t”) —u!

-h, where u(x,t") is

i=1

the analytical solution, and " is the numerical solution.

Based on the data in Table 1, we can conclude that the proposed scheme (44), with improved boundary approximation
for the heat conduction equation under third-kind boundary conditions (33), exhibits an effective order of accuracy equal
to 2, which agrees with the theoretical estimate.

Table 1
Computed errors of the numerical solution for Test Problem 1 for various spatial step sizes
The error value of the numerical solution
h=1.00 h=0.50 h=0.25 h=0.10
Finite difference scheme with standard 0.000 0.000 0.000 3.286x107"
boundary approximation (42)
Finite difference scheme with improved 1.000 0.208 0.047 0.007
boundary approximation (44)
Effective accuracy order of scheme (44) - 2.263 2.152 2.075
Test Problem 2. Let us consider the solution of the following problem:
%:%+X"’O<x<5’ (49)
with the following initial condition:
u(x,0),_, =0 (50)
and third-kind boundary conditions:
%u(x,t) - 0,1u(x,t)XX:0 -0, (%u(x,t) + 0,1u(x,t))LS ~0, (51)

where X, is an eigenfunction corresponding to an eigenvalue A , which is determined by equation (11). Problem (49)—(51)
is a steady-state problem.
The analytical solution to problem (49)—(51) in the steady-state formulation can be expressed in the following form:

u(x,t) = A, X +arccos

e R |

According to the conditions of the problem (49)—(51), o = 0.1. Let us determine A,.
We now consider the numerical algorithm for solving equation (11) to determine the eigenvalues A,. Let us assume we
need to find the roots of the nonlinear equation f{A) = 0, where f(1)=2 ctg A/ X + %.
o

Step 1. Introduce two auxiliary functions f,(A)=2 ctg A/ and f, (1) = r_a
a

A
Step 2. Define the number of iterations K, which also determines the number of eigenvalues to be computed.
Step 3. For each eigenvalue A, define the initial guess using the following expression:

(2k+hm 1 1 (2k+Dn
== 77 Zlarcte| —- Al Lad) | §
WesT e L Ty

where £ is the iteration index or the index of the corresponding eigenvalue 2,.
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Step 4. At each iteration, apply Newton’s method to find the solution of the nonlinear equation f{A) = 0. For this, define
the function

Step 5. Use x, as the initial approximation w,.

Step 6. Compute the value x,,, =x, — f(x,)/g(x,).

Step 7. If |xHl —x,.| > ¢, where ¢ is a predefined small tolerance, return to Step 6.

Step 8. Assign the computed value A, define equal x,, .

Step 9. If k£ < K, proceed to Step 4. Otherwise, terminate the eigenvalue computation algorithm A,.

Figure 2 presents the results of the algorithm described above. The points in the figure indicate the values A, that
correspond to the solution of the equation f{A) = 0.

20

10

)

0 2 4 6 8 10
A

Fig. 2. Results of the eigenvalue A, computation algorithm: the red line represents the graph of the function f{A);
the blue dots indicate the computed values A, which correspond to the roots of the equation f{}) =0

Figure 3 presents the analytical solution of problem (49)—(51), as well as the numerical solutions of Test Problem 2
obtained using the first-order finite difference scheme in space (42) and the second-order finite difference scheme in space
(44) for various spatial step sizes. The eigenvalue was taken for k£ = 4 and is equal to A,~ 2,529.

0.500 0.500
0.225 0.225
T 0.500 S 0.500
1 5t
0.325 0.325
-0.600 -0.600
0.1 1.2 25 3.8 5.1 0.1 1.2 2.5 3.8 5.1
X X
a) b)

Fig. 3. Results of solving Test Problem 2 for k = 4:
the red line represents the exact solution; blue dots represent the numerical solution based on the first-order spatial
approximation scheme (42); green triangles represent the numerical solution based on the second-order spatial
approximation scheme (44); a — spatial step size & = 0.5; b — spatial step size & = 0.1

Table 2 presents data on the computed error of the numerical solution of Test Problem 2 obtained using schemes (42)
and (44) for various spatial step sizes.
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Table 2
Computed Error Values of the Numerical Solution of Test Problem 2 for Various Spatial Step Sizes
Values of the Numerical Solution Error
h=1.00 h=0.50 h=0.25 h=0.10

Finite Difference Scheme (42) 2.916 0.581 0.136 0.021
Effective Order of Accuracy of Scheme (42) — 2.327 2.094 2.028
Finite Difference Scheme with Improved 1.126 0.206 0.047 6.964x107
Boundary Approximation (44)

Effective Order of Accuracy of Scheme (44) - 2.455 2.133 2.080

Based on the data in Table 2, it can be observed that the proposed scheme (44), which incorporates improved boundary
approximation for the heat conduction equation with third-kind boundary conditions (33), demonstrates an effective order
of accuracy equal to 2, which is consistent with the theoretical estimate. The finite difference scheme (42), employing
standard boundary approximation, also exhibits an effective order of accuracy close to 2, despite the lower theoretical
approximation error order at the boundary nodes. It is worth noting that the proposed scheme (44) reduces the numerical
solution error by approximately 2.5 to 3 times, depending on the spatial step size. As the spatial step size decreases, the
difference in accuracy between schemes (42) and (44) becomes more pronounced.

Test Problem 3. Let us find the solution to the following problem:

ou _0’u

E=§—9(x—l)+9(x—3),0<x<5,O<T<10 (52)

with the following initial condition

u(x,t)L:O =0 (53)

and third-order boundary conditions

=0, (54)

x=5

—0, (%u(x,t) ; u(x,t))

(%u(x,t) — u(x,t))

x=0
where 0(x) is a piecewise-defined Heaviside function.
According to (30), the analytical solution to the problem (52)—(54) can be written in the following form:
u(x,t) = ZC;”’)(t)(Xk cosh,x +asink,x),
k=1
where C"(¢) is determined based on (29), while taking into account the type of the right-hand side (52)

2
S5(n; +1)+2

2

C(/’) ¢t :C(./') — _ e
v (=G S5(n; +1)+2

3
j(?»k cosh,x +asini, x)dx = (%(cos%k —cos),)+sink, — sin3kkj. (55)
1 k

Taking into account (29) and (55), we obtain the following form for the exact solution of the problem (52)—(54):

= exp(-A2t)—1
u(x,t) = ZMQU '(h, coshx +asin, x).
k=1

The eigenvalues A, are determined using the algorithm described in Test Problem 2.

In Figure 4a, the numerical solution to Test Problem 3, obtained using the difference scheme with improved boundary
approximation (44) for a spatial step of 4 = 0.5. is presented. In these calculations, 1000 eigenvalues A, were used. Visually,
no significant difference was observed between the numerical solutions obtained using difference schemes (42) and (44).

In Figure 4b, difference between the analytical and numerical solutions, calculated using formula (56) for k£ from 1 to
1000, is shown.

Figure 5 presents the analytical solution of the problem (52)—(54) at a fixed time =2, as well as the numerical
solutions of Test Problem 3 obtained using the first-order spatial approximation scheme (42) and the second-order spatial
approximation scheme (44) for different spatial step sizes. The calculations accounted for the sum of the first 1000
eigenvalues .
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10 2.599 10 x10°?
4.788
3 8
1.949 5951
6 6
~ 1.299 = 1.113
4 4
0.650 ~0.724
2 2
0 0.000 0 ~2.561
o 1 2 3 4 5 0 12 3 4 5
X X
a) b)

Fig. 4. Results of solving Test Problem 3 considering 1000 A, and time steps t = 0.001 and spatial steps # = 0.5:
a — numerical solution based on the second-order spatial approximation scheme (42);
b — difference between the analytical and numerical solutions based on (44)

1.5 1.5
1.0 1.0
) )
E E
s s
0.5 0.5
0 0
0 2 4 5 0 2 4 5
X x
a) b)

Fig. 5. Results of solving Test Problem 3 at ¢ = 2:
red line — analytical solution; blue dots — numerical solution based on the first-order spatial approximation scheme
(42); green triangles — numerical solution based on the second-order spatial approximation scheme (44);
a — spatial step & = 0.5; b — spatial step 2= 0.1

Table 3 presents information on the computational error of the numerical solution of Test Problem 3 based on schemes
(42) and (44) for different spatial step sizes.

Table 3

Computed values of the error for the numerical solution of Test Problem 3 at # =2 for different spatial step sizes

Error values of the numerical solution

h=1.00 h=0.50 h=0.25 h=0.10
Solution based on the first-order spatial 0.0503 0.0102 0.002 2.6797x10*
approximation scheme (42)
Effective order of accuracy of scheme (42) - 2.3010 2.231 2.2860
Solution based on the second-order spatial 0.0530 0.0130 2.914x1073 2.0397x107*
approximation scheme (44)
Effective order of accuracy of scheme (44) - 2.0570 2.132 2.9020
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From the data in Table 3 (similarly to Test Problem 2), it can be observed that the proposed scheme (44) with improved
boundary approximation for the heat conduction equation under third-kind boundary conditions (33) exhibits an effective
order of accuracy equal to 2, which is consistent with the theoretical estimate. The difference scheme (42) with standard
boundary approximation also demonstrates an effective order of accuracy close to 2, despite the theoretical estimate of the
approximation error order at the boundary nodes. At the same time, for the proposed scheme (44), the numerical solution
error decreases significantly faster than for the solution based on scheme (42).

Discussion and Conclusion. This study examined the heat conduction equation with third-kind boundary conditions,
for which an exact solution was obtained. The problem was discretized, and it was shown that under standard boundary
approximation, the theoretical order of approximation error for the second-order differential operator in the diffusion
equation is O(h). Based on this estimate, it follows that for the heat conduction equation with third-kind boundary
conditions, the standard discretization yields a first-order accurate scheme. To improve the accuracy of the numerical
solution, a finite difference scheme was proposed that provides an approximation error of O(4?), for the second-order
differential operator, both at interior and boundary nodes of the computational domain. This scheme is applicable to third-
kind boundary conditions of a specific form.

Numerical experiments demonstrate that the proposed scheme, featuring enhanced boundary approximation for the
heat conduction equation with third-kind boundary conditions of a specific type, achieves an effective order of accuracy
close to 2, which aligns with the theoretical estimate. It is also worth noting that the finite difference scheme with standard
boundary approximation exhibits an effective order of accuracy close to 2, despite the theoretical approximation error
estimate at the boundary nodes. The observed discrepancy between the theoretical approximation error and the achieved
numerical accuracy calls for further investigation. Importantly, the numerical error of the proposed scheme decreases
significantly faster than that of the scheme with standard boundary approximation.
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