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Abstract

Introduction. This study investigates the numerical solution of a two-dimensional hydrodynamic problem in a rectangular
cavity using the method of initial velocity field damping and the method of accelerating the initial conditions in terms
of stream function and vorticity variables. The damping method was applied at Reynolds numbers Re < 3000, and the
acceleration method was used for Re = 8000.

Materials and Methods. To speed up the numerical solution of the problem using an explicit finite-difference scheme
for the vorticity dynamics equation, the method of initial condition damping and the method of n-fold splitting of the
explicit difference scheme (with #n = 100) were used. Compared to the traditional method of accelerating from stationary
fluid, the initial velocity field damping method reduced the computation time by a factor of 57. The splitting method
used a maximum time step proportional to the square of the spatial step, while maintaining spectral stability of the
explicit scheme in the vorticity equation. The majority of computation time was spent solving the Poisson equation in the
“stream function — vorticity” variables. By freezing the velocity field and solving only the vorticity dynamics equation,
computation time was further reduced in the splitting method. The inverse matrix for solving the Poisson equation using
a finite number of elementary operations were computed using the Msimsl library.

Results. Numerical solutions demonstrated the equivalence of the damping and acceleration methods for the initial velocity
field at low Reynolds numbers (up to 3000). The equivalence of solutions obtained using the “stream function — vorticity”
algorithm and the implicit iterated polyneutic recurrent method for accelerated initial conditions was numerically
confirmed. For the first time, an initial horizontal velocity field was proposed, smooth at internal points and composed of
two sine waves, with a stationary center of mass for the fluid in the rectangular cavity.

Discussion and Conclusion. An algorithm for numerically solving a two-dimensional hydrodynamic problem in a
rectangular cavity using “stream function — vorticity” variables is proposed. The approximation of the equations in
system (1) has sixth-order accuracy at internal grid points and fourth-order accuracy at boundary points. A novel damping
method is introduced using an initial horizontal velocity field formed by smoothly connecting two sine waves. The
proposed algorithms enhance the efficiency of solving hydrodynamic problems using an explicit finite-difference scheme
for the vorticity equation.
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AHHOTALUSA

Beeoenue. Uccnenyercsa 4ucieHHOE PELIEHUE IBYMEPHON MMIPOIMHAMUYECKOM 3a1a4n B MPSIMOYTOJIbHON KaBEpHE Me-
TOJIOM TOPMOXKEHHSI U METOJIOM Pa3roHa HauyallbHbIX YCIOBHU B MEPEMEHHBIX «(DYHKIMS TOKAa — BUXPbY». MeTo] TOpMO-
JKEHUSI IpUMEHsLICs npy yncnax PeliHonsaca Re <3000, a meton pasrona mpu unucinax Re = 8000.

Mamepuanst u memoost. [|11 yCKOPEHNU YHCICHHOTO PELICHUS 3aJa4d C SBHOM pa3HOCTHOW CXeMOIl ypaBHEHHS IH-
HaMHKH BUXPsI HCIOIb30BAJICS METOJ TOPMOXKEHHS Ha4YadbHBIX YCIOBUN U METOJ] H-KPATHOTO PACILEIUICHUs sIBHOU pa3-
HOCTHOM cxeMblI (7 = 100). MeTon TOPMOXKEHHUST HauaJIbHBIX YCJIOBHMA MOJISI CKOPOCTH TI0 CPABHEHUIO C METOJIOM pa3roHa
HEMOABIKHOMN KUAKOCTHU MO3BOIMII COKPATUTh BpeMs cdeTa 3aJaud B 57 pa3. MeTox paclleIuieHus UCTIOIb30Ball MaK-
CHUMAJIBHBIN IIar BpeMEHH, IMPOMOPIIHOHANBHBIA KBaIpaTy KOOPAUHATHOTO IIara, He HapyIas IpH 3TOM CIIEKTPajIbHOM
YCTOHYMBOCTH SIBHOIM CXEMBI B ypaBHEHHH BHXps. Hanbonpiee BpemMs mporpamMMa 3aTpaTiia Ha pelieHHe YpaBHEHHS
[Tyaccona ¢ mepeMeHHbIMU «(QYHKIIMS TOKAa — BUXPb». VICIONB3ysl 3aMOpPOKEHHOE TMOJIE CKOPOCTEH M pelas TONbKO
JMHAMHYECKOE ypaBHEHHE BUXPS, ObIIIO COKpAIIEHO BpeMsI cueTa B MeTozie paciueruieHns. OOpaTHas MaTpulia JuIs perie-
Husl ypaBHeHHs [lyaccoHa 3a KOHEYHOE YMCIIO dJIEMEHTaPHBIX ONepaluii BBIUUCIsUIach OnbanoTekoit Msimsl.
Pesynomamut uccnedosanusn. YucneHHoe pelIeHNe 3a1a4 I0Ka3aJI0 SKBUBAJIEHTHOCTh METOA0B TOPMOXKEHHSI 1 Pa3roHa
HAYaJILHOTO MOJISI CKOPOCTHU IpY HeOoMbInuX ynciax Peitnonbaca (10 3000). HucieHHO H0Ka3aHa SKBHBAJICHTHOCTD Pe-
IIEHUsI THIPOJMHAMUYECKON 33/1a4¥l aJITOPUTMOM B MEPEMEHHBIX «(DYHKINS TOKa — BHXPb» U allTOPUTMOM C HESIBHBIM
MTONIMIIMHEHHBIM PEKypPEHTHBIM METOIOM B CIIydae pa3rOHa HayalbHBIX yCJIOBHH. BrepBrle mpeanokeHO HadalbHOe
TOPHU30HTAIILHOE M10JIE CKOPOCTH, IMAKO€ BO BHYTPEHHHUX TOUKaX U COCTOAIIEE U3 IBYX CUHYCOH/]| C HETIOJBM>KHBIM II€H-
TPOM MaccC BCEH JKUIKOCTU B IPSIMOYIOJIbHON KaBEPHE.

Oocyscoenue u 3axaouenue. IIpennoxeH anropuT™M YUCIEHHOTO PEIICHUS JBYXMEPHOH TMAPOANHAMHUYECKOHN 3a/auu
B IIPSIMOYTOJILHOM KaBepHE B MEPEMEHHBIX «(PYHKIHS TOKa — BUXPB». ANMPOKCUMaNus ypaBHeHUH B cucteme (1) mme-
€T MIECTON MOPSAJOK MOrPEIIHOCTY BO BHYTPEHHUX y3/1aX U YETBEPThIA B IPaHUYHBIX y3JaX. BriepBsle mpeoxkeH Me-
TOJ, TOPMOKEHUS C HAYAJIBHBIM TOJIEM FOPHU30HTAIBHON CKOPOCTH MOCPEACTBOM IVIAIKOTO COCAMHEHUS IByX CHHYCOU.
[IpennoxeHHBIE AITOPUTMBI O3BOJISIIOT Oosiee 3(h(EKTUBHO pemIaTh 3aJa4i THAPOANHAMUKY C SIBHOW Pa3HOCTHOMW CXe-
MOH ypaBHEHUS BUXPSL.

KiaroueBrble ciioBa: TUApOAWHAMUKA, YACICHHBIC MCTO/Ibl, YPABHCHHS B YaCTHBIX MTPOU3BOJAHBIX, HAYaJIbHO-KpAcBas 3a-
Jla4ya, rpaHAYHBIC YCJIIOBUA, HAYAJIbHBIC YCIIOBUA

Jaa nurupoBanus. Bonocosa H.K., Bonocos K.A., Bonocosa A.K., Kapaos M.U., TTactyxos [.®., ITactyxoB 10.D.
CpaBHeHHE pelIeHHH T'HIPOAMHAMUYECKON 3aJaud B MPSIMOYTOJbHOW KaBEpHE METOAaMH TOPMOXKEHUS U pas-
roHa HadanpHOro moms ckopoctH. Computational Mathematics and Information Technologies. 2025;9(2):22-33.
https://doi.org/10.23947/2587-8999-2025-9-2-22-33

Introduction. This paper examines a two-dimensional hydrodynamic problem in a rectangular cavity with a moving
upper lid, formulated in the “stream function — vorticity” variables [1]. The velocity field features two singular points
in the upper corners of the cavity—both in magnitude and direction—making this problem a benchmark for testing
numerical algorithms designed to solve various hydrodynamic problems [2]. For instance, studies [3—5] focus on exact
or highly accurate approximate solutions to hydrodynamic problems. Problems involving large velocity field gradients
at singular points are presented in [6, 7], while flows in viscous fluids are addressed in [8, 9]. Several approaches to
formulating initial and boundary conditions in hydrodynamics are discussed in [10, 11].

The present work builds upon the method of n-fold splitting of the vorticity equation using an explicit finite-difference
scheme (n = 100), as described in [11], and employs a uniform grid n, x n, = 100 x 100.

Materials and Methods

Problem Statement. We consider the classical hydrodynamic problem in a rectangular domain (cavity), described by
a system of partial differential equations along with initial and boundary conditions for the physical fields [1], formulated
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in the “stream function — vorticity” variables. Let (u(x,y), v(x,y)) denote the velocity vector of a fluid particle. On the
solid boundaries — the lateral and bottom sides of the rectangular cavity — the velocity is zero (no-slip condition for
fluid particles). The normal component of the velocity is also zero along the entire rectangular boundary. We position the
origin of the coordinate system at the lower left corner of the rectangle, with the y-axis directed upward and the x-axis to
the right. Let L be the width of the rectangular cavity and H its height.

In this hydrodynamic problem within a closed cavity, the moving upper lid translates to the right with a constant

velocity u_ . We define the characteristic scales: length scale: L, time scale: L, velocity scale: u__, stream function
u

max

scale: Lu__ , vorticity scale: Umax | Reynolds number: Re. We introduce the following dimensionless variables: x is the
L

horizontal coordinate, ; is the vertical coordinate, ﬁ, W are the stream function and vorticity, respectively, (1/_{, \_/) is the
dimensionless velocity vector, ¢ is the dimensionless time:

Y

0S;=£Sl, 0S;=1Sk=£:$=_’\vmax =Lumax’
L L L max
- u - v — w U nax
u:_av:_W:_’Wmax - >
U nax U nax Winax L
- u L
t:L,T:L,Re: max
T u v

Let us write the system of hydrodynamic equations using the dimensionless variables and functions [1, 5, 11]:

max 2

QE+QE=_%&5LO<}=%<LO<}<k

:ﬁ;;‘_":_ﬁga (1)

- - = - = 1 —_ = -t
Wt+u-W}+v~m:R—(W;;+w;;),0<t:—,

(5]
ﬂr = 0"_}|F = O’ﬂr, = 0’%1‘\5 =L

Here I, denotes the union of the side walls and the bottom segment of the rectangular boundary, /\I', represents
the upper segment of the rectangle. The first equation in system (1) is the Poisson equation for the stream function and
vorticity. The two-dimensional Poisson equation on a rectangular domain is solved in matrix form using a finite number
of arithmetic operations with sixth-order accuracy [5, 12]. From this point forward, we will omit the overbars above the
dimensionless functions, time, and coordinates for convenience.

The second line of system (1) describes the vorticity function, which is computed through the spatial derivatives of the
velocity field. The third line calculates the velocity components as partial derivatives of the stream function. The fourth
line is the vorticity dynamics equation, the only one in system (1) that explicitly depends on time. On the left-hand side
is the total (convective) time derivative. On the boundary of the rectangle, the vertical component of velocity is zero; the
horizontal component is equal to one on the upper segment and zero on the bottom and side segments.

In addition to the two mentioned singular points of the velocity field, for testing the algorithm in the method of
initial velocity field damping, a highly unsteady and vortical initial velocity field was used. This field should, by its
parameters, be close to a steady-state velocity field, satisfy the continuity equation for incompressible flow, and—as
numerical experiments show—Dbe continuously differentiable at all points in the domain.

For the first time in this work, an initial horizontal velocity field on a uniform rectangular grid is proposed, defined
by formula (2). The horizontal velocity profile on the upper segment of the rectangular cavity is constructed by smoothly
stitching together two cubic polynomials:

uO( ﬂ) T y O( n) T (1 ’\/7) ym JE
u (x,y )=—"—"sin| =2 |= sin 0y <———k,
_( "ym) \/5 (kl ) \/5 k«/f 4 1+\/§

2k

yﬂ'l_
| T —k . ( 1+\/§j \/E
u(xn,ym): u+(xn’ym)=u0(xn)S1n((Tzl)J=u0(xn)81n ;c k ’1+\/§k<ym Ska (2)

1+\/§

k. 2k

x, =nh,y, =mh,,h :L,h2 =—.k k, =

n n,’ L2

n=0,n,m=0,n,,n =n, =100.

k
1+\/§’

ky + ke, = ke, k, =2k,
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In formula (2), the lower part of the fluid moves to the left, the upper part moves to the right, and the horizontal
component of the velocity is bounded by u(x), i. e., it does not exceed unity. The profile of the horizontal velocity is
continuous with respect to the variable y: u_(x,,0)=u_(x,,k)=u,(x,,k)=0,u,(x,,k)=u,(x,). At the boundary point,
the sine curve graphs are tangent to each other:

uy(x,)m (k) up(x) T n(k, — k) T T
x,.k)=u, (x, k)< ——=,—cos| —L 0 =, (x )cos| DO _ g (6 )T = ()L
( n ) +)( n 1) \/E k] [kl J \/’ k 0( )2k 2k2 0( n)2k2 0( n)\/§k1
Integrating the profile (2) with respect to y from 0 to £ while keeping the variable x, constant, and denoting the integral

SR L -

kZ

we get:

Jy+hky

J.u(x y)dy = Iu (x,y)dy + J u, (x,y)dy =u,(x ( %jsin(n})d;+k2j.sin(§;)d;]=

=u0(x)[%cos(n;){; -2 o )‘ J_uo(x)[f_’; 2k, ) u (x)(‘f"l +%}=o.

This last integral shows that, at the initial moment in time, the center of mass of each sufficiently thin vertical column
of fluid lies on the x-axis. Thus, according to the law of conservation of momentum, the center of mass of the entire fluid
does not move along the x-axis either initially or at any subsequent moment in time.

The profile of the horizontal velocity component (3) on the upper segment of the cavity (y = k= 1) had the form of a
smooth and continuous symmetric curved trapezoid without singular points in the velocity field:

3202 - =X efo1],0<x <=l L
T n, 10 3
u(x,k)=u,(x)={L,t<x<l-1, A)
3207 =X o)1 —t<x <1
T

Note that u(0)=u'(0)=(6z-62") =0u(l)=1lu (1)=(6z-62>) =0, i.e, at the two junction points x=1,
x =1 —1 the profile of the horizontal component of velocity on the upper segment of the rectangular cavity is smooth.

The vertical component of the fluid particle velocity at the initial moment, according to the continuity equation, was
calculated using the trapezoidal rule m=1,n, —LLn=1,n, —1:

v(xn’ym) — _h2 (ux (xn’ym) + mzlux(xﬂ’yi)j — _h2 (u(xnﬂﬁym)_u(xnl’ym) + mzlu(xnﬂﬂyi)_u('xnl’y[)j' (4)

2 & 4h, o 2h,

According to the algorithm described in [1], the first equation to be solved in system (1) is the Poisson equation, which
is computed using a finite number of elementary operations [5]. The Poisson equation is approximated with sixth-order
accuracy at all internal points.

To approximate the Laplace operator, we expand the nodal values of the stream function y(x, y) in a Taylor series
around the central node on a 3x3 rectangular stencil. Due to symmetry, the odd-order partial derivatives of the stream
function vanish. When expanding in a Taylor series, we also take into account the Poisson equation:

=f(xl.,yj)=f,.wj,i=1,n2—1,j=1,n1—1, )

Ay =y +y, = (L0 =-wS V|, TV,

1 1
Ay = h_z(co\llo,o +C (\V—l,o TV TV, +‘Vo,1)+ G, (\V—I,—] P o A o VA )) = h_z(\Vo,o (Co +4C + 4C2)+

+C1[h2(wm+wyy) )+ 360(\vi‘”+w‘f))+0(hg)j+
2 R @\ ke ® ©) % 8\ _ (6)
+Cz(2h (W 0, )+ (Wi 0+ 6w )+ T (i +15(w,, + vl )+ Ok )j—

_ Yoo (Co +4C + 4C2)
hZ

+h4 ((\Uf) + \Viﬁ)

2
+(G+2G) (v tv,) +f—2((\vi‘” +yi)C 426, (w +y 6y )+

Jreg (Wi i +15(wi, + wii}t)l))l(;gj +O(H)=Ay =y, +v,,.
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Using equation (5) for equation (6), as well as the boundedness of the solution at each node of the rectangular grid,
we get that
{CO +4C, +4C, =0,

C +2C,=1.
Note that
_ o, @ 4 y@ pog® =
A =AMy, +v,, )= w 'y (Vo +w,)=v +yP+2yl) =1+,

A f = A+ 290 ) = v w3 (i, F v, ) S = (VW) =W, W e

xxyy

Considering the transformations above, we can rewrite formula (6) as:
Ay = h— W ryW)(C +2C,)+12C,pY
\V \Vxx +\'Iy} + (\'lx +\Vy )( 1 + 2)+ Z\Vx‘c}y

oy 1) S (wi"’)+\vf’+15(w$1m VO hs (i),

2
We require that the coefficient of % becomes an operator Af acting on the function f. Therefore, we have:

12¢,=2,
C,+4C +4C, =0
C +2C, =1 <:>C2:%,Cl:1—2C2:§,C0:—4C1—4C2:—m
12C, =2
ooy, (Wi F V)
Ay = f+ Af+—(C +2C,) (v +yl?)+ +0(n*) =
360 72
7)
1({ 10 2 1 (
h_z(_?\lfo,o +§(\|171,0 + \VO,—I +\|/1,0 + WO,I)+E(\V—I,—] +\V1,71 + ‘Vq,] +\V1,1)) =
©) vy © © © © 5 1 6)_
=+ Af+360(\u v +3(y my+Ww»))+(\l’mw+\I’mm)(%—@)+0(h )=
B fin @ 4 @ B fin 6
= + A +—A = + +f,)+— —=2 4+ O(h°).
=/ 4 360 / 180 ( ) / (f f”) 360(f ) ) 90 ( )

To use the Poisson equation (7) for the stream function in the system of equations (1) with an accuracy of O(h°) it is
necessary f=-w, the derivatives f_ f be represented with an accuracy of O(h*), and £, /5 o fxf:; with an accuracy of O(4?).

Using the method of undetermined coefficients [12], formulas for the internal nodes of the function £ with indices
n=2,n —2,m=2,n,—2 were obtained:

Jutty= ( 500+ (f10+fo 1 T 10+f01) (f_20+ﬁ)_2+f20+f02))+0(h )
fx(4) +fy(4) = h_4<12f0,0 _4(ﬁ1,o +f0,4 +f1,0 + .f;),l)+f—2,0 +f0,72 +f2,o + fo,z)"‘O(hz): 8)

P =it 2L o o Lo+ F) Lo Loy o+ )+ O(R).

Thus, formulas (7) and (8) together approximate the Poisson equation for the stream function and the vorticity function
in (1) with sixth-order accuracy at the interior nodes of the rectangle.

In [5], an algorithm for the matrix method of solving the difference Poisson equation (7) is described, which involves
a finite number of elementary arithmetic operations using the vector sweep method.

Consider the difference equation (9):

hl_z(_Tlowm,n + %(\mel,n + wm+l,n + \Vm,nfl + \Vm,nH) + é(“lm—l,nfl + \Vmﬂ,nfl + \Vm—l,nﬂ + \Vm+l,n+l )) fm n + (f;(v fy) )
©
1 1
+h4(%(fx(4) +fy(4))+ 90f )+0(h ) s M= Ln —-1m=1Ln,-1
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We define square matrices 4, B of dimension (n,~1)x(n ~1):

—m,m:n;mzl,nl—l,nzl,nl—1, g,m:n;mzl,nl—l,nzl,nl—l,
3 3
a = 2m:n-i-l\/mzn—l b = lm:n+1vm:n—1
m,n b > m,n 6’ ? (10)
Oom=>n+2vm<n-2, Oom=>2n+2vm<n-—2.

Let us briefly write the matrix algorithm for solving the difference equation (9) [5]:

1. Using the formula:

4
F, =1 +il—2(fxx +fyy)+h"(ﬁ(fx(4) +jfy(4))+9iojrng;)y)+0(hs)

X=Xy V=V
compute the right-hand side of the Poisson equation at all interior nodes of the uniform grid of the rectangle (m =1, ...,
n—lin=1,...,n-1).

2. Modify the right-hand side of the system of equations (11) using formulas (12) and (13) at the nodes of the rectangular
contour adjacent to the boundary contour, i. ., calculate £, , based on the values £, from step 1:

Ay +By) =F],
By, + Ay, + By, =F .m=2n,-2, (11)

B\V:rz +A‘V§24 =F, 1

ny—

_Tlowl,n,fl +§(wz,n]4 W W+ W) %(Wz,n,—z W2 T Vo Vo, )= Fis
m = E,n,—l - %(\Vl,nl + WO,n,—l) - %(Wo,npz TV, TV, )7
_TIOW;;Z—I,I + %(Wﬂz—Z,l TV, 2t W0t \Vnz,l) + %(\Vnrz,z TV, otV 00t \'}nz,O) =F,
m =L _Z(\I’nz-l,o + \Vnz,l) _l(W;12,2 TV, 00TV, ,0)’
10 23 ‘ 1 (12)
_T\Vnz—l,nl—l + E(an—z,n,—l + \Vnz—l,nl—z + \Unzfl,nl + \Vnz,nl—l) + g(‘l’nrz,n,fz + \Unz,n,fZ + \Vnrz,n1 + an,nl) = Erz—l,n,—l ’

F _F 2 1
ny—l,m—1 = ny—l,m—1 - E(anfl,nl + \']nz ) 71) - _(‘Vnz,nlfz + anf2,n, + \Vnz Wy )’

6
-10 2 1
T\Vl,l + g(\l’z,l Ty, tY,,t \Vo,l) + E(Wz,z TWo, tWo t Wo,o) =F,,

u=F, _g(‘l’ho + \Vo,l) _%(Wo,z TVt ‘Vo‘o)'

10 2 1 P E——
_?Wl,n +§(Wl,n—l TV, TVt \Vo,n) +g(\|/z,n4 TVt W, t \Vo,nn) = E,n SN = 29”1 -2,
E,n - E,n _EWO,n _g(wo,n—l + WO,nH)’n - 2’”] - 2’

10 2 1 o
_?an—l,n +§(\|‘ln2—],n—l + “ljnz—2,n + \VnZ—l,n-%-l + \Ilnz,n) +g(wnz—2,n—l + \ljnz—Z,rH—l + W}’Iz,’l—l + an,rﬁ—l) = EIZ—I,n SN = 2"nl - 2’
F =F _2 —l( + ) n=2n -2

ny-ln = T ny-ln 3\\Un2‘n 6 \Vnz,n—] \‘rlnz,;ﬁ-l A H (13)

10 2 1 S ——

_?\‘r[m,l +§(‘Vm-1,1 TV, otV t \Vm,o) +g(‘|/m-1,2 TV TVt ‘Vm+1,0) = Fm,pm = 2an2 -2,
Fm,l = Fm,l _gwm,o _E(Wmfl,o +\Vm+1,o)vm = 2,1’12 -2,

10 2 1 o —

_?\Vm,npl + E(Wmfl,npl + \Vm,an + \Vmﬂ,n,fl + \Vm,n1 ) + E(Wmfl,nﬁZ + Werl,n,fZ + \mel,n1 + \Vmﬂ,nl ) = Erz,n,—l ,m= 29”2 - 23
2 1 o —

Fm,npl = Fm,nlfl _EWm,nl _g(\vmfl,nl + Wmﬂ,nl )’m = 2’”2 - 2’

m =F,,, Vme2n,-2,ne2,n -2
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3. Find the matrix coefficients for the forward sweep using formulas (14) and (15) m =1,n, -2
A =—A"Byv,=A"FT, (14)

A, =—(B\,  +A) By, =(B\,  +A) (F] =By, )m=2,m,-2. (15)

4. Find the vector-row \V:z,l using formula (16):
i =(Bn, ,+4) (FL - By, ). (16)
5. Find the remaining rows of the solution matrix y’ using formulas (17):
m=n, =21y, =Ly, +V,.m=n—-2Lv, =y, . (17)

The matrix algorithm for the sweep (9)—(17) preserves sixth-order accuracy according to formulas (7) and (8) for the
Poisson equation.

The second and third equations of the system (1) w = vz —u5,u = y,,v=—y; are linear with respect to the first partial
derivatives, which can be calculated independently. Let us present the quadrature formulas for the first derivative with
different stencil centers.

For example, for the equation u = Q} we obtain:

Uiy = %(%(\VHI,/’ _Wi—],j) 230(\V1+2J Uu;_ 2,,) 60(W;+3, Wi—3,j))+ O(h6)si =3,n,-3,j=Ln -1,

v 13 V., Vs, e
(11) h(_ —— W 2W2/ W3,j+ - 5./j+0(h4)5‘]=17n1_1a

5 12 3 20
M(ZJ.) 12h( ( Wl/) (W4] WOJ))J’_O(hA‘)’j:l’nl _1’ (18)
U1,y = ( e Vot T2V, 0, =W, s, + an;J _%) + O(h4)’j =Lm -1,

u("z’z ;1) 12h (8(\'1"2 3.7 an—l,j) _(\Vn274,j - W"za/’)) + O(h4)"] = 1,}’11 - 1

Similar formulas can be written for the equations v=—y;,w=vi —uy. Consider the vortex dynamics equation in
the system of equations (1). To accelerate the numerical solution of the problem (1), the splitting method [11] was used.
Analytically, the method of n-fold splitting of the vortex equation for the time interval T - n can be written as:
Wk+i+] _ Wk+i 1

k+i F+i k+i\ —
. +u* w gL W, _R_e(wxx +w, ),l—O,n 1. (19)

The system of recurrence equations (19) for the vortex with a frozen velocity field
(u" (x, v), v (x, y)),i =0,n—1,k = const,k =1,2,... consists of n intermediate steps i=0,7—1, where the upper index i
indicates the number of the intermediate time layer in the vortex equation (19), and the index k is the number of the
multiple time layer in the system (19) (if £ is a multiple of #). The velocity fields and stream functions are constant in
equations (19) for given values of k = const and the change in index i=0,n—1. In this system of equations, only the
vortex field changes w*",i = 0,n —1. The velocity field changes abruptly in systems (1) and (19) when the time index of
the vortex function increases by »n from & to k£ + n in the vortex equation system (19).

The idea of splitting the system of equations (19) is to reduce the accumulation of rounding errors and the computational
time when solving it. Differential operators with respect to the coordinate in (19) are approximated in the internal nodes
with accuracy O(%), as are all the equations in the system (1), boundary conditions with accuracy O(/#*), and the time
with accuracy O(1).

Thus, by solving equation (19) 7, - n, n times in time we get a time jump 7, - 7 (which is n times larger than the
sequential solution of the system of equations (1)) and reduce the rounding error without solving the other equations in
the system (1) inside the system (19).

Equation (19) is linear with respect to the coordinate derivatives W' w W w In work [11], it is shown that for

xx?

spectral stability of the vortex dynamics equation (19), it is enough to choose the ratlo of the time and spatial steps in the

form of the inequality T, < %hz Re. This maximum time step was set by the authors in the program.

For the first partial derivatives of equation (19), approximation formulas were used, for example, for w ((formulas for
the derivative with respect to w_are similar):



Volosova N.K. et al. Comparison of Solutions to a Hydrodynamic Problem ...

1(3 3 6\ - .
Wy([,/) - Z(Z(M}Hl,j _W[fl,j) 20( i+2,j W'*Z,_/) 60( 1+3/ [73,j))+ O(h )Hl = 35”2 _37] = 17”1 _19
1 W, 13 w J W, J o
Wi _Z( %— 12w1"" +2w,  —w, +%—%)+ 0(},4)’J =1,n -1,
1 . — (20)
W00 ——h(8 W —wl,/.)—(w{j _Wo,,/))+0(h4)’] =1n -1,
1 W"zf 13 Wn274, j an—S, j 4 . T
Wyn-1) = _Z(_ 5 : 12 Wi, -1.j +2an 27 " W3, +TJ_TJ]+O(]1 )7] =Ln -1,
1 A —
Wy("zfz,j) 12/’1 (8( nz 3,j an—l,j)_(wn2—4,j _an,/))'f' O(h ),] = 1,7’[1 -1
The second partial derivatives w,, in equation (19) are given by:
1{ 49 3 3 1 . .
Wyy([,j) = h_z(_ﬁw}[’j +5(W[+1,j + l/Vifl,j) 20( i+2,j + Wl'*z,j) 90( i+3,) + Wi73,j))+ O(h6),l = 3,”2 —3,] = l’nl —1’
1 (137 49 17 47 19 31 13
Pwp :?(@W‘” T60 " T2 T M T Y60 ™ TTs0 6’)+O(h )i =t =1,
1(5 4 1 [
Woo = h_z(_sz’j +§(w]‘j + W*-")_E(W“'«f + w4!j))+ O(h“),J =1,n -1, (20)
137 49 17 47 19 31 13 4 . T
Yooty =52 (180 m 0 e g M g e T M T g s T g e ’) O(#*).j =Lm 1.
1(5 4 1 o
W2,y = ?(_EW”Z’Z” +§(wnfl’j + an—m) 12(w W, 4j)) + 0(},4),] =Ln -1

Similar to formulas (20), formulas for the derivative with respect to w_are written.

According to the algorithm of A. Salih [1], it is necessary first to update the values of the vortex function w at the
boundary of the rectangle and only then solve the vortex equation (19) in the internal points of the cavity.

Let’s expand the stream function at the first coordinate node at a distance /4 from the left wall along the x-axis, which
is normal to the left wall:

V= by ey g oy h—+0(h) @1
X XX 2 XXX 6 XXXX 24 XXXXX 120

From the equation u= ﬁ; =0 it follows that on the lateral walls the stream function does not change, and from the
equation v =—y- =0 it follows that the stream function does not change on the bottom and top segments of the cavity.
Therefore, on all four sides of the rectangular cavity, we set the stream function to be equal to zero.

Considering that on the left wall of the cavity y, =0,y =-v,y =-w we rewrite equation (21) as:

" " h 3 2y, h h’ n

2
—Vvh—w—+ —+ 0 )ow=""y-——1+ —+y,
\Vl 2 \Vxxx 6 \Vr)ocx 24 \']xxxx‘c 120 ( ) h hz \Vxxx 3 \Vuxx 12 Wx.\:voc 60

From equation (22), it can be seen that it is sufficient to approximate the derivatives of the stream function y_,
V-V, at the left boundary with the 3rd, 2nd, and 1st orders of accuracy, respectively. Equation (22) has an invariant
form since the order of the derivative and the step size 4 have the same parity. For example, for y h? the 3rd and 5th

orders, respectively, the product of the difference operator applied to y__ by /* does not change the éign and has the same
form relative to both the right and left walls.

The program used the following approximation of derivatives for the formula (22) (in each formula (23), the index j
changes within the range j=1,n —1):

+0(h*). (22)

@ oL
Wyin, 1 = E

1 49 461 307 15
3) 4
wiih,) ?( S o, 20w, — = w4 62w, == S +13w5,j—§w6,j)+0(h )s
1(35 137 242 107 17
,(v‘(l()),j) 2 :?(— 0./ _31Wl,j +7W2,j _TWBJ +7W4,j _19W5,j +ZW"’1)+O(}14)’
1( 7 95 85 5
w;fz)’j)h3 :h_z(_Z +2Ow1j =W, +60W3,j —Yw” +16w5,j _EW6’j)+0(h4)’ (23)

—4789w2’,+29w7 ,.—%wr +62w, ,,—%wz 13w, —Dy 76’j)+0(h4),

ny=5,j 8 ny

w® hzzL(ﬁw -3lw__ .+mw —&w .+mw L, —19w .+£w P ,)+O(h4),
6 7 2 2 T e

y(ny.j) hZ ny.j ny-1,j =2, 3 n=3,j ny—4,j n,-5,) n
o o (7 _9% _8 _3 4
wy(nz,j)h = hz( 2an,j +20an—l,j 5 W, +60wn273,j 5 W, a, t 16wn275’j 2wn276,j + O(h )
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In the work by A. Salih [1], it is pointed out that the stability of the numerical solution to problem (1) depends on
the order of approximation of the boundary values of the vortex function in an equation analogous to equation (23). For
example, he claims that approximating the boundary conditions of the vortex with the first order is more stable than with
the second order. Using the method of splitting the vortex equation (19) with an explicit finite difference scheme, the
authors did not notice any influence of the order of approximation of the vortex boundary conditions on the stability of the
problem, even with a fourth-order approximation. The stability of the solution to the general problem (1) depended only
on the Reynolds number Re and the choice of initial conditions.

Similarly to equation (22), for the vortex at the lower (upper) wall, we have:

2 3
w:%u —%+\ungr\|/Awf—2+\u}wg—0+0(h4). (24)

The profile of the initial horizontal velocity component (2), (3) and the vertical velocity component (4) refers to the
deceleration method and is stable for a Reynolds number Re < 3000. The acceleration method assumes initially stationary
fluid in the cavity and was first proposed by A.A. Fomin and L.N. Fomina in their work [2]. The upper cover of the cavity,
slowly accelerating from the stationary state, drags the fluid along with it inside the closed cavity. In work [2], the Fomins
proposed the velocity of the upper cover as a function of time, according to the formula:

l(sin(ﬁ(zt/t1 —1))+ 1),0 <1<,
v(x,k)=0,u(x,k) =<2 2

Lt>t,.

In this work, the acceleration method used a similar formula:

sin nr ,0<tr<y,
v(x,k) =0,u(x,k) = 2t (25)
Lt>t,.
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Fig. 1. Results of the solution: « — Re = 2000, deceleration method, lower boundary of the stream function
(first number), boundaries of horizontal and vertical velocity components, and vortex function at time ¢ = 24000;
b — the limiting field of streamlines in the deceleration method Re = 2000, n, x n, = 100 x 100



Volosova N.K. et al. Comparison of Solutions to a Hydrodynamic Problem ...

a)
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b)

Fig. 2. Results of the solution: ¢ — Re = 2000, acceleration method, lower boundary of the stream function
(first number), boundaries of horizontal and vertical velocity components, and vortex function at time ¢ = 1260000;
b — the limiting field of streamlines in the acceleration method Re = 2000, n, x n, = 100 x 100

By comparing the intervals of variation of the stream function values, the fields of horizontal and vertical velocities,
and the vortex function in Figures 1 and 2, we see that they coincide with an accuracy of up to 16 significant digits.
Therefore, the fields of streamlines in Figures 1 and 2 also coincide.

Thus, the acceleration and deceleration methods for the initial velocity field (2), (3), (4) are equivalent for Reynolds numbers
Re <3000. However, the time required to establish steady fields in the deceleration method is tens of times (57 times) shorter
than the time required to solve problem (1) using the acceleration method.
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X
b)

Fig. 3. Results of the solution: a — Re = 8000, acceleration method, lower boundary of the stream function
(first number), boundaries of horizontal and vertical velocity components, and vortex function at time ¢# = 1044000;
b — the limiting field of streamlines in the acceleration method Re = 8000, n, x n, = 100 x 100 31
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The field of streamlines in Figure 35 shows three second-order vortices located at the corners of the cavity and fully
coincides with the streamlines field presented in work [13, p. 22] for Re = 8000. From Figures 1, 2, and 3, it is evident
that the maximum values of the vortex function occur at nodes on the upper and right walls of the cavity, near the points
where the velocity profile joins or near special velocity points at the upper corners of the cavity [14].

Discussion and Conclusion. A numerical solution algorithm for a two-dimensional hydrodynamic problem in a
rectangular cavity, in terms of “stream function — vortex”, is proposed. The approximation of the equations in the
system (1) has a sixth-order error in the interior nodes and fourth-order error in the boundary nodes. For the first time, a
deceleration method with an initial horizontal velocity field is proposed using a smooth connection of two sinusoids. The
initial conditions in the deceleration method are suitable for Reynolds numbers Re < 3000. The numerical equivalence
of solutions using the acceleration and deceleration methods is demonstrated, with final fields of the stream function,
horizontal and vertical velocity components, and the vortex field coinciding up to 15 significant digits. The problem in
terms of “stream function — vortex” has been numerically solved for Re = 8000 and its solution and the structure of the
primary and secondary vortices qualitatively match the results of other authors.
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