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Abstract

Introduction. The widespread use of technical systems with moving boundaries necessitates the development of
mathematical modelling methods and algorithmic software for their analysis. This paper presents a systematic review
of studies examining the oscillatory and resonance properties of mechanical systems with moving boundaries, such as
hoisting cables, flexible transmission mechanisms, strings, rods, beams with variable length, and others.

Materials and Methods. A problem statement is formulated, and numerical methods are developed for solving nonlinear
problems that describe wave processes and the resonance properties of systems with moving boundaries.

Results. An analysis is conducted on wave reflection from moving boundaries, including changes in their energy and
frequency. It is shown that the energy of the system increases when the boundary moves toward the waves and decreases
when moving in the same direction as the waves. Criteria are obtained to determine the conditions under which the
boundary motion must be considered for accurate calculation of oscillation amplitudes. Numerical results demonstrate the
influence of boundary speed and damping on the system dynamics.

Discussion and Conclusion. The findings have practical significance for the design and operation of mechanical systems
with variable geometry. The results make it possible to prevent large-amplitude oscillations in mechanical objects with
moving boundaries at the design stage. These problems have not been sufficiently studied and require further research.
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AHHOTALMA

Beeoenue. 11lupoxoe pactipocTpaHeHHE B TEXHUKE 0OBEKTOB C IBUKYIIIMMUCS TPaHUIIAMH O0YCIIOBIUBAET HEOOXOIMMOCTh
Pa3BUTHS METOZIOB MaTEMATHIECKOTO MOJICIIPOBAHHUS U CO3[aHUS AJITOPUTMHYECKOTO POrPaMMHOI0O 00€CIICUCHUS /ISl CO-
OTBETCTBYIOIIETO aHau3a. Hacrosias paboTa mpeacraBisieT co00i CHCTEMATH3HPOBAHHBINA 0030p MaTepHAIOB, B KOTOPHIX
HCCIICAYIOTCS KolleOaTeNbHbIC U PE30HAHCHBIC CBOHCTBA MEXaHUYECKUX CHCTEM C IBIDKYIIMMUCS TPAHUIAMH, TAKHX KakK
KaHATHI IIOJbEMHBIX YCTPONCTB, THOKHE TIepeIaTOYHbBIC MEXaHU3MBI, CTPYHBI, CTeP)KHH, OaJIKH IEpEeMEHHOM JJTHHEL U T. 11
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Mamepuanwt u memoosi. CHOpMyTUpOBaHA TIOCTAHOBKA M pa3pabOTaHbl YHCICHHBIE METOABI PEIICHHS HEJTMHEHHBIX 3a-
Jla4, OIMCHIBAIOIINX BOJHOBBIE IPOIIECCH M PE30HAHCHBIE CBOMCTBA 00BEKTOB C JABMKYIIMMHUCS I'PaHULAMHU.
Pezynomamut uccneooganus. 11poseneH aHann3 OTPaKCHUsS! BOIH OT JBIDKYIIMXCSI TPAHUI, BKIIOYas M3MCHEHHE WX
SHEPruM M 4acToThl. [IoKa3aHo, 4TO SHEPrusi CHCTEMBI BO3PACTAET MPH JIBIKCHUH TPAHHUIIBI HABCTPEUY BOJIHAM M YOBI-
BAacT IPH COBIAJCHUH HampaieHUH. [lomydeHsl KpuTepruH, ONPEACTSIONINE YCIOBUS, IIPH KOTOPBIX HEOOXOIUMO yUH-
TBHIBaTh JIBM)KCHNE TPAHMIL JUI KOPPEKTHOTO pacyueTa aMILIUTY/ KoieOaHui. UncineHHbIe pe3ynbTaTsl IEMOHCTPUPYIOT
BIIMSTHUE CKOPOCTH ABMXEHUSI TPAHUI] U IeMII(UPOBAHNS HA AUHAMUKY CHCTEMBI.

Oécyscoenue u 3axniouenue. Pe3ynsrarel pabOTHl IMEIOT NMPAKTHYECKOE 3HAUCHUE JUIS MTPOCKTUPOBAHMS U IKCILTya-
TallMM MEXaHWYECKUX CHCTEM C MEepeMeHHOIl reomeTpueil. [IpuBeneHHbIC pe3ynbTaThl MO3BOIAIOT HA CTAAUU MPOEKTH-
POBaHHMS IIPEAOTBPATUTH BO3MOXKHOCTH BO3HUKHOBEHHS KoJIeOaHUil OOJBIION aMILIMTYbI B MEXaHWYECKUX 00bEKTax ¢
JBIDKYIINMHUCS TpaHULIAMHY. JJaHHBIE 3a/1a41 MaJIo U3yUEeHbI U TPEOYIOT AaIbHEHIIIETO NCCICIOBAHN.

KioueBble cjioBa: pe30oHaHCHBIE CBOWCTBA, KOJEOAHUS CHCTEM C JBIDKYIIMMIECS TPAaHHWIAMH, BOJHOBBIC IPOIECCHI,
JnemriprpoBaHue, aMIDIATY/Aa KoIeOaHni

Jasi uurtupoBanus. CemenoB A.JL., JlursunoB B.JI., lllamonun M.B. UccrnenoBanue BIUsSIHUSL JBUKEHUS TPAHULL Ha
KoJie0aTeIbHbBIC U Pe30HAHCHBIE CBOHCTBA MEXaHMYECKUX CHCTEM IepeMenHon anuHbl. Computational Mathematics and
Information Technologies. 2025;9(2):34-43. https://doi.org/10.23947/2587-8999-2025-9-2-34-43

Introduction. In the field of elastic system dynamics, particular practical interest is drawn to problems involving
vibrations of structures whose geometric parameters change over time. Typical examples of such systems include hoisting
ropes [1-8], flexible transmission elements [4, 6, 9], drilling rigs [10], and others. Numerous studies on the dynamics of
hoisting ropes have revealed the need to develop new approaches to analyzing the behavior of one-dimensional objects
with variable geometric characteristics.

Similar problems involving moving boundaries also arise in the context of heat transfer, thermal conductivity, and
diffusion equations (notably, the Stefan problem). Such issues have been addressed in the works of L.A. Uvarova [11],
V.A. Kudinov [12], and other researchers.

A related class of problems—devoted to constructing two- and three-dimensional mathematical models of marine and
coastal systems, shallow water bodies, wave hydrodynamics and geophysics, and the correctness of problem formulations
described by elliptic-type equations—has been investigated by A.I. Sukhinov and his students [13, 14]. These authors
study the development and analysis of two-dimensional-one-dimensional splitting schemes and methods for solving grid-
based diffusion-convection-reaction problems, which form the basis for efficient parallel algorithms.

The results of A.I. Sukhinov, A.M. Atayan, A.V. Nikitina, A.E. Chistyakov, V.V. Sidoryakina [15], and others form
the foundation for studying forecasting problems of adverse and hazardous phenomena, including wave processes at
boundaries in natural and man-made systems; mass transfer across moving boundaries such as storm surges, coastal
flooding, and the formation of hypoxic zones in marine and coastal systems using precision models; as well as for remote
sensing and artificial intelligence applications. These authors have examined the existence and uniqueness of solutions to
linearized initial-boundary value problems for the developed models.

The problem of vibrations in systems with moving boundaries is related to obtaining solutions of systems of partial
differential equations in time-varying domains, as well as integro-differential equations with time-dependent integration
limits and kernels. It involves introducing the concepts of “eigenvalues” and “eigenfunctions” for variable-length objects
and developing a general framework for studying boundary value problems of this class based on the synthesis of integral
equation theory and asymptotic methods. Characteristic model boundary value problems are solved in the context of the
dynamics of hoisting ropes, beams, rods, and strings with variable length, and their resonance properties are analyzed.
These problems have not been sufficiently studied. Traditional methods of mathematical physics are mainly limited to
problems with fixed boundaries.

The difficulties encountered in formulating and solving such problems stem from the fact that, to date, no sufficiently
general approach exists for analyzing the dynamic behavior of such systems. Existing results are limited to qualitative
descriptions of dynamic phenomena, while little attention has been given in the literature to obtaining quantitative
characteristics with practical value.

The theoretical significance of this study lies in the development and investigation of new mathematical models
describing the vibrations of objects with moving boundaries in the form of partial differential equations.

The practical significance consists in the generalization of modelling techniques and numerical analysis of the
resonance properties of objects described by boundary value problems with moving boundaries. The emergence of large-
amplitude oscillations in such systems is often unacceptable, making resonance analysis a key focus.

From a mathematical perspective, these problems require solving hyperbolic-type equations in domains with moving
boundaries. The considerable challenges in describing such systems justify the predominant use of approximate analytical
methods. Among the analytical approaches, the most effective are those based on special variable transformations [16, 17],
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as well as methods employing the principle of superposition of counter-propagating wave processes [18]. Of particular
interest is the approach proposed in [19], which involves using complex variable substitutions to reduce the original
problem to the analysis of the Laplace equation.

However, the capabilities of exact analytical methods are significantly limited [1-3, 20-21]. Among approximate
methods, special attention should be given to the Kantorovich-Galerkin method [10, 22], as well as approaches based on
constructing solutions to integro-differential equations [23].

In systems with moving boundaries, two types of resonance phenomena are observed [4]: steady-state resonance and
passage through resonance.

If a system with time-varying dimensions is subjected to an external force whose variation is synchronized with the
changing natural frequency, the phenomenon of continuous amplitude growth is referred to as steady-state (or generalized)
resonance. Passage through resonance refers to the sharp increase in amplitude over a finite time interval, during which
the instantaneous natural frequency of one of the modes coincides with the excitation frequency.

Passage through resonance occurs over a limited time interval and typically does not reach the amplitude levels
characteristic of steady-state resonance. However, when damping is high and boundary motion is slow, the amplitude
values of both resonance types are close. In such situations, to estimate the vibration amplitude during passage through
resonance, it is sufficient to fix the boundaries at the resonance point and compute the amplitude of the steady-state
oscillations, which will approximate the maximum amplitude observed during the passage through resonance. Thus, the
amplitude in the fixed-boundary case provides an upper bound estimate for the desired quantity.

Consequently, there is a need to expand the range of problems related to modelling vibrations in systems with moving
boundaries and to develop new solution methods and corresponding software tools. This need constitutes the main
objective of the present work. The study explores the patterns of wave reflection from moving boundaries in systems
whose vibrations are described by the wave equation, as well as the interaction of longitudinal waves with moving
boundaries. The influence of damping forces on vibration amplitudes during resonance passage in systems with moving
boundaries is analyzed. Inequalities are derived that define the domains in which boundary motion must be accounted
for. The paper presents a systematized review of materials previously presented by the authors at scientific conferen-
ces [24-26], which examine the vibrational and resonance properties of mechanical systems with moving boundaries.

Materials and Methods

Investigation of wave reflection patterns from moving boundaries. Let the oscillatory processes of the system be
described by the wave equation:

U”(x,t)—azUxx(x,t)zo. )

Here U(x,?) is the function representing longitudinal or transverse displacement of the object from the equilibrium
position; ¢ is the time; x is the spatial coordinate.

The oscillating object (string, rod) is unbounded on one side, while the other boundary moves according to a law
x = (). A sinusoidal wave g(x + af) is incident on the moving boundary, where

g(z) = Asin(wz +7), )

and a reflected wave g(x — at) emerges from the boundary.
The task is to determine the change in energy of the reflected wave compared to the incident wave under uniform and
periodic boundary motion. The solution to equation (1) is written in the form:

U(x,t)=g(x+at)+q(x—at). 3)

The energy of the segment of the object (xe[a;b]) is given by the formula:
b
1 2772 2
W=p j (@*U2 (x,0) + U (x,0))dx, @)

where p is the linear mass density of the object.
Substituting expression (3) into (4), we obtain:

W =2pa [(&'(r+an)* +(q'(x- an)*

Thus, the system’s energy consists of two parts — the energy of the incident wave and the energy of the reflected wave:

1 of
W, =P’ [ (& (e + at)ds, )

Wiy =5P0° j (q'(x - at)d. ©)



Semenov A.L. et al. Study of the Influence of Boundary Motion ...

We will also use the dimensionless characteristic

W VV()mp. ( )
= 7
’ VVnaz),

and the dimensionless variables:

U(x,t)=AY (1), t=wat, E=wx, p=wz, q(z)=A0(p), g(z)=AG(p).

Then expressions (1)—(3), (5), and (6) will take the following form:

Y. (&D-Y. (&1 =0, ®)
G(p)=sin(p+7), ©))
YE1)=GE+1)+0(E-1), (10)

by by
W, = C[(GE+D)de, W,, =C[(QE-D)dE,
where C :%pazAzw, a, =wa, b, =wb.

Consider the boundary condition at the moving boundary of the form:
Ul@),)=0

(11)
for uniform boundary motion /(¥)=V%.
In dimensionless variables, the boundary condition will have the form:
Y(L(7),7) =0, (12)
where
L(tv=ar, a=V/a (a<]l). (13)
Substitute the solution (10) into the boundary condition (12). As a result, we obtain:
G(L(T)+ D)+ O(L(®) 1) =0. (14)

Let us denote this equation P = (L(t) — 1) and find from it the relation for t: T = @(P):
Express: L(t)+1t =P+ 2@(P). When the boundary moves according to the law ¢(P) = Ll equation (14) becomes:
oL —

O(P) = —G(Z—jP).

Given that the incident wave is defined by expression (9), the reflected wave will have the form:

OP)= —sin(—t—ZP—ky). (15)

Analysis of equation (15) shows that the amplitude of the wave does not change upon reflection from a moving

boundary, while the frequency changes in accordance with the Doppler effect by a factor of 140 When the boundary
1-a
moves toward the wave, the frequency increases (o > 0), when the boundary moves in the same direction as the wave, the
frequency decreases (o < 0).
Let us now calculate the energy change of a single incident wave upon reflection. |
The wavelength of the incident wave (from equation (9)) is 2n. The wavelength of the reflected wave is 1_—a27t,
+

therefore the ratio of the energies becomes
2n

W =C|cos’(P+y)dP=Cnr,
. = C[eos"(P+y) 16

1+a 2
w,, =C | (H_a) COSZ(H_OLP+Y)dp=Cn(1+_a)’
: 1-a 1-a 1-a

1+a
l-a

A
nao.
The energy of the system increases when the boundary moves toward the wave. The energy decreases when the
boundary moves in the same direction as the wave.
Now consider periodic boundary motion:

() = Bsin(mt). a7
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Let us synchronize the motion of the boundary with the incident waves in such a way that during the time it takes for
one wave to arrive (7 = 2n/wa) the boundary completes an integer number of oscillations, denoted by 7. In this case

o = wan. (18)
Expression (17) in dimensionless variables L(t) = wl(¢),T = wat, £ = wx taking into account (18) takes the form:
L(t) = Bsin(n1), (19)
where = Bw.

For subsonic boundary motion, the condition ([L'(t) <1) must be satisfied fn < 1. Substituting (19) into the boundary
condition (15) for the reflected wave yields:

O(P) =—sin(P+2¢(P)+Y). (20)

The function ¢(P) is defined implicitly and determined by the equation:

Psin(ne(P)) - p(P) = P. 21

To determine the energy of the reflected wave, we find from (21) ¢'(P) and from (20) Q'(P):
@'(P)=1/(Bncos(p(P))-1), (22)
Q'(P)=—(1+2¢'(P))cos(P+2¢(P) +7). (23)

The energy of the incident wave is defined by expression (16).
Taking into account (22) and (23), the energy of the reflected wave is given by:

I EZZZZQ * 1cos(P +2¢(P)+7) dP. (24)

omp

Results. We analyze expression (24) using the developed software package [27] to find its maximum with respect to
B and v for different values of n.

As a result of the numerical analysis, it was established that for any values of P the maximum energy of the reflected
wave is achieved at n =2 when y =/ 2. For other values of # the maximum is reached at different values of y=0. It was
also found that the function W (y) is periodic with period = for any values of 7.

The dependence of W, on B on y for n = 2, is presented in Table 1.

Table 1

Dependence of W on  and y for n =2

Y Bl 0.000 0.045 0.090 0.135 0.180 0.225 0.270 0.315 0.360 0.405
0.00 1.000 0.955 0.989 1.096 1.280 1.559 1.973 2.608 3.658 5.661
0.31 1.000 0.969 1.015 1.132 1.325 1.615 2.043 2.695 3.764 5.773
0.63 1.000 1.008 1.082 1.224 1.443 1.762 2.226 2.924 4.047 6.089
0.94 1.000 1.055 1.165 1.338 1.588 1.943 2.453 3.208 4.398 6.488
1.26 1.000 1.093 1.232 1.430 1.706 2.090 2.636 3.438 4.683 6.818
1.57 1.000 1.108 1.258 1.465 1.750 2.146 2.706 3.526 4.794 6.952
1.88 1.000 1.093 1.232 1.430 1.706 2.090 2.637 3.439 4.688 6.840
2.20 1.000 1.055 1.165 1.338 1.588 1.944 2.453 3.210 4.405 6.524
2.51 1.000 1.008 1.082 1.224 1.443 1.762 2.227 2.926 4.054 6.125
2.83 1.000 0.969 1.015 1.132 1.325 1.616 2.044 2.696 3.769 5.795
3.13 1.000 0.955 0.989 1.096 1.280 1.559 1.973 2.608 3.658 5.661

Features of Longitudinal Wave Interaction with a Moving Boundary. Let us consider the propagation of longitudinal
waves in a semi-infinite rod, where the left boundary moves between two rollers rotating with a circumferential speed v
and simultaneously translating along the x-axis with the same speed.

Until now, in the formulation of similar problems, the fact that deformed sections of the rod pass through the boundary
has been neglected, and the boundary condition in the absence of slip was written as:

U,@),t)=0; I(t)=vt.
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In cases where the deformations are significant, this can lead to substantial errors.
Let U(x,f) be the longitudinal displacement of the cross-section of the rod at coordinate x at time ¢ which satisfies the
wave equation (1). If deformations are taken into account, the boundary condition remains the same:

U,(0),1) =0, (25)
however, the law of boundary motion becomes coupled with U(x,f) by the relation:
I(ey=v/A+U (1(1).0)). (26)
This dependence of the boundary’s motion law on the oscillatory process makes the problem nonlinear. Problems of
this kind are currently poorly studied. A similar problem was first considered in [21].

We study the influence of the deformation magnitude and the boundary’s speed on the process of reflection of a

harmonic wave:
o(x +at) = Asinw(x + at) (27)

from a moving boundary.
Let us introduce the following dimensionless variables into the problem (1), (25)—(27):

U(x,t)= AV (&), (1) =L(v)/ o,
E=ox, T=awt, ¢(x+at)=Ag(E+1).

As a result, we obtain:
I/n (E,»T) - Vgr;(%?‘t) = 07 VT(L(T)s’E) = 0:

L'(v)y=¢/(1+aV,(L(1),7), g&+1)=sin(E+1), e=Vv/a, a = Ao.
We seek the solution in the form:
V(&,1) =sin(§+ 1)+ G(E—1).
As a result, to determine the functions G and L we obtain the following system:
L'(t)=¢/(1+2acos(L(7)+ 1)), G'(L(t)—1) =cos(L(t) +1).

From the second equation of the system, it follows that the amplitude of the deformation waves does not change. A
comparison of the system’s solution (the system was solved numerically using the developed software package [27]) with
the solution that does not account for the change in L(t) due to deformation, namely:

L(t)=¢1, G'(z2)=cos((e+1)z/(e-1)), z=1(e-1),

shows that there is a constant phase shift over time between the solutions. The wavelength in the first case is shorter. The
phase shift per unit time, depending on the parameters € and o deformation magnitude, is presented in Table 2.

Table 2

Phase shift per unit time depending on € and deformation magnitude o

€ 0.1 0.2 0.3 0.4
0.1 0.004 0.008 0.034 0.109
0.3 0.019 0.045 0.120 —
0.5 0.032 0.077 — —
0.7 0.057 — — —

At certain moments in time, the boundary may move faster than the speed of sound (L'(t) >1). In such cases, the

formulated problem becomes incorrect. The inequality € + 20, < 1 defines the admissible domain. In the cells of the table
where this inequality is not satisfied, a dash (—) is used.

Analysis of the Influence of Boundary Motion in the Study of Resonance Properties of Systems with Damping. To
answer the question of when it is necessary to take boundary motion into account, let us consider the process of passing
through resonance in a system with damping.

In works [10, 28], the resonance properties of two variable-length systems under the influence of damping forces were
studied. The expressions for the oscillation amplitude obtained therein take the form:

A3 = E2(e0)e ™ [ F, ()" sind, QLT +[[ F, (20" cosd, (LT}, ()
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where o, (g,1), E, (€1), F,(€€), D, () are certain functions.
Omitting some mathematical derivations, we obtain the expression for (28) in the form:

2
A()zn (TI’TZ) = A2 EAE (Zl ’22)’
where
A3(2,,2,) = €72 12(2,,2,) + 12(2,,2,)], (29)
I,(z,2,) = [e“sin(xz")dz, 1.(z,2,) = [ € cos(+2")dz, (30)

a=a,2/| V], z, =(vT,+®,) /2| V], i=12.

Here v is a parameter characterizing the speed of resonance passage; o, is a coefficient characterizing damping in the
system; 4 is a constant value; 1,1, are the boundaries of the resonance region.

Let us analyze expression (29) for its maximum in the vicinity of the point z, = 0.

As a result of the numerical solution of (29) using the developed software package [27], Table 3 was obtained.

Table 3
Results of the Numerical Solution of Expression (29) for the Maximum
a 0.00 0.10 0.30 0.50 0.70 1.00 1.30 2.00 3.00 7.00
z, -1.56 -1.54 -1.49 -1.49 -1.48 -1.48 -1.47 —-1.46 -1.35 -1.29
z, 1.56 1.45 1.30 1.25 1.20 1.15 1.10 1.00 0.70 0.40
A (o) 2.37 2.06 1.60 1.29 1.07 0.84 0.68 0.47 0.33 0.144

The maximum oscillation amplitude that arises when the boundaries stop at the resonance point is determined by
expression (28) at v = 0. Performing the calculations, we obtain:

A™ = A/ a. 31)

When v # 0 the amplitude is determined by the expression:

[2 [2
=4 |4 (0, =),
4, V] (o |V|) (32)

where the value of the function 4 is taken from Table 3.
The boundary motion should be taken into account when the relative amplitude error

A4,

is large.

Using the data from the table, it is easy to establish that the error A exceeds the value of 0.05 when

’ 2
a, m < 2,164 (34)

Inequality (34) defines the region in the parameter space o, v, where boundary motion must be considered. Substituting
into (34) and performing the transformations, we obtain the following inequality, which defines the region where boundary
motion must be considered:

A, >3.8\YA,
where A, =2mno,/®, is the relative change in amplitude over one free oscillation; A = 2n|u| [ wyl, is the relative
change in length over one free oscillation.

Discussion and Conclusion. The patterns of wave reflection from moving boundaries in systems whose oscillations
are described by the wave equation have been investigated. An expression has been obtained for the change in the energy
of the reflected wave relative to the incident wave in the case of uniform and periodic boundary motion. It has been
established that the system’s energy increases when the boundary moves towards the wave and decreases when it moves
in the same direction as the wave.
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The propagation of longitudinal waves in a rod with a moving boundary has been analyzed. In this case, accounting
for deformations renders the problem nonlinear. It has been shown that the amplitude of deformation waves remains
unchanged, despite the influence of boundary velocity and deformation magnitude.

The effect of damping forces on the oscillation amplitude during passage through resonance has been studied. Criteria
in the form of inequalities have been obtained, defining regions where the boundary motion must be taken into account.

The applied value of the results lies in their potential use for solving a wide range of engineering problems [29-33],
including: analysis of longitudinal and bending vibrations of shafts, beams, and rods with movable supports; reliability
assessment of ropes in lifting systems and dynamic stability of strings, fibers, and tape transmissions; study of vibrations
in tapes used in transport mechanisms, band saws, and flexible transmission elements; analysis of wire oscillations during
the fabrication of rotational shells by winding; process control in cable production, rolling; reliability assessment of
railway overhead contact systems, etc.

These types of problems are understudied and require further research. The presented results make it possible,
already at the design stage, to prevent the occurrence of high-amplitude oscillations in mechanical systems with moving
boundaries [34-37].

References

1. Kolosov L.V., Zhygula T.I. Longitudinal and transverse vibrations of the rope string of the lifting installation.
Minerals and Mining Engineering. 1981;3:83-86. (In Russ.)

2. Zhu W.D., Chen Y. Theoretical and experimental investigation of elevator cable dynamics and control. J. Vibr.
Acoust. 2006;1:66-78.

3. Shi Y., Wu L., Wang Y. Nonlinear analysis of natural frequencies of a cable system. J. Vibr. Eng. 2006;2:173—-178.

4. Goroshko O.A., Savin G.N. Introduction to the mechanics of deformable one-dimensional bodies of variable length.
Kiev, Nauk. dumka; 1971. 290 p. (In Russ.)

5. Anisimov V.N,, Litvinov V.L. Transverse vibrations of a rope moving longitudinally. Izvestia of Samara Scientific
Center of the Russian Academy of Sciences. 2017;19(4):161-165. (In Russ.)

6. Savin G.N., Goroshko O.A. The dynamics of the thread of variable length. Kiev, Nauk. dumka; 1962. 332 p. (In Russ.)

7. Liu Z., Chen G. Analysis of plane nonlinear free vibrations of a load-bearing rope taking into account the influence
of bending stiffness. J. Vibr: Eng. 2007;1:57-60.

8. Palm J., Paredes G.M., Eskilsson C., Pinto F. Simulation of mooring cable dynamics using a discontinuous Galerkin
method. In International Conference on Computational Methods in Marine Engineering, 2013.

9. Litvinov V.L. Investigation of free oscillations of mechanical objects with moving boundaries using the asymptotic
method. Middle Volga Mathematical Society Journal. 2014;16(1):83—88. (In Russ.)

10. Anisimov V.N., Litvinov V.L. Mathematical modeling and investigation of vibrations of one-dimensional
mechanical systems with moving boundaries. Samara, Samar. gos. tekhn. univ., 2017; 149 p. (In Russ.)

11. Uvarova L.A., Fedyanin V.K. Mathematical model of heat transfer in substantially nonlinear coupled media.
Matem. modelirovanie. 1990;2(6):40-54. (In Russ.)

12. Kudinov V.A., Kudinov 1.V. Methods for solving parabolic and hyperbolic heat conduction equations. Moscow,
Knizhniy dom “Librokom”, 2012; 280 p. (In Russ.)

13. Sikhinov A.I, Chistyakov A.E., Nikitina A.V., Atayan A.M., Litvinov V.N. A Method for Solving Grid Equations
for Hydrodynamic Problems in Flat Areas. Mathematical Models and Computer Simulations. 2023;15(5):35-58.
https://doi.org/10.20948/mm-2023-03-03

14. Sukhinov A., Sidoryakina V. Two-dimensional-one-dimensional alternating direction schemes for coastal systems
convection-diffusion problems. Mathematics. 2021;9(24):3267. https://doi.org/10.3390/math9243267

15. Atayan A.M., Nikitina A.V., Sukhinov A.L., Chistyakov A.E. Mathematical Modeling of Hazardous Natural
Phenomena in a Shallow Basin. Computational Mathematics and Mathematical Physics. 2022;61(2):269-286.
https://doi.org/10.1134/S0965542521120034

16. Vesnitskii A.l. Waves in systems with moving boundaries and loads. Moscow, Fizmatlit, 2001; 320 p. (In Russ.)

17. Anisimov V.N., Litvinov V.L., Korpen I.V. A method for obtaining an analytical solution to the wave equation
describing the oscillations of systems with moving boundaries. Journal of Samara State Technical University, Ser.
Physical and Mathematical Sciences. 2012;3(28):145—-151. (In Russ.)

18. Vesnitskii A.I. The inverse problem is for a one-dimensional resonator that changes its size over time. Izvestiya
vuzov. Radiophysics. 1971;10:1538-1542. (In Russ.)

19. Barsukov K.A., Grigorian G.A. Towards the theory of a waveguide with movable boundaries. Izvestiya vuzov.
Radiophysics. 1976;2:280-285. (In Russ.)

20. Wang L., Zhao Y. Multiple internal resonances and non-planar dynamics of shallow suspended cables to the
harmonic excitations. Journal of Sound and Vibration. 2009;1-2:1-14.

41


https://doi.org/10.3390/math9243267
https://doi.org/10.1134/S0965542521120034
https://doi.org/10.20948/mm-2023-03-03

42

Comp ional Mathematics and Information Technologies. 2025;9(2):34—43. eISSN 2587-8999

21. Samarin Yu.P. On a nonlinear problem for the wave equation in one-dimensional space. Journal of Applied
Mathematics and Mechanics. 1964;26(3):77-80. (In Russ.)

22. Anisimov V.N., Korpen I.V,, Litvinov V.L. Application of the Kantorovich-Galerkin Method for Solving Boundary
Value Problems with Conditions on Moving Borders. Mechanics of Solids. 2018;53(2):177—183.

23. Litvinov V.L., Litvinova K.V. An Approximate Method for Solving Boundary Value Problems with Moving Boundaries
by Reduction to Integro-Differential Equations. Computational Mathematics and Mathematical Physics. 2022;62(6):945-954.

24. Litvinov V.L., Anisimov V.N. Investigation of patterns of reflection of waves from moving boundaries. Proceedings
of the Sixth All-Russian Scientific Conference (June 1-4, 2009). Math. modeling and boundary value problems. Samara,
SamGTU, 2009;39-43. (In Russ.)

25. Litvinov V.L. Investigation of the interaction of longitudinal waves with a moving boundary. Scientific and technical
creativity: problems and prospects. Collection of articles of the IIl All-Russian conference-seminar. Samara, 2008; 31-36. (InRuss.)

26. Litvinov V.L. Accounting for the Influence of Damping Forces on the Resonant Properties of a String with a
Moving Boundary. In: Proceedings of the 5th Anniversary All-Russian Conference-Seminar “Scientific and Technical
Creativity: Problems and Prospects”. Samara: SamSTU Publishing; 2010, pp. 79-80.

27. Litvinov V.L. Certificate of state registration of a computer program. Automated software package for the study of
vibrations and resonant phenomena in mechanical systems with moving boundaries “TB-Analysis-7" No. 2025613649,
published on Feb. 13, 2025 (In Russ.)

28. Litvinov V.L. Variational formulation of the problem on vibrations of a beam with a moving spring-loaded support.
Theoretical and Mathematical Physics. 2023;215(2):709-715. https://doi.org/10.1134/S0040577923050094

29. Litvinov V.L., Litvinova K.V. An Inverse Method for Solving Problems about Oscillations of Mechanical Systems with
Moving Boundaries. Moscow University Mechanics Bulletin. 2024;3:53-59. https://doi.org/10.3103/S0027133024700122

30. Sandilo S.H., Horssen W.T. van. On variable length induced vibrations of a vertical string. Journal of Sound and
Vibration. 2014;333:2432-2449.

31.Zhang W., Tang Y. Global dynamics of the cable under combined parametrical and external excitations. International
Journal of Non-Linear Mechanics. 2002;37:505-526.

32. Faravelli L., Fuggini C., Ubertini F. Toward a hybrid control solution for cable dynamics: Theoretical prediction
and experimental validation. Struct. Control Health Monit. 2010;17:386—403.

33. Lezhneva A.A. Free bending vibrations of a beam of variable length. Scientific notes. Perm, Perm. Univ., 1966;
156:143-150. (In Russ.)

34, Selivanova N.Yu., Shamolin M.V. Local solvability of a one-phase problem with free boundary. Journal of
Mathematical Sciences. 2013;189(2):274-283.

35. Selivanova N.Yu., Shamolin M.V. Studying the interphase zone in a certain singular-limit problem. Journal of
Mathematical Sciences. 2013;189(2):284-293.

36. Selivanova N.Yu., Shamolin M.V. Local solvability of the Capillary problem. Journal of Mathematical Sciences.
2013;189(2):294-300.

37. Selivanova N.Yu., Shamolin M.V. Quasi-stationary Stefan problem with values on the front depending on its
geometry. Journal of Mathematical Sciences. 2013;189(2):301-310.

About the Authors:

Aleksey L. Semenov, Academician of the Russian Academy of Sciences, Academician of the Russian Academy of
Education, Doctor of Physical and Mathematical Sciences, Professor, Head of the Department of Mathematical Logic and Theory
of Algorithms, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University (119991, Russian Federation,
GSP-1, Moscow, Leninskie Gory), ORCID, SPIN-code, alsemno@ya.ru

Vladislav L. Litvinov, Candidate of Technical Sciences, Head of the Department of General Theoretical Disciplines (Higher
Mathematics), Samara State Technical University (443100, Russian Federation, Samara, Molodogvardeyskaya St., 244), ORCID,
SPIN-code, vladlitvinov@rambler.ru

Maksim V. Shamolin, Corresponding Member of RAS, Doctor of Physical and Mathematical Sciences, Professor,
Leading Researcher at the Laboratory of General Mechanics, Research Institute of Mechanics, Lomonosov Moscow State
University (119991, Russian Federation, GSP-1, Moscow, Leninskie Gory), ORCID, SPIN-code, shamolin@rambler.ru

Contributions of the authors:

A.L. Semenov: General scientific supervision; methodology development; visualization; validation.

V.L. Litvinov: Problem statement; formulation of research ideas, aims and objectives; software development.

M.V. Shamolin: Methodology development; translation; study of the problem’s history; literature review; visualization;
validation.

Conflict of Interest Statement: the authors declare no conflict of interest.

All authors have read and approved the final manuscript.


https://doi.org/10.1134/S0040577923050094
https://doi.org/10.3103/S0027133024700122
https://orcid.org/0000-0002-1785-2387
https://www.elibrary.ru/author_profile.asp?authorid=113589

mailto:alsemno%40ya.ru?subject=
https://orcid.org/0000-0002-6108-803X
https://www.elibrary.ru/author_profile.asp?authorid=582495
mailto:vladlitvinov%40rambler.ru?subject=
https://orcid.org/0000-0002-9534-0213
https://www.elibrary.ru/author_profile.asp?authorid=16091

mailto:shamolin%40rambler.ru?subject=

Semenov A.L. et al. Study of the Influence of Boundary Motion ...

06 agmopax:

Adgexkceii JIbBoBuu CemMeHOB, akanemrk PAH, akanemuk PAO, HOKTOp (pH3HKO-MaTEeMaTUUECKUX HAyK, Mpodeccop,
3aBefyrommi Ka(eapoil MaTeMaTHYeCKOW JIOTMKH M TEOPUH alTOPUTMOB MEXaHHKO-MaTeMaTHYECKOro (akyiIbTeTa
MocCKOBCKOTO TrocynapcTBeHHOro yHuBepcutera wuM. M.B. JlomonocoBa (119991, Poccuiickas ®enepanus,
I'CII-1, . Mockga, Jleannckue ropsr), ORCID, SPIN-kox, alsemno@ya.ru

Buaagucnas JIbBoBu4Y JIMTBMHOB, KaHAWIAT TEXHWYECKUX HayK, 3aBEAyIOIINH Kadeapoil oOmereopeTHuecKux
JWCIIMIIIVH (BBICIIIEH MareMaTrki) CaMapcKoro rocyjapCTBEHHOTO TeXHIIecKoro yauBepentera (443100, Poccuickas Deneparms,
r. Camapa, yi. Mononorsapaeiickast, 244), ORCID, SPIN-koz, vladlitvinov(@rambler.ru

Maxenm Baagumuposuy Hlamonun, wien-xoppecronnenT PAH, nokrop ¢u3nko-MareMaTidecKux Hayk, mpogeccop, Be-
JyLIWH HayYHBIH COTPYAHHMK JTaboparopun oomeit mexannku HUM mexannkn MoCKOBCKOTO rOCyJapCTBEHHOTO YHUBEPCH-
teta uM. M.B. JlomonocoBa (119991, Poccmiickas @enepanus, I'CII-1, . Mocksa, Jleanackue ropsr), ORCID, SPIN-xor,

shamolin@rambler.ru

3aa6/1eHHbLIL 6K1A0 A6MOPOE:

A.JL. CeMeHOB: 0o0liiee HayuHOE PYKOBOZCTBO; pa3paboTka METOOJIOTUH; BU3YAIN3allHsl; BaJIH AL

B.JI. JINTBHHOB: ITOCTaHOBKA 33/1a4¥; (OPMYJIUPOBKA UACH MCCIECAOBAHUS, LIeJICH U 3a1ad; pa3paboTka mporpamMmM-
HOro obecreueHusl.

M.B. llamosiH: pa3paboTKa METOJOIOTHH; TIEPEBOM; U3yUYECHHE UCTOPUH 33/1a4H; TIOMCK JINTEPaTyphl; BU3yaln3a-
IHST; BaJIMTAITHSL.

KOH(l)J'IHKT HHTEPECOB: aemopbul 3aA6/1110m 00 omcymcmeuu Kom[mulcma unmepecos.

Bce asmopubl npouumanu u 0006punu OKOHUAMENbHBLIL 6aPUAHIN PYKORUCH.

Received / Iloctynuiia B pexaxknmio 30.03.2025
Revised / IToctynuaa nociae penensupoBanus 25.04.2025
Accepted / Ilpunsara k myoauxanun 20.05.2025

43


https://orcid.org/0000-0002-1785-2387
https://www.elibrary.ru/author_profile.asp?authorid=113589
mailto:alsemno%40ya.ru?subject=
https://orcid.org/0000-0002-6108-803X
https://www.elibrary.ru/author_profile.asp?authorid=582495
mailto:vladlitvinov%40rambler.ru?subject=
https://orcid.org/0000-0002-9534-0213
https://www.elibrary.ru/author_profile.asp?authorid=16091
mailto:shamolin%40rambler.ru?subject=



