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Abstract

Introduction. Differential equations are often used in modelling across various fields of science and engineering. Recently,
neural networks have been increasingly applied to solve differential equations. This paper proposes an original method
for constructing a neural network to solve elliptic differential equations. The method is used for solving boundary value
problems in domains with complex geometric shapes.

Materials and Methods. A method is proposed for constructing a neural network designed to solve partial differential
equations of the elliptic type. By applying a transformation of the unknown function, the original problem is reduced to
Laplace’s equation. Thus, nonlinear differential equations were considered. In building the neural network, the activation
functions are chosen as derivatives of singular solutions to Laplace’s equation. The singular points of these solutions are
distributed along closed curves encompassing the boundary of the domain. During the training process, the weights of the
network are adjusted by minimizing the mean squared error.

Results. The paper presents the results of solving the first boundary value problem for various domains with complex
geometries. The results are shown in tables containing both the exact solutions and the solutions obtained using the neural
network. Graphical representations of the exact and the neural network-based solutions are also provided.

Discussion and Conclusion. The obtained results demonstrate the effectiveness of the proposed neural network
construction method in solving various types of elliptic partial differential equations. The method can also be effectively
applied to other types of partial differential equations.
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AHHOTANHSA

Begeoenue. [Tpu nocrpoeHny Mozieneil B pa3inuHbIX 00IacTsAX HAYKU U TEXHUKU YacTO UCTIOB3YIOT Au(depeHraIbHbIe
ypaBHeHUs. B Hacrosiee Bpems mpu pemieHnu auddepeHInanbHbIX YPaBHEHUH BCe Yallle NMPUMEHSIOTCS HEHPOHHBIC
cet. B manHoi paboTe MpemioxKeH OpUTHHANBHBIA METOI TOCTPOCHUS HEUPOHHON CETH JUIA PEIICHHUS IUIAIITHICCKUX
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muddepeHnnaIbHbIX ypaBHEHHH. DTOT METO MPUMEHSETCS TIPH PEIIeHNH KPaeBbIX 3a1ad Ul 00JacTeil CIoXHOM reo-
METPHUIECKOH (POpMBL

Mamepuanst u memoowt. [Ipeanaraercsi METOA IIOCTPOCHHST HEUPOHHOM CETH, IPEITHA3HAYCHHOW TSl pereHus auddepeH-
LIMaTBHbBIX YPaBHEHHUH B YACTHBIX IIPOU3BOIHBIX SIUTUIITHYECKOTO THITA. VICTIONB3ys 3aMeHy HEM3BECTHOH (DYHKIINH, NCXO/THAS
3aj1a4a cBOUTCS K ypaBHeHuto Jlarutaca. Takum 00pazom, paccMaTprBaliich HelMHekHHbIe 1] depeHInanbHble ypaBHeHUS.
[Ipu mocTpoeHNH HEHPOHHOI CETH B KaUECTBE aKTHBAIIMOHHBIX (DYHKIHI MPUHIMAIOTCS IPOU3BOAHBIE OT CHHTYIISIPHBIX pe-
nreHuid ypasHenus Jlarutaca. CHHIYISIpHBIE TOYKU 9TUX PEIISHHH pacipeneNieHbl 0 3aMKHYTHIM KPUBBIM, OXBATBIBAIOLINM
rpanuiry oonactu. IIpu HacTpoiike BECOB ceTH MHHUMH3HPOBAIACH CPEIHEKBaIpaTHyIecKast OMOKa 00y deHHsL.
Pe3ynomamut uccnedosanus. IlpencrapieHpl pe3yabTaThl peLICHHs EPBOi KpaeBoi 3aqa4u AJIs pa3IMYHbIX obnacTel
CIIO)KHOW TeoMeTpuyecKoil (opMbl. Pe3ynbraTel mpecTaBieHbl B BUAE TaOIHI, COIEPIKAIINX TOYHBIE PEIICHUS 3a1auu
U pelleHus], NOIyuYeHHbIE C IOMOIIBI0 HeHpoHHOH ceTH. JlaHo rpaduyeckoe MmpeacTaBieHne TOYHOTO PELICHUs U pelie-
HHUE, MOJYYCHHOC NPCAIIOKCHHBIM METOAOM.

Obcyscoenue u 3axknrouenue. I1oaydeHHbIe pe3yIbTaThl JoKa3aal 3QQEeKTHBHOCTD MPELIOKEHHOT0 METOa ITOCTPOCHHS
HEWPOHHOH CeTH MpPH PELICHUH PAa3IMYHBIX BHIOB NH((GEepeHINATbHBIX YPAaBHEHHH B YaCTHBIX IPOM3BOIHBIX DJUIHII-
THYECKOTO THMa. JJaHHBIA METOA MOXKET d(PPEKTHBHO NPHUMEHATHCS P PELICHHU APYTUX THIOB I hepeHInaTIbHbIX
YPaBHEHHI C YaCTHBIMU TPOU3BOIAHBIMH.

Krouesble ciioBa: quddepeHnnanbHble ypaBHEHHS B YACTHBIX MPOU3BOJHBIX JIUIMITHYECKOTO THIIA, 007IaCTh CI0KHON
TeOMETPHUYECKON (POPMBI, HEHPOHHBIE CETH

s uutupoBanmsi. ['anaOypaun A.B. IlpiMeHeHne HEHPOHHBIX CETEH NpPU PELICHHU JIUIMNTUYECKUX ypaBHEHHN
s obnmactedt cioxuoil (Gopmel. Computational Mathematics and Information Technologies. 2025;9(2):44-51.
https://doi.org/10.23947/2587-8999-2025-9-2-44-51

Introduction. Differential equations play a crucial role in modelling processes across various fields of science
and engineering. Traditional analytical and numerical methods for solving differential equations do not always yield
satisfactory results. As a result, different machine learning methods are increasingly being applied to solve differential
equations. In particular, artificial neural networks are often used for this purpose.

The theoretical foundations of the neural network method can be traced back to the work of A.N. Kolmogorov [1].
Today, neural networks are widely em-ployed for solving different types of differential equations. In [2], the transition
from neural network architecture to ordinary differential equations and the Cau-chy problem is discussed.

Papers [3, 4] focus on the application of neural networks to solve Laplace’s equation. In [5], deep learning methods
are applied to solve the Poisson equation in a two-dimensional domain. Radial basis function (RBF) neural networks have
become particularly widespread in solving partial differential equations [6].

In studies [7, 8], radial basis functions with tunable parameters are used as activation functions. Works [9-11]
demonstrate the successful use of neural networks for solving boundary value problems related to the Navier—Stokes
equations. Physics-informed neural networks (PINNs) have shown high effectiveness in solving partial differential
equations, particularly in classical mechanics problems [12, 13]. In [14], a perceptron-type neural network is applied to a
heat and mass transfer problem.

These studies highlight the growing popularity of neural networks for solving differential equations. The present
research is devoted to the analysis of boundary value problems for partial differential equations in domains with complex
geometries and builds on the approach developed in [15, 16].

Materials and Methods. Let us consider a boundary value problem for a differential equation:

U+b0oU+b,0,U+cU =0.

By representing the solution in the form U=Ve®*®) and appropriately selecting the parameters A and a, the problem
can be reduced to a simpler equation:

V+aV =0.

i. e., the Laplace equation.

The resulting equation was solved using a neural network with respect to the function V. The constructed neural
networks for solving the Laplace equation can also be used to solve nonlinear elliptic equations, provided they are
properly transformed.

As an example, consider the differential equation:

U-2(0U) + (0,U))/(3V)=0.
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The original differential equation is reduced to the Laplace equation by introducing a new unknown function V= U,
The neural network construction was based on the method described in [15, 16]. This method relies on a formula
similar to Green’s formula, in which integrals are replaced by sums:

V(x)= Zwkf(sk)U(x,ck) +ka f(s)G(x,7,),

where f(s,) is the value of the unknown function u on the boundary of the domain; U(x, ) and G(x, 1,) are activation
functions; o, and 1, are points on closed curves y, and y,, which surround the boundary y of the domain; x is a point inside
the domain G.

By requiring that this relation holds at every point on the boundary for all functions in the training set, and applying
the least squares method, a system of equations is obtained for determining the weights w, and v,.

To improve the conditioning of the matrix in the resulting system of equations, the activation functions were chosen
as derivatives of the fundamental solution of the Laplace equation

—10B°5% +5P&* +5° —108°8> + 55"
RIO

5
U(x,y,t,8)= B

>

B’ —218°°+35B’5* ~7B3°

G(xayatas): R14 X2

87 —21B25°+355°B* — 7S
+ = n,
R

S=x—t,B=y—s,R=48 +p°.

This increased the singularity of the activation functions. The points 6, and T, were taken on the contours y, and v,,
which were obtained by shifting each point of the boundary contour y outward along the external normal to the domain
boundary by distances p, and p, respectively. During the training process, the weights as well as the values of p, and p,
were determined. The values p, and p2 were found using a simple brute-force search.

As a training set, a set of functions that are solutions to the Laplace equation in polar coordinates was used:

rkcos(karccos(f)) + rksin(karccos(f)), =1+,
r r

where k=0, 1,2,3, ..., M.

These functions were specified in different coordinate systems, each rotated relative to one another by an angle that
is a multiple of 27/5.

Results. The proposed method was applied to solving problems in domains whose boundary v is defined by the equation:

x =acos(t)+ gcos(wt),
{ O+ goos(on. o0

y = a;sin(t) + g, sin(w?),

where t€[0,2n]; a, a,, g, g,, ® are adjustable parameters.

In all cases, the number of functions in the training set was taken as M = 75, and the number of neurons in the network
was N = 100.

Problem 1. As an example, consider the following differential equation:

AU -0,U + 50,U +6.5U =0.
A new unknown function V is introduced, which satisfies the Laplace equation:

U = Ve®5-25)

The first boundary value problem was considered.

Fig. 1 shows the domain whose boundary corresponds to the following parameter values: a = 1.15, g = 1.15,
a =0.07,¢g=-0.03, 0=9.

The points in the domain where both the exact solution and the neural network solution are evaluated are marked with
asterisks in the diagram.
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Fig. 1. Shape of the domain for Problem 1

The points in the domain where the exact solution and the neural network solution are computed are marked with
asterisks on the diagram. Table 1 presents the computational results corresponding to the solution of the equation:

U= xye(o'sx’z's)’).
Table 1
Computation Results for Problem 1

Point Number 1 2 3 4 5 6 7

Exact Solution 0.1158 0.2214 0.1055 0.0241 -0.0142 —0.0473 | —0.0835
Neural Network Solution 0.1148 0.2216 0.1054 0.0240 -0.0142 -0.0473 | —0.0838

Point Number 8 9 10 11 12 13 14

Exact Solution 0.0385 0.1092 0.0769 0.0244 -0.0157 0.0457 —-0.0629
Neural Network Solution 0.0382 0.1090 0.0768 0.0243 —0.0158 0.0458 —0.0630

Point Number 15 16 17 18 19 20 21

Exact Solution 0.0051 0.0213 0.0222 0.0098 —0.0069 -0.0175 | —0.0188
Neural Network Solution 0.0047 0.0210 0.0220 0.0096 —0.0071 -0.0177 | -0.0190

Problem 2. The following differential equation was considered:

AU +50,U + 30,U +8.5U =0.

The introduction of a new unknown function V-
U = Ve 353150

allows the original differential equation to be reduced to the Laplace equation with respect to the function V. The shape
of the domain in this case was determined by the parameters B a = 1.1, g= 1.1, al =0.05, gl = 0.1, ® =4 (Fig. 2). The
first boundary value problem was considered. Table 2 presents the computational results and the exact solution of the
differential equation:

—(2.5x+1.5y)

U=e¢e"chye
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Fig. 2. Shape of the domain for Problem 2
Table 2
Computation Results for Problem 2
Point Number 1 2 3 4 5 6 7
Exact Solution 0.0198 0.0143 0.0245 0.0622 0.1929 1.4682 9.0855
Neural Network Solution 0.0198 0.0143 0.0245 0.0622 0.1928 1.4640 9.0885
Point Number 8 9 10 11 12 13 14
Exact Solution 0.0818 0.0700 0.1163 0.2289 0.4502 1.4325 3.9076
Neural Network Solution 0.0817 0.0700 0.1162 0.2288 0.4499 1.4320 3.9104
Point Number 15 16 17 18 19 20 21
Exact Solution 0.3377 0.3321 0.4896 0.6716 0.7856 1.1957 1.6099
Neural Network Solution 0.3377 0.3320 0.4896 0.6716 0.7857 1.1959 1.6104
Problem 3. The following differential equation was considered:
2 2
v 2@Ur s @UY) o

K14

By introducing a new unknown function the original equation is reduced to the Laplace equation. The first boundary
value problem was considered. The shape of the domain was defined by the parameters a = 1.1, g = 1.1, a, = 0.07,
g,=0.07, o =9 (Fig. 3).
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Fig. 3. Shape of the domain for Problem 3
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Table 3 presents the computational results and the exact solution of the differential equation:

U=(xy+2.5x+y).

Table 3
Computation Results for Problem 3

Point Number 1 2 3 4 5 6 7

Exact Solution 24.613 28.736 32.687 7.2807 0.0363 -2.0562 10.894
Neural Network Solution 24.613 28.878 32.610 7.3419 0.0380 -2.0870 10.834

Point Number 8 9 10 11 12 13 14

Exact Solution 5.7339 5.9627 6.3055 1.4899 0.0169 0.2857 —2.0582
Neural Network Solution 5.7405 5.9727 6.3164 1.4937 0.0169 0.2865 -2.0625

Point Number 15 16 17 18 19 20 21

Exact Solution 0.3331 0.3060 0.2982 0.0754 0.0017 —0.0088 —0.0950
Neural Network Solution 0.3328 0.3058 0.2982 0.0753 0.0017 —0.0089 | —0.0957

Fig. 4 and 5 show graphical solutions obtained using the neural network, as well as the exact solution of Problem 3.

-1

2 2

-1

Fig. 4. Solution of Problem 3 obtained by the neural network
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Fig. 5. Exact solution of Problem 3
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Discussion and Conclusion. The presented results once again demonstrated the effectiveness of the neural network
construction method for solving boundary value problems in domains of complex shape for various types of elliptic partial
differential equations. This method can efficiently handle all types of partial differential equations. Future development of
the method will focus on expanding the classes of solvable problems and improving training techniques.
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