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Abstract

Introduction. Seismic exploration is a widely used technology for locating hydrocarbon deposits. An important stage
of this process is the simulation of seismic wave propagation in a geological model of the medium with specified
physical characteristics. Due to the high computational cost of this problem, the acoustic approximation is widely used in
practice, allowing for the correct description of longitudinal wave propagation. The most common approach to seismic
modeling is the use of finite-difference schemes on staggered Cartesian computational grids. Despite their simplicity
of implementation and high computational efficiency, such methods exhibit insufficient accuracy when modelling
complex geological structures, including curvilinear interfaces between geological layers. A promising direction is the
development of new high-order computational methods on curvilinear computational grids. This paper presents a stable
fifth-order grid-characteristic method successfully applied to solving the problem of acoustic wave propagation in the
two-dimensional case.

Materials and Methods. The study employs a grid-characteristic method with a fifth-degree interpolation polynomial
constructed on an extended spatial stencil. A class of curvilinear grids is identified that makes it possible to retain the
accuracy achieved when solving a one-dimensional problem. Furthermore, the use of a multistage splitting method allows
the preservation of the scheme’s order in both time and space for multidimensional formulations.

Results. The formulas of the computational algorithm are presented, the achievement of the declared convergence order
is empirically confirmed, and wavefield patterns of the dynamic process are calculated.

Discussion. The results demonstrate lower numerical dissipation of the proposed computational algorithm. The trade-off
for this improvement is a significant increase in computation time.

Conclusion. The developed computational algorithm ensures high accuracy in calculating seismic fronts, which is
critically important for seismic exploration tasks in layered geological massifs.
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AHHOTALMSA

Beeodenue. Celicmuueckas pa3Befka SBISETCS HIMPOKO IPUMEHAEMOM TEXHOJOTHMEH IOUCKA MECTOPOXKACHUI
YTIEBOAOPOAOB. BakHBIM 3TamoM AaHHOTO IIpoliecca SBISETCA pacdéT paclpoCTpaHEHHS CEeHCMHMYECKHX BOJH B
T€OJIOTHYECKOH MOJIETM CPEebl ¢ 3aJaHHBIMU (PU3NYECKUMH XapaKTepHCTHKaMu. BBHIY BBICOKOW BBIYHMCINTEIBHON
CIIO)KHOCTH 3a7ladydl Ha TPAKTHKE aKTHBHO HCIIONB3YeTCsS aKyCTHYEeCKoe MPUOIIIKEHHE, IMO3BOJIAIONIeEe KOPPEKTHO
OITMCaTh PacIpOCTPaHEHNE MPOAOJIBHBIX BOJH. Hanbonee yacTo i celiCMHUECKOTO MOJIEIUPOBAHUS HCTIONIB3YIOTCS
KOHEYHO-Pa3HOCTHBIE CXEMbI Ha CIBHHYTHIX KYOMYECKUX pacuéTHBIX ceTKax. HecMOTpsi Ha MPOCTOTY MX peann3aiuu
U BBICOKYIO BBIYHCIHUTENBHYIO 3(Q(QEKTUBHOCTb, TaKWE MOAXOABI JIEMOHCTPUPYIOT HEIOCTaTOYHYIO TOYHOCTH IIpH
MOACINPOBAHUM CIIOKHBIX T'€OJIOTHYCCKUX CTPYKTYP, BKITHOYaA KpHBOHHHeﬁHBIe TpaHUIbI pa3aciia reoJIOrn9eCKmux CIIOEB.
[lepcrieKTHBHBIM HAIIPABICHUEM SBIISCTCS pa3pad0TKa HOBBIX BBIYHCIUTEIBHBIX METOIOB BBICOKOTO TTOPSIKA TOYHOCTH
Ha KpUBOJIIMHEHHBIX pacuéTHBIX CeTKax. B HacTosmeil paboTe npencTaBiieH YCTONUMBBINA CETOUHO-XapaKTePUCTUIECKUI
METOJ] MATOr0 MOpsAKa AaNMNpOKCUMAIWH, YCHEITHO NPUMEHEHHBIA [UIsl PELIeHHs 33Ja4d O paclpOCTPaHEHHU
AKYCTHYCCKUX BOJIH B }IByMGpHOfI IIOCTAHOBKE€.

Mamepuanst u memoowt. Vicionb3yeTcs CETOUYHO-XAPAKTEPUCTUUECKHHA METOJ C WHTEPHOJALUOHHBIM MOIHHOMOM
MATON CTETNEeHH, MOCTPOSHHOM Ha PACIIMPEHHOM TPOCTPAHCTBEHHOM IadyioHe. BhineneH Kiacc KPUBOJWHEHHBIX
CETOK, MO3BOJISIOMIMN COXPAHUTh JOCTHUTHYTYIO MPU PEIICHUH OJHOMEPHOM 3ahaud TOYHOCTH pacuéra. IIpu stom c
MTOMOIIIBI0 METO[a MHOTOIIIArOBOTO PACIICIUICHHUS YIAE€TCS COXPAaHUTh MOPSIIOK CXEMBI IO BPEMEHH H 110 IIPOCTPAHCTBY
B MHOTOMEPHOM MOCTaHOBKE.

Pezynomamor uccnedosanus. llpeacraBinensl GOpMyIIbl BEIYUCIUTENBHOTO aJTOPUTMA, SMIMPHUECKH MOATBEPIKICHO
JOCTHKEHHE 3a8BICHHOIO MOPSAAKAa CXOAUMOCTHU, PACCUUTAHBI BOJIHOBBIE KAPTHHBI JUHAMUYECKOT0 MpOoLecca.
Oobcyscoenue. Pe3ynbTaThl pacuéTOB JEMOHCTPUPYIOT MEHBIIYIO YUCICHHYIO JUCCUMAIMIO MPEIJI0KEHHOTO
BBIUUCIIUTENBHOTO anroputMa. [lnaroii 3a 370 ABIsSETCA 3HAUMMOE YBEITUUYEHUE BPEMEHU pacuéTa.

3axnwouenue. Pa3zpaboTaHHBIA pacUETHBIA aNTOPUTM OOECTIEUMBAET BBICOKYI) TOYHOCTh pacuéra CeHCMHUYECKUX
(pOHTOB, YTO KPUTHIECKH BaXKHO B 33/1a9aX CEHCMOPA3BE/IKN B CIIOMCTHIX T'€0JIOTMYECKUX MAaCCHBaX.

KuroueBble ci1oBa: ceficMuyeckast pa3Be/ka, CeCMUUECKHE BOJTHBI, MATEMaTHYECKOE MOJIEIHPOBaHNIE, KPUBOJIMHEHHBIC
CETKH, aKyCTUYECKasi Cpefia, CETOUHO-XapaKTePUCTUUECKUI METOI, OLIEPATOPHOE PACLIETIICHHE

®unaHcupoBanue. PaboTa BhIMONHEHAa B pamKax rocyrapctBerHoro 3amanus HUIL «KypuaTtoBckuii MHCTHTYT» —
HUHWCHU mno Teme Ne FNEF-2024-0002 «MaTemaTH4eckoe MOICIHPOBAHHE MHOTOMACIITAOHBIX JUHAMIYCCKUX
MPOIIECCOB U CHCTEMBI BHUpTyajbHOro okpyxenus» (1023032900401-5-1.2.1). HccnemoBanuss Mu Cunb ObLIH
nojanepxanbl Kutaiickum cOBETOM MO CTUIEHIUSIM.

Jas nurupoBanus. Mu C., ['onydes B.M. MHoroctamuiiHplii CETOYHO-XapaKTEPUCTHUCCKUI METO]] MOBBIIICHHOTO
TIOpsIJIKa TOYHOCTH I 3amay akyctuku. Computational Mathematics and Information Technologies. 2025;9(3):7-15.
https://doi.org/10.23947/2587-8999-2025-9-3-7-15

Introduction. Computer simulation of wavefields in heterogeneous media is widely used in geophysical research
and plays a key role in solving problems of migration and inversion of seismic exploration data [1, 2]. Many different
numerical methods applicable to solving the dynamic deformation problem of geological media have been developed
by various research groups: the finite-difference method [3], the finite-element method [4], the discontinuous Galerkin
method [5], and the spectral element method [6]. Among them, the finite-difference method remains the most frequently
used in practice due to its ease of implementation and high computational efficiency.

One of the actively developing methods is the grid-characteristic method [7], which is used in the present work.
In recent years, active development of modifications of the grid-characteristic method has been carried out on various
types of computational grids: unstructured tetrahedral [8, 9], Cartesian [10-13], curvilinear structured [14], chimeric
overlapping [15—17] for solving practical problems of seismic exploration [8, 10, 11, 15, 16], seismic resistance [12, 14],
non-destructive testing of composite materials [18], and calculation of vibrations of railway tracks [13, 17].
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In marine seismic exploration, seismic waves propagate both in an acoustic medium (water layer) and in an elastic
medium (sea bottom and underlying geological massif). If the interface between the media is curvilinear, the finite-
difference method encounters significant difficulties when attempting to correctly calculate the travel times of waves
reflected from the bottom [19]. One possible way to improve the accuracy of specifying the geometry of the interface
is to reduce the grid step, but this leads to a significant increase in the computational complexity of the problem [20].
To achieve a compromise between the increase in computational costs and a decrease in the accuracy of modelling, it
is possible to combine the finite difference method with the coordinate transformation technique [21]. This approach is
based on mapping a curvilinear computational grid coinciding with the layer boundary into a computationally convenient
orthogonal grid using a sufficiently smooth coordinate transformation.

In this paper, we consider the problem of seismic wave propagation in an acoustic medium containing curvilinear
layer interfaces. Using the inverse transformation from curvilinear to Cartesian coordinates allows us to apply a grid-
characteristic method of increased accuracy order on an extended spatial stencil for a special class of computational grids.
To eliminate the effect of reducing the order of approximation of a two-dimensional computational algorithm in time
due to the use of coordinate-wise splitting, the method of multi-step operator splitting is used [22]. The computational
experiments conducted confirm the high accuracy of calculations and the stability of the scheme when the standard
Courant condition is met.

Materials and Methods. The dynamic behavior of a homogeneous acoustic medium under small deformations and in
the absence of external volumetric forces is described by a hyperbolic system of equations of the form:

—

ov -
—+Vp=0,
Pat p

Py e -7 =0,
ot

The following notations are used here: p is the medium density; c is the P-wave propagation velocity; p(x,y,z,f) is

the pressure, V(x,y,z,t)= (u,v,w)T is the velocity vector at the considered point of the acoustic medium. In the two-

dimensional formulation of the problem considered in this paper, all the sought functions do not depend on the third spatial

N
variable: g_v = 6,a—p =0. Let the integration domain initially be covered by some curvilinear structural computational
z /4

grid so that its sufficiently smooth mapping onto a uniform square computational region is possible (Fig. 1). Let the
relationship between the original Cartesian coordinates x and y and transformed coordinates & and 1 is set explicitly as

{x =x(&m),

y=y(&m).

Fig. 1. The original curvilinear computational grid (x, ) (left) and the transformed square grid (&, n) (right)

By transitioning to new coordinates in the original system of equations, we obtain that

6_p+pchKa_ua_y_a_ua_yﬂ+pczi[[@@_@a_xﬂ:O,
ot Vil\egon onee Vil\onoe  agom
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6_u ll(ﬁpﬁy 6p6y] 0

ot pl\ogon onog
@+u(a_pa_x_a_pa_x] _
ot pl\enee ogon)
Ox
where a new notation [J| = g}% gi’ is the Jacobi matrix.
on on

This system of equations can be rewritten in canonical form:
— — —
q,+4.4.+44q,=0.

The following additional notations are introduced here:

q=(puv),
2 1 ay > 1 Ox
SRVETARVER
4= 1LYy o |
pllon
11 0ox
B ot 0
pllon
2 lP 210k
; P Tlee ™ Plee
110y
o 0
| ol
Ilor 0
pllog

To construct a numerical solution to this two-dimensional system of equations, one can use the method of splitting by
spatial directions, thereby reducing the problem to a sequential solution of two one-dimensional problems

5+Aﬁé:0,
_)
q,+44,=0.

In this case, the solution of the first system of equations is the initial condition for solving the second system of
equations. Note that this procedure allows us to construct a converging computational algorithm, which, however, in

the general case has only the first order of approximation in time. This is due to the non-permutability of the operators
associated with the matrices 4, and 4.

Note that each of the one-dimensional systems with matrix 4(j =&, n) is hyperbolic and can be represented as follows:

-1
4;=Q;A,Q,

bl B
S EEE

The solution of a one-dimensional hyperbolic system with constant coefficients can be reduced to the solution of a
spatial interpolation problem by transitioning to Riemann invariants according to the formula:

- -
0=0Q4.
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For clarity, let us consider the procedure for constructing a solution to the problem along the direction &. Performing
left multiplication of a system of equations by a matrix Q, and substituting the expressions obtained above into the
original system of equations, under the conditions of independence Qé from &, we obtain, that

— —
o, + A0, =0.

For each equation from this system of one-dimensional independent transport equations with constant coefficients,
according to their characteristic properties, the value at the next time layer is exactly determined by the following expression:

8(§m,t" + r) = 8(&,” —Aér,t").

When calculating the right-hand side of this equality, the procedure of interpolation by polynomials of a given degree
on a fixed spatial stencil is used. In this work, a grid-characteristic scheme of the fifth order of approximation is used,
constructed on a seven-point template using an interpolation polynomial of the fifth order [23]. Then the desired vector
function ¢ =(p,u,v)T, on the next time layer can be calculated using the formula (due to the non-degeneracy of the
transformation):

7=0.'c.

Note that the structure of the matrix of eigenvectors can be written compactly in tensor form. We introduce the
following notations for the directions corresponding to the axes &, 1:

y
ro 1 on
mET————| 4|

ox o\ | -=
on) \on N

_¥
r _ 1 a&
n=—— o |

Ox oy =
% 2s

Then the transition to Riemann invariants has the form:

1- -, p .
®,, =—n, - vit—,forc,
1.2 B 0 2pC f E.;
o, =lﬁl VL forn.
c2 2pc

As noted earlier, the use of this splitting method reduces the order of approximation of the two-dimensional scheme
in time. To solve this problem, this paper uses multi-step operator splitting based on the use of fractional time steps [24].
In general, this calculation algorithm for each time step can be represented as follows:

foriinl,...,s:

solve step along &: step &(afr),
solve step along n: step n(a?r).

Coefficients Otf e (1,2,...,s), je (&,n), defining the values of fractional time steps, uniquely determine the multi-step
splitting scheme. It should be noted that it is possible to construct a non-unique scheme of a given order of approximation
with a given number of stages. In this paper, a Sth-order multi-step splitting scheme with 7 stages was used [24]. Its
coefficients are presented in Table 1.

Table 1

Coefficients of the used 5th order multi-step splitting scheme

i o; o]

1 0.475018345144539497 ~0.402020995028838599
2 0.021856594741098449 0.345821780864741783
3 ~0.334948298035883491 0.400962967485371350

11
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End of table 1

I o; o}

4 0.512638174652696736 0.980926531879316517
5 —-0.011978701020553904 —1.362064898669775624
6 —0.032120004263046859 0.923805029000837468
7 0.369533888781149572 0.112569584468347105

Results. The constructed two-dimensional grid-characteristic scheme was applied to model the process of propagation
of a plane P-wave. The problem statement typical for the field of seismic exploration in a subhorizontal layered geological
massif was considered. The computational domain was covered by a curvilinear computational grid specified by the

following coordinate transformation:
x=,
{y =n+7E’,
where y=5-10"*,

The advantage of this parameterization method is the independence of the eigenvectors and eigenvalues of the problem
for steps along (&, ) of (€, ) accordingly. This allows you to bring a matrix Qj under the sign of differentiation with respect
to the coordinate and construct an exact solution to the one-dimensional problem. The initial area of interest in Cartesian
coordinates occupied a square with a side of 600 m. The acoustic characteristics of the medium were set equal to the
following values: the density of the medium p = 1000 kg/m?, P-wave velocity ¢ = 2000 m/s. The initial disturbance was
set at a distance of 400 m from the lower boundary directed vertically downwards. Totally, 50ms of physical time were
calculated. The time step was selected from the Courant stability condition for the intermediate step of the computational
algorithm, corresponding to the maximum coefficient by modulus o .

To confirm the achievement of the declared increased order of convergence by this scheme, a series of calculations
were carried out on successively refined curvilinear computational grids. The results of the empirical assessment of the
order of convergence according to the norms L, and L  are presented in Table 2.

Table 2
Study of the order of convergence of the constructed scheme. The problem with a vertical P-wave
h Errorin L, Errorin L Orderin L, Orderin L
2.000 2.6081E+09 9.0030E+05 — —
1.000 1.0736E+09 3.6153E+05 1.281 1.316
0.500 1.1051E+08 4.3919E+04 3.280 3.041
0.250 4.3173E+06 1.6748E+02 4.678 4713
0.125 1.3778E+05 5.3186E+01 4970 4977

The calculation was performed using the standard method of splitting by spatial directions. The results are presented
in Table 3.

Table 3

Study of the order of convergence of the scheme with standard splitting. The problem with a vertical P-wave

h Errorin L, Errorin L Orderin L, Orderin L
2.000 1.7314E+09 5.9920E+05 — —
1.000 4.3286E+08 1.6200E+05 2.000 1.887
0.500 3.5098E+07 1.9527E+04 3.624 3.052
0.250 5.6940E+06 3.8921E+03 2.624 2.327
0.125 1.3951E+06 9.6667E+02 2.029 2.009

Note that the propagation of the wavefront along one of the lines of the computational grid, as it happened in the
test presented above, is not an essential requirement for maintaining the order of convergence by the scheme. Under the
conditions described above, the problem of propagation of a P-wave at a fixed angle f = —5° was solved. The results of
the empirical assessment of the order of convergence for two norms are presented in Table 4.
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Table 4
Study of the order of convergence of the constructed scheme. Problem with an inclined P-wave
h Errorin L, Error in L Orderin L, Order in L

2.000 2.1279E+09 8.9108E+05 — —

1.000 8.7694E+08 3.5489E+05 1.279 1.328
0.500 8.8829E+07 4.2314E+04 3.303 3.068
0.250 3.4498E+06 1.6029E+03 4.686 4.722
0.125 1.1013E+05 5.0870E+01 4.969 4.978

The calculation was performed using the standard method of splitting by spatial directions. The results are presented

in Table 5.

Table 5

Study of the order of convergence of the standard splitting scheme. The problem with an inclined P-wave

h Errorin L, Errorin L Orderin L, Orderin L
2.000 1.4481E+09 5.9613E+05 — —
1.000 3.6522E+08 1.6221E+05 1.987 1.878
0.500 3.6355E+07 2.4925E+04 3.329 2.702
0.250 7.3132E+06 5.4214E+03 2.314 2.201
0.125 1.8012E+06 1.3417E+03 2.022 2.015

Of greatest interest is the calculation of the process of seismic wave propagation in a medium consisting of geological
layers with different mechanical characteristics (sandstones, clays, carbonates). To test the possibility of using the developed
numerical scheme to solve this type of problem, the following computational experiment was conducted. Three computational
grids were considered, covering three geological layers occupying a physical area of 90x150 m. The computational grid in
the middle area was set as curvilinear with the parameter y =5 - 10*. This leads to the formation of a curvilinear upper and
lower boundaries. Then, the computational grids in the upper and lower regions were set with a gradually changing parameter
v so that the upper boundary of the upper grid and the lower boundary of the lower grid remained horizontal. A test was
performed for the absence of significant reflections from “virtual” geological boundaries caused only by dividing the entire
computational grid into three subregions. For this purpose, the same acoustic parameters were used in each of the layers.

The seismic signal source was a plane P-wave propagating downwards at a distance of 20 m from the upper boundary
of the upper subdomain. The spatial grid step was 0.5 m, the time step was 100ps, which satisfies the Courant stability
condition. Spatial pressure distributions in the entire computational domain at a fixed time T = 50 ms, obtained using the
widely used third-order approximation grid-characteristic scheme and standard splitting scheme, and using the fifth-order
approximation grid-characteristic scheme and multi-step splitting scheme described in the work are presented in Fig. 2.
The amplitude of the original wave is more accurately preserved and there are no significant reflections.

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
00 100 100
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7 IS Leets 3 70 16et6
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60 60 60 60
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50 50 " 50 50
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Fig. 2. Acoustic field in a three-layer medium. The following are used: a one-dimensional scheme of the third order
of approximation and the usual spatial splitting (left) and the scheme proposed in this paper (right)
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Discussion. In this paper, a new two-dimensional grid-characteristic scheme on curvilinear structural computational
grids is presented. It is based on the application of the multistep splitting method to preserve the high order of approximation
in time and uses the properties of the hyperbolic system of equations to reduce the solution of a one-dimensional hyperbolic
problem to the procedure of spatial polynomial interpolation on a fixed seven-point template. The behavior of the
obtained numerical solution to the problem of plane wave propagation in the computational domain covered by a special
curvilinear grid is systematically investigated. The claimed 5th order of convergence in both coordinate and time is shown
to be achieved. Note that in the case of impossibility of analytical calculation of the Jacobian of the transition between
computational grids or the dependence of the operators of one-dimensional problems on the coordinate, the following
modifications can be used. First, the Jacobian of the transition can be calculated with a given degree of accuracy by the
finite-difference method. Secondly, the dependence of one-dimensional operators on the coordinate can be considered by
using appropriate solvers of higher order of approximation for the one-dimensional hyperbolic problem.

The paper demonstrates the possibility of using the constructed simulation algorithm for modelling the seismic exploration
process in a layered geological medium with curvilinear boundaries. To describe the horizontality of the daylight surface, a
calculation grid is used that gradually levels out with distance from the interface. The comparison of the obtained acoustic
wavefields with another calculation scheme showed the possibility of increasing the accuracy of preserving the amplitudes
of propagating waves together with the absence of significant numerical artifacts at the contact boundaries.

Conclusion. Thus, it seems possible to apply the described approach to solving practical problems of seismic
exploration. Promising areas of further research are:

1. Generalization of the simulation algorithm to more complex models of geological media: elastic, elastoplastic,
elastoviscoplastic models;

2. Generalization of the calculation algorithm to three-dimensional problem statements to increase its universality and
engineering applicability.

References

1. Kallivokas L.F., Fathi A., Kucukcoban S., Stokoe I K.H., Bielak J., Ghattas O. Site characterization using full waveform
inversion. Soil Dynamics and Earthquake Engineering. 2013;47:62—82. http://dx.doi.org/10.1016/].s0ildyn.2012.12.012

2. Yun Zhao, Xiaotao Wen, Chunlan Xie, Bo Li, Chenlong Li, Xiao Pan, et al. Simultaneous seismic inversion
of effective stress parameter, fluid bulk modulus, and fracture density in TTI media. Petroleum Science. 2025.
https://doi.org/10.1016/j.petsci.2025.04.002.

3. Samarskiy A.A., Nikolaev E.S. Methods for solving grid equations. Moscow: Nauka; 1978. 592 p. (In Russ.)

4. Matzen R. An efficient finite element time-domain formulation for the elastic second-order wave equation: A
non-split complex frequency shifted convolutional PML. International Journal for Numerical Methods in Engineering.
2011;88(10):951-973. https://doi.org/10.1002/nme.3205

5. Antonietti P.F., Mazzieri 1., Migliorini F. A discontinuous Galerkin time integration scheme for second order
differential equations with applications to seismic wave propagation problems. Computers & Mathematics with
Applications. 2023;134:87-100. https://doi.org/10.48550/arXiv.2112.01792

6. Komatitsch D., Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation.
Geophysical Journal International. 1999;139(3):806—822. https://doi.org/10.1046/J.1365-246X.1999.00967.X.

7. Magomedov K.M., Kholodov A.S. Grid-characteristic numerical methods: textbook for universities. 2nd ed., ispr.
and add. Moscow: Yurait Publishing House; 2025. 313 p. (In Russ.)

8. Petrov 1.B., Favorskaya A.V., Muratov M.V., Biryukov V.A., Sannikov A.V. Grid-characteristic method on
unstructured tetrahedral grids. Doklady Mathematics. 2014;90:781-783. https://doi.org/10.1134/S1064562414070254

9. Favorskaya A.V., Petrov I.B. A study of high-order grid-characteristic methods on unstructured grids. Numerical
Analysis and Applications. 2016;9:171-178. https://doi.org/10.1134/S1995423916020087

10. Favorskaya A.V., Zhdanov M.S., Khokhlov N.I., Petrov I.B. Modelling the wave phenomena in acoustic and
elastic media with sharp variations of physical properties using the grid-characteristic method. Geophysical Prospecting.
2018;66(8):1485-1502. https://doi.org/10.1111/1365-2478.12639

11. Favorskaya A.V., Petrov [.B. The use of full-wave numerical simulation for the investigation of fractured zones.
Mathematical Models and Computer Simulations.2019;11:518-530. https:/link.springer.com/article/10.1134/S20700482 19040069

12. Favorskaya A.V., Petrov I.B. Inverse Problem of Determining the Strength Characteristics of Multi-Story Buildings
on Piles. Lobachevskii Journal of Mathematics. 2025;46(1):202-213. https://doi.org/10.1134/S1995080224608555

13. Kozhemyachenko A.A., Petrov 1.B., Favorskaya A.V., Khokhlov N.I. Boundary conditions for modeling the
impact of wheels on railway track. Computational Mathematics and Mathematical Physics. 2020;60:1539-1554.
https://link.springer.com/article/10.1134/S0965542520090110

14. Favorskaya A.V., Khokhlov N.I., Petrov I.B. Grid-characteristic method on joint structured regular and curved
grids for modeling coupled elastic and acoustic wave phenomena in objects of complex shape. Lobachevskii Journal of
Mathematics. 2020;41:512-525. https://doi.org/10.1134/S1995080220040083

15. Khokhlov N., Favorskaya A., Stetsyuk V, Mitskovets 1. Grid-characteristic method using Chimera meshes for
simulation of elastic waves scattering on geological fractured zones. Journal of Computational Physics. 2021;446:110637.
https://doi.org/10.1016/j.jcp.2021.110637



http://dx.doi.org/10.1016/j.soildyn.2012.12.012
https://doi.org/10.1016/j.petsci.2025.04.002
https://doi.org/10.1002/nme.3205
https://doi.org/10.48550/arXiv.2112.01792
https://doi.org/10.1046/J.1365-246X.1999.00967.X
https://doi.org/10.1134/S1064562414070254
https://doi.org/10.1134/S1995423916020087
https://doi.org/10.1111/1365%E2%80%932478.12639
https://link.springer.com/article/10.1134/S2070048219040069
https://doi.org/10.1134/S1995080224608555
https://link.springer.com/article/10.1134/S0965542520090110
https://doi.org/10.1134/S1995080220040083
https://doi.org/10.1016/j.jcp.2021.110637

Computational Mathematics and Information Technologies. 2025;9(3):7—15. eISSN 2587-8999

16. Khokhlov N.I., Favorskaya A., Furgailo V. Grid-characteristic method on overlapping curvilinear meshes for modeling
elastic waves scattering on geological fractures. Minerals. 2022;12(12):1597. https://doi.org/10.3390/min12121597

17. Pesnya E., Kozhemyachenko A.A., Favorskaya A.V. Vibration Analysis of Frost Heaving of the Ice Lens
Type on Railways by a Grid-Characteristic Method. Lobachevskii Journal of Mathematics. 2025;46(1):317-325.
https://doi.org/10.1134/S1995080224608270

18. Petrov 1., Vasyukov A., Beklemysheva K., Ermakov A., Favorskaya A. Numerical modeling of non-destructive
testing of composites. Procedia Computer Science. 2016;96:930-938. https://doi.org/10.1016/j.procs.2016.08.272

19. Yao Gang, da Silva N.V., Debens H.A., Wu Di. Accurate seabed modeling using finite difference methods.
Computational Geosciences. 2018;22:469—-84. https://doi.org/10.1007/s10596-017-9705-5

20. van Vossen R., Robertsson J.O., Chapman C.H. Finite-difference modeling of wave propagation in a fluid-solid
configuration. Geophysics. 2002;67(2):618-24. https://doi.org/10.1190/1.1468623

21. Sun Yaochong, Zhang Wei, Xu Jiankuan, Chen Xiaofei. Numerical simulation of 2-D seismic wave propagation
in the presence of a topographic fluid—solid interface at the sea bottom by the curvilinear grid finite-difference method.
Geophysical Journal International. 2017;210(3):1721-1738. https://doi.org/10.1093/gji/ggx257

22. Golubev V.., Shevchenko A.V., Petrov 1.B. Raising convergence order of grid-characteristic schemes for
2D linear elasticity problems using operator splitting. Computer Research and Modeling. 2022;14(4):899-910.
https://doi.org/10.20537/2076-7633-2022-14-4-899-910

23. Mi Xin, Golubev V. Two-Dimensional Grid-Characteristic Schemes for Acoustic Wave Simulations. Lobachevskii
Journal of Mathematics. 2025;46:283-291. https://doi.org/10.1134/S199508022460852X

24. Auzinger W., Hofstitter H., Ketcheson D., Koch O. Practical splitting methods for the adaptive integration
of nonlinear evolution equations. Part I: Construction of optimized schemes and pairs of schemes. BIT. Numerical
Mathematics. 2017;57:55-74. https://doi.org/10.1007/s10543-016-0626-9

About the Authors:

Xin Mi, PhD Student at the Department of Computer Science and Computational Mathematics of the Moscow Institute
of Physics and Technology (9, Institutskii lane, Dolgoprudny, 141701, Russian Federation), ORCID, xinawafe@gmail.com

Vasily 1. Golubeyv, Professor at the Department of Computer Science and Computational Mathematics of the Moscow
Institute of Physics and Technology (9, Institutskii lane, Dolgoprudny, 141701, Russian Federation), ORCID, SPIN-code,

ScopusID, golubev.vi@mipt.ru

Contributions of the authors:

M Xin: making calculations; drawing conclusions; text preparation; working with sources; making graphic materials.

Golubev V.I.: basic concept formulation; research objectives and tasks computational analysis; conclusions correction;
text revision.

Conflict of Interest Statement: the authors declare no conflict of interest.

All authors have read and approved the final manuscript.

006 asmopax:

Cunp Mu, actiipast kadenpbl ”HPOPMATHKH ¥ BEIYUCIUTENIBHON MaTeMaTnku MOCKOBCKOTO (PU3HKO-TEXHHYECKOTO
nHctutyTa (141701, Poccuiickas denepanus, MockoBckast obnacts, . Jlonronpyasasiid, MHCTHTYTCKHH TIepeynok, 9),
ORCID, xinawafe@gmail.com

Bacuimii UBanoBuu T'otydeB, npodeccop kadenpsl MHPOPMATHKA U BRIYUCIATENEHON MaTeMaTiki MOCKOBCKOTO (pH3HKO-
TexHraeckoro naeTuTyTa (141701, Poccuiickas ®@enepartiist, MockoBCckas 00macTs, T. Jlomronpymasii, IHCTUTYTCKHIT TepeyInok, 9),
ORCID, SPIN-koz, ScopusID, golubev.vi@mipt.ru

3anenennslii k140 A8MOPOE:
Cunp Mu: nposenieHre pacyeToB; (popMyarpoBaHue BBIBOIOB; MOIrOTOBKA TEKCTA; O(OPMIICHHE HAy4YHOI CTaThy;
pabota ¢ uctouHukamu; oopmileHHe rpaMIeCKUX MaTepHaIoB.
B.U. Toy6eB: popmMupoBaHre OCHOBHOM KOHIIETILINH; LEIH U 33/1a4K NCCIICJOBaHMS; aHAJIN3 PE3YyJIbTaTOB HCCIIENO-
BaHMH; KOPPEKTHPOBKA BHIBOJIOB; 10pabOTKa TEKCTa.

KoH(}IMKT HHTEPECOB: agmopbl 3a161110M 00 OMCYymMCcmeuu KOHQIUKMAa UHMePecos.
Bce asmopul npouumanu u 0000puiu OKOHYAMENbHBLI 6aPUAHM PYKORUCH.
Received / IToctynuia B pexakumio 27.06.2025

Revised / IToctynuia mocie penensupoBanus 24.07.2025
Accepted / IlpunsTa k nydaukanuu 15.08.2025

15


https://orcid.org/0009-0005-7429-6611
https://orcid.org/0000-0003-3113-7299
https://elibrary.ru/author_profile.asp?authorid=644883
https://www.scopus.com/authid/detail.uri?authorId=56290013800
https://orcid.org/0009-0005-7429-6611
https://orcid.org/0000-0003-3113-7299
https://elibrary.ru/author_profile.asp?authorid=644883
https://www.scopus.com/authid/detail.uri?authorId=56290013800
https://doi.org/10.3390/min12121597
https://doi.org/10.1134/S1995080224608270
https://doi.org/10.1016/j.procs.2016.08.272
https://doi.org/10.1007/s10596-017-9705-5
https://doi.org/10.1190/1.1468623
https://doi.org/10.1093/gji/ggx257
https://doi.org/10.20537/2076-7633-2022-14-4-899-910
https://doi.org/10.1134/S199508022460852X
https://doi.org/10.1007/s10543-016-0626-9
mailto:xinawafe@gmail.com
mailto:golubev.vi@mipt.ru
mailto:xinawafe@gmail.com
mailto:golubev.vi@mipt.ru



