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Abstract

Introduction. A two-dimensional hydrodynamic problem in the “stream function—vorticity” variables is numerically
solved in an open rectangular cavity simulating blood flow in a blood vessel aneurysm. Two solution algorithms are
proposed for Reynolds numbers Re < 1 and for Re > 1.

Materials and Methods. To accelerate the numerical solution with an explicit finite-difference scheme for the vorticity
dynamics equation, the initial condition damping method, the n-fold splitting method of the explicit finite-difference
scheme (n = 100, 200), and the symmetry plane of the rectangular cavity—aneurysm were employed. In the splitting
method, the maximum time step proportional to the square of the spatial step was used without violating the spectral
stability of the explicit scheme in the vorticity equation. On half of the rectangular aneurysm, symmetric solutions
were considered with a uniform 100 x 50 grid and equal steps /= A,= 0.01. The inverse matrix for solving the Poisson
equation in the “stream function—vorticity” variables with a finite number of elementary operations was computed using
the MSIMSL library.

Results. The numerical solution showed that the number and location of circulation regions in the aneurysm at small Reynolds
numbers depend on the ratio of the vessel diameter to the aneurysm diameter. At small values of this parameter, the aneurysm
contains a single large vortex that narrows the vessel lumen in the case of thrombus formation inside the aneurysm. The
narrowing of the blood flow tube inside the aneurysm reaches 34%. It was found that the formation of the hydrodynamic
structure in the aneurysm occurs in a time negligible (0.002%) compared to the period between pulsation waves (1 s). For the
first time, a boundary condition with fourth-order accuracy was proposed to relate velocity, vorticity, and stream function.
Discussion and Conclusion. The approximation of the equations in systems (4) and (22) has sixth-order accuracy at
interior nodes and fourth-order accuracy at boundary nodes. The problem was also solved for blood motion in arteries
at high Reynolds numbers (Re = 1500). The solution shows that in the aneurysm symmetry plane a chain of connected
vortices is formed with alternating signs of vorticity, carried by the blood flow along the vessel. The initial-boundary
value problems (4), (22) formulated in this work make it possible to qualitatively model blood flow in aneurysms of
capillaries, arterioles, and arteries at low and high velocities, as well as blood motion in elements of medical equipment.
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AHHOTaAIHSA

Beeoenue. Uncnenno peuraercs AByMepHas T'MAPOAMHAMUYECKAs 33/1aua B IEPEMEHHBIX «(QYHKIHUS TOKa — BUXDPbH)» B
OTKPBITOM IPSAMOYIOJIbHON KaBEPHE, MOJAEIUPYIOLIEH TEUEHUE KPOBU B aHEBPU3ME KPOBEHOCHOTO cocyza. IlpemioxkeHsl
JIBa aJITOPUTMA pelleHus 3a1auu ais uncen Peitnonbaca Re < 1 u qnst yucen Re > 1.

Mamepuansl u memoowt. J{s1 yCKOPEHUS YHUCICHHOTO PEUISHUsI 3aa4K C SBHOW Pa3HOCTHON cXeMOW ypaBHEHUS IH-
HaMHKH{ BHXPSI UCIIOIB30BAJICSI METOJ, TOPMOXKEHHSI HAYaJIbHBIX YCIIOBUI, METOZ N-KPaTHOTO PACILIEIIICHUs SIBHOM pa3-
HocTHOH cxembl (n =100, 200) 1 HanU4Me IIOCKOCTH CHMMETPHH TIPSIMOYTOJILHOM 00JIacTH KaBEPHBI — AHEBPHU3MBI.
B meTone paciuenneHust UCIonb3yeTcss MaKCUMalbHbIN LIar BPEMEHU, IPOINOPLUUOHAIBHBIA KBaJpaTy KOOPAUHATHOIO
miara 0e3 HapyIIeHHUs CHEKTPATbHON yCTOWIMBOCTH SBHOW CXEMBI B YpaBHEHUH BHUXps. Ha momoBuHE mpsSMOyTroasHON
aHEBPHU3MBI pacCMaTpHUBAIIMCh CHMMETPHYHBIE PEIICHNS ¥ IPUMEHsTIach paBHOMepHas ceTka 100 X 50 ¢ paBHBIM 1marom
h=h,=0,01. O6parHas MaTpuua /s pelieHus ypasHeHus [lyaccoHa B epeMEeHHbIX «(QYHKIUS TOKa — BHXPb)» 3a KO-
HEYHOE YHCJIO 3JIEMEHTApHBIX OTepauid BEIYHCIUIACh OnbaroTekod Msimsl.

Pezynemamut uccnedosanus. YrucnenHoe peleHne 3a1aqy MOKa3alo, YTO YUCIO U PACHONIOKEHHE 00nacTed UpKys-
MM KPOBH B aHEBPH3ME IPH HEOOJNbIINX uuciax PeifHonblca 3aBUCAT OT MapaMeTpa OTHOIICHHS JWaMeTpa cocyaa K
JaMeTpy aHeBpHU3MBbL. IMEHHO npy HEOONIBIIIOM 3HAUCHNH 3TOTO IIapaMeTpa aHEBPU3MY 3aHUMAET OUH OOJIBIION BUXPh
U CYy)KaeT IMPOCBET COcy/ia B Cilydae oOpa3oBaHUs TpoMOa BHYTpH aHeBpHU3MBbl. Cy)keHHe AuameTpa TpyOKH TOKa KpOBH
BHYTpPHU aHeBpH3MBbI nocrturaetr 34 %. OOHapykeHO, 4TO (hOPMUPOBAHUE TUIPOJMHAMHYECKON CTPYKTYPHI B aHEBPH3ME
npoucxoaut 3a Bpems, maioe (0,002 %) mo cpaBHEHUIO ¢ NIEPHOIOM MEXIY MyIbCalMOHHBIME BoimHami (1c). BriepBeie
TIPETIOKEHO KPaeBOEe YCIOBHE C YETBEPTHIM HOPSAKOM ITOTPEIIHOCTH ISl CBS3U CKOPOCTH, BUXPS M (DYHKIIMH TOKA.
OOcyxaeHue. AMpoKCHUMAalMs YpaBHEHUH B cicteMax (4) v (22) uMeeT mecTol NopsJ0K MOTrPEIIHOCTH BO BHYTPEHHHUX
1 4ETBEPTHIH B PAaHWYHBIX y3/1aX. 3a7jada pelIeHa TakxKe IJIsl IBIKEHHS KPOBH B apTepusiX Ipu OonmbInux unciax Peit-
Hoxipaca (Re = 1500). Ee pemenne mokaspIBaeT, 4TO B IIIOCKOCTH CUMMETPHH aHEBPHU3MBI 00pa3yeTcs IeroYKa CBSI3aH-
HBIX BUXpEil ¢ uepeioBaHreM 3Haka (pyHKIUH BUXPS M CHOCUMBIX KPOBBIO BJIOJIb KPOBEHOCHOTO COCYAA.

Obcyscoenue u 3axnrouenue. CHopMyTnpoBaHHEIE B paboTe HadyaIbHO-KpaeBble 3a1a4d (4), (22) mo3BOIAT KaueCTBEHHO
MOJIETIMPOBATH JIBI)KCHHE KPOBH B aHEBPH3MaX KallMJUISIPOB, apTEPHOI M apTEpUil KPOBEHOCHBIX COCY/IOB ITPH MalbIX 1
OOJIBIINX CKOPOCTAX, @ TAK)KE JIBM)KEHNE KPOBHU B JIEMEHTAX MEIUIIMHCKOTO 000pYI0BaHHUSI.

KiloueBble ciioBa: THApOAWHAMUKA, YHUCJICHHBIE METOAbLI, YPABHCHHUS B YAaCTHBIX ITPOU3BOAHBIX, HAYaJIbHO-KpacBas
3a4a4ad, aHCBpU3Ma

Jasi umtupoBanus. Bonocoa H.K., Bonocos K.A., Bonocosa A.K., Kapno M.U., ITactyxos 1.®., ITactyxos 10.D.
MogenupoBaHue IUPKYISAIANA B aHEBPH3Max KPOBEHOCHBIX cocymoB. Computational Mathematics and Information
Technologies. 2025;9(3):30-43. https://doi.org/10.23947/2587-8999-2025-9-3-30-43

Introduction. This study models a two-dimensional hydrodynamic problem of blood flow in an open rectangular
cavity in the “stream function—vorticity” formulation [1]. The velocity field exhibits four corner singular points at the inlet
and outlet segments of the cavity—aneurysm, since the streamlines at these points may undergo a 90-degree deflection.
Consequently, steep velocity gradients appear in these regions, and the points act as sources of vortices under high blood
flow velocity. The present work employs the initial velocity field damping method described in [2]. References [3-7], [8]
are related to the solution of two-dimensional hydrodynamic problems or to their high-accuracy approximation. Study [7]
specifically addresses blood flow and coagulation processes in blood vessels. In the present research, the n-fold splitting
method of the vorticity equation (n = 100, 200) with an explicit finite-difference scheme, as introduced in [9], is applied.
Due to the symmetry of the rectangular cavity (aneurysm), the computational cost can be reduced by half by solving the
problem only on one side of the rectangle.
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Materials and Methods

Problem Statement. In the two-dimensional formulation, we consider the flow of fluid (blood) in a rectangular
cavity—aneurysm, which defines the geometry of the problem. Therefore, it is convenient to adopt a rectangular coordinate
system with a uniform grid »n x n, =100 x 100.

We derive the Poiseuille formula for the velocity profile u(y) of plane fluid flow between two parallel rectangular plates.
In Fig. 1, the center of the rectangular coordinate system coincides with the symmetry center of a liquid parallelepiped
with side lengths 2y- I - b, with edge length b perpendicular to the plane of the figure. Pressure values p , p, act on the left
and right faces, respectively; the pressure is constant along the y-axis and varies along the x-axis. The difference in

pressure forces is equal to AF, = (p,—p,)2yb= %2 ybl = %2 ybl . This pressure force difference AF, is balanced by
the viscous friction force acting on the lower and upper faces of the block.

y

mp

2y P, P, x

mp

Fig. 1. Tllustration of the Poiseuille formula for plane fluid flow

The difference in forces is given by:

AF, :£2ybl =2F,, = 2blu@ = du =l%y su(y)=Cy +C,,C, = 1A const.
Ax dy dy unAx 2u Ax
Let us denote the half-width of the plane channel for fluid motion as the velocity of the fluid on the symmetry plane as
u_and determine the unknown constants C,, C, from the no-slip condition on the rigid rectangular plates:

ma;

C umax y2
max,Cl :—A—gz—?,u(y)zumax(l—yj. (1)

u(A) =0 CA*+C,=0,u(0)=C, =u

An aneurysm represents a small segment of a blood vessel whose diameter usually exceeds the vessel diameter by
a factor of about two. The aneurysm length L is typically comparable to its diameter 2H, where H is the aneurysm half-
width. To simplify the problem in the rectangular coordinate system, we assume that in an infinite rectangular region
between the upper and lower plates a plane fluid flow is formed with the velocity profile (1). A rectangular cavity with
inlet and outlet will be referred to as an open cavity.

For further simplification, we also assume that the velocity profile (1) is preserved at the inlet to the rectangular
aneurysm and at the outlet from it within a narrow symmetric strip relative to the plane Oxz of width 2A = 2d. To accelerate
the numerical solution, we exploit symmetry by considering only half of the aneurysm and two halves of the rectangular
channel supplying and removing the fluid. According to the symmetry principle, we seek solutions in which, on the
symmetry axis, the velocity of fluid particles is directed along the axis at every point; its magnitude may vary numerically,
but its direction remains unchanged.

In Fig. 2, the origin of the coordinate system coincides with the lower-left corner of the aneurysm; the x-axis is directed
to the right, and the y-axis is directed upward. Let denote (u(x,)),v(x,y)) the velocity vector of a fluid particle. On the rigid
boundary-namely, on the lower segment and on the lower portions of the side segments of height H—d of the rectangular
cavity — the velocity is zero (no-slip condition). Therefore, the stream function on this boundary can be taken as zero.
In addition, the normal velocity component is zero on the upper segment of the rectangular cavity v(x,H) =0,0 <x < L.

It is necessary to modify the boundary conditions for velocity and stream function in the formulation of the classical
hydrodynamic problem in the “stream function—vorticity” variables for a rectangular cavity, as considered in [1, 2].
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Fig. 2. Geometry of the computational domain

We rewrite the velocity profile (1), taking into account the shift of the coordinate origin shown in Fig. 2:
2
— — y—H
y=y+H,u(y)=u(y—H)=umax(1—%}yE[H—A,H]- 2

Integrating equation (2) with respect to y, and taking into account the relation u = Y, we obtain the dependence of the
stream function in the gaps along the side walls of the cavity:

_H 3
V() = Uy (y—%}“ CoW(H-AN) =0 C)=~u,, (H ——A),

0,y €[0,H — Al, G)

0,) = y(L,y) = - H)
w(0.») =w(L.y) pa2ag U A,
max 3 3A2

As in [2], we denote the characteristic length by L, time by 7 velocity by u__, stream function by Lu__, vorticity

max
u

by “L“"‘ , and Reynolds number by Re. We introduce the following dimensionless variables: the horizontal coordinate is

denoted by x , the vertical coordinate by y, the stream function and vorticity by y,w, respectively, the velocity vector
by (ﬁ,;) , and time by ¢ . These quantities are nondimensionalized as follows:

OS;:%SI’ OS;:%Sk:%’QZL’WmaX :Lumax’
- u - v — w U nax
u:_sv:_W:_’Wmax 4

U nax U o Winax L
- u_ L
tzi,Tzinez o

T u v

-3 2
The kinematic viscosity of blood is v = =33 107a-c _ 3 333y e
C

p  1050k2/m’

The hydrodynamic system in nondimensional variables and functions, following [1, 2], for an open cavity at high
Reynolds numbers can be written as:

max °

Vi + Y5 = —W(x,D), 0<}=%<1, 0<y<k

- == - = 1l —_ = -t
Wt+u-W}+v~w;=R—(W;;+w;;),0<t=—

e T
ﬂf} EO"_)IF Eo’ﬂq = O’qrz =0,
0,y €[0,H —A],
3
y 2A H (y/L-H/L)
0, = L’ = umaxL —t = -5  |pJE H_A’H H
V(0.2) = w(L.y) (L 30 L 3y ) [ :
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0,y €[0,H —A],
u(0,y)=u(L,y)= u(y) (l_(y—H)zJ ,yE[H-AH],
A

max 2

0,)’ € [05H - A]9

v(0,y)=y(L,y) = v _ [y+3A/L H/L- %};e[(H—A)/L,H/L],

2AS_miL

3L

Here I', denotes the union of the lower side segments and the bottom boundary, I, corresponds to the upper segment
of the rectangle I'. The first equation in system (1) is the Poisson equation for the stream function and vorticity. The two-
dimensional Poisson equation on the rectangle is solved in matrix form with a finite number of arithmetic operations and
sixth-order accuracy [2]. Below, for brevity, we omit the overbars on nondimensional functions, time, and coordinates,
except in formulas (24).

The second line of system (4) defines vorticity in terms of the velocity field derivatives. The third line gives the
velocity components as derivatives of the stream function. The fourth equation is the vorticity dynamics equation, which
is the only time-dependent equation in system (1). On the left-hand side, it contains the full (convective) time derivative.

On the boundary of the rectangle, the vertical velocity component is zero; the horizontal component is unspecified on
the upper boundary, set to zero on the lower boundary, and described by formula (1) on the side boundaries.

Using the method of undetermined coefficients [10], the velocity on the upper boundary is specified by the quadrature
formula (5.1) with tenth-order accuracy in problems (4) (Re = 1500) and (22) (Re = 0.75). Formula (5.1) is applied only
to problem (4).

. . 1 83711 55 165 462
u(n25]) = Wy (n25]) = (—hz)( 27720 n2 J + \Vnzfl,j _7W11272,j + 55‘1”11273,j _TW"z*“’j + 5 \Vn275,j -
330 165 55 11 1 R T
_77W/1276,j + 7 \Ilnzflj _?anf&j +E\V’"z*9’j 10\Vnz 10,/ H\Vrlzfll,j)+ O(hlo)ﬂj = 17nl _1’ (51)
. 1 137 10 5 1 LT
u(ny, j) = (—h )( 60 0 Vn.i Swnz—l,j _S‘Vnrz,j +?\Vn3—3,j _Z\Vnrw +§\Vnz—5,j)+ O(h4)’J =Ln -L (5.2)
2

Following [2], we choose a nonzero and continuous initial velocity field in the central part of the cavity:
0,y, €[0,H-A],

— _ _ 2 - -
u(xmyn) B (1__(ymA2H) J;ym E[H_A,H]’ym = th’m :0’n2’xn :nhl’n = O’nl

_ _ _ (6)
v(x,»,)=0,y, =mh,,m=0,n,, x, =nh,n=0,n,.

In the new hydrodynamic problem for an open rectangular cavity in the “stream function—vorticity” variables, where
the velocity on the upper segment of the cavity is evaluated by formulas (5), we specify the computational sequence, since
it differs substantially from the algorithm described in [1]:

1 step: impose the (time-invariant) boundary conditions on the rectangle boundary for the stream function and for the
vertical component of velocity;

2 step: modify the right-hand side of the Poisson equation for the stream function (i.e., the vorticity term) according
to formulas (12), (13);

3 step. solve the Poisson equation ((7)—(11)), i.e. find the stream-function values at the interior grid points of the
rectangular mesh;

4 step: compute the velocity on the upper segment of the cavity using formulas (5);

5 step: compute the new velocity field at interior grid nodes (formula (18));

6 step: obtain new boundary values of vorticity using formulas (24);

7 step: compute new vorticity values at interior nodes via equation (19).

After step 7 the cycle returns to step 1.

We now describe each step in greater detail. According to [1], the first equation of system (1) — the Poisson equation — is
solved by a matrix method in a finite number of elementary operations [2] with sixth-order accuracy at interior points:
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1( 10 2 1
Ay =y tvy,, = f(xy)=-ws hz( 3 = Voo +§(\V71,0 TWo itV +\V0,1)+g(\|’71,71 TVttt \Vl,l)) =
7
_ +h2( + ) (4) (4) firj;. Lo(h’ %

To solve Poisson equation (7) for the stream function in system (4) with accuracy O(h°) we set f=—w, represent the
derivatives f,, f, with accuracy O(h"), and approximate 7, /¥, /') with accuracy O(h).

In [2, 10], by the method of undetermined coefficients, formulas for the interior-node values of a function f with indices
n=2,n —2,m=2,n,—2 were obtained:

Sot .fy1 = ( 5f00 (f—l,O + fo,—l + fl,o + fm) _é(f-z,o + fo,—z + fz,o + fo,z)) + O<h4),
SO 10 =12 =4 a0t So 4 S+ Sod) Lo+ oo Foa t £3) + (), ®

Fir = il8hon =2 s+ Soa# Foot ) Lo o+ f 1) +O(R)

Thus, formulas (7) and (8) together approximate the Poisson equation in problems (4) and (22) with accuracy O(k°)
at interior nodes.

Reference [2] describes a matrix method for solving the finite-difference Poisson equation (7) in a finite number of
arithmetic operations using a vectorized sweep (block tridiagonal/vector Thomas) method. The finite-difference equation
can be written as:

1 (=10 2 1 h’
h_z(T\Vm,n +§(\mel,n + \Vm+l,n + \Vm,nfl + \Vm,nJrl) + g(\vmfl,n 1 \V»Hl n—1 + \Vm Ln+l + \Verl n+l)) f;n n B(f‘o{ + /:vy) +
9)
1w, pwy, 1 (
+h4(— AL S )+Oh ,n=Ln-Lm=0Ln,—1
360(fx fy ) 9Ofxxy1 ( ) mn 1 2
Define the square matrices 4, B of size (n, — 1) x (n, - 1):
—I?Om nym=1,n—-Ln=1n -1, %,m mm=1n —1n=1n—1,
)z - L _
a,,= g,m—n-i-luﬂum—n—l, by,=1=m=n+lumum=n-1, (10)
Oom>2n+2umum<n-2, Oom>2n+2umum<n-2.
In the present work, the matrix algorithm for solving (9) is identical to that in [2]:
1. Using the formula
T_ 2, @\, 1 @ 8
Fla =l U5 1) g ) g o]
compute the right-hand side of the Poisson equation at all interior nodes of the uniform rectangular grid (m=1, ..., n—1;

n=1,...,n-1).

b 2 1

2. Modify the right-hand sides of the linear system (11) according to formulas (12), (13) at the nodes of the rectangular
contour adjacent to the boundary contour, i. e. determine F_ from the values F ., computed in step 1:

m,n

Ay + By} =F],
B\Vm 1 +A\Vm +B\1Um+1 7,m=2,n2—2, (11)
B\;/nr2 + A\;/nr1 =F' .

ny—1
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F

F

m,n m,n?

-10 2 1
TWI,n,—I +§(\|12,n17] +\V1,n,72 "'\V],n1 +\Vo,nr])+g(\|/z,n,72 +\'I0,n]72 +\V2n Vo nl) = Ligy-10

T,—l = E,n,—l _g(\l’l,n, + Wo,n,—l) _%(\Vo,n,-z TV, TV, )s

_Tlownzfl,l + %(anfll + \Vnrl,z + anfl,O + W"pl) + é<w"2*2~2 + \V"z’z * W”272’0 + \V"z’o) = F"’Z’l’1 ’
F_ = F -1l i(\vnz—l,O + \Vnz,l) _é(\ljnzl TV, 00t \Vnz,O)’

-10 2 1

3 Wﬂz—],nl—l + E(an—Z,nl—] + \Vnz—l,nl—z + \Vr/z—],nl + \Vnz,nl—l) + g(\'jnz—Z,nl—Z + \Vnz,nl—z + Wﬂz—Z,n, + ‘“Vnz,n, ) = F:«z—l,nl—l 4
I 2 1
P:zzfl,n1 -1 = F;tzfl,nlfl _5(“];1271,;11 + an ,nlfl) - g(an =2 + anfZ,n, + \unz,n, )’

-10 2 1
T‘Vu + E(WZJ TWY, Tyt ‘Vo,l) + g(‘%,z TWo, TY,ot \Vo,o) = Fi,l >

ﬁ,l =k, _g(\l’l,o + \Vo,l) _é(\l’o,z Ty, t+ ‘Vo,o)-

10 2 1 ——
_?Wl,lz + E(WLH TV, TVt \Vo,n) + g(‘l’z,m TV T Woua T ‘Vo,m) F,.n=2n-2,
_ 2 1 _
E,)z = E,n _E\Vo,n _g(\l’o,m + WO,nH)’n = 2?”1 -2,
10 2 1 e —
_?an—l,n +§(\Un2—l,n—l + Vo2 + Yot + an,n) +g(\|jnz—2,n—l + Vo241 + Yoyt + \ljnz,n-H) = F;'lz—l,n’n = 2snl -2,

2

E = F;qz—l,n —gwnz,n _%(an,n—l + an,nﬂ)an =2,n -2,

2 1 o —
Wm 1 3 \mel,l + \Vm,Z + \‘rlmH,l + Wm,O) + g(\umfl,Z + Wm+1,2 + \mel,O + \Vm+l,0) Fm 17m = 2’”2 - 2’
2 1 o —
F = le 3 g(\'jmfl,o + \IImH,O)’m = 2’”2 - 2’
10 2 1 >
_?\Vm,npl + g(\ljmfl,nlfl + \Vm,nlfz + \Verl,nlfl + ‘Vm,n, ) + E(Wmfl,nlf2 + Werl,nle + \mel,nl + Wm+l,n1) = Fm,npl ’m = 2’”2 -
Fm,nlfl = Fm,npl _5\'}m,nl _g(\um—l,nl +\'Im+l,nl)’m = 2’n2 _2’

=F ,Vme2n,-2,ne2n -2

3. Compute the forward sweep (matrix recurrence) coefficients by formulas (14), (15) m=1,n, -2

A =-A"Byv,=dA"F,

M, =—(Bh,  +A) By, =B\, +A) (F ~Bv,,)m=2n-2.

4. Compute the solution row vector \llfz_l by formula (16):

\V:fl = (Bknzfz + ) (Ezr 1 anzfz)'

5. Compute the remaining rows of the solution matrix y’ using formulas (17):

T T T
\Vm = }\’mwmﬂ +Vm’m nZ 2 1 V = \Vnzfl'

(12)

(13)
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(14
(15)

(16)

(17)

The matrix sweep algorithm (9)—(17) preserves sixth-order accuracy in accordance with formulas (7) and (8) for the
Poisson equation.
The second and third equations of system (4) w = vz —u3, u = \V, ,v=—y- arelinear with respect to the first derivatives.
We present quadrature formulas for the first derivative with various stencils. For the equation u =y we have:
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1(3 3 . .
U j) :Z(Z("’Hu —\I’H,,) 20(‘%21 i- 2,1) 60(\“”3’ ‘Vi—3,j))+0(h6)” =3n,=3,j=Lm -1,

1{ Wo, 13 Vs, Vs, . —
”(1,1'):;[_?]_12“’1, ZWZ,j_W3,j+ 31 20/j+0(h) =Ln -1,

(8w, ~ i)~ (wa, w0, )+ O(H*).j =T 1, (18)

1 an,' 13 \'jnz—4," \unzfi' 4 .
Z/l(nzfl,j) = _Z[_T] 12 nz 1,7 +2W;1272,j _\Vnzflj +T/_TJ+O(]/I )9] - lsnl _la

fen T 1op

U, 2.5y = 1;]1(8(“/"2 -3,/ an—l,j)_(w;12—4,j _\Vnz,j))+ O(h4)’j = l’nl -1

Analogous formulas can be written for the equation v=—-. To accelerate the numerical solution, the vorticity
equation in (4) was treated using the splitting method [9].
Analytically, the n-fold splitting method for the vorticity equation over the time interval 7,/ n can be written as:

WEHEED) i) 1

+uk . W)l;+(i/n) + ko, k+(iln) =_(Wk+(1/n) + k+(l/n)) i= 0 n— l (19)

T,/ n g Re

The recurrence system (19) for the vorticity with a frozen velocity field (uk (x, ),V (x, y)),i =0,n—1Lk =const,k=1,2,...
consists of n intermediate steps i =0,n—1, the superscript i/ denotes the intermediate time-layer index in equation (19),
and subscript k£ denotes the multiplicity index of the time layer in system (19). Velocity and stream-function fields remain
fixed in equations (19) at values k = const while the index i changes i =0,n—1. In this system only the vorticity field
w0 i =0,n—1 is updated. The velocity field changes by a jump in systems (4) or in (22), (19) when the time index of
the vorticity increases by one (from & to £+1) in the recurrence system (19).

The idea of splitting system (19) lies in reducing the accumulation of rounding errors and the computational time
required for its solution. The differential operators with respect to coordinates in (19) are approximated at interior nodes
with accuracy O(/4°), as are all equations of system (4); the boundary conditions are approximated with accuracy O(4*),
and the time derivative with accuracy O(t).

Thus, over the time interval T,/ n (associated with the reduction of stability due to the presence of four singular points
of the velocity field), solving equation (19) n times yields a temporal jump of magnitude 7, (which is # times larger than
sequentially solving the full system of equations (4)).

Equation (19) is linear with respect to the coordinate derivatives w' W, W w . In[9] it was shown that for spectral

xx 2

stability of the vorticity dynamics equation (19), it is sufficient to choose the ratlo of the time step and spatial step in the

form of the inequality: 7, < %hz Re— (4),(10 < %hz - (22)).

For the derivative w in (19), we write quadrature formulas (the formulas for w_are analogous):

1(3 3 1
W}’(is;f) = Z(Z(M)Hl/ _Wi*h/) 20( i+2,j W"*Z»I) 60( i3,

.73’/.))+0(h6),i =3.n,-3,j=1n—1,

1 W, 13 Way Wiy o
Wy(l,j) :Z( %—EW +2W21 3’1_ + ;1 _ 2507]-}—0(}[4)’] :17n1 _1,
W00 = (80, =)~ (w, =, )+ O(*).j =T =1, (20)

1 W"zf 13 an_4"- w"z_Sa.' 4 .
Wy(nzfl,j) = _Z(_T/_Ewnzl,j + 2W/1272,j - anf},j +T/_T/j + O(h )’J - 1’”1 - 19

W =80, ), )£ O0H) =TT

The second derivatives w, in (19) take the form:

1( 49 3 3 o - .
Wiy :ﬁ(_ﬁwf,f+5(Wf+1,j+wf—1,j) 20( Wiz T Wig, ) 90( t+31+Wf—3,j))+O(h )":3’"2_3’121’"1_1’
137, 49 17 47 19 31 13 R—
Yo = (180 Yo g0 T M T M T M Teo ™ 180W"’~f)+0(h )i =L =1,
1(5 4 1 J—
W0 :?(_EWZ’I +§(Wl,j + w3,j)—E(w0,j + w4’j))+ 0(h4),j =Ln -1, 21

(37 49 17 47 19 31 13
Mot = 3a\g0 " T M T e g M T Mt T s Tigg

W, 41))+ o(h*),j=1n -1

W, _ 61)+0(h4),j=1,n1 -1,

1( 5 4 1
Wism-2.) = h_Z(_EW"z*ZJ + E(an—l,/ + an—a’j) - 12( oy
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Analogous formulas are written for the derivative w_. Problem (4) and its algorithm (steps (5)—(21), (23), (24)) apply
to blood motion in the aorta and arteries at high velocities and large Reynolds numbers. However, at small Reynolds
numbers, using the diffusion time scale [9], we arrive at problem (22):

-t I? u
t:_,T‘ :T:_,Re max ,
Y v v
0<x=2<1,0<y=2<i=Ly="Yw —ru .,
L y L L \V i \Vmax max
- u - v = w U,
U=——V=""—"W=" Wy = >
umax umax Wmax L
2 2 _ 2T AT
6_w+u6_w+v6_wzv 61;‘)+61;1} C}16"\/_{_” aW+ aW R 0W+a_2 o
ot ox oy ox”~ oy ror L\ ox Oy L ox 0y

5

_ 2— 27— 2 2
\ aw+um u@v_v+v6w 12 6_v2v+8_v2v 6—W+Re 6_w+ 6_w _O0u 6_
ox 0y) L'\ox ady ot ox dy) ox Oy

Ve + s = —w(x ), 0<}:%<1, 0<y<k

Wi +Re(ﬁ~v_v; +1_1~W/;) = Wiz +wy3,0 <Z=L,
aIrl EO’;'F Eo’qr, =0,\_)|Fz =0,

(22)
0,y €[0,H —A],

v(0.9) = y(L.y) = 1(y+§A H- (y3AH) ],ye[H—A,H],

2A
===const,y=H,Vx e[0,L].
Y y [0,L]

0,y €[0,H —A],
u(0,y)=u(L,y) = ‘;(y) (l_(y—H)zj v e[H-AH].
A

max 2

The remaining equations of problem (22) are the same as in problem (4). According to the general algorithm (step 6),
it is necessary to compute the vorticity w at the boundary of the rectangle and then solve the vorticity equation (19) at the
interior nodes of the cavity.

In the linear approximation, we assume that velocity, vorticity, and stream function at the boundary and the nearest
interior nodes are linked by a single linear quadrature formula. The boundary values of the vorticity are approximated
with fourth-order accuracy [10], since in [1] only first- and second-order formulas were given:

1 Cow (0) 1 e LG, (0
v, (0)= h_z(co\lfo +Cy, + Gy, + Gy + C4\|/4)++() = [ oWo t+ ZZC 5\';[ i )
1 1 i=1 k=0 A

=%(CO+C1+CZ+C3+C4) Wh( )(C +2C, +3C, +4C, +C)+vy_ (0 )[§1+2C2+%C3+8C4j+

1 1

C 8 27 64 C 16 81 256
+hyt 0[ +-C,+=—C,+—C j+ Sy (o (—'+ —C,+—C, + (Ij
]W()6 6> 6 ° 6 ° h'w"()24 242243

C, 32 . 243, 1024
(0 (_1+_C +222¢C +—Cj+0 k).
VOl 501206 T 120 % T 120 & (%)
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C,+C+C,+C,+C, =0

C +2C,+3C, +4C,+C, =0

C +4C, +9C, +16C, =2 Al5

C +8C, +27C, +64C, =0 7 72
C, +16C, +81C, +256C, =0

C +32C, +243C, +1024C, =0

Taking (22) into account, we obtain the general boundary condition for vorticity in the open cavity with fourth-order
accuracy by differentiating (22) twice with respect to y:

1 (415 8 1 25v(0,y
w(x,y) =-Vy,, V= h ( 72 Vo —8y, + 3y, _§W3 +§W4)_? (h )_\VyyaV:_Wx' @)
1
hl (47125 SWml +3Wm2 gwm3 +;$m4) 265‘}2’0 + (ym H/L))amzn_DnZ’
%m,o - (A / L) (24 1)
415— — .— 88— 11— \ 25v, —
h_f(ﬁ\umo _SWM,I +3\Vm,2 _§\|jm3 Wm 4)_z70 :0’n3’le-ﬁ'
i 8 1 N (24.2)
. — — — — un R
_3 +3 _9 —=="82 n=0,n, top.
h2 ( 72 \Vnzfl,n \1Un272,n 9an*3 n 8“’" -4 ") 6 h 1 P
%(%WO n 8$l,n + 3@2," _ggln + é\l_jéta”) + 25”]:” 1= Tnl’ u= W}’ ’bOttom’
= A B (24.3)
1 (415 — — 8_ 1_ ) 251/lm,n n ..
-8 +3 —— +— ———=—,n=0,n, top.
h 72 \Vnzfl,n Wn272,n 9Wn273,n 8\Vn274,n 6 h2 1 4

Unlike the closed-cavity case treated in [2], where derivatives of the vorticity function up to fifth order are computed
explicitly, in problems (4) and (22) the application of formula (23) is appropriate. In fields with discontinuities of velocity
the vorticity and its partial derivatives may attain large values. In deriving formula (23) derivatives of the stream function
above second order were discarded. Table 1 gives a classification of blood vessels.

Table 1

Classification of blood vessels

Type Diameter Blood velocity Reynolds number Re Governing system
Capillaries (5-10) pm (0.5-1.0) mm/s 0.00075-0.00300 21)
Arterioles (10-100) pmm (0.5-10.0) cm/s 0.015-3.000 (21),4)

Arteries (2-10) mm (10—40) cm/s 60-1200 4)

Aorta (2-3) cm 0.5 m/s 3000 4)

For definiteness, we solve problem (22) numerically when Re <1 and problem (4) when Re>1 (4, = &,

=0,01).

Experience shows that for a rapid solution in arterioles one should choose an inertial time interval L , Whereas to

u

max

solve the hydrodynamic problem for an arteriole aneurysm it is appropriate to use system (4) analogously to the
aneurysm-in-artery case.
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Fig. 3. Limiting streamline pattern in arterioles using formula (5.1):
a—Re=0.75,nxn,=100x 50, A/ H=0.5;L=1,H=50 wm,u_ = 5cm/s, 1 :%hf , n=400000 steps,
splitting multiplicity m = 100, ¢ = 0,512 s5; b —Re =0.75,n, x n, =100 x 50, A/ H=0.2; L=1, H= 50 pm,

u = Scm/s, 1= Ehf , 1 =200000 steps, splitting multiplicity m = 100, £ = 0.256 s

m
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Fig. 4. Results of solving problem (4) with application of (5.1):
a—Re=1500,n xn,=100x50,A/H=0.6;L=1,H=1cm,u__= 50 cm/s, streamline field in arteries after
n = 10000 steps, splitting multiplicity m = 200; b — plot of the vorticity function in the symmetry plane
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Fig. 5. Results of solving problem (4) with application of (5.1):
a—Re=1500,n xn,=100x50,A/H=0.6;L=1,H=1cm,u__= 50 cm/s, streamline field in arteries after
n = 20000 steps, splitting multiplicity m = 200; b — plot of the vorticity function in the symmetry plane
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Fig. 6. Results of solving problem (4) with application of (5.1):
a—Re=1500,n xn,=100x50,A/H=0.6,L=1,H=1cm, u_ = 50 cm/s streamline field in arteries after
n = 34000 steps, splitting multiplicity m = 200; b — plot of the vorticity function in the symmetry plane
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Fig. 7. Results of solving problem (4) with application of (5.2):
Re =1500,n, xn,=100x 50,A/H=0.6; L=1,H=1cm,u_, = 50 cm/s,
streamline field in the artery for n = 2310000 steps, splitting multiplicity m =200

Discussion. Two numerical algorithms have been proposed for solving the two-dimensional problem in an open cavity
((5)—21), (23), (24)) in the stream function—vorticity variables, modelling blood flow in an aneurysm under laminar
(Re <1 (22)) and turbulent (Re > 1, (4)) regimes.

In capillaries and arterioles (Fig. 3), the flow structure establishes within 0.002% of the period between pulsation
waves (1 s). Therefore, the clot formation region is determined by the blood circulation region within the aneurysm.

The structure of circulation zones at low Reynolds numbers strongly depends on the ratio of the vessel diameter to the
aneurysm diameter (Fig. 3). If the parameter , the circulation zone is located in the corners of the aneurysm (Fig. 3a). If
the parameter , the circulation occupies the entire aneurysm (Fig. 3b), resulting in a narrowing of the channel diameter
by 34%. This explains the phenomenon of “lumen constriction” during thrombus formation.

For high-speed flows (Re = 1500) in arteries and the aorta, the circulation region encompasses the entire aneurysm for
any value of the parameter A/ H (A/H=0.6) (Figs. 6a and 7).

Along the symmetry plane of the aneurysm, in the direction of blood flow, a sequence of alternating-sign vortices
forms. In Fig. 4b, two vortices with signs w +, — appear. In Fig. 5, three vortices with signs +, —, + are present. In Fig. 65,
five vortices form a sequence +, —, +, —, +. This chain of alternating-sign vortices resembles a Karman vortex street in the
wake of an obstacle.

The presence of vortices in the symmetry plane violates the assumption of solution symmetry. Therefore, it is necessary
to allow for a nonzero normal velocity component in the symmetry plane and to include the entire aneurysm when solving
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problem (4) for blood flow in the aorta. The formulations of problems (4) and (22) and their solution algorithms have been
generalized for an open cavity, i. e., when cavity boundaries are intersected by fluid flows.

Conclusion. The initial-boundary value problems formulated in this study ((4), (22)) allow for a high-quality modelling
of blood flow in aneurysms of capillaries, arterioles, and arteries at both low and high velocities, as well as blood flow in
elements of medical devices.
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K.A. BosocoB: HayqHOE PYKOBOIICTBO; pa3paboTKa METOMOIOTHH.

A.K. BonocoBa: niepeBoz; n3yueHHe UCTOPUH 3a/1a4H; TIOMCK JTUTEPaTypPHI.

M.J. KapJioB: ¢popManbHbIi aHAH3.

J.®. ITacTyxoB: BU3yaTU3aIlis, BATHIAIN, pPa3padoTKa MPOTPaMMHOTO 00ECIIEYEeHUSI.

FO.®. ITacTyx0B: TEeCTUPOBAHKE CYIIECTBYIOIINX KOMIIOHEHTOB KO/IA.

Kongpnuxm unmepecos: aBpTopbl 3asiBJASIOT 00 OTCYTCTBHH KOH(PJIMKTA HHTEPECOB.
Bce asmopul npouumanu u 0006punu OKOHYAMENbHBLIL 6aPUAHM PYKORUCH.
Received / Iloctynuia B pexaknmio 25.07.2025

Revised / ITocTynuiaa nocJie penen3upoBanus 18.08.2025
Accepted / IlpunsTa k mydaukanun 17.09.2025
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