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Abstract

Introduction. In recent years, the field of mathematics specializing in the application of artificial neural networks has been
rapidly developing. In this work, a new method for constructing a neural network for solving wave differential equations is
proposed. This method is particularly effective in solving boundary value problems for domains of complex geometric shapes.
Materials and Methods. A method is proposed for constructing a neural network designed to solve the wave equation in
a planar domain G bounded by an arbitrary closed curve. It is assumed that the boundary conditions are periodic functions
of time ¢, and the steady-state regime is considered. When constructing the neural network, the activation functions are
taken as derivatives of singular solutions of the Helmholtz equation. The singular points of these solutions are uniformly
distributed along closed curves surrounding the domain boundary. The training set consists of a set of particular solutions
of the Helmholtz equation.

Results. Results were obtained for the solution of the first boundary value problem in various domains of complex
geometric shape and under different boundary conditions. The results are presented in tables containing both the exact
solutions of the problem and the solutions obtained using the neural network. A graphical comparison is also provided
between the exact solution and the solution obtained with the constructed neural network.

Discussion. The presented computational results demonstrate the efficiency of the proposed method for constructing
neural networks that solve boundary value problems of partial differential equations in domains of complex geometry.
Conclusion. The further development of the proposed method may be applied to solving boundary value problems for the
wave equation in exterior domains. Of particular interest is the application of this method to diffraction problems.
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AHHOTALMSA

Beeoenue. B nocnennee Bpems ObICTpO pa3BHBaeTCsi 00JacCTh MaTeMaTHKH, CIEHHAIU3UPYIOLIascs Ha MPUMEHEHUU
HCKYCCTBEHHBIX HEMPOHHBIX ceTeil. B HacTosei paboTe NpeiokeH HOBBI METO/] TIOCTPOSHUSI HEHPOHHOW CeTH st
PpeIIeHUs BOJHOBBIX MU GEpeHINATbHBIX YPABHEHUH. DTOT METO 0cOO0EHHO 3(h(HhEeKTUBEH MPU PEIICHUH KPAeBhIX 3a1au
JULst 00J1acTel CIIOKHOW TeOMETPHYECKOH (DOPMBL.

Mamepuanst u memoowt. llpennaraeTcsi MeTo[ MOCTPOSHHs] HEUPOHHOHN CeTH, MpeAHA3HAUYECHHOH ISl pelIieHUs
BOJIHOBOT'O YPaBHEHU JJIs TUIOCKOH 00sacTu G, OrpaHMYCHHOM MPOU3BOJILHON 3aMKHYTO# KpuBoii. [Ipesmonaraercs, 4To
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TPaHWYHBIC YCIIOBUS SABJIAIOTCS MEPUOJMUECKUMH (QYHKIMSIMHU BpeMeHH ¢. PaccMaTpuBaeTCs yCTaHOBUBILIHUICS PEKHM.
ITpu mocTpoeHN: HEHPOHHOH CETH B KAYECTBE aKTUBALMOHHBIX (yHKIMIT IPHHUMAIOTCS IPOU3BOIHBIE OT CUHTYJISIPHBIX
pemenuil ypaBHeHust ['expmMronbia. CHHIYIApHBIE TOUKK 3THUX PEIICHUH PaBHOMEPHO PAcIpPEAETICHBI 0 3aMKHYTHIM
KPHBBIM, OXBATBIBAIOIINM I'PaHUIly 00n1acTH. B kauecTBe 00yJaroero MHOKECTBA HCIOIb3YETCSI MHOKECTBO YaCTHBIX
pewiennii ypasHeHus I'enpMrombna.

Pesynomamut uccnedoganusn. IlomydeHbl pe3ynbTaThl pelIeHUs MEPBON KpaeBOM 3amayll Ul pa3iIM4yHBIX obiacrteit
CJIOKHOM IeoMeTpU4ecKoi (OPMBI M TPAaHUUYHBIX YCIOBHH. Pe3ynbTaTsl mpeACTaBICHB! B BUAE TAONUII, COAEPIKAIINX
TOYHBIE PEIICHUS 331241 U PEIICHUs, MOTyYeHHbIE C TOMOIIBI0 HEHPOHHOI ceT. [laHo rpaduyueckoe mpeacTaBiIeHue
TOYHOI'O PELIEHUS U PELICHHUS, IOJyUYEHHOr0 IOCTPOEHHON HEMPOHHOM CETBIO.

Oécyscoenue. IlpencTaBaeHHBIC PE3YJIBTATHI PACUETOB MOKA3aIH 3P (HEKTHBHOCTS MPEITIOKEHHOTO METO/1a TIOCTPOCHUS
HEHPOHHBIX CETEH, PEIIAIOIINX KpaeBble 3a1a4u A depeHIINaTbHBIX YPaBHEHUH B YaCTHBIX IIPON3BOIHBIX AT 00TacTeH
CIIO’)KHOW T€OMETPHUYECKON (POPMEI.

3aknwuenue. JlanvHeliee pa3BuTre pa3pabOTaHHOTO aBTOPOM METOAA MOXKET ObITh IPUMEHEHO K PEIICHNIO KPAeBBIX
3ajia4 AJIsl BOTHOBOTO YPABHEHMS, AJIsI PEIIEHNs BHEIIHUX 3a1a4. OcoOCHHBII HHTEpeC MPeCTaBIseT IPUMEHEHUE 3TOTO
METOo/a K 3aadaM AU paKIiH.

KioueBbie c10Ba: BOJIHOBOE YpaBHEHHE, 00JIACTh CIIOXKHOW T€OMETPHUYECKOH (POPMBI, HEHPOHHBIE CETH

J1s uutuposanus. [anaGypaun A.B. IIpumeHeHne  HEMpPOHHBIX  ceTed Uil pPEleHHs  3ajadu 00
ycraHoBuBIIMXCst koneOanusx. Computational Mathematics and Information Technologies. 2025;9(3):56—63.
https://doi.org/10.23947/2587-8999-2025-9-3-56-63

Introduction. In modelling various natural objects and phenomena, the apparatus of partial differential equations
(PDEs) is often employed. The complexity of the developed models does not always allow for the efficient use of
traditional methods. Therefore, neural network methods are increasingly being applied in recent years.

The theoretical foundations of the neural network method were laid in the mid-20th century in the works of
A.N. Kolmogorov [1]. At present, neural networks are widely used in solving various boundary value problems. Works [2, 3]
are devoted to solving boundary value problems for the Laplace equation. In [4], deep learning methods are applied to
the Poisson equation in a two-dimensional domain. In [5], approaches to solving heat and mass transfer problems using
perceptron-type neural networks are investigated.

Currently, physics-informed neural networks (PINNs) are frequently employed to solve partial differential
equations [6, 7]. In [8, 9], radial basis functions are used as activation functions, with their parameters proposed to
vary during the training process. Successful applications of neural networks to solving the Navier—Stokes equations
are presented in [10, 11].

In [12], radial basis function neural networks are applied to solving direct and inverse scattering problems. The present
work represents a further development of the method for constructing neural networks used to solve PDEs, as presented
in [13—15]. The essence of this method lies in using functions that satisfy the considered differential equation as activation
functions. In this paper, this approach is applied to the construction of a neural network designed to solve boundary value
problems for the wave equation.

Materials and Methods. Let us consider the first boundary value problem for the wave equation in a planar domain G,
bounded by an arbitrary smooth closed curve y. Assume that the boundary conditions are periodic functions of time ¢ with
period ®, acting from the initial moment of time ¢ = —co.

Then, the solution of the wave equation

2
AU =c" g (2]
ot
can be sought in the form:

U =U,(x,y)cosot+U,(x,y)sinot,

where the functions U, (x, y) and U,(x, y) satisfy the equation
2
AU =2U.
c

To solve the boundary value problem for equation (1), the neural network constructed below was employed. In this
case, the sought function U was represented as:

Ux,p) = D wa(s)F(6,3,%,(6,).,(0,)) + D v,u(s,)G(x,3,%,(t,).0, (1),

k=1 k=1
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where u(s,) are the prescribed values of the unknown function U on the boundary of the domain; F(x, y, x(c,), y,(c,)) and
G(x, y, x,(t)), y,(t,)) are activation functions; o, and 7, are arc coordinates on the contours y, and y,, obtained from the
boundary contour y by shifting each point in the direction of the outward normal to the boundary by the distances p, and
p, respectively; x, y are the coordinates of the points in the domain G.

The activation functions were chosen as

F(x,y,x,(5,),y,(c,)) = ox*oy 2YO(®(:R)

e

and

G(x,y,x,(0,),,(0,)) =

where R = \/ (x=x)+-»)"; n(c,), n(c,) are the coordinates of the singular points uniformly distributed along the
auxiliary contours y,; Y (z) is the Bessel function of the second kind.
Since the activation functions satisfy equation (1), it remains only to fulfill the boundary conditions on the contour y

U| =u.

v

During the training of the network, the weights and the parameters p, and p,, were determined by minimizing the
error functional

(W, Vp,P15P,) = ZZ{Zka F(xi’yi’xo(clr)’yo(ck)+}

Jj=1i=l

. N2
ka;{jG(x[ay,':xg(Tk)7yo(Tk) _f;j} >

where f/ is the value of the j-th function from the training set at the point of the boundary contour with coordinate o,
To determine w, and v, from the obtained relations
00 _ ) 0
ow, ov,

a system of linear algebraic equations was solved. The values of p, and p, are determined by a simple search procedure.
The accuracy of the obtained solution can be evaluated by comparing the values of U on the boundary of the
domain, computed using the neural network, with the prescribed boundary values:

U(x( )y ) zwku(sk)F(S;’Gk)+kau(sk)G(SnTk)

F(Sfack) = F(x(si)ay(si)’xo(ck ):yo(ck)),

G(s,,1) = F(X(Si)’y(si)’xo(Tk)’yo(Tk))'

As the training set, a collection of functions was used that are solutions of equation (1) and have the form:
v, = cos(gnfx + ak)cos(gné‘y - ock),
c c

_ (O3 W i
v, =Cos Zn2x+0ck cos{~my — ot ).

where each function corresponds to a boundary point with index k. With a change in the index & the values of o, as well
as the components of the normal vector were also varied.

The parameters determined by the method described above do not always provide the desired accuracy of the neural network
solution. In such cases, the required accuracy can be achieved by iterative refinement of the result using the following algorithm:

Au’(s,) =u(s,).u; (s;) =u(s;), i=1,2,...N,
n+l1 _ o n n
AV™(s,) = Z{kau (s, )F(s,,6,)+v,Au (sk)G(si,rk)},
k=l
AunJrl (Sl-) — Aunﬂ (S,-) _ AVVH] (Sl» )’
w(s,)=u (s,) — Au" ().

n+l

where 1" (s;) is the refined solution at the boundary of the domain.
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o] .
m < & is reached (where 6 defines the desired
ut i
A n+l )
precision of the function U on the boundary of the domain G), or until the value of M begins to increase.

o )

After that, the solution at any point in the domain G is calculated by the formula:

The iterative refinement continues until the specified accuracy

Ux,y) =Y wat, (s )F(x,9,%,(5,).,(0,)) + D v, (s,)G(x,3,%,(1,).9,(1,))-

Results. The method described above was applied to solving boundary value problems for the wave equation in planar
domains whose boundaries were defined as

x = acos(t)+ gsin(dt),
y =bsin(t)+ feos(dr).

where ¢ € [0, 2n], a, b, g, f, d are adjustable parameters.

In all the problems considered below, the following parameter values were used: number of functions in the training
set M = 72, number of neurons in the network N =72, ¢ = 250, 6 = 0.0025.

Problem 1. A planar domain was considered whose shape was determined by the parameters: a = 0.27, b = 0.27,
g=-0.055, =0.055, d=3 (Fig. 1).

04
0.3 *
0.2 *7
0.1
*3 *g *12 %6 *1
~ 0.0 13 11
*14 15
0.1 v .
*
02 4 .
-0.3
-04
-04 03 -02 -0.1 0.0 0.1 0.2 03 04
X

Fig. 1. Shape of the domain in Problem 1

In Fig. 1, the stars indicate the points of the domain where the exact solution values and the values obtained by the
neural network were computed. Table 1 presents the computational results (amplitudes) corresponding to the solution,
which in polar coordinates has the form:

U=J, (ﬂ)cosq)cos(cot), o =550.
c
Table 1
Computational results for Problem 1
Point No. 1 2 3 4 5
Exact solution 0.25615 0.12741 -0.01673 —0.18688 -0.28990
Neural network 0.25598 0.12730 -0.01643 -0.18703 -0.28962
Point No. 6 7 8 9 10
Exact solution 0.16308 0.08066 -0.01072 -0.12037 0.18643
Neural network 0.16297 0.08061 -0.01065 -0.12032 0.18635
Point No. 11 12 13 14 15
Exact solution 0.06463 0.03187 —-0.00426 —-0.04800 -0.07427
Neural network 0.06457 0.03184 -0.00426 —-0.04800 -0.07425
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Problem 2. A planar domain was studied whose shape was determined by the pa-rameters: a =0.27, b=0.27,
g=-0.035, f=0.035, d =4 (Fig. 2).

0.4
0.3 %9
0.2 *7
0.1 . *12
>~ 3 *8 . *6 *1
0.0 13 *11
*14 *15
-0.1
*9 *10
-0.2 x4 *5
-0.3
-03 -02 -0.1 0.0 0.1 0.2 03
X

Fig. 2. Shape of the domain in Problem 2

The solution of the wave equation was considered in the form:

U:cos((9)~(ct—cos(f)x—sin(f)y) ,f =15 0=125,
c

where the given expression satisfies both the wave equation and equation (1). Therefore, time ttt was treated as a parameter:
a fixed value was assigned to ttt, and then the algorithm for obtaining the solution described above was imple-mented.
Table 2 presents the computational results obtained using the neural network, along with the exact solution of the problem
corresponding to the time moment t=3T/5 (where T=2n/® is the period of the solution).

Table 2
Computational results for Problem 2

Point No. 1 2 3 4 5
Exact solution —-0.82913 —0.86526 —0.88547 -0.87167 -0.83232
Neural network -0.82908 -0.86525 —0.88553 -0.87169 —0.83227

Point No. 6 7 8 9 10
Exact solution —0.82047 —0.84421 -0.86163 —0.84979 -0.82211
Neural network —-0.82046 —0.84420 -0.86164 —0.84979 -0.82210

Point No. 11 12 13 14 15
Exact solution -0.81162 -0.82176 —0.83572 —0.82633 —0.81163
Neural network -0.81161 -0.82176 —-0.83572 —-0.82633 -0.81163

Problem 3. A planar domain was studied whose shape was determined by the parameters: a =0.27,5=10.27, g = 0.035,
f=10.035,d =2 (Fig. 3).
The solution of the wave equation was considered in polar coordinates in the form:
or

U=J, (—)cos((p —or), ®=25.
¢
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Table 3 presents the computational results obtained using the neural network, together with the exact solution values
of the problem corresponding to the time moment # = 57710.

Table 3
Computational results for Problem 3

Point No. 1 2 3 4 5
Exact solution —-0.01309 -0.01010 —-0.002314 0.005639 0.01259
Neural network —-0.01309 —-0.01010 -0.002317 0.005640 0.01259

Point No. 6 7 8 9 10
Exact solution —-0.00840 0.00672 -0.00145 0.00365 0.00840
Neural network —0.00840 0.00672 —0.00146 0.00365 0.00840

Point No. 11 12 13 14 15
Exact solution —0.00372 —0.00333 0.000595 0.00166 0.00421
Neural network —0.00372 —0.00333 0.000594 0.00166 0.00421

Figures 4 and 5 show the time evolution of the solution at Points 3 and 5 obtained using the neural network. The stars
indicate the exact solution values of the problem.
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Fig. 4. Time evolution of the solution at Point 3
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Fig. 5. Time evolution of the solution at Point 5

Discussion. The proposed method for constructing neural networks that solve boundary value problems of partial
differential equations in domains of complex geometric shapes has demonstrated its effectiveness in the presented
test problems.

Conclusion. Future research by the author will focus on applying the developed method to solving boundary value
problems for the wave equation in exterior domains, as well as to diffraction problems. The development of this approach
in the indicated directions may yield interesting and important results both in theory and in solving practical problems.
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