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Аннотация
Введение. Численно решается двумерная гидродинамическая задача в переменных «функция тока — вихрь» в 
открытой прямоугольной каверне, моделирующей течение крови и ее свертывание в аневризме кровеносного со-
суда с учетом простейшей нелинейной математической модели за время первой фазы свертывания (30 секунд).
Материалы и методы. Для ускорения численного решения нестационарной задачи с явной разностной схемой 
уравнения динамики вихря использовался метод n-кратного расщепления явной разностной схемы (n = 100, 200) и 
наличие плоскости симметрии прямоугольной области каверны — аневризмы. Метод расщепления также при-
менялся для решения динамической системы уравнений адвекции-диффузии с нелинейной правой частью для 
факторов крови активатора и ингибитора (N = 70). В двух методах согласовался максимальный шаг времени τ0 в 
циклах расщепления. На половине прямоугольной аневризмы рассматривались симметричные решения и применя-
лась равномерная сетка 100×50 с равным шагом h1= h2= 0,01. Обратная матрица для решения уравнения Пуассона в 
переменных «функция тока — вихрь» за конечное число элементарных операций вычислялась библиотекой Msimsl.
Результаты исследования. Численное решение задачи показало, что в артериолах (Re = 3,6) происходит адвек-
ция и диффузия фибрина с учетом нелинейной правой части системы уравнений динамики для активатора и инги-
битора так, как если бы фибрин двигался навстречу крови. Максимальная плотность фибрина реализуется в сред-
ней части сосуда в форме «фибриновой подковы». Решение задачи при больших числах Рейнольдса (Re = 3000) 
в артериях эквивалентно движению фибрина вдоль потока, при этом центральная часть кровеносного сосуда 
отделена от аневризмы по ее геометрической границе «фибриновой ножкой».  В артериолах обнаружен также 
эффект слоеного роста фибрина с периодическим изменением плотности у стенки аневризмы, как и у авторов 
других работ. Решение задачи в артерии показало, что фибриновая пленка в аневризме при быстром движении 
крови образуется за время порядка одной секунды, что много меньше, чем первая фаза свертывания (30 секунд).
Обсуждение. Аппроксимация уравнений имеет шестой порядок погрешности во внутренних узлах и четвертый 
в граничных узлах. Задача решена для движения крови в аневризмах артерий при больших числах Рейнольдса 
(Re = 3000) и для течения крови в аневризмах артериол (Re = 3,6). Безразмерный диапазон изменения плотности 
фибрина вкладывается в аналогичный диапазон в работах других авторов.
Заключение. В работе предложены системы уравнений, представляющие собой простейшую нестационарную 
модель движения крови и образования фибрина (тромба) в аневризмах кровеносных сосудов. Предложенная мо-
дель поможет качественно выяснить причины образования тромбов в аневризмах артерий и артериол, а также в 
элементах медицинского оборудования.

Ключевые слова: гидродинамика, численные методы, уравнения в частных производных, начально-краевая за-
дача, математическое моделирование, аневризма
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Abstract
Introduction. A two-dimensional hydrodynamic problem is numerically solved in the “stream function-vorticity” 
formulation for an open rectangular cavity simulating blood flow and its coagulation within a vascular aneurysm. The 
model accounts for a simplified nonlinear mathematical description of the first phase of blood coagulation (30 seconds).
Materials and Methods. To accelerate the numerical solution of the unsteady problem with an explicit finite-difference 
scheme for the vorticity dynamics equation, an n-fold splitting method of the explicit scheme (n = 100, 200) was employed, 
along with the use of a symmetry plane in the rectangular aneurysm domain. The splitting method was also applied to 
solve the dynamic system of advection-diffusion equations with nonlinear source terms for the activator and inhibitor 
blood factors (N = 70). The maximum time step τ0 was synchronized across both splitting cycles. The computation was 
performed on half of the rectangular aneurysm using a uniform 100×50 grid with equal spacing h1 = h2 = 0.01. The inverse 
matrix required for solving the Poisson equation in the “stream function-vorticity” formulation with a finite number of 
elementary operations was computed using the Msimsl library.
Results. The numerical solution demonstrated that, in arterioles (Re = 3.6), advection and diffusion of fibrin occur 
according to the nonlinear dynamics of activator and inhibitor factors, as if fibrin were moving counter to the blood flow. 
The maximum fibrin density forms in the central region of the vessel in the shape of a “fibrin horseshoe”. For higher 
Reynolds numbers (Re = 3000) corresponding to arteries, fibrin motion occurs along the main flow, and the central part 
of the vessel is separated from the aneurysm by a “fibrin foot” along its geometric boundary. In arterioles, a layered fibrin 
growth effect was also observed, with periodic variations in fibrin density near the aneurysm wall, consistent with other 
authors’ findings. In arteries, the fibrin film within the aneurysm forms in approximately one second — significantly 
shorter than the first coagulation phase (30 seconds).
Discussion. The finite-difference approximation achieves sixth-order accuracy at interior nodes and fourth-order accuracy at 
boundary nodes. The model was applied to simulate blood flow in arterial aneurysms at high Reynolds numbers (Re = 3000) 
and in arteriole aneurysms (Re = 3.6). The dimensionless range of fibrin density variation is consistent with data reported 
by other researchers.
Conclusions. The study proposes a system of equations representing a simplified unsteady model of blood motion and 
fibrin (thrombus) formation in vascular aneurysms. The proposed model provides a qualitative understanding of thrombus 
formation mechanisms in aneurysms of arteries and arterioles, as well as in elements of medical equipment.

Keywords: hydrodynamics, numerical methods, partial differential equations, initial-boundary value problem, 
mathematical modeling, aneurysm
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Введение. В настоящей работе, являющейся продолжением работы [1], впервые моделируется двумерная 
гидродинамическая задача движения и свертывания крови в открытой прямоугольной аневризме-каверне 
в переменных «функция тока — вихрь». В работе [2] была впервые получена система из двух динамических 
уравнений в частных производных для диффузии факторов свертывания крови активатора и ингибитора с 
нелинейной правой частью для локального взаимодействия факторов. В работе [3] сравниваются различные 
математические модели свертывания крови без учета адвекции, более точно заданы размерные коэффициенты в 
системе уравнений.

В работе [4] изучена динамика образования крови и ее связь с сердечными пульсациями при небольших числах 
Рейнольдса. В работе [5] в российской программной среде FlowVision изучено движение крови в артериоле с учетом 
промежуточных компонентов химических реакций и с учетом изменения твердой границы кровеносного сосуда 
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и границы тромба показано, что небольшие тромбы образуются вблизи пореза внутри прямого сосуда и имеют 
фрактальную структуру. Работы [6–11] посвящены двумерным гидродинамическим задачам, свойства которых 
сходны со свойствами данной гидродинамической задачи. Данная работа, во-первых, включает нестационарную 
математическую модель свертывания крови внутри аневризмы кровеносного сосуда для артериолы Re = 3,6 и для 
артерии в турбулентной среде с числом Рейнольдса Re = 3000. Во-вторых, алгоритм программы в построенной 
модели учитывает периодическое перемешивание крови внутри аневризмы от каждой пульсационной волны.

Материалы и методы 
Постановка задачи. Рассмотрим двумерную задачу движения и свертывания крови в прямоугольной аневризме-

каверне, которая образуется на кровеносном сосуде. Аневризма представляет собой участок кровеносного сосуда, 
диаметр 2d которого обычно в 2 раза больше диаметра основного сосуда. Обозначим длину аневризмы L, ее 
диаметр 2H, H — полуширина аневризмы (на рис. 1 показана половина симметричной модели), d — полуширина 
сосуда. Начало системы координат выберем в левом нижнем углу.

 Рис. 1. Геометрия области для численно решаемой задачи

Динамическая часть задачи для движения крови в аневризме артериол (Re = 1,8) и артерий (Re = 1500) чис-
ленно решена в работе [1], получены поля линий тока частиц жидкости (крови) внутри аневризмы, постановка 
гидродинамической задачи [1] в безразмерных переменных имеет вид:
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Как и в статье [1], в данной работе используются масштабы: длины  L, времени   
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, числа Рейнольдса Re. Обозначим безразмерные переменные:  x  — горизонтальная коор-

дината,  y  — вертикальная координата,  ,  wψ   — функции тока и вихря соответственно,  ( ),  u v  — вектор скоро-
сти,  t  — время. Зададим их формулами:
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Кинематическая вязкость крови равна 
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В системе (1) первым записано уравнение Пуассона в переменных «функция тока — вихрь», которое имеет 
шестой порядок [12] аппроксимации [1]:

 ( ) ( )0,0 1,0 0, 1 1,0 0,1 1, 1 1, 1 1,1 1,12
1 10 2 1( , )

3 3 6xx yy f x y w
h − − − − − −
 ∆ψ = ψ +ψ = = − ⇔ − ψ + ψ +ψ +ψ +ψ + ψ +ψ +ψ +ψ = 
 

 
( ) ( ) ( ) ( ) ( ) ( )

4 (4) 4 (4)2 4 2 4
(4) (4) 6 (4) (4) 6 .

12 360 90 12 360 90
xxyy xxyy

xx yy x y xx yy x y

h f h wh h h hf f f f f O h w w w w w O h
 

= + + + + + + = − + + + + + +  
 

Частные производные в формуле (2) также аппроксимированы в [1]. Были получены формулы для внутренних 
узлов функции f с индексами  1 22, 2, 2, 2n n m n= − = − :
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Совместный алгоритм решения системы уравнений (1) и системы уравнений (12) состоит из 11 шагов. При 
этом необходимо задать начальные условия переменных величин: поле функции тока, поле скорости, поле вихря, 
поля ингибитора и активатора (15)–(17). Данный алгоритм отличен от алгоритма в работе [1] и представляет со-
бой следующую последовательность действий:

1 шаг: задать краевые условия на границе прямоугольной каверны для функции тока и вертикальной компо-
ненты скорости, которые неизменны;

2 шаг: модифицировать правую часть уравнения Пуассона для функции вихря согласно формулам (12), (13) 
из работы [1];

3 шаг: решить уравнение Пуассона (7)–(11) (из работы [1]), то есть найти значения функции тока во внутрен-
них точках прямоугольной сетки;

4 шаг: по формулам (5) из [1] вычислить скорость на верхнем отрезке каверны;
5 шаг: вычислить новое поле скорости (18) из [1] на внутренних узлах сетки;
6 шаг: найти новые граничные значения вихря с помощью формул (24) из [1];
7 шаг: найти новые значения вихря уравнением (19) из [1] на внутренних узлах;
8 шаг: найти правые части для ингибитора и активатора уравнений (13); 
9 шаг: решить уравнения (13) отдельно для ингибитора и отдельно для активатора методом расщепления во 

внутренних узлах сетки;
10 шаг: найти граничные значения ингибитора и активатора по формуле (14);
11 шаг: если физическое время кратно целому числу пульсаций сердца, привести поля скорости, функции 

тока, вихря к начальным их значениям до решения задачи (17), что соответствует перемешиванию крови в анев-
ризме пульсационной волной, генерируемой сердцем по кровеносным сосудам (поля ингибитора, активатора и 
фибрина сохраняются до и после пульсации).

После десятого шага перейти к первому шагу в цикле. Первым в системе уравнений (1) решается уравнение 
Пуассона за конечное число элементарных операций [1] и аппроксимацией с шестым порядком погрешности во 
внутренних точках. Вторая строка системы (1) — функция вихря, вычисляемая через координатные производные 
поля скорости. В третьей строке компоненты скорости вычисляются как частные производные от функции тока. 
Поэтому аппроксимация уравнений  , ;x y y xw v u u v= − = ψ = −ψ  сводится к аппроксимации первых производных 
и не представляет труда. Четвертая строка (1) — уравнение динамики вихря, которое в системе уравнений (1) 
единственное явно зависит от времени. Слева стоит полная (конвективная) производная по времени.

В системе уравнений (1) необходимо пояснить элементы прямоугольной границы каверны. Здесь Г1 — объ-
единение нижней части боковых сторон и нижнего отрезка, Г2 — верхний отрезок прямоугольника Г. Обозначим 
через (u(x,u), v(x,y)) вектор скорости жидкой частицы, причем на твердой границе, то есть на нижнем отрезке и 
нижней части боковых отрезков высотой H–d прямоугольной каверны скорость равна нулю (условие прилипания 
частиц жидкости на границе Г1), поэтому функцию тока на указанной границе можно положить равной нулю.

На границе прямоугольника равна нулю вертикальная компонента скорости, горизонтальная компонента пока не зада-
на на верхнем отрезке и равна нулю на нижнем отрезке, а на боковых сторонах описывается уравнением (4) согласно [1]:

 
( ) ( ) ( )2

max 2

0, [0, ]
( )0, , , [ , ].

1

y H
u yu y u L y y H Hy H
u

∈ −∆
 = = = ∈ −∆− − ∆ 

(2)

(3)

(4)



Computational Mathematics and Information Technologies. 2025;9(4):22−37. eISSN 2587-8999

26

На верхнем отрезке прямоугльной каверны неизвестную скорость можно найти по формулам (5) (на 4-м шаге 
общего описанного алгоритма [1]):

 ( ) ( ) 2 2 2 2 2 22 2 , 1, 2, 3, 4, 5,
2

1 83711 55 165 462( , ) , 11 55
27720 2 2 5y n j n j n j n j n j n ju n j n j

h − − − − −
= ψ = − ψ + ψ − ψ + ψ − ψ + ψ −− 

 ( )
2 2 2 2 2 2

10
6, 7, 8, 9, 10, 11, 1

330 165 55 11 177 , 1, 1,
7 8 9 10 11n j n j n j n j n j n j O h j n− − − − − −

− ψ + ψ − ψ + ψ − ψ + ψ + = −


 
( ) ( )

2 2 2 2 2 2

4
2 , 1, 2, 3, 4, 5, 1

2

1 137 10 5 1( , ) 5 5 , 1, 1.
60 3 4 5n j n j n j n j n j n ju n j O h j n

h − − − − −
 = − ψ + ψ − ψ + ψ − ψ + ψ + = − −  

Для ускорения численного задачи благодаря симметрии рассмотрим половину аневризмы и две половины 
прямоугольного канала, подводящего и выводящего жидкость из аневризмы. Удобно выбрать прямоугольную 
систему координат с равномерной сеткой n1×n2 = 100×50. 

Согласно проекционному принципу для двух выпуклых замкнутых контуров, вложенных друг в друга без са-
мопересечений (допускается касание и частичное совпадение контуров), из некоторой внутренней точки можно 
провести луч, пересекающий каждый контур в одной точке. Тогда мы можем говорить о геометрическом проек-
тировании одного контура на другой контур. Но можно также говорить о проекции значений физического поля 
с точек вешнего контура в точки внутреннего контура по правилу: передадим значение поля с точки внешнего 
контура в точку внутреннего контура. Например, на рис. 1 внешний контур включает левую и правую части кро-
веносного сосуда и прямоугольную аневризму, а внутренний контур состоит только из одной аневризмы. Можно 
также проектировать точки внешнего контура вдоль направления нормали на точки внутреннего контура.

Таким образом, благодаря принципу полевого проектирования, для упрощения задачи и ускорения ее решения 
можно качественно рассматривать задачу движения жидкости не в объемах трех тел (левая часть сосуда, аневриз-
ма, правая часть сосуда), а только задачу в аневризме. Поэтому предположим, что профиль скорости сохраняется 
при входе потока в прямоугольную аневризму и при выходе из нее в узкой симметричной полосе относительно 
плоскости 0xz шириной 2∆ = 2d, который на бесконечности описывается формулой Пуазейля (4) [1].

Интегрируя формулу (4) в интервале y∈[H − ∆, H] получим функцию тока на боковых сторонах аневризмы — 
последнюю формулу в системе уравнений (1) [1]. На верхнем и нижнем отрезках аневризмы и на боковых малых 
смежных отрезках проектирование поля скорости и функции тока не требуется.

Качественно обосновать принцип полевого проектирования можно на примере задачи обтекания идеальной 
жидкостью бесконечного цилиндра. Если поле скорости потока идеальной жидкости на бесконечности равно по-
стоянной, то в диаметрально противоположных точках обтекания цилиндра потоком жидкости направление ско-
рости не меняется, а значение скорости удваивается. При этом в точках касания и в небольших смежных областях 
условие непротекания жидкости через цилиндр приближенно выполняется. Аналогично на рис. 1 на плоскости 
симметрии направление жидкости не меняется, приближенно не меняется направление скорости на боковых от-
резках входа и выхода жидкости в аневризму из кровеносного сосуда, условие непротекания жестких границ 
также выполняется, поэтому мы применяем принцип полевого проектирования на боковых сторонах аневризмы.

Для ускорения численного решения уравнения вихря (1) применялся метод расщепления [1, 11]. Аналитиче-
ски метод n-кратного расщепления уравнения вихря для временного интервала τ0/n можно записать в виде:

 ( )
(( 1)/ ) ( / )

( / ) ( / ) ( / ) ( / )

0

1 , 0, 1.
/ Re

k i n k i n
k k i n k k i n k i n k i n

x y xx yy
w w u w v w w w i n

n

+ + +
+ + + +−

+ ⋅ + ⋅ = + = −
τ

Система рекуррентных уравнений (6) для вихря с замороженным полем скорости  ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = = 
 ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = =  состоит из n промежуточных шагов  ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = = верхний индекс i указывает номер промежуточ-

ного слоя времени в уравнении вихря (6), индекс k — номер кратного слоя времени в системе (6). Поля скорости 
и функции тока постоянны в уравнениях (6) при значениях k = const и изменении индекса  ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = =. В данной 
системе уравнений изменяется только поле вихря  ( / ) , 0, 1k i nw i n+ = − . Поле скорости скачком изменяется в системе (1) 
когда временной индекс функции вихря увеличивается на единичку от k до k+1 в системе уравнений (6).

Идея расщепления системы уравнений (6) заключается в уменьшении накопления ошибки округления и вре-
мени вычислений при ее решении. Дифференциальные операторы по координате в (6) аппроксимированы во 
внутренних узлах с точностью O(h6), как и все уравнения системы (1), граничные условия с точностью O(h4), а по 
времени с точностью O(τ).

Здесь действует недоказанное предположение, что для спектральной временной устойчивости разностных 
схем нужно сохранить порядок аппроксимации уравнений на границе ниже, чем порядок аппроксимаций уравне-
ний во внутренних точках [12]. Таким образом, за время τ0/n (связанное с уменьшением устойчивости решения 
из-за наличия особых точек поля скорости), решая n раз уравнение (6), получим скачок по времени τ0 (в n раз 
больший, чем последовательное решение системы уравнений (1)).

(5.1)

(5.2)

(6)
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Для производной wy в (6) запишем квадратурные формулы (формулы для производной wx аналогичны):

 ( ) ( ) ( ) ( )

( )

( ) ( )( ) ( )

6
( , ) 1, 1, 2, 2, 3, 3, 2 1

0, 4, 5, 4
(1, ) 1, 2, 3, 1

4
(2, ) 3, 1, 4, 0, 1

1 3 3 1 , 3, 3, 1, 1,
4 20 60

1 13 2 , 1, 1,
5 12 3 20

1 8 , 1,
12

y i j i j i j i j i j i j i j

j j j
y j j j j

y j j j j j

w w w w w w w O h i n j n
h

w w w
w w w w O h j n

h

w w w w w O h j n
h

+ − + − + −
 = − − − + − + = − = − 
 
 

= − − + − + − + = − 
 

= − − − + =

( )

( ) ( )( ) ( )

2 2 2

2 2 2 2

2 2 2 2 2

, 4, 5, 4
( 1, ) 1, 2, 3, 1

4
( 2, ) 3, 1, 4, , 1

1,

1 13 2 , 1, 1,
5 12 3 20

1 8 , 1, 1.
12

n j n j n j
y n j n j n j n j

y n j n j n j n j n j

w w w
w w w w O h j n

h

w w w w w O h j n
h

− −
− − − −

− − − −







 −

  

= − − − + − + − + = −  
 


 = − − − − + = −


Вторые частные производные wyy в (6) имеют вид:
 ( ) ( ) ( ) ( )

( )

6
( , ) , 1, 1, 2, 2, 3, 3, 2 12

4
(1, ) 0, 1, 2, 3, 4, 5, 6, 12

1 49 3 3 1 , 3, 3, 1, 1,
18 2 20 90

1 137 49 17 47 19 31 13 , 1, 1,
180 60 12 18 12 60 180

yу i j i j i j i j i j i j i j i j

yу j j j j j j j j

yу

w w w w w w w w O h i n j n
h

w w w w w w w w O h j n
h

w

+ − + − + −
 = − + + − + + + + = − = − 
 
 = − − + − + − + = − 
 

( ) ( ) ( )

( )
2 2 2 2 2 2 2 2

2

4
(2, ) 2, 1, 3, 0, 4, 12

4
( 1, ) , 1, 2, 3, 4, 5, 6, 12

( 2, ) 2

1 5 4 1 , 1, 1,
2 3 12

1 137 49 17 47 19 31 13 , 1, 1,
180 60 12 18 12 60 180

1 5
2

j j j j j j

yу n j n j n j n j n j n j n j n j

yу n j n

w w w w w O h j n
h

w w w w w w w w O h j n
h

w w
h

− − − − − − −

−

 = − + + − + + = − 
 
 = − − + − + − + = − 
 

= − ( ) ( ) ( )
2 2 2 2 2

4
2, 1, 3, 4, 1

4 1 , 1, 1.
3 12j n j n j n j n jw w w w O h j n− − − −













   + + − + + = −   

Аналогично формулам (8) записываются формулы для производной wxx. Из работы [2] добавим общее краевое 
условие для вихря (6 шаг общего алгоритма) в открытой каверне с четвертым порядком погрешности, дважды 
дифференцируя последнее уравнение для функции тока в системе (1) по y:

 ( )
0 1 2 3 42

1 1

0,1 415 8 1 25( , ) 8 3 , ,
72 9 8 6xx yy yy x

v y
w x y v

h h
 = −ψ −ψ = ψ − ψ + ψ − ψ + ψ − −ψ = −ψ 
 

 ( )2 2 2 2 3 2 30, , , ,1 ,mm n y mh h n n h n= = ∆ = − − ∆ =
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,0 ,1 ,2 ,3 ,4 3 222

1 1
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( / ))1 415 8 1 258 3 2 , , ,
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1 415 8 1 258 3 , 0, , ,
72 9 8 6
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m

m
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y H Lv m n n
h h L

w
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h h

 − ψ − ψ + ψ − ψ + ψ − + =  
  ∆= 

  ψ − ψ + ψ − ψ + ψ − =   
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( / ))1 415 8 1 258 3 2 , , ,
72 9 8 6 /

1 415 8 1 258 3 , 0, , ,
72 9 8 6

m n m
m n m n m n m n m n

m n

m n
m n m n m n m n m n

y H Lv m n n
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w
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h h

− − − −

− − − −

 − ψ − ψ + ψ − ψ + ψ + + =  
  ∆= 

  ψ − ψ + ψ − ψ + ψ + =   
 

2

2 2 2 2 2

0,
0, 1, 2, 3, 4, 12

2 2
0,

,
, 1, 2, 3, 4, 12

2 2

1 415 8 1 258 3 , 0, , , ,
72 9 8 6

1 415 8 1 258 3 , 0, , .
72 9 8 6

n
n n n n n y

n
n n

n n n n n n n n n n

u n n u bottom
h h

w
u n n top

h h− − − −

  ψ − ψ + ψ − ψ + ψ + = = ψ  
 = 
  ψ − ψ + ψ − ψ + ψ − =   

При выводе краевого уравнения (9) для функции вихря удалены производные функции тока выше второго 
порядка, что заметно повышает устойчивость краевых разностных условий типа (9), (10) для поля скорости с 
разрывами первого рода. В таблице 1 приведена классификация кровеносных сосудов по числу Рейнольдса и 
по их диаметру.

Опыт показывает [1], что для физически быстрого решения задачи (1) в артериолах и в артериях нужно вы-
брать инерционный интервал времени  

max

LT
u

= , а для решения гидродинамической задачи — систему (1).

(7)

(8)

(9)

(10.1)

(10.2)

(10.3)
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Таблица 1 

Классификация кровеносных сосудов

Тип Диаметр Скорость крови Число Re Система уравнений
Капилляры (5–10) мкм (0,5–1,0) мм/с 0,00075–0,003 –
Артериолы (10–100) мкм (0,5–10,0) см/c 0,015–3,000 (1), (13)

Артерии (2–10) мм (10,0–50,0) см/c 60–1500 (1), (13)
Аорта (2–3) см 0,5 м/с 3000 (1), (13)

Рассмотрим простейшую математическую модель образования фибрина, учитывающую изменение концентрации 
двух метаболитов — активатора процесса свертывания тромбина s и ингибитора z, замедляющего свертывание крови:

 ( )

( )

2

1
0

2

22
0

,

1 1 .

xx yy

xx yy

s s s su v D s s k s sz
t x y s s

z z z z zu v D z z s k z
t x y c z

∂ ∂ ∂ α
+ + = + + − − γ∂ ∂ ∂ +


 ∂ ∂ ∂   + + = + +β − + −  ∂ ∂ ∂   

Здесь u, v — компоненты скорости; коэффициенты α, β, k1, γ, D, c, v0, k2 — размерные, а их численные значения 
взяты из работы [3, стр. 16].

Таблица 2

Размерные коэффициенты в системе уравнений (11)

 
α, мин−1 β, мин−1  v0(z0), нМ

 
c, нМ u0(s0), нМ k1, мин−1 k2, мин−1

2,0 0,0015 5,0 0,0525 5,0 2,95 0,05 0,35

Коэффициенты диффузии тромбина и ингибитора будем считать равными D = 10−11 м2/с [2, стр. 99]. Вычислим 
скорость диффузии тромбина и ингибитора по формуле  11 62 2 10 2 / 60 1,155 10 /v D м c− −= α = = ⋅  м/с. Эта скорость 
значительно меньше скорости крови в артериоле (3 мм/c) и скорости крови в артерии (50 см/c), что объясняет ис-
пользование адвективных слагаемых в левой части системы уравнений (11). Преобразуем уравнения (11):

 
( )

( ) ( )

2
max max

1 02

2max max 0 0
22

0

,
1

1 1 ,

x x y y

x x y y

u us s s D su v s s k s szz
L L LT t x y s

u u s z zz z z Du v z z s z k z
L L L z cT t x y

 ∂ ∂ ∂ α
+ + = + + − − γ

∂ ∂ ∂ + ⇔
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s z zz z z D Lu v z z s z k z
u z ct x y

d s t
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  ∂ ∂ ∂ α  + + = + + − − γ
 ν∂ ∂ ∂ +  
   ∂ ∂ ∂ + + = + + β − + −    ν∂ ∂ ∂    


ϕ =




Последним уравнением в системе (12) является уравнение роста тромбина  ( )tϕ  интегрированием активатора
 ( )s t  по безразмерному времени  t . Из работ [2–5] следует, что активатор  ( )s t , ингибитор  ( )z t , тромбин  ( )tϕ  при-
нимают только неотрицательные величины, что использовалось авторами в программе.

Для артериолы [5] диаметр равен 2d = 2 мм, вязкость крови η = 3,5 ‧ 10−3 Па‧с, кинематическая вязкость крови
 3 2

6
3

3,5 10 3,33(3) 10 .
1050 /

Па с м
кг м с

−
−µ ⋅ ⋅

ν = = = ⋅
ρ

 Скорость крови [5] umax = 3 мм/с в аневризме диаметром L ≈ 4d = 4 мм. 

(11)

(12)
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γ
⋅
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Тогда число Рейнольдса равно 
 

( )
3 3

max
6

3 10 4 10Re 3,6
3,33 3 10

u L − −

−

⋅ ⋅ ⋅
= = =

ν ⋅
. Введем обозначения  0 0/ ,  /s s s z z z= = , и най-

дем безразмерные коэффициенты:

 
( ) ( )

11
7 2 2

0 06
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−
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ν ⋅ ⋅

 ( ) ( ) ( )
3 3 3

1 13 3 3
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅
α = = = = = =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 ( ) ( )
3 3

1 03 3
max max
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L Lk z
u u
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− −

⋅ ⋅ γ ⋅
= = = ⋅ ⋅ =

⋅ ⋅ ⋅
 ( ) ( )

3 3
0

2 3 3
max max 0

0,35 4 10 4 10 0,0015 2.950,0077 7 ,  0,00187301587301 587301 .
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sL Lk
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⋅ ⋅ β ⋅
= = = ⋅ ⋅ =

⋅ ⋅ ⋅
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0
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⋅ ⋅ ⋅
Обозначим правые части в уравнениях динамики для ингибитора и активатора в системе уравнений (12) и 

получим метод расщепления [11] с кратностью расщепления N:
 

( )( ) ( )
2

0 1 0
max

( / ) , , ,
Re 1

x x y ys

D L sF t k i N x y s s k s szz
u s

 α = τ + = + + − − γ
 ν + 
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  
= τ + = + + β − + −   ν   
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0
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0
0
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( / ) , , , 0, 1, 0,1,2,... .
/

k i N k i N
k i N k i Nk k
x y s

k i N k i N
k i N k i Nk k
x y z

s s u s v s F t k i N x y
N

z z u z v z F t k i N x y i N k
N

+ + +
+ +
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+ +

 −
+ ⋅ + ⋅ = = τ +

τ

 −

+ ⋅ + ⋅ = = τ + = − = τ
Кратность расщепления N = 70 в системе (13) для ингибитора и активатора отличается от кратности n = 200 

расщепления уравнения вихря (6). Необходимо только согласовать по времени системы (6), (13) так, чтобы после 
окончания работы обоих циклов подпрограмм приращение их безразмерного времени совпало, то есть равнялось τ0.

Если граничные условия для ингибитора и активатора на твердой стенке заданы для случая непротекания (на-
пример, на дне каверны), то из формулы (5.1) получим формулу (14.1) с одиннадцатым порядком погрешности:

 ( ) ( ) 0, 1, 2, 3, 4, 5,

2

1 83711 55 165 4620 0, 11 55
27720 2 2 5

y j j j j j js j s s s s s s
h

= = − + − + − + −− 

 ( )10
6, 7, 8, 9, 10, 11, 1

330 165 55 11 177 , 1, 1
7 8 9 10 11

j j j j j js s s s s s O h j n− + − + − + + = − ⇔

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83711 2 2 5

j j j j j js s s s s s= − + − + −


 ( )11
6, 7, 8, 9, 10, 11, 1

330 165 55 11 177 , 1, 1.
7 8 9 10 11

j j j j j js s s s s s O h j n− + − + − + + = −


Получим аналогичную формулу (14.2) с пятым порядком погрешности:

 ( )5
0, 1, 2, 3, 4, 5, 1

60 10 5 15 5 , 1, 1.
137 3 4 5

j j j j j js s s s s s O h j n = − + − + + = − 
 

Инициализация задачи. Начальные значения для поля ингибитора и активатора зададим, как и в работе 
А.И. Лобанова [3], в виде ступеньки для активатора. Эти начальные условия были использованы в системах урав-
нений (1), (13) с решениями, представленными ниже на рис. 2–7:

 , 2 1

2 1
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2 1 1
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∀ = = 
Примем также, что краевые условия для активатора и ингибитора на прямоугольной границе каверны — анев-

ризмы представляют собой однородное условие Дирихле

 
2 2/ /

0, 0.
Г Г Г Г
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Начальное поле скорости: вертикальная компонента скорости vi,j(t = 0) отсутствует, а горизонтальная ui,j(t = 0) 
имеет вид распределения Пуазейля (4):

 , 2 1

2

2 3 2 2 2 3 2
,

3

( 0) 0, 0, , 0, ,

1 , , , , ,
( 0)

0, 0, .

i j

i
i i

i j

v t i n j n

y H H h n y H h n y i h i n n
u t

i n

 = = ∀ = =

    − − − ∆ = ≤ ≤ = = ⋅ =   ∆= =    


= 

           

Из работы [5] выберем диаметр артериолы 2d = 2 мм и скорость крови u = 3 мм/с. Диаметр аневризмы и ее 

длина в 2 раза больше 2D = L = 4 мм. Расчет дает число Рейнольдса 
 3 3

max
6

3 10 4 10Re 3,6
3,333 10

u L − −

−

⋅ ⋅ ⋅
= = =

ν ⋅
. Время дви-

жения частицы жидкости 
 ( )

3

3
max

4 10 1,33 3
3 10

LT с
u

−

−

⋅
= = =

⋅
 вдоль аневризмы превышает период сердечных пульсаций 

(1 секунду), поэтому за время T = 1,33(3) c возможны две сердечных пульсации и дважды механическое переме-
шивание крови внутри аневризмы стенками сосуда.

Были выбраны однородные нулевые краевые условия для ингибитора и активатора на стенках каверны ис-
ходя из того, что их концентрация в удаленных точках от аневризмы равна нулю. На верхнем отрезке каверны 
для активатора и ингибитора использовалась формула (14.2), так как мы ищем симметричные решения для всех 
неизвестных полей. Уравнения (12) имеют тривиальное решение  ( ) ( ) 0s t z t= ≡ . Как показано в работе [3], триви-
альные решения  ( ) ( ) 0s t z t= ≡  устойчивы, если значения ингибитора и активатора меньше пороговых значений
 0 0( ) , ( )s t s z t z< < . Этот факт также объясняет выбор однородных нулевых граничных условий. 

Начальное поле фибрина  ( )tϕ  в (12) (интеграл по времени от поля активатора) в момент T = 1,33(3) c  проде-
монстрировано на рис. 2. 

Рис. 2. Поля величин в артериоле с применением (14.2) в момент T = 1,33(3) c, 
Re = 3,6, n1×n2 = 100×50,  2

max 1
6/ 0,5;  4 мм,2 4 мм, 3 мм/с,

16
H L H u h∆ = = = = τ = , m = 53000 шагов, кратности 

расщепления n = 200 в (6), N = 70 в (13): а — поверхность фибрина; б — распределение фибрина в аневризме; 
в — поле линий тока в аневризме

Из рис. 2 следует, что даже на начальной стадии образования фибрина заметно его перемещение — транспорт 
вдоль тока крови и диффузия согласно системе уравнений (13).
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Рис. 3. Поля величин в артериоле с применением (14.2) в момент Т = 20 с, 
Re = 3,6, n1×n2 = 100×50,  2

max 1
6/ 0,5;  4 мм,2 4 мм, 3 мм/с,

16
H L H u h∆ = = = = τ = , m = 800000 шагов, 

кратности расщепления n = 200 в (6), N = 70 в (13): а — поверхность фибрина; 
б — распределение фибрина в аневризме; в — поле линий тока в аневризме

Рис. 4. Поля величин в артериоле с применением (14.2) в момент Т = 26 с,  

Re = 3,6, n1×n2 = 100×50,  2
max 1

6/ 0,5;  4 мм,2 4 мм, 3 мм/с,
16

H L H u h∆ = = = = τ = , m =1200000 шагов, 
кратности расщепления n = 200 в (6), N = 70 в (13): а — поверхность фибрина; 

б — распределение фибрина в аневризме; в — поле линий тока в аневризме
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Рис. 4 завершает графическое решение образования тромба в аневризме артериолы в конце первой фазы (30 секунд). 
Из таблицы 1 выберем диаметр артерии 2d = 1 см и скорость крови u = 0,5 м/с. Диаметр аневризмы и ее длина в 

2 раза больше 2H = L = 2 см. Рассчитаем число Рейнольдса  
( )

2
max

6
0,5 2 10Re 3000

3,33 3 10
u L −

−

⋅ ⋅
= = =

ν ⋅
. Время движения 

частицы жидкости 
 2

max

2 10 0,04
0,5

LT с
u

−⋅
= = =  c вдоль аневризмы меньше периода сердечных пульсаций (1 секунда), 

поэтому за время T = 0,04 c возможна только одна сердечная пульсация с перемешиванием крови в аневризме, 
причем с малой вероятностью.

 Начальное поле фибрина  ( )tϕ  в (12) (интеграл по времени от поля активатора) в момент T = 0,04 c продемон-
стрировано на рис. 5.

Рис. 5. Поля величин в артерии с применением (14.2) в момент T = 0,04 c,
 

Re = 3000, n1×n2 = 100×50,  2
max 1

6/ 0,5;  2 см,2 2 см, 0,5 м/с, ,
16

H L H u h∆ = = = = τ = m = 53000 шагов, 

кратности расщепления n = 200 в (6), N = 70 в (13):
а — поверхность фибрина; б — распределение фибрина в аневризме; 

в — поле линий тока в аневризме

По сравнению с рис. 2б на рис. 5б транспорт активатора выражен более явно, чем диффузия активатора. На 
рис. 6б видно движение фибрина вдоль потока и его закручивание у правого отрезка каверны с образованием «фи-
бриновой ножки». Таким образом, образуется пленка фибрина у геометрической границы каверны, блокирующая 
доступ кислорода к стенкам каверны, образуя застой крови внутри аневризмы.

1,2

fibrin

0,9

0,6
0,3

1,00 0,0
0,75

0,50
0,25

0,00 0,00
0,25

0,50
0,75

1,00
y

x

a)

1,00

0,75

0,50

0,25

0,00
0,00 0,25 0,50 0,75 1,00

y

x
б) в)

1,00

0,75

0,50

0,25

0,00
0,000 0,275 0,550 0,825 1,100

y

x

21,00

fibrin

15,75
10,50
5,25

1,00 0,0
0,75

0,50
0,25

0,00 0,00
0,25

0,50
0,75

1,00

y x

a)
1,00

0,75

0,50

0,25

0,00
0,00 0,25 0,50 0,75 1,00

y

x
б) в)

1,00

0,75

0,50

0,25

0,00
0,000 0,275 0,550 0,825 1,100

y

x

1,2

fibrin

0,9

0,6
0,3

1,00 0,0
0,75

0,50
0,25

0,00 0,00
0,25

0,50
0,75

1,00
y

x

a)

1,00

0,75

0,50

0,25

0,00
0,00 0,25 0,50 0,75 1,00

y

x
б) в)

1,00

0,75

0,50

0,25

0,00
0,000 0,275 0,550 0,825 1,100

y

x

21,00

fibrin

15,75
10,50
5,25

1,00 0,0
0,75

0,50
0,25

0,00 0,00
0,25

0,50
0,75

1,00

y x

a)
1,00

0,75

0,50

0,25

0,00
0,00 0,25 0,50 0,75 1,00

y

x
б) в)

1,00

0,75

0,50

0,25

0,00
0,000 0,275 0,550 0,825 1,100

y

x



Волосова Н.К. и др. Нестационарная модель свертывания крови ...

33

Рис. 6. Поля величин в артерии с применением (14.2) в момент T = 0,6 c,

 Re = 3000, n1×n2 = 100×50,  2
max 1

6/ 0,5;  2 см,2 2 см, 0,5 м/с, ,
16

H L H u h∆ = = = = τ =  m = 800000 шагов, 

кратности расщепления n = 200 в (6), N = 70 в (13): а — поверхность фибрина; 
б — распределение фибрина в аневризме; в — поле линий тока в аневризме

Рис. 7. Поля величин в артерии с применением (14.2) в момент T = 0,9 c, 
Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0,5;  2 см,2 2 см, 0,5 м/с, ,

16
H L H u h∆ = = = = τ =  m = 1200000 шагов, 

кратности расщепления n = 200 в (1), N = 70 в (13): а — поверхность фибрина; 
б — распределение фибрина в аневризме; в — поле линий тока в аневризме

Качественно рис. 6 и 7 похожи, кроме того, «фибриновая ножка» на рис. 6б уже превратилась в «фибриновый 
бублик» на рис. 7б. Рис. 6, 7 демонстрируют, что в турбулентной среде каждая нить фибрина быстро меняет зна-
чение даже вдоль своей длины, подобно разбросанным волосам в ветровом потоке.

Рассмотрим периодическую структуру фибрина в артериоле у стенки аневризмы в момент t = 10 c после на-
чала свертывания крови на рис. 8.
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Рис. 8. Поле фибрина в артериоле с применением (14.2) в момент T = 10 c, 
Re = 3,8, n1×n2 = 100×50,  2

max 1
6/ 0,5;  4 мм,2 4 мм, 3 мм/с,

16
H L H u h∆ = = = = τ = ,  m = 400000 шагов, 

кратности расщепления n = 200 в (6), N = 70 в (13):
а — поверхность фибрина; б — распределение фибрина в аневризме

На рис. 8а, 8б видно, что фибрин движется вдоль стенки аневризмы тонким слоем против потока крови (со 
скоростью umax = 3 мм/с), делает поворот у дальней стенки (возможно, крепится к дальней стенке), возвращается 
к ближней стенке, образуя «фибриновую подкову» с максимальной плотностью фибрина вне области аневризмы. 
То есть, «фибриновая подкова» растет в объеме потока и против движения потока. На рис. 8б также видна струк-
тура с периодическим пространственным изменением плотности фибрина у стенки аневризмы. На рис. 3б, 4б у 
подковы в центре аневризмы артериолы максимальная плотность фибрина (красным цветом) достигается у левой 
стенки, что подтверждает рост фибрина противоположно направлению движения крови.

Рис. 9. Поля величин в артерии с применением (14.2) в момент Т = 2,54 с  
Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0,5;  2 см,2 2 см, 0,5 м/с, ,

16
H L H u h∆ = = = = τ =  m = 3387700 шагов, 

кратности расщепления n = 200 в (1), N = 70 в (13):
а — поверхность  фибрина; б — распределение  фибрина в аневризме; в — поле  линий тока в аневризме

На рисунке 9б в момент 2.54 с в объеме аневризмы образуется однородный тромб  по всему ее объему (по 
сравнению с рисунком 7б) с максимальным значением безразмерной плотности 85 единиц. Также важен вопрос о 
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пороговой  плотности фибрина, когда его плотность можно считать твердым телом и непроницаемым для потока 
крови. Кровь в этом случае должна обтекать сверхплотные сгустки фибрина. Важно также получить эксперимен-
тальную зависимость вязкости крови от плотности безразмерного фибрина для учета зависимости в системах 
уравнений (1), (12).

Обсуждение 
1. В начальной фазе (рис. 2б, 5б) фибрин образуется в области превышения порога активатора и с помощью 

адвекции и диффузии перемещается в остальные части аневризмы.
2. В начальной фазе в артериолах при t = 1,333 с (рис. 2а, 2б) максимальное значение фибрина (красные тона) 

наблюдается вблизи стенок аневризмы. Но в момент t = 20 с (рис. 3а, 3б) отмечается появление «фибриновой 
подковы» с максимальными значениями фибрина в центре потока, где его значения в 2 раза больше, чем у стенки.

3. В артериях при большой скорости крови (Re = 3000) фибрин концентрируется внутри аневризмы, отделяя 
ее границы от потока крови «фибриновой ножкой» (рис. 6б).

4. Благодаря нелинейным слагаемым в системах уравнений (12), (13) в артериолах (Re = 3,6) движение фибри-
на происходит против потока (рис. 3б), а в артериях (Re = 3000) — сонаправленно потоку крови (рис. 6б).

5. На рис. 8а, 8б у стенки аневризмы с небольшой скоростью крови обнаружена пространственная структура с 
периодическим изменением плотности фибрина. Результат согласуется c работами [2–4], решения которых могут 
иметь слоистый фибрин в неподвижной крови.

6. На рис. 3б и 6б видно, что даже в плоскости симметрии аневризмы, где плотность фибрина наименьшая (синие 
тона), значение ее больше нуля. Отсюда следует, что наличие аневризмы приводит как минимум к сгущению крови, 
к увеличению вязкости во всех элементах аневризмы, хотя и не в каждой точке образуются твердый фибрин.

7. Диапазон изменения безразмерного фибрина в данной работе имеет такой же порядок, как и в работах [2–4], 
то есть от 50 до 750 безразмерных единиц (в наших примерах меньше 500 безразмерных единиц).

8. Увеличение диаметра аневризмы в 2 раза по сравнению с диаметром сосуда приводит к увеличению числа 
Рейнольдса (Re = 3000 в артерии) и, как видно из рис. 6 и 7, образуется точка возврата на линии тока вблизи ядра 
вихря. Таким образом, наличие аневризмы приводит к разрывам поля скорости и к увеличению вихревого поля в 
области точки возврата.

Заключение. В работе предложены системы уравнений (1), (12), (13) с условиями (14), (15), (16), (17), пред-
ставляющие собой простейшую нестационарную модель движения крови и образования фибрина (тромба) в 
аневризмах кровеносных сосудов. Предложенная модель поможет качественно выяснить причины образования 
тромбов в аневризмах артерий и артериол, а также в элементах медицинского оборудования.
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