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Abstract

Introduction. A two-dimensional hydrodynamic problem is numerically solved in the “stream function-vorticity”
formulation for an open rectangular cavity simulating blood flow and its coagulation within a vascular aneurysm. The
model accounts for a simplified nonlinear mathematical description of the first phase of blood coagulation (30 seconds).

Materials and Methods. To accelerate the numerical solution of the unsteady problem with an explicit finite-difference
scheme for the vorticity dynamics equation, an n-fold splitting method of the explicit scheme (» =100, 200) was employed,
along with the use of a symmetry plane in the rectangular aneurysm domain. The splitting method was also applied to
solve the dynamic system of advection—diffusion equations with nonlinear source terms for the activator and inhibitor
blood factors (N = 70). The maximum time step T, was synchronized across both splitting cycles. The computation was
performed on half of the rectangular aneurysm using a uniform 100x50 grid with equal spacing 4, = h, = 0.01. The inverse
matrix required for solving the Poisson equation in the “stream function-vorticity” formulation with a finite number of
elementary operations was computed using the Msimsl library.

Results. The numerical solution demonstrated that, in arterioles (Re = 3.6), advection and diffusion of fibrin occur
according to the nonlinear dynamics of activator and inhibitor factors, as if fibrin were moving counter to the blood flow.
The maximum fibrin density forms in the central region of the vessel in the shape of a “fibrin horseshoe”. For higher
Reynolds numbers (Re = 3000) corresponding to arteries, fibrin motion occurs along the main flow, and the central part
of the vessel is separated from the aneurysm by a “fibrin foot” along its geometric boundary. In arterioles, a layered
fibrin growth effect was also observed, with periodic variations in fibrin density near the aneurysm wall, consistent with
other authors’ findings. In arteries, the fibrin film within the aneurysm forms in approximately one second—significantly
shorter than the first coagulation phase (30 seconds).

Discussion. The finite-difference approximation achieves sixth-order accuracy at interior nodes and fourth-order accuracy at
boundary nodes. The model was applied to simulate blood flow in arterial aneurysms at high Reynolds numbers (Re = 3000)
and in arteriole aneurysms (Re = 3.6). The dimensionless range of fibrin density variation is consistent with data reported
by other researchers.

Conclusions. The study proposes a system of equations representing a simplified unsteady model of blood motion and
fibrin (thrombus) formation in vascular aneurysms. The proposed model provides a qualitative understanding of thrombus
formation mechanisms in aneurysms of arteries and arterioles, as well as in elements of medical equipment.
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AHHOTALUA

Beeoenue. Uncnenno peuraercs AByMepHas T'MAPOAMHAMUUECKAs 33/1aua B IEPEMEHHBIX «(YHKIHUS TOKa — BUXDPb)» B
OTKPBITOH IPSIMOYTOJILHOM KaBepHE, MOJICITUPYIOIIEH TeUeHne KPOBH 1 €€ CBEPThIBAHHE B aHEBPH3ME KPOBEHOCHOT'O CO-
CyJa C y4eToM MpoCTeilell HellMHeWHON MaTeMaTHYeckol MOJIeITH 3a BpeMst epBoi (asbl cBepThiBaHus (30 CeKyHI).
Mamepuans u memoowl. 1151 yCKOpEHUs YUCIEHHOTO PELIEHUs HECTALIMOHAPHOM 3a/1auM ¢ SBHOM pa3HOCTHOM CXeMOM
YpaBHEHUS TUHAMHUKHU BHUXPS HCIIOIB30BAJICS METOJI N-KPAaTHOTO pacIleIUIeHHs SIBHOW pa3HOCTHOH cxeMsl (n = 100,
200) 1 Hajau4YKe IUIOCKOCTH CHMMETPHH MPSIMOYTOJILHOM 001acTH KaBepHBI — aHEBPU3MBI. METON paCIICIUICHHUS TaK-
e TIPUMEHSIICS JJIsl PeLICHUs] TUHAMUYECKOH CHCTEMbI ypaBHEHUH anBekiuu-1uddy3un ¢ HeTMHeHHOW npaBoil ya-
CTBIO AJ1s1 (PaKTOPOB KPOBH akTHBaTopa M MHruonrtopa (N = 70). B n1Byx Meromax comracoBajics MakCHMaJIbHBIN mIar
BPEMEHH T, B IMKJIAX pacumieruienus. Ha monoBuHe mpsAMOyroibHON aHEBPU3MBI PACCMATPHUBANUCH CUMMETPUYHBIE
PELIEHNs 1 NPUMEHANAch paBHOMepHas ceTka 100x50 ¢ paBnbIM marom 4 = h,= 0,01. OOpaTHas MaTpuua 1y1s pere-
HUsl ypaBHeHus [lyaccoHa B mepeMeHHBIX «(PYHKIHMS TOKa — BUXPb» 32 KOHEUHOE YHCJIO 3JIEMEHTApHBIX Olepanuil
BBIUMCIIsIIACh OnOmMoTexoit Msimsl.

Pezynomamut uccnedoeanus. YucneHHoe pelIeHUe 3a1a4d I0Ka3ajo, 4To B aprepuonax (Re = 3,6) mpoucxoaur aaBex-
st ¥ i dysus pubprHa ¢ yaeToM HeITMHEHHON IPaBOi YacTH CUCTEMBbI YPaBHEHNH ANHAMUKY JJIsl aKTUBATOPA U MHIH-
OuTOpa TaK, KaK ecyid Obl (PUOPUH JABUTAJICS HABCTPEUy KpoBH. MakcumasbHas INIOTHOCTh pUOpHHA pean3yercs B cpel-
Hell vacTu cocyna B popme «puOpruHOBOM mOnKOBED. Pemrenne 3amaun npu Oonpmmx ynciax Peirompaca (Re =3000)
B apTepHsiX SKBHBAJICHTHO JIBM)KEHHIO (PUOpHHA BIOJb MOTOKA, IIPH 3TOM IIEHTpallbHas 4acTh KPOBEHOCHOTO COCYna
OT/IeJIEHa OT aHEBPHU3MBI IO €€ FeOMETPHUECKON IpaHune «(huOpHHOBONW HOXKOI». B aprepnonax oOHapykeH Tarke
3¢deKT croeHoro pocra GUOpPHHA ¢ MEPUOAMYSCKAM M3MECHEHHEM IUIOTHOCTH Y CTEHKH aHEBPHU3MBI, KaK H y aBTOPOB
Ipyrux pabot. Pemrenue 3amaun B apTepun mokasano, 4to (puOpHHOBas IUIEHKA B aHEBPH3ME IPU OBICTPOM JABMIKEHUH
KpOBH 00pasyeTcs 3a BpeMsi IOpsiAKa OJHON CeKyH/IbI, YTO MHOTO MEHbIlle, 4eM repsas (aza cBeprbiBanus (30 cexyHn).
Oobcyscoenue. AIpoKkCUMAaLUs ypaBHEHNI UMEET MIECTON MOPSAA0K MOTPEIIHOCTH BO BHYTPEHHUX y3/1aX M YETBEPTHII
B FPaHUYHBIX y3JlaX. 3aJa4ya pelleHa JUis JBM)KCHUS] KPOBU B aHEBpU3Max apTepuid mpu OojipliMX unciax PeiiHombiaca
(Re =3000) u ans1 TedeHns KpoBU B aHeBpu3Max aprepuoin (Re = 3,6). be3pasmepHsiii fuana3oH H3MEHEHUS IIOTHOCTH
(buOprHa BKJIaJbIBACTCS B aHAJOTMYHBIN IMaNa30H B paboTax JPYrux aBTOPOB.

3aknwuenue. B pabote npenIokeHbl CHCTEMbl ypaBHEHHH, MPEICTABIIOMNE COO0H MPOCTEHIYI0 HECTAIMOHAPHYTO
MOJIEJIb IBHKCHUS KPOBH M 00pa3oBaHus GubpuHa (Tpomba) B aHeBpH3MaX KPOBEHOCHBIX COCYynOB. [IpemioxkeHHas Mo-
JIeTIb TIOMOXKET KadeCTBEHHO BBIICHUTH IPUYUHBI 00pa30BaHus TPOMOOB B aHEBPU3MaX apTEpHil M apTepHoI, a TAKXKE B
3JIEMEHTaX MEAULMHCKOTO 00OPYI0BaHUSI.

KiaroueBrnle ciioBa: TuaApOANHAMUKA, YACICHHBIC METO/Ibl, YPABHCHH B YaCTHBIX MPOU3BOJAHLIX, HAYaJIbHO-KpacBas 3a-
Jaada, MaTeEMaTHI€CKOC MOACINPOBAHNUE, aHEBPU3MaA

s uuruposanus. Bonocosa H.K., Bonocos K.A., Bonocosa A K., Kapnos M.U., ITactyxos J.®., [Tactyxos 10.D.
HecramnmonapHast Mojienb CBEpTHIBaHMS KPOBU B aHEBPU3MaX KPOBEHOCHBIX cocynoB. Computational Mathematics and
Information Technologies. 2025;9(4):22-37. https://doi.org/10.23947/2587-8999-2025-9-4-22-37

Introduction. This study, which continues the research presented in [1], for the first time models a two-dimensional
hydrodynamic problem of blood motion and coagulation in an open rectangular aneurysm-cavity using the “stream
function — vorticity” formulation. In [2], a system of two dynamic partial differential equations describing the diffusion
of coagulation factors-activator and inhibitor — was first derived, with nonlinear source terms accounting for the local
interaction between these factors. In [3], several mathematical models of blood coagulation without advection were
compared, and the dimensional coefficients in the governing equations were refined.

23


https://orcid.org/0000-0538-2445
https://orcid.org/0000-0002-7955-0587
https://orcid.org/0000-0002-0538-2445
https://orcid.org/0000-0003-1398-6238
https://orcid.org/0000-0001-8548-6959
mailto:%D0%B4dmitrij.pastuhov@mail.ru
https://doi.org/10.23947/2587-8999-2025-9-4-22-37

24

Computational Mathematics and Information Technologies. 2025;9(4):22—37. eISSN 2587-8999

The dynamics of blood formation and its relation to cardiac pulsations at low Reynolds numbers were investigated in [4].
In [5], blood motion in an arteriole was studied using the Russian computational platform FlowVision, incorporating
intermediate components of chemical reactions and accounting for variations in both the solid boundary of the vessel and
the thrombus interface. It was shown that small thrombi form near an internal cut within a straight vessel and exhibit a
fractal structure. Studies [6—11] focus on two-dimensional hydrodynamic problems whose properties are similar to those
of the present hydrodynamic system.

The present work, firstly, introduces an unsteady mathematical model of blood coagulation within a vascular
aneurysm for both an arteriole (Re = 3.6) and an artery under turbulent conditions (Re = 3000). Secondly, the developed
computational algorithm incorporates the periodic mixing of blood within the aneurysm caused by each pulsation wave.

Materials and Methods

Problem Statement. We consider a two-dimensional problem of blood flow and coagulation in a rectangular
aneurysm—cavity formed on the wall of a blood vessel. The aneurysm represents a section of the vessel whose diameter
2d is typically twice that of the main vessel. Let L denote the aneurysm length, 2H its diameter, and H the half-width of
the aneurysm (Fig. 1 illustrates half of the symmetric model). The variable d represents the half-width of the parent vessel.
The origin of the coordinate system is placed at the lower left corner of the computational domain.

u u

max max

0 x
L

Fig. 1. Geometry of the computational domain for the numerical solution
The dynamic part of the problem describing blood motion in aneurysms of arterioles (Re = 1.8) and arteries (Re = 1500)

was numerically solved in [1]. That study obtained the streamline patterns of fluid (blood) particles inside the aneurysm.
The formulation of the hydrodynamic problem in [1] in dimensionless variables has the following form:

max 2

Vi 5 =W, ), 0<;:%<1’ 0<y<k

w=vi—u;,
U=yv=—ys,
- == == 1= = -t
Wi +U- Wi +v-wy :—(wxx—l-wyy),0<t:—,

Re T
v, EO,V|1,EO,u‘F] =0,y =0, )
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u A y=H
As in [1], the following characteristic scales are used in this study: length — L, time — L , velocity —u__, stream

max

function — Lu__, vorticity — %, and Reynolds number — Re. Let us introduce the dimensionless variables: x —

horizontal coordinate, ; — vertical coordinate, Q, w — stream function and vorticity, respectively, (;, \_z) — velocity

vector, ¢+ — time. They are defined by the relations:

9$ :l’\‘r[max = Lumax’

max

0<x==<1, 0<y==<k=

~ =
<



Volosova N.K. et al. Unsteady Model of Blood Coagulation ...
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max

-3 2
The kinematic viscosity of blood is taken as v = B M =3.33(3)-10° L
p 1050 kg/m s

In system (1), the first equation represents the Poisson equation in the “stream function—vorticity” formulation,
approximated with sixth-order accuracy according to [12] and [1]:

1 10 2 1
Ay =y TV, = f(y)=—we (__\Vo,o +§(\|f71,0 TVt Vi +\Vo,1)+g(w71,71 R TR R VT )] =

w3 )
2
4 p(4) 4
et ot 1) L ) o ) L o)

The partial derivatives in formula (2) were also approximated in [1]. Finite-difference expressions were obtained for

the interior nodes of the function f with indices n=2,n, —2,m=2,n, -2
1 4 1 4
fxx +fyy :h_2 _Sfo,o +§(f4,0 +f0,4 + 1,0 +f0,1)‘§<f4,0 +f0,4 +f2,0 +f0,2) +0<h )a

SN S = (120004 s+ fos ot Sod ) Faa* foa b Fon* foa) +O(R), )

/x(*cj; :}11_4(4f6,0 _z(f_],o +ﬁ),—1 + 1o +f(.)‘1 )+f-1,-1 +f-1,1 +f1.‘-1 +.f1',1)+0(h2)-

The combined algorithm for solving system (1) together with system (12) consists of 11 computational steps. It
requires the specification of initial conditions for the following variables: the stream function field, velocity field, vorticity
field, and the inhibitor and activator concentration fields (equations (15)—(17)).

This algorithm differs from that presented in [1] and can be summarized as follows:

Step 1: Define the boundary conditions on the rectangular cavity contour for the stream function and for the vertical
velocity component, which remain constant throughout the computation.

Step 2: Modify the right-hand side of the Poisson equation for the vorticity according to formulas (12) and (13) from [1].

Step 3: Solve the Poisson equation (7)—(11) from [1], i. e., compute the stream function values at the interior grid
points of the rectangular domain.

Step 4: Compute the velocity along the upper segment of the cavity using formulas (5) from [1].

Step 5: Evaluate the updated velocity field using equation (18) from [1] at the interior grid nodes.

Step 6: Determine the new boundary values of vorticity using formulas (24) from [1].

Step 7: Compute the new vorticity values at the interior grid nodes using equation (19) from [1].

Step 8: Evaluate the right-hand sides for the inhibitor and activator equations (13).

Step 9: Solve equation (13) separately for the inhibitor and for the activator using the splitting method at the interior
grid nodes.

Step 10: Determine the boundary values of the inhibitor and activator according to formula (14).

Step 11: If the physical time corresponds to an integer number of cardiac pulsations, reset the velocity, stream function,
and vorticity fields to their initial values before solving equation (17). This procedure simulates blood mixing inside the
aneurysm induced by a pulsation wave generated by the heart along the vessel system. The inhibitor, activator, and fibrin
fields remain unchanged before and after the pulsation.

After completing the tenth step, the algorithm returns to the first step in a cyclic manner. In system (1), the Poisson
equation is solved first, requiring a finite number of elementary operations [1] and providing sixth-order accuracy at the
interior grid nodes. The second equation in system (1) corresponds to the vorticity function, which is computed through
the coordinate derivatives of the velocity field.

The third equation expresses the velocity components as partial derivatives of the stream function. Therefore, the
approximation of these equations w=vi— ;},L_l = J;;\_z = —E; reduces to approximating first derivatives, which poses no
particular difficulty. The fourth equation in system (1) represents the vorticity dynamics equation—the only equation in
the system that explicitly depends on time. The left-hand side contains the total (convective) time derivative.

In system (1), the elements of the rectangular cavity boundary must be clarified. Here, /'l denotes the union of the
lower parts of the lateral sides and the bottom segment, while /2 corresponds to the upper boundary of the rectangle I". Let
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(u(x,u), v(x,y)) denote the velocity vector of a fluid particle. On the solid boundary — that is, along the bottom segment
and the lower parts of the lateral sides of height H—d of the rectangular cavity — the velocity is zero (the no-slip condition
on I'l). Accordingly, the stream function is set to zero along this boundary.

On the upper boundary of the rectangle, the vertical velocity component is zero, while the horizontal component is
not specified on the upper segment and is zero on the bottom segment. On the lateral sides, it is described by equation (4)
according to [1]:

0,ye[0,H —A]

;(O,y):;(L,y):?: [l_(y—H)zj,ye[H—A,H]. @)
A

max 2

In the upper segment of the rectangular cavity, the unknown velocity can be determined using formulas (5), which
correspond to the fourth step of the general algorithm described in [1]:

, . 1 83711 55 165 462
u(n,,j)= v, (”2,]) = (—h ) - Va2 +55an—3,j T Va4 +?an—5,j -
h

L+ -
27720 Vi T Vi T 2

5.1
330 165 55 11 1 .
TV, +T\|fnf7,j _?an—&j +?\|an—9,j _E\anlo,j +H\Vnz]],jj+ O(hlo):] =1,n -1,
. 1 137 10 5 1 4 . T
u(n,, j)= m(—aw’w + 5‘an1,j —S\V,szz’j +?\|/n273’j _anﬂ’j +§‘Vnzs,jj+ O(h ),] =Ln -1 (5.2)

To accelerate the numerical computation, due to the symmetry of the geometry, we consider one half of the aneurysm
and two halves of the rectangular channels supplying and discharging the fluid from the aneurysm. It is convenient to
introduce a rectangular coordinate system with a uniform grid n xn, = 100x50.

According to the projection principle, for two convex closed contours nested within each other without self-intersections
(contact or partial coincidence of contours is allowed), a ray can be drawn from a certain internal point intersecting each
contour at exactly one point. In this case, one may speak of geometric projection of one contour onto another.

Similarly, the projection of a physical field can be defined by transferring the field value at a point on the outer contour
to the corresponding point on the inner contour. For example, in Fig. 1, the outer contour includes the left and right parts
of the blood vessel and the rectangular aneurysm, whereas the inner contour consists only of the aneurysm. The projection
of the outer contour points can also be performed along the normal direction onto the inner contour.

Thus, based on the field projection principle, the problem can be simplified, and its numerical solution significantly
accelerated by considering the fluid motion only within the aneurysm domain, rather than within the combined volumes
of the three bodies (the left vessel part, the aneurysm, and the right vessel part).

Therefore, it is assumed that the velocity profile is preserved when the flow enters the rectangular aneurysm and when
it exits through a narrow symmetric strip with respect to the Oxz-plane of width 2A = 2d, where at infinity the velocity
distribution is described by the Poiseuille formula (4) [1].

By integrating formula (4) over the interval ye[H — A, H] we obtain the stream function on the lateral sides of the
aneurysm — the last expression in the system of equations (1) [1]. On the upper and lower segments of the aneurysm, as
well as on the small adjacent side segments, projection of the velocity field and stream function is not required.

The field projection principle can be qualitatively justified using the classical example of the flow of an ideal
fluid around an infinite cylinder. If the velocity field of the ideal fluid at infinity is constant, then at the diametrically
opposite points of the cylinder the flow direction remains unchanged, while the velocity magnitude is doubled. At the
same time, at the contact points and in the neighboring regions, the no-penetration condition on the cylinder surface is
approximately satisfied.

Similarly, in Fig. 1, on the plane of symmetry, the flow direction remains unchanged; the direction of the velocity vector
on the lateral inflow and outflow segments of the aneurysm connected to the blood vessel also remains approximately
constant. The no-penetration condition of rigid boundaries is thus fulfilled approximately, which justifies the application
of the field projection principle on the lateral sides of the aneurysm.

To accelerate the numerical solution of the vorticity equation (1), the splitting method was employed [1, 11].
Analytically, the method of n-fold splitting of the vorticity equation for the time interval 1 /n can be expressed as follows:

wk+((i+l)/n) _ Wk+(i/n)

+u -w

, . 1 . . S
k k+(i/n) k k+(i/n) _ k+(i/n) k+(i/n) .
. +Vewy ——(WH +w, ),Z—O,I’l—l.
T,/ 1 Re

(6)
The system of recurrent equations (6) for the vorticity with a frozen velocity field (u"(x, WV (x, y)),i =0,n—1,
k =const,k =1,2,... consists of n intermediate steps i = 0,n —1, the superscript i denotes the number of the intermediate
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time layer in the vorticity equation (6), while the subscript £ corresponds to the multiple time layer index in system (6).
The velocity and stream function fields remain constant in equations (6) for fixed values of k£ = const and varying index
i =0,n—1. Within this system, only the vorticity field w**“"”,i =0,n—1 evolves. The velocity field undergoes a discrete
change in system (1) when the temporal index of the vorticity function increases by one, from k to k + 1 in equations (6).

The main idea of the splitting scheme for system (6) lies in reducing both rounding error accumulation and
computational time during the numerical solution. The differential operators with respect to spatial coordinates in (6)
are approximated at internal grid nodes with accuracy O(4°), consistent with all equations in system (1); the boundary
conditions are approximated with accuracy O(/4*), and the temporal derivatives — with accuracy O(t).

Here, we rely on an unproven but commonly accepted assumption that, for spectral time stability of finite-difference
schemes, the approximation order of the equations on the boundary must be lower than that in the internal grid nodes [12].
Thus, over the time interval t/n ((associated with a local decrease in solution stability caused by singular points in the
velocity field), solving equation (6) n times yields a temporal jump t, which is n times larger than that obtained by the
sequential solution of system (1).

For the derivative w in (6), the quadrature formulas are written as follows (the formulas for w_are analogous):

Wati.j) :%(%(Wiﬂ»j —Wei )= 230( Wiz,j Wi—z,.f)+$(wz+3,.f _Wz‘3‘j)j+0(h6)’i =3m=3,j=Ln-1,
W :%[— W;"’ —% L +2w21 wy + Wy _ ZSO/ ]+O(h4),] =1,n -1,
7
wy(ij)zﬁ( (w3] wl]) (w4j Wo,))+0( ) 1,n —1, (7
Wyin,-1,) = _%(_%_%an-l,f +2W, 5, =W, +%‘%) + O(h4)’j =Ln -1,
Wyin2,j) = —ﬁ(S(WMJ W, )= (W~ )) +0(h').j=Ln -1
The second-order partial derivatives w, in (6) are expressed as follows:
Wi :hl(—% L +%(Wi+1!j +wl.71’j)—%(wi+2,j +wi72‘j)+%( Wi+ W )j-i—O(h(’),i =3,n,-3,j=1n -1,
Wi =2 ng Wo.j _%Wl,/ _%Wz,j +f—;w3,/. _%WM 2(1) Ws.j _%Wm/}ro(m)’j =L -1,
W) = %[_%W%/’ +§(wle W ) _%(Wo,j T Wy, )j + O(h4)’j =Ln -1, ®)
1137 49 17 47 19 31 13

4
WY)’(V!z*ls‘f) :h_Z(@W"zJ _QW’Q*IJ 12 V’z 2] 18 "z 35 12 ”2 4] 60 V’z 5. 180 "v 6/)—"_0(]1 ) _1 n _1

Wivn-2.) = %(_gwnz—z,/ +§(Wn2—l,/ + an—3,‘;) 112 (W +w, -y )j+0(h4),j = l,n] -1

Similarly, the formulas for the derivative w__ are written analogously to formulas (8). From [2], we also include the
general boundary condition for vorticity (equatlon (6), sixth step of the general algorithm) in the open cavity with fourth-
order accuracy, obtained by differentiating the last equation for the stream function in system (1) twice with respect to y:

415 8 1 25v(0,y)
Wx’ = = - . —_— — —8 +3 - - = ’VZ_ x?
(xy)=-v,.-v, = hf( =y Vo B 3V —ows 2, J 6 v, \ o
m=0,n,,y, =mhz,A:h2(n2 —n3),1—A:h2n3,
415— — - 8- 1— 25vuo (v, —H/L))
8 +3 —— +— - +2-=2 ,m=n,,n,,
B h ( 72 WmO Wm,l \‘rlm,Z 9Wm,3 8“’»1,4) 6 hl (A/L)Z 35702
W = B (10.1)
415— — — 8— 1— 25 vmo
— — 8 +3 —— +— — = O n,, left
I ( 7 Yoo =Wt T3V, 9\|’m,3 8Wm,4j 6 h 5, left,
1(415— — — 8 — 1— Zs;m,n (y_—H/L))
-8 +3 —— +— + L2 , m=n,,n,,
| ( 72 Vo =PVt T2 2 7 W SW"”"‘J 6 h (A/LY o
W = B (10.2)
1 415— — — 8— 1— 25 Vi —
L —8 +3 -z +— +———m=0,n,, right,
h2 ( 72 \Vm,nr] \I/m,nrz 9\Vm,n,73 8Wm,nl4j 6 hl 3 g
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_ h2 ( \'VOH SWI,M +3\|]2n \V3 n += \'j4nj 6 }(l) n= O nl’ u= \V bottom
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RN EIE e L L R R LTSRN ¥
h 72 \Vnz n \Vnz—l,n \Vnz—Z,n 9 \Vnz—S,n 8 \Vnz—4,n 6 h > p-

In deriving the boundary equation (9) for the vorticity function, all stream function derivatives of order higher than
two were eliminated. This significantly improves the stability of boundary finite-difference conditions of the type (9) and (10)
for velocity fields with first-kind discontinuities. Table 1 presents the classification of blood vessels according to their
Reynolds number and diameter.

Table 1
Classification of blood vessels
Type Diameter Blood velocity Re Governing equations
Capillaries (5-10) um (0.5-1.0) mm/s 0.00075-0.003 -
Arterioles (10-100) pm (0.5-10.0) cm/s 0.015-3,000 (D), (13)
Arteries (2-10) mm (10.0-50.0) cm/m 60-1500 (1), (13)
Aorta (2-3) cm 0.5 m/s 3000 1), (13)

Experience [1] shows that, for a physically rapid solution of system (1) in arterioles and arteries, it is necessary to

select an inertial time interval 7 = L, while the hydrodynamic problem is solved using system (1).
u

We consider a simplest mathematical model of fibrin formation, which accounts for the concentration dynamics of two
metabolites: an activator of the coagulation process (thrombin) s and an inhibitor z, which slows down blood coagulation:

2
@4_ @4_ ﬁ—D(S +S )+ os —kIS—YSZ,
ot ox Oy s+, (11)
2
%-l-u%-l-v%:D(Zn+Z,.)+BS(1—£) l+Z—2 —kzz.
ot ox Oy o c z,

Here, u, v are the velocity components; the coefficients a, B, &, v, D, ¢, v, k, are dimensional, and their numerical
values are taken from [3, p. 16].

Table 2
Dimensional coefficients in system of equations (11)
. _1 . _1 L : 71 . —]
o, min B, min min-nM vy(z,), nM ¢, nM u(s,), nM k,, min k,, min
2.0 0.0015 5.0 0.0525 5.0 2.95 0.05 0.35

The diffusion coefficients of thrombin and the inhibitor are assumed equal to D = 107" m%s [2, p. 99]. The diffusion

velocities of thrombin and the inhibitor can be calculated using the formula v =2vaD =24107"2/60 =1.155-10"° m/s.
These diffusion velocities are significantly smaller than the blood velocity in an arteriole (3 mm/s) and in an artery (50 cm/s),
which justifies the inclusion of advection terms on the left-hand side of system (11).

aE umax - a; umax = 6; D _** _** (X,Ez . .
—_+—M——+—V——:—2(Sxx+Syy)+— _le_YSZZO’

Tot L ox L oy L s+1 -
02 |t 702 U302 Do sy Sogfy A (1+77) k.2,
Tor L 6x L oy L z, c

ot ox 0Oy Lu s+1

max

6—%+;6—f+;8—f: D (E;;+E;;)+L S—OBE |- 2% (1+22)—k22 ,
ot ox Oy Lu,, u z c

os —0s -ds D ~_ - L [os
—tU—=+v—=-= (sxx+syy)+— ——ks 'yszz
um

max 0
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ds —ds -ds D~ .-\ Lfas - —

—tU—=+v—= (Sxx+s,vy)+_ ___kls_ySZZO >

ot Ox 0y VRe u | s+1

0z 02,502 _ D (E;;+E;;)+L Sops|1-22 (1+Ez)—k25 , (12)
ot o0x 0y VRe U\ 2, c

do -

—=s(7

7 ()

The last equation in system (12) is the thrombin growth equation 6(2) obtained by integrating the activator E(Z) over
the dimensionless time ¢. According to [2-5], the activator s(¢), the inhibitor z(¢), and thrombin ¢(¢) take only non-
negative values, which was enforced by the authors in the numerical implementation.

For an arteriole [5], the diameter is 2d = 2 mm, the blood viscosity is 1 = 3,5 - 10~ Pa's, and the kinematic viscosity

-3 2
of blood is v £ :%I;af = 3.33(3)~10’6m—. The blood velocity [5] in an aneurysm of diameter L = 4d = 4 mm
P g/m s -3 -3
is u__ =3 mm/s. Then the Reynolds number is calculated as Re = L :M
v 3.33(3) -10”

max =3.6. We introduce the
following dimensionless variables s=s/ Sy z=z/ z, , and compute the corresponding dimensionless coefficients:

D 10"
vRe 3.33(3):10°-3.6

=8.33(3)-107, 2,/ C=0.0525/5=1.05-102, z,/ C = 0.0525/5=1.05-10°2,

L 2-4.107 05-4-10°
o= =200 g 0aa(4), kL 22041076 6011(1),
u 60-3-10 u 60-3-107°

max max

i 73 . . _3
br 210 10,3 20,0525 = 0.005833(3), k, L= 033410
Umax 3-10 60 umax 60.3.10 3
-3
LB s (4107 00015 295 _ 40187301587301(587301).
Unes 2 3°10 60  0.0525

max

=0.0077(7),

We denote the right-hand sides in the dynamical equations for the inhibitor and activator in system (12) and obtain the
splitting method [11] with splitting multiplicity N:

-2
F (i TO(kJr(i/N)),},;):%(E;; +§yy)+i(9_S_k1§—%;zo}
VRE

U | S +1
- - — D — —_ L — o — —_
F(t=1o(k+ G/ N))xy) == (25 + 25 )+ ——| Sps| 1-22 (1+zz)—kzz ,
: vRe U\ Zo c
(13)
—k+(((+1)/N)  —k+(i/N)
s — o —k+IN) o —kHUIN) - . - —
+u" sy +V' s =F(t=1,(k+G/N)),x,y],
/N v S( o( ( )) Y)
—k+((i+1)/N)  —k+(i/N)
_ —k+(i/N —k+(i/N - - — De——
z vt 2 e Y = B = (k4G N)) %y ) i = 0N -1 k=01,2,....

T,/ N

The splitting multiplicity N =70 in system (13) for the inhibitor and activator differs from the multiplicity » =200
used for the vorticity equation (6). It is only necessary to synchronize the time steps of systems (6) and (13) such that, after
completion of both subroutine loops, the increment of their dimensionless time coincides, i. e., equals 1,.

If the boundary conditions for the inhibitor and activator at the solid wall are specified for the no-penetration case (for
example, at the bottom of the cavity), then from formula (5.1) we obtain formula (14.1) with eleventh-order accuracy:

- 1 83711- - 55- - 165- 462 -
0=5,(0,j)=——| ————s0,; +11s1,; ——52,; + 5583, ———S4,; +——8s; —
y( ]) (_hz)( 27720 0. Lj > 2,j 3, 5 4,j 5 5.

- - 165- - 1= 1- -
—77S(,,j +@S7J —ES&j +£S9,/‘ ——=S810,; + —S11,5 +O(h10),j =1,I’l1 S R="
7 8 9 10 11 (14.1)

- 27720
80 =———
83711

- 55— - 165- 462 -
(1 1S1,j _?SZ,j +55S3,j —7S4,j +TS5,/' -
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- 330- 165- 55- 11- 1- . T
—7756,; +TS7,,' —?S&j +?S9,,‘ _ESIOJ +ﬁS11,jj+O(hll)’] :1’n1 1

Similarly, we obtain formula (14.2) with fifth-order accuracy:

60 ( - - 10- 5- 1- . T
S0, :m(st —552,; +?S3,]‘ —ZS4,/' +§S5'jj+0(h5)’j =Ln -1 (14.2)

Problem Initialization. The initial values for the inhibitor and activator fields are set, following A.I. Lobanov [3],
as a step function for the activator. These initial conditions were used in systems (1) and (13), with the solutions shown
below in Fig. 2-7:

2i;(t=0)=0,Yi=0,n,,j =0,n,,
- LVi=0,n,,j=0,n/2,
Si,j(l=0)={ 2/ ! (15)

0,Vi=0,n,,j=n/2,n,.

We also assume that the boundary conditions for the activator and inhibitor on the rectangular boundary of the cavity
(aneurysm) are homogeneous. Dirichlet conditions:

N

O’Zr/rz =0. (16)

The initial velocity field is defined as follows: the vertical velocity component v, (t=0) is absent, while the horizontal
component uiJ.(t = 0) follows a Poiseuille distribution (4):

I/T,

v, (t=0)=0,Yi=0,n,,j=0n,

— —\2
—H) | = - S — —
(1—(%Z JJ,H—A=h2n3Sy,.Sthan,y,=i-h2,i=n3,n2, (17)

0,i =0,n,.
From [5], we select an arteriole diameter of 2d =2 mm and a blood velocity # =3 mm/s. The aneurysm diameter
. . . L 3-107-4-107
and length are twice that, 2D = L = 4 mm. The corresponding Reynolds number is Re = Uyl 3107 -4-107 =3.6. The

I 4.10° v 3333.10°
transit time of a fluid particle 7 = ——= 3107 = 1.33(3) s along the aneurysm exceeds the period of cardiac pulsations

(1 second); therefore, during the time interval 7 = 1.33(3) s two cardiac pulsations occur, resulting in two mechanical
mixing events of the blood within the aneurysm walls.

Homogeneous zero boundary conditions were chosen for the inhibitor and activator on the cavity walls, based
on the assumption that their concentrations at points far from the aneurysm are zero. On the upper segment of the
cavity, formula (14.2) was applied for both the activator and inhibitor, as symmetric solutions are sought for all
unknown fields. System (12) has a trivial solution s(r) = z(r)=0. As shown in [3], the trivial solutions s()=2()=0
are stable if the inhibitor and activator values remain below their threshold levels s(¢) = z(¢) = 0. This justifies the use
of homogeneous zero boundary conditions.

The initial fibrin field @(¢) in (12), obtained by integrating the activator field over time, at 7= 1.33(3) s is shown in Fig. 2.

From Fig. 2, it follows that even at the initial stage of fibrin formation, noticeable transport occurs — both advection
along the blood flow and diffusion, according to system (13).
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Fig. 2. Fields in an arteriole using formula (14.2) at 7= 1.33(3) s,
Re =3.6, n,xn,=100x50, A/H =0.5; L=4 mm,2H =4 mm, u_, =3 mm/s, T =£h]2, m = 53000 steps,
splitting multiplicities n =200 in (6), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; ¢ — streamlines in the aneurysm

fibrin
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Fig. 3. Fields in an arteriole using formula (14.2) at 7=20s,
Re=3.6,nxn,=100x50, A/H =0.5; L=4 mm,2H =4 mm, u,, =3 mm/s, T :%hlz, m = 800000 steps,
splitting multiplicities » =200 in (6), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; ¢ — streamlines in the aneurysm
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Fig. 4. Fields in an arteriole using formula (14.2) at 7=26s,
Re=3.6, n xn,=100x50, A/H =0.5; L=4 mm,2H =4 mm, u,, =3 mm/s, t 2%@2 , m= 1200000 steps,

splitting multiplicities # = 200 in (6), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; ¢ — streamlines in the aneurysm

max

Fig. 4 concludes the graphical representation of thrombus formation in an arteriole aneurysm at the end of the first phase (30
seconds). From Table 1, we select an artery diameter of 2d =1 cm and a blood velocity # = 0.5 m/s. The aneurysm diameter

-2
and length are twice that, 2H = L =2 cm. The corresponding Reynolds number is Re = U :—303‘53 (i)l?O'(’ =3000.
v . .
L 2107
The transit time of a fluid particle 7=——= 05 =0.04 s along the aneurysm is less than the period of
u .

max

cardiac pulsations (1 second); therefore, during this interval 7= 0.04 s only a single cardiac pulsation occurs, resulting in
blood mixing within the aneurysm with low probability.
The initial fibrin field @(¢) in (12), obtained by integrating the activator field over time, at 7= 0.04 s is shown in Fig. 5.
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Fig. 5. Fields in an artery using formula (14.2) at 7=0.04 s,
Re =3000, n,xn, = 100x50, A/H=0.5; L=2 cm,2H =2 cm, u_, =0.5m/s, 1 :%hlz, m = 53000 steps,

splitting multiplicities # = 200 in (6), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; ¢ — streamlines in the aneurysm
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Compared to Fig. 2b, in Fig. 5b the advection of the activator is more pronounced than its diffusion. In Fig. 6b,
the fibrin transport along the flow and its swirling near the right segment of the cavity, forming a “fibrin stalk”, can be
observed. Consequently, a fibrin film forms along the geometric boundary of the cavity, blocking oxygen access to the
aneurysm walls and creating blood stasis within the aneurysm.
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Fig. 6. Fields in an artery using formula (14.2) at 7= 0.6 s,
Re = 3000, n,xn,=100x50, A/H =0.5; L=2 cm,2H =2 cm, u,, =0.5m/s, 1 =%hf, m = 800000 steps,

splitting multiplicities » = 200 in (6), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; ¢ — streamlines in the aneurysm

Qualitatively, Fig. 6 and 7 are similar; however, the “fibrin stalk” in Fig. 6b has already transformed into a “fibrin ring”
in Fig. 7b. Fig. 6 and 7 demonstrate that in a turbulent environment, each fibrin filament rapidly changes its value even
along its length, resembling loose hair strands blown by the wind.

Next, we consider the periodic structure of fibrin in an arteriole near the aneurysm wall at = 10 s after the onset of
blood coagulation, as shown in Fig. 8.
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Fig. 7. Fields in an artery using formula (14.2) at 7= 0.9 s,
Re =3000, n xn,=100x50, A/H =0.5; L=2 cm,2H =2 cm, u

splitting multiplicities » = 200 in (1), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; ¢ — streamlines in the aneurysm

=0.5m/s, © :%hf, m = 1200000 steps,
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Fig. 8. Fibrin field in an arteriole using formula (14.2) at T=10s,
Re =3.8,nxn,=100x50, A/H =0.5; L=4 mm,2H =4 mm, u,, =3 mm/s, T :%hf, m = 400000 steps,

splitting multiplicities » = 200 in (6), N =70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm

Fig. 8a and 8b show that fibrin moves along the aneurysm wall in a thin layer against the direction of blood flow (at a
velocity of u_ =3 mm/s). It turns at the far wall (potentially adhering to it) and returns to the near wall, forming a “fibrin
horseshoe” with the maximum fibrin density located outside the aneurysm region. That is, the fibrin horseshoe grows
both within the bulk of the flow and against the flow direction. In Fig. 8b, a periodic spatial variation of fibrin density
along the aneurysm wall is also visible. Similarly, in Fig. 35 and 4b, the fibrin horseshoe in the center of the arteriole
aneurysm reaches its maximum density (shown in red) near the left wall, confirming that fibrin growth occurs opposite to

the direction of blood flow.
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Fig. 9. Field distributions in the artery using (14.2) at 7=2.54's
6
Re = 3000, n xn, = 100x50, A/ H =0.5; L=2 cm,2H =2 cm, u,, =05m/s, t =Eh]2, m = 3387700 steps,

splitting multiplicity » =200 in (1), N= 70 in (13):
a — fibrin surface; b — fibrin distribution within the aneurysm; ¢ — streamline field in the aneurysm

max

Fig. 96 shows that by # =2.54 s, a homogeneous thrombus with a maximum dimensionless density of 85 units forms
throughout the entire volume of the aneurysm (compared to Fig. 7b). The question of the threshold fibrin density is also
crucial—the density at which it can be considered a solid body and impermeable to blood flow. In this case, blood must
flow around the ultra-dense fibrin clots. It is equally important to obtain an experimental dependence of blood viscosity
on the dimensionless fibrin density to account for it in the systems of equations (1) and (12).

Discussion

1. In the initial phase (Fig. 25 and 5b), fibrin forms in regions where the activator concentration exceeds the threshold
and is transported to other parts of the aneurysm by advection and diffusion.

2. In arterioles, during the initial phase at # = 1,333 s (Fig. 2a and 2b), the maximum fibrin concentration (red tones)
is observed near the aneurysm walls. However, at =20 s (Fig. 3a and 3b), a fibrin horseshoe appears, with maximum
fibrin values in the central flow, approximately twice as high as near the wall.

3. In arteries with high blood velocity (Re = 3000) fibrin accumulates within the aneurysm, separating its boundaries
from the blood flow by a “fibrin filament” (Fig. 6b).

4. Due to the nonlinear terms in systems (12) and (13), fibrin motion in arterioles (Re = 3.6) occurs against the flow
(Fig. 3b), whereas in arteries (Re = 3000) it occurs in the direction of blood flow (Fig. 6b).

5. In Fig. 8a and 8b, near the aneurysm wall with low blood velocity, a spatial structure with periodic variations in
fibrin density is observed. This result is consistent with [2—4], whose solutions can exhibit layered fibrin formation in
stationary blood.

6. Fig. 3b and 6b show that even in the symmetry plane of the aneurysm, where fibrin density is minimal (blue tones),
the value remains greater than zero. This indicates that the presence of an aneurysm causes blood densification and
increased viscosity throughout the aneurysm, although solid fibrin does not form at every point.

7. The range of dimensionless fibrin in this study is of the same order as in [2—4], i. e., from 50 to 750 dimensionless
units (in our examples, less than 500 dimensionless units).

8. Doubling the aneurysm diameter relative to the vessel diameter increases the Reynolds number (Re = 3000 in the
artery) and, as seen in Fig. 6 and 7, generates a flow reversal point near the vortex core. Therefore, the presence of an
aneurysm leads to velocity field discontinuities and an increase in vorticity in the vicinity of the flow reversal point.

Conclusion. This study presents the systems of equations (1), (12), and (13) with boundary and initial conditions (14),
(15), (16), and (17), constituting a simplified unsteady model of blood flow and fibrin (thrombus) formation in aneurysms
of blood vessels. The proposed model allows for a qualitative investigation of the mechanisms of thrombus formation in
arterial and arteriolar aneurysms, as well as in components of medical devices.
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