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Abstract
Introduction. A two-dimensional hydrodynamic problem is numerically solved in the “stream function-vorticity” 
formulation for an open rectangular cavity simulating blood flow and its coagulation within a vascular aneurysm. The 
model accounts for a simplified nonlinear mathematical description of the first phase of blood coagulation (30 seconds).
Materials and Methods. To accelerate the numerical solution of the unsteady problem with an explicit finite-difference 
scheme for the vorticity dynamics equation, an n-fold splitting method of the explicit scheme (n = 100, 200) was employed, 
along with the use of a symmetry plane in the rectangular aneurysm domain. The splitting method was also applied to 
solve the dynamic system of advection–diffusion equations with nonlinear source terms for the activator and inhibitor 
blood factors (N = 70). The maximum time step τ0 was synchronized across both splitting cycles. The computation was 
performed on half of the rectangular aneurysm using a uniform 100×50 grid with equal spacing h1 = h2 = 0.01. The inverse 
matrix required for solving the Poisson equation in the “stream function-vorticity” formulation with a finite number of 
elementary operations was computed using the Msimsl library.
Results. The numerical solution demonstrated that, in arterioles (Re = 3.6), advection and diffusion of fibrin occur 
according to the nonlinear dynamics of activator and inhibitor factors, as if fibrin were moving counter to the blood flow. 
The maximum fibrin density forms in the central region of the vessel in the shape of a “fibrin horseshoe”. For higher 
Reynolds numbers (Re = 3000) corresponding to arteries, fibrin motion occurs along the main flow, and the central part 
of the vessel is separated from the aneurysm by a “fibrin foot” along its geometric boundary. In arterioles, a layered 
fibrin growth effect was also observed, with periodic variations in fibrin density near the aneurysm wall, consistent with 
other authors’ findings. In arteries, the fibrin film within the aneurysm forms in approximately one second—significantly 
shorter than the first coagulation phase (30 seconds).
Discussion. The finite-difference approximation achieves sixth-order accuracy at interior nodes and fourth-order accuracy at 
boundary nodes. The model was applied to simulate blood flow in arterial aneurysms at high Reynolds numbers (Re = 3000) 
and in arteriole aneurysms (Re = 3.6). The dimensionless range of fibrin density variation is consistent with data reported 
by other researchers.
Conclusions. The study proposes a system of equations representing a simplified unsteady model of blood motion and 
fibrin (thrombus) formation in vascular aneurysms. The proposed model provides a qualitative understanding of thrombus 
formation mechanisms in aneurysms of arteries and arterioles, as well as in elements of medical equipment.
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Оригинальное эмпирическое исследование
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Аннотация
Введение. Численно решается двумерная гидродинамическая задача в переменных «функция тока — вихрь» в 
открытой прямоугольной каверне, моделирующей течение крови и ее свертывание в аневризме кровеносного со-
суда с учетом простейшей нелинейной математической модели за время первой фазы свертывания (30 секунд).
Материалы и методы. Для ускорения численного решения нестационарной задачи с явной разностной схемой 
уравнения динамики вихря использовался метод n-кратного расщепления явной разностной схемы (n = 100, 
200) и наличие плоскости симметрии прямоугольной области каверны — аневризмы. Метод расщепления так-
же применялся для решения динамической системы уравнений адвекции-диффузии с нелинейной правой ча-
стью для факторов крови активатора и ингибитора (N = 70). В двух методах согласовался максимальный шаг 
времени τ0 в циклах расщепления. На половине прямоугольной аневризмы рассматривались симметричные 
решения и применялась равномерная сетка 100×50 с равным шагом h1= h2= 0,01. Обратная матрица для реше-
ния уравнения Пуассона в переменных «функция тока — вихрь» за конечное число элементарных операций 
вычислялась библиотекой Msimsl.
Результаты исследования. Численное решение задачи показало, что в артериолах (Re = 3,6) происходит адвек-
ция и диффузия фибрина с учетом нелинейной правой части системы уравнений динамики для активатора и инги-
битора так, как если бы фибрин двигался навстречу крови. Максимальная плотность фибрина реализуется в сред-
ней части сосуда в форме «фибриновой подковы». Решение задачи при больших числах Рейнольдса (Re = 3000) 
в артериях эквивалентно движению фибрина вдоль потока, при этом центральная часть кровеносного сосуда 
отделена от аневризмы по ее геометрической границе «фибриновой ножкой».  В артериолах обнаружен также 
эффект слоеного роста фибрина с периодическим изменением плотности у стенки аневризмы, как и у авторов 
других работ. Решение задачи в артерии показало, что фибриновая пленка в аневризме при быстром движении 
крови образуется за время порядка одной секунды, что много меньше, чем первая фаза свертывания (30 секунд).
Обсуждение. Аппроксимация уравнений имеет шестой порядок погрешности во внутренних узлах и четвертый 
в граничных узлах. Задача решена для движения крови в аневризмах артерий при больших числах Рейнольдса 
(Re = 3000) и для течения крови в аневризмах артериол (Re = 3,6). Безразмерный диапазон изменения плотности 
фибрина вкладывается в аналогичный диапазон в работах других авторов.
Заключение. В работе предложены системы уравнений, представляющие собой простейшую нестационарную 
модель движения крови и образования фибрина (тромба) в аневризмах кровеносных сосудов. Предложенная мо-
дель поможет качественно выяснить причины образования тромбов в аневризмах артерий и артериол, а также в 
элементах медицинского оборудования.

Ключевые слова: гидродинамика, численные методы, уравнения в частных производных, начально-краевая за-
дача, математическое моделирование, аневризма
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Introduction. This study, which continues the research presented in [1], for the first time models a two-dimensional 
hydrodynamic problem of blood motion and coagulation in an open rectangular aneurysm-cavity using the “stream 
function — vorticity” formulation. In [2], a system of two dynamic partial differential equations describing the diffusion 
of coagulation factors-activator and inhibitor — was first derived, with nonlinear source terms accounting for the local 
interaction between these factors. In [3], several mathematical models of blood coagulation without advection were 
compared, and the dimensional coefficients in the governing equations were refined.
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The dynamics of blood formation and its relation to cardiac pulsations at low Reynolds numbers were investigated in [4]. 
In [5], blood motion in an arteriole was studied using the Russian computational platform FlowVision, incorporating 
intermediate components of chemical reactions and accounting for variations in both the solid boundary of the vessel and 
the thrombus interface. It was shown that small thrombi form near an internal cut within a straight vessel and exhibit a 
fractal structure. Studies [6–11] focus on two-dimensional hydrodynamic problems whose properties are similar to those 
of the present hydrodynamic system.

The present work, firstly, introduces an unsteady mathematical model of blood coagulation within a vascular 
aneurysm for both an arteriole (Re = 3.6) and an artery under turbulent conditions (Re = 3000). Secondly, the developed 
computational algorithm incorporates the periodic mixing of blood within the aneurysm caused by each pulsation wave.

Materials and Methods 
Problem Statement. We consider a two-dimensional problem of blood flow and coagulation in a rectangular 

aneurysm–cavity formed on the wall of a blood vessel. The aneurysm represents a section of the vessel whose diameter 
2d is typically twice that of the main vessel. Let L denote the aneurysm length, 2H its diameter, and H the half-width of 
the aneurysm (Fig. 1 illustrates half of the symmetric model). The variable d represents the half-width of the parent vessel. 
The origin of the coordinate system is placed at the lower left corner of the computational domain.

Fig. 1. Geometry of the computational domain for the numerical solution

The dynamic part of the problem describing blood motion in aneurysms of arterioles (Re = 1.8) and arteries (Re = 1500) 
was numerically solved in [1]. That study obtained the streamline patterns of fluid (blood) particles inside the aneurysm. 
The formulation of the hydrodynamic problem in [1] in dimensionless variables has the following form:
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As in [1], the following characteristic scales are used in this study: length — L, time —  
max

L
u

, velocity — umax, stream 

function — Lumax, vorticity —  maxu
L

, and Reynolds number — Re. Let us introduce the dimensionless variables:  x  —  

horizontal coordinate,  y  — vertical coordinate,  ,  wψ  — stream function and vorticity, respectively,  ( ),  u v  — velocity 
vector,  t  — time. They are defined by the relations:
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In system (1), the first equation represents the Poisson equation in the “stream function–vorticity” formulation, 
approximated with sixth-order accuracy according to [12] and [1]:
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The partial derivatives in formula (2) were also approximated in [1]. Finite-difference expressions were obtained for 
the interior nodes of the function f with indices  1 22, 2, 2, 2n n m n= − = − :
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The combined algorithm for solving system (1) together with system (12) consists of 11 computational steps. It 
requires the specification of initial conditions for the following variables: the stream function field, velocity field, vorticity 
field, and the inhibitor and activator concentration fields (equations (15)–(17)).

This algorithm differs from that presented in [1] and can be summarized as follows:
Step 1: Define the boundary conditions on the rectangular cavity contour for the stream function and for the vertical 

velocity component, which remain constant throughout the computation.
Step 2: Modify the right-hand side of the Poisson equation for the vorticity according to formulas (12) and (13) from [1].
Step 3: Solve the Poisson equation (7)–(11) from [1], i. e., compute the stream function values at the interior grid 

points of the rectangular domain.
Step 4: Compute the velocity along the upper segment of the cavity using formulas (5) from [1].
Step 5: Evaluate the updated velocity field using equation (18) from [1] at the interior grid nodes.
Step 6: Determine the new boundary values of vorticity using formulas (24) from [1].
Step 7: Compute the new vorticity values at the interior grid nodes using equation (19) from [1].
Step 8: Evaluate the right-hand sides for the inhibitor and activator equations (13).
Step 9: Solve equation (13) separately for the inhibitor and for the activator using the splitting method at the interior 

grid nodes.
Step 10: Determine the boundary values of the inhibitor and activator according to formula (14).
Step 11: If the physical time corresponds to an integer number of cardiac pulsations, reset the velocity, stream function, 

and vorticity fields to their initial values before solving equation (17). This procedure simulates blood mixing inside the 
aneurysm induced by a pulsation wave generated by the heart along the vessel system. The inhibitor, activator, and fibrin 
fields remain unchanged before and after the pulsation.

After completing the tenth step, the algorithm returns to the first step in a cyclic manner. In system (1), the Poisson 
equation is solved first, requiring a finite number of elementary operations [1] and providing sixth-order accuracy at the 
interior grid nodes. The second equation in system (1) corresponds to the vorticity function, which is computed through 
the coordinate derivatives of the velocity field.

The third equation expresses the velocity components as partial derivatives of the stream function. Therefore, the 
approximation of these equations  , ;x y y xw v u u v= − = ψ = −ψ  reduces to approximating first derivatives, which poses no 
particular difficulty. The fourth equation in system (1) represents the vorticity dynamics equation—the only equation in 
the system that explicitly depends on time. The left-hand side contains the total (convective) time derivative.

In system (1), the elements of the rectangular cavity boundary must be clarified. Here, Г1 denotes the union of the 
lower parts of the lateral sides and the bottom segment, while Г2 corresponds to the upper boundary of the rectangle Г. Let   

(2)

(3)
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(u(x,u), v(x,y)) denote the velocity vector of a fluid particle. On the solid boundary — that is, along the bottom segment 
and the lower parts of the lateral sides of height H–d of the rectangular cavity — the velocity is zero (the no-slip condition 
on Г1). Accordingly, the stream function is set to zero along this boundary. 

On the upper boundary of the rectangle, the vertical velocity component is zero, while the horizontal component is 
not specified on the upper segment and is zero on the bottom segment. On the lateral sides, it is described by equation (4) 
according to [1]:
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In the upper segment of the rectangular cavity, the unknown velocity can be determined using formulas (5), which 
correspond to the fourth step of the general algorithm described in [1]:
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To accelerate the numerical computation, due to the symmetry of the geometry, we consider one half of the aneurysm 
and two halves of the rectangular channels supplying and discharging the fluid from the aneurysm. It is convenient to 
introduce a rectangular coordinate system with a uniform grid n1×n2 = 100×50.

According to the projection principle, for two convex closed contours nested within each other without self-intersections 
(contact or partial coincidence of contours is allowed), a ray can be drawn from a certain internal point intersecting each 
contour at exactly one point. In this case, one may speak of geometric projection of one contour onto another.

Similarly, the projection of a physical field can be defined by transferring the field value at a point on the outer contour 
to the corresponding point on the inner contour. For example, in Fig. 1, the outer contour includes the left and right parts 
of the blood vessel and the rectangular aneurysm, whereas the inner contour consists only of the aneurysm. The projection 
of the outer contour points can also be performed along the normal direction onto the inner contour.

Thus, based on the field projection principle, the problem can be simplified, and its numerical solution significantly 
accelerated by considering the fluid motion only within the aneurysm domain, rather than within the combined volumes 
of the three bodies (the left vessel part, the aneurysm, and the right vessel part).

Therefore, it is assumed that the velocity profile is preserved when the flow enters the rectangular aneurysm and when 
it exits through a narrow symmetric strip with respect to the 0xz-plane of width 2∆ = 2d, where at infinity the velocity 
distribution is described by the Poiseuille formula (4) [1].

By integrating formula (4) over the interval y∈[H − ∆, H] we obtain the stream function on the lateral sides of the 
aneurysm — the last expression in the system of equations (1) [1]. On the upper and lower segments of the aneurysm, as 
well as on the small adjacent side segments, projection of the velocity field and stream function is not required.

The field projection principle can be qualitatively justified using the classical example of the flow of an ideal 
fluid around an infinite cylinder. If the velocity field of the ideal fluid at infinity is constant, then at the diametrically 
opposite points of the cylinder the flow direction remains unchanged, while the velocity magnitude is doubled. At the 
same time, at the contact points and in the neighboring regions, the no-penetration condition on the cylinder surface is 
approximately satisfied.

Similarly, in Fig. 1, on the plane of symmetry, the flow direction remains unchanged; the direction of the velocity vector 
on the lateral inflow and outflow segments of the aneurysm connected to the blood vessel also remains approximately 
constant. The no-penetration condition of rigid boundaries is thus fulfilled approximately, which justifies the application 
of the field projection principle on the lateral sides of the aneurysm.

To accelerate the numerical solution of the vorticity equation (1), the splitting method was employed [1, 11]. 
Analytically, the method of n-fold splitting of the vorticity equation for the time interval τ0/n can be expressed as follows:
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time layer in the vorticity equation (6), while the subscript k corresponds to the multiple time layer index in system (6). 
The velocity and stream function fields remain constant in equations (6) for fixed values of k = const and varying index  

 ( )( , ), ( , ) , 0, 1, , 1,2,...k ku x y v x y i n k const k= − = =. Within this system, only the vorticity field  ( / ) , 0, 1k i nw i n+ = −  evolves. The velocity field undergoes a discrete 
change in system (1) when the temporal index of the vorticity function increases by one, from k to k + 1 in equations (6).

The main idea of the splitting scheme for system (6) lies in reducing both rounding error accumulation and 
computational time during the numerical solution. The differential operators with respect to spatial coordinates in (6) 
are approximated at internal grid nodes with accuracy O(h6), consistent with all equations in system (1); the boundary 
conditions are approximated with accuracy O(h4), and the temporal derivatives — with accuracy O(τ).

Here, we rely on an unproven but commonly accepted assumption that, for spectral time stability of finite-difference 
schemes, the approximation order of the equations on the boundary must be lower than that in the internal grid nodes [12]. 
Thus, over the time interval τ0/n ((associated with a local decrease in solution stability caused by singular points in the 
velocity field), solving equation (6) n times yields a temporal jump τ0 which is n times larger than that obtained by the 
sequential solution of system (1).

For the derivative wy in (6), the quadrature formulas are written as follows (the formulas for wx are analogous):

 ( ) ( ) ( ) ( )
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( ) ( )( ) ( )
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  
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
 = − − − − + = −


The second-order partial derivatives wyy in (6) are expressed as follows:

 ( ) ( ) ( ) ( )
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2 2 2 2 2

4
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3 12j n j n j n j n jw w w w O h j n− − − −



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








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Similarly, the formulas for the derivative wxx are written analogously to formulas (8). From [2], we also include the 
general boundary condition for vorticity (equation (6), sixth step of the general algorithm) in the open cavity with fourth-
order accuracy, obtained by differentiating the last equation for the stream function in system (1) twice with respect to y:

 ( )
0 1 2 3 42

1 1

0,1 415 8 1 25( , ) 8 3 , ,
72 9 8 6xx yy yy x

v y
w x y v

h h
 = −ψ −ψ = ψ − ψ + ψ − ψ + ψ − −ψ = −ψ 
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 ( )2 2 2 2 3 2 30, , , ,1 ,mm n y mh h n n h n= = ∆ = − − ∆ =
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(7)

(8)

(9)

(10.1)

(10.2)
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w
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  ψ − ψ + ψ − ψ + ψ + = = ψ  
 = 
  ψ − ψ + ψ − ψ + ψ − =   

In deriving the boundary equation (9) for the vorticity function, all stream function derivatives of order higher than 
two were eliminated. This significantly improves the stability of boundary finite-difference conditions of the type (9) and (10) 
for velocity fields with first-kind discontinuities. Table 1 presents the classification of blood vessels according to their 
Reynolds number and diameter.

Table 1
Classification of blood vessels

Type Diameter Blood velocity Re Governing equations
Capillaries (5–10) μm (0.5–1.0) mm/s 0.00075–0.003 –
Arterioles (10–100) μm (0.5–10.0) cm/s 0.015–3,000 (1), (13)
Arteries (2–10) mm (10.0–50.0) cm/m 60–1500 (1), (13)
Aorta (2–3) cm 0.5 m/s 3000 (1), (13)

Experience [1] shows that, for a physically rapid solution of system (1) in arterioles and arteries, it is necessary to 

select an inertial time interval  
max

LT
u

= , while the hydrodynamic problem is solved using system (1).

We consider a simplest mathematical model of fibrin formation, which accounts for the concentration dynamics of two 
metabolites: an activator of the coagulation process (thrombin) s and an inhibitor z, which slows down blood coagulation:

 ( )

( )

2

1
0

2

22
0

,

1 1 .

xx yy

xx yy

s s s su v D s s k s sz
t x y s s

z z z z zu v D z z s k z
t x y c z

∂ ∂ ∂ α
+ + = + + − − γ∂ ∂ ∂ +


 ∂ ∂ ∂   + + = + +β − + −  ∂ ∂ ∂   

Here, u, v are the velocity components; the coefficients α, β, k1, γ, D, c, v0, k2 are dimensional, and their numerical 
values are taken from [3, p. 16].

Table 2

Dimensional coefficients in system of equations (11)

 
α, min−1 β, min−1

 
nmin M
γ
⋅  v0(z0), nМ

 
c, nМ u0(s0), nМ k1, min−1 k2, min−1

2.0 0.0015 5.0 0.0525 5.0 2.95 0.05 0.35

The diffusion coefficients of thrombin and the inhibitor are assumed equal to D = 10−11 m2/s [2, p. 99]. The diffusion 

velocities of thrombin and the inhibitor can be calculated using the formula  11 62 2 10 2 / 60 1.155 10 /v D m s− −= α = = ⋅  m/s. 
These diffusion velocities are significantly smaller than the blood velocity in an arteriole (3 mm/s) and in an artery (50 cm/s), 
which justifies the inclusion of advection terms on the left-hand side of system (11).

 
( )

( ) ( )

2
max max

1 02

2max max 0 0
22

0

,
1

1 1 ,

x x y y

x x y y

u us s s D su v s s k s szz
L L LT t x y s

u u s z zz z z Du v z z s z k z
L L L z cT t x y

 ∂ ∂ ∂ α
+ + = + + − − γ

∂ ∂ ∂ + ⇔
 ∂ ∂ ∂ + + = + + β − + −  ∂ ∂ ∂  

 
( )

( ) ( )

2

1 0
max max

20 0
2

max max 0

,
1

1 1 ,

x x y y

x x y y

s s s D L su v s s k s szz
Lu ut x y s

s z zz z z D Lu v z z s z k z
Lu u z ct x y

  ∂ ∂ ∂ α  + + = + + − − γ
 ∂ ∂ ∂ +   ⇔
  ∂ ∂ ∂
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(10.3)

(11)
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d s t
dt
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   ∂ ∂ ∂ + + = + + β − + −    ν∂ ∂ ∂    


ϕ =




The last equation in system (12) is the thrombin growth equation  ( )tϕ  obtained by integrating the activator  ( )s t  over 
the dimensionless time  t . According to [2–5], the activator  ( )s t , the inhibitor  ( )z t , and thrombin  ( )tϕ  take only non-
negative values, which was enforced by the authors in the numerical implementation.

For an arteriole [5], the diameter is 2d = 2 mm, the blood viscosity is η = 3,5 ‧ 10−3 Pa‧s, and the kinematic viscosity 

of blood is 
 3 2

6
3

3.5 10 Pа s m3.33(3) 10 .
1050  kg / m s

−
−µ ⋅ ⋅

ν = = = ⋅
ρ

 The blood velocity [5] in an aneurysm of diameter L ≈ 4d = 4 mm 

is  umax = 3 mm/s. Then the Reynolds number is calculated as 
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. We introduce the 

following dimensionless variables  0 0/ ,  /s s s z z z= = ,  and compute the corresponding dimensionless coefficients:
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We denote the right-hand sides in the dynamical equations for the inhibitor and activator in system (12) and obtain the 
splitting method [11] with splitting multiplicity N:
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The splitting multiplicity N = 70 in system (13) for the inhibitor and activator differs from the multiplicity n = 200 
used for the vorticity equation (6). It is only necessary to synchronize the time steps of systems (6) and (13) such that, after 
completion of both subroutine loops, the increment of their dimensionless time coincides, i. e., equals τ0. 

If the boundary conditions for the inhibitor and activator at the solid wall are specified for the no-penetration case (for 
example, at the bottom of the cavity), then from formula (5.1) we obtain formula (14.1) with eleventh-order accuracy:
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 ( )11
6, 7, 8, 9, 10, 11, 1

330 165 55 11 177 , 1, 1.
7 8 9 10 11

j j j j j js s s s s s O h j n− + − + − + + = −


Similarly, we obtain formula (14.2) with fifth-order accuracy:
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Problem Initialization. The initial values for the inhibitor and activator fields are set, following A.I. Lobanov [3], 
as a step function for the activator. These initial conditions were used in systems (1) and (13), with the solutions shown 
below in Fig. 2–7:

 , 2 1

2 1
,

2 1 1

( 0) 0, 0, , 0, ,

1, 0, , 0, / 2,
( 0)

0, 0, , / 2, .

i j

i j

z t i n j n

i n j n
s t

i n j n n

 = = ∀ = =
  ∀ = = = = 

∀ = = 

We also assume that the boundary conditions for the activator and inhibitor on the rectangular boundary of the cavity 
(aneurysm) are homogeneous. Dirichlet conditions:

 
2 2/ /

0, 0.
Г Г Г Г

s z= =

The initial velocity field is defined as follows: the vertical velocity component vi,j(t = 0) is absent, while the horizontal 
component ui,j(t = 0) follows a Poiseuille distribution (4):
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From [5], we select an arteriole diameter of 2d = 2 mm and a blood velocity u = 3 mm/s. The aneurysm diameter 

and length are twice that, 2D = L = 4 мм. The corresponding Reynolds number is  
3 3

max
6

3 10 4 10Re 3.6
3.333 10

u L − −

−

⋅ ⋅ ⋅
= = =

ν ⋅
. The 

transit time of a fluid particle 
 ( )

3

3
max

4 10 1.33 3
3 10

LT s
u

−

−

⋅
= = =

⋅
 s along the aneurysm exceeds the period of cardiac pulsations 

(1 second); therefore, during the time interval T = 1.33(3) s two cardiac pulsations occur, resulting in two mechanical 
mixing events of the blood within the aneurysm walls.

Homogeneous zero boundary conditions were chosen for the inhibitor and activator on the cavity walls, based 
on the assumption that their concentrations at points far from the aneurysm are zero. On the upper segment of the 
cavity, formula (14.2) was applied for both the activator and inhibitor, as symmetric solutions are sought for all 
unknown fields. System (12) has a trivial solution  ( ) ( ) 0s t z t= ≡ . As shown in [3], the trivial solutions  ( ) ( ) 0s t z t= ≡  
are stable if the inhibitor and activator values remain below their threshold levels  ( ) ( ) 0s t z t= ≡ . This justifies the use 
of homogeneous zero boundary conditions.

The initial fibrin field  ( )tϕ  in (12), obtained by integrating the activator field over time, at T = 1.33(3) s is shown in Fig. 2. 
From Fig. 2, it follows that even at the initial stage of fibrin formation, noticeable transport occurs — both advection 

along the blood flow and diffusion, according to system (13).
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Fig. 2. Fields in an arteriole using formula (14.2) at T = 1.33(3) s, 

Re = 3.6, n1×n2 = 100×50,  2
max 1

6/ 0.5;  4 mm,2 4 mm, 3 mm/s,
16

H L H u h∆ = = = = τ = , m = 53000 steps, 
splitting multiplicities  n = 200 in (6), N = 70 in (13):

a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Fig. 3. Fields in an arteriole using formula (14.2) at Т = 20 s, 

Re = 3.6, n1×n2 = 100×50,  2
max 1

6/ 0.5;  4 mm,2 4 mm, 3 mm/s,
16

H L H u h∆ = = = = τ = , m = 800000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm
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Fig. 4. Fields in an arteriole using formula (14.2) at Т = 26 s, 

 Re = 3.6, n1×n2 = 100×50,  2
max 1

6/ 0.5;  4 mm,2 4 mm, 3 mm/s,
16

H L H u h∆ = = = = τ = , m = 1200000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Fig. 4 concludes the graphical representation of thrombus formation in an arteriole aneurysm at the end of the first phase (30 
seconds). From Table 1, we select an artery diameter of 2d = 1 cm and a blood velocity u = 0.5 m/s. The aneurysm diameter 

and length are twice that, 2H = L = 2 cm. The corresponding Reynolds number is 
 

( )
2

max
6

0.5 2 10Re 3000
3.33 3 10

u L −

−

⋅ ⋅
= = =

ν ⋅
. 

The transit time of a fluid particle 
 2

max

2 10 0.04
0.5

LT s
u

−⋅
= = =  s along the aneurysm is less than the period of

cardiac pulsations (1 second); therefore, during this interval T = 0.04 s only a single cardiac pulsation occurs, resulting in 
blood mixing within the aneurysm with low probability.

The initial fibrin field  ( )tϕ  in (12), obtained by integrating the activator field over time, at T = 0.04 s is shown in Fig. 5.

Fig. 5. Fields in an artery using formula (14.2) at T = 0.04 s,
 Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 сm,2 2 сm, 0.5 m/s, ,

16
H L H u h∆ = = = = τ =  m = 53000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm
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Compared to Fig. 2b, in Fig. 5b the advection of the activator is more pronounced than its diffusion. In Fig. 6b, 
the fibrin transport along the flow and its swirling near the right segment of the cavity, forming a “fibrin stalk”, can be 
observed. Consequently, a fibrin film forms along the geometric boundary of the cavity, blocking oxygen access to the 
aneurysm walls and creating blood stasis within the aneurysm.

Fig. 6. Fields in an artery using formula (14.2) at T = 0.6 s, 
Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 сm,2 2 сm, 0.5 m/s, ,

16
H L H u h∆ = = = = τ =  m = 800000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Qualitatively, Fig. 6 and 7 are similar; however, the “fibrin stalk” in Fig. 6b has already transformed into a “fibrin ring” 
in Fig. 7b. Fig. 6 and 7 demonstrate that in a turbulent environment, each fibrin filament rapidly changes its value even 
along its length, resembling loose hair strands blown by the wind.

Next, we consider the periodic structure of fibrin in an arteriole near the aneurysm wall at t = 10 s after the onset of 
blood coagulation, as shown in Fig. 8.
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Fig. 7. Fields in an artery using formula (14.2) at T = 0.9 s, 
Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 сm,2 2 сm, 0.5 m/s, ,

16
H L H u h∆ = = = = τ =  m = 1200000 steps, 

splitting multiplicities n = 200 in (1), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm; c — streamlines in the aneurysm

Fig. 8. Fibrin field in an arteriole using formula (14.2) at T = 10 s, 
Re = 3.8, n1×n2 = 100×50,  2

max 1
6/ 0.5;  4 mm,2 4 mm, 3 mm/s,

16
H L H u h∆ = = = = τ = , m = 400000 steps, 

splitting multiplicities n = 200 in (6), N = 70 in (13):
a — fibrin surface; b — fibrin distribution in the aneurysm

Fig. 8a and 8b show that fibrin moves along the aneurysm wall in a thin layer against the direction of blood flow (at a 
velocity of  umax = 3 mm/s). It turns at the far wall (potentially adhering to it) and returns to the near wall, forming a “fibrin 
horseshoe” with the maximum fibrin density located outside the aneurysm region. That is, the fibrin horseshoe grows 
both within the bulk of the flow and against the flow direction. In Fig. 8b, a periodic spatial variation of fibrin density 
along the aneurysm wall is also visible. Similarly, in Fig. 3b and 4b, the fibrin horseshoe in the center of the arteriole 
aneurysm reaches its maximum density (shown in red) near the left wall, confirming that fibrin growth occurs opposite to 
the direction of blood flow.
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Fig. 9. Field distributions in the artery using (14.2) at Т = 2.54 s   
 Re = 3000, n1×n2 = 100×50,  2

max 1
6/ 0.5;  2 ,2 2 , 0.5 / , ,

16
H L сm H сm u m s h∆ = = = = τ =  m = 3387700 steps, 

splitting multiplicity n = 200 in (1), N = 70 in (13):
a — fibrin surface; b — fibrin distribution within the aneurysm; c — streamline field in the aneurysm

Fig. 9b shows that by t = 2.54 s, a homogeneous thrombus with a maximum dimensionless density of 85 units forms 
throughout the entire volume of the aneurysm (compared to Fig. 7b). The question of the threshold fibrin density is also 
crucial—the density at which it can be considered a solid body and impermeable to blood flow. In this case, blood must 
flow around the ultra-dense fibrin clots. It is equally important to obtain an experimental dependence of blood viscosity 
on the dimensionless fibrin density to account for it in the systems of equations (1) and (12).

Discussion 
1. In the initial phase (Fig. 2b and 5b), fibrin forms in regions where the activator concentration exceeds the threshold 

and is transported to other parts of the aneurysm by advection and diffusion.
2. In arterioles, during the initial phase at t = 1,333 s (Fig. 2a and 2b), the maximum fibrin concentration (red tones) 

is observed near the aneurysm walls. However, at  t = 20 s (Fig. 3a and 3b), a fibrin horseshoe appears, with maximum 
fibrin values in the central flow, approximately twice as high as near the wall.

3. In arteries with high blood velocity (Re = 3000) fibrin accumulates within the aneurysm, separating its boundaries 
from the blood flow by a “fibrin filament” (Fig. 6b).

4. Due to the nonlinear terms in systems (12) and (13), fibrin motion in arterioles (Re = 3.6) occurs against the flow 
(Fig. 3b), whereas in arteries (Re = 3000) it occurs in the direction of blood flow (Fig. 6b).

5. In Fig. 8a and 8b, near the aneurysm wall with low blood velocity, a spatial structure with periodic variations in 
fibrin density is observed. This result is consistent with [2–4], whose solutions can exhibit layered fibrin formation in 
stationary blood.

6. Fig. 3b and 6b show that even in the symmetry plane of the aneurysm, where fibrin density is minimal (blue tones), 
the value remains greater than zero. This indicates that the presence of an aneurysm causes blood densification and 
increased viscosity throughout the aneurysm, although solid fibrin does not form at every point.

7. The range of dimensionless fibrin in this study is of the same order as in [2–4], i. e., from 50 to 750 dimensionless 
units (in our examples, less than 500 dimensionless units).

8. Doubling the aneurysm diameter relative to the vessel diameter increases the Reynolds number (Re = 3000 in the 
artery) and, as seen in Fig. 6 and 7, generates a flow reversal point near the vortex core. Therefore, the presence of an 
aneurysm leads to velocity field discontinuities and an increase in vorticity in the vicinity of the flow reversal point.

Conclusion. This study presents the systems of equations (1), (12), and (13) with boundary and initial conditions (14), 
(15), (16), and (17), constituting a simplified unsteady model of blood flow and fibrin (thrombus) formation in aneurysms 
of blood vessels. The proposed model allows for a qualitative investigation of the mechanisms of thrombus formation in 
arterial and arteriolar aneurysms, as well as in components of medical devices.
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