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Аннотация
Введение. Изучение процесса подъема взвеси (например, частиц пыли, песка, почвы и др.) ветровыми порывами в 
приземном слое направлено на фундаментальное понимание механизмов ветровой эрозии, возникновения пыльных 
бурь, переноса загрязняющих веществ и др. Эта область научных исследований имеет важное практическое значение 
для борьбы с опустыниванием, эрозией, засухой, а также для повышения урожайности и сохранения природных экоси-
стем. Прогнозирование данных процессов позволяет оценивать и своевременно реагировать на негативные эффекты, 
связанные с данными процессами. Цель настоящей работы — предложить и реализовать математическую модель, ко-
торая позволит проводить численные эксперименты с различными сценариями подъема взвеси ветровыми порывами.
Материалы и методы. В работе представлена непрерывная математическая модель движения многокомпонент-
ной воздушной среды в приземном слое атмосферы, которая учитывает такие факторы, как турбулентное пере-
мешивание, переменную плотность, силу Архимеда, тангенциальное напряжение на границах раздела сред и др. 
Отличительной особенностью математической модели является присутствие в воздушной среде частиц взвеси 
(их состава и агрегатного состояния), а также влияние техногенных факторов — источников взвеси. Подход, 
основанный на математическом моделировании, призван обеспечить универсальность численной реализации.
Результаты исследования. Математическая модель реализована в виде комплекса программ. Проведены чис-
ленные эксперименты, моделирующие подъем взвеси ветровыми порывами в расчетных областях.
Обсуждение. Результаты данной работы могут быть востребованы для широкого круга задач, связанных с ох-
раной здоровья человека, экологической безопасностью и планированием природопользования в засушливых и 
степных регионах страны.
Заключение. Дальнейшие исследования авторов могут быть направлены на моделирование движения воздушно-
го потока, содержащего пыль, для природных ландшафтов, содержащих лесонасаждения.

Ключевые слова: ветровой порыв, взвешенное вещество, турбулентное перемешивание, аэродинамика, матема-
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Abstract
Introduction. The study of suspension uplift processes (e. g., particles of dust, sand, soil, etc.) by wind gusts in the surface 
layer is aimed at fundamentally understanding the mechanisms of wind erosion, dust storm formation, pollutant transport, 
and related phenomena. This area of scientific research has significant practical importance for combating desertification, 
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erosion, drought, as well as for increasing crop yields and preserving natural ecosystems. Predicting these processes allows 
for the assessment and timely response to negative effects associated with them. The objective of this work is to propose and 
implement a mathematical model that enables numerical experiments with various scenarios of suspension uplift by wind gusts.
Materials and Methods. The paper presents a continuous mathematical model of multicomponent air medium motion 
in the atmospheric surface layer. The model accounts for factors such as turbulent mixing, variable density, Archimedes’ 
force, tangential stress at media interfaces, etc. A distinctive feature of the mathematical model is the presence of 
suspension particles (their composition and aggregate state) in the air medium, as well as the influence of anthropogenic 
factors — suspension sources. The approach based on mathematical modelling aims to ensure the universality of the 
numerical implementation.
Results. The mathematical model has been implemented as a software package. Numerical experiments simulating the 
uplift of suspension by wind gusts in computational domains have been conducted.
Discussion. The results of this work can be in demand for a wide range of tasks related to human health protection, 
environmental safety, and land-use planning in arid and steppe regions of the country.
Conclusion. Further research by the authors may be directed towards modelling the movement of dust-laden air flows for 
natural landscapes containing forest plantations.

Keywords: wind gust, suspended matter, turbulent mixing, aerodynamics, mathematical model, numerical experiment
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Введение. Подъем пыли, песка и других взвешенных частиц в нижних слоях атмосферы ветровыми 
порывами представляет собой сложный физический процесс, который зависит от силы ветра (особенно порывов), 
турбулентности атмосферы, физических характеристик частиц, шероховатости и влажности почвы, наличия 
растительного покрова и др. Достигая критической (пороговой) скорости ветер может «подхватывать» пыле-
песчаные частицы и частицы мелкозема и переносить их на большие расстояния, тем самым разрушая верхний 
плодородный слой почвы и вызывая ветровую эрозию. Одно из ярких проявлений ветровой эрозии связывают с 
образованием пыльных бурь. Пыльные бури совместно с сильными ветрами на юге России (преимущественно в 
Ростовской, Волгоградской и Астраханской областях, Краснодарском и Ставропольском краях), вызваны сочетанием 
следующих факторов: сильная жара, которая высушивает почву; усиление ветров до 12–15 м/с, которые поднимают 
и переносят частицы пыли и песка; огромные массивы распаханных земель, не укрытых растительностью. Сезонно 
пылевые бури приходят в начале весны и в начале осени (наибольшая их интенсивность наблюдается во второй 
половине года, приходящейся на сентябрь и октябрь), что связано с малым количеством атмосферных осадков, 
потерей почвой влаги и высокой степенью распаханности земель. Главной и долгосрочной причиной является 
исчезновение защитных лесополос, которые могли бы сдерживать ветер, а также приток горячих воздушных 
масс из соседних пустынных регионов, таких как Калмыкия. Здесь в зонах с полупустынными и пустынными 
ландшафтами создаются условия для переноса пыле-песчаного и аэрозольного материла в соседние регионы. 
Масштаб и цикличность данных явлений выросли в последние годы. В связи с этим приобретает актуальность 
прогнозирование процессов движения воздушных масс, содержащих частицы пыли и мелкодисперсного песка, 
выявление областей с высоким риском ветровой эрозии. В связи с этим интересен и полезен опыт российских и 
зарубежных исследователей и их команд, применявших как фундаментальные физические модели (Эйлера-Лагранжа, 
дискретной фазы — DPM), так и современные программные комплексы (ANSYS Fluent, COMSOL и др.) [1–5]. 
Подавляющее большинство исследований фокусируется на конкретных регионах и территориях, что связано со 
специфическими метеорологическими условиями, локальными данными о рельефе и типе почв, уникальными 
источниками пыли и др. Для Юга России исследования, посвященные данной тематике, отражены в работах ученых 
Южного математического института Владикавказского научного центра РАН, Южного федерального университета, 
Донского государственного технического университета и др. [6–10]. Авторами предложена к рассмотрению 
математическая модель, которая позволит проводить численные эксперименты с различными сценариями движения 
воздушного потока, содержащего пыль. В работе сделан акцент на моделировании турбулентности воздушного 
потока, обусловленной структурой ветра, способствующей подъему с земной поверхности частиц взвешенного 
вещества и являющегося основной причиной образования пыльных бурь. Математическая модель реализована в 
виде комплекса программ. Проведены численные эксперименты, моделирующие ветровые порывы в нижних слоях 
атмосферы с подъемом и переносом взвеси восходящими турбулентными потоками в расчетных областях.

Материалы и методы 
Математическая модель распространения взвеси в приземном слое атмосферы. Авторами рассматривается 

комплексная математическая модель, описывающая процессы движения воздушной среды и распространения в 
ней взвеси, включающая [9, 10]:

– модель движения многокомпонентной воздушной среды (определяет поле скоростей воздушной среды), 
учитывающая турбулентный обмен, переменную плотность, зависимость плотности воздушной среды от давления;
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– модель распространения взвеси в воздушной среде, учитывающая переход воды из жидкого в газообразное 
состояние и наоборот, транспорт вещества;

– модель расчета давления, учитывающая сжимаемость среды, источники взвеси, связанные с переходом 
воды из жидкого состояния в газообразное и обратно, а также турбулентное перемешивание многокомпонентной 
воздушной среды.

Сформулируем уравнения модели движения многокомпонентной воздушной среды в системе координат Ox1x2x3:
– уравнение движения (уравнение Навье-Стокса):

 ( )( )1 ;j
j i

j

dv p div grad v g
dt x

∂
= − + µ −

ρ ∂
– уравнение транспорта вещества:

 ( ) ( )( ) ;div v div grad I
t ρ

∂ρ
+ ρ = µ ρ +

∂
→

– уравнение состояния:
 ;i

i i

P RT
M
ρ

=∑

– уравнение транспорта примеси:
 ( )( ) ;i

i
d div grad I
dt ϕ

ϕ
= µ ϕ +

– уравнение модели турбулентности:
 ( )2

SGS Sv C S.= ∆

В уравнениях (1–5) использованы следующие обозначения: t — временная переменная; vj ( j = 1, 2, 3) — компоненты 
вектора скорости воздушной среды  v

→ ; p — давление; μ — коэффициент турбулентного обмена; ρ — плотность 
воздушной среды; ρi — плотность i-ой фазы (i = 0 — воздух, 1 — вода в газообразном состоянии, 2 — газ на 
источнике, 3 — вода в жидком состоянии, 4 — сажа); φi — объемные доли i-ой фазы; gi — ускорение свободного 
падения, соответствующее  i-ой фазе; I — функция, описывающая распределение и мощность источников взвесей; 
R — универсальная газовая постоянная, М — молярная масса, T — температура газовой фазы.

С целью упрощения вычислительных расчетов для дискретных аналогов уравнений модели, осуществляется 
переход от 3D к 2D уравнениям. Рассмотрим 3D уравнение диффузии-конвекции-реакции:

 ( ) ( ) ( )1 2 3

1 2 3 1 1 2 2 3 3

v v v
I .

t x x x x x x x x x ρ

∂ ρ ∂ ρ ∂ ρ     ∂ρ ∂ ∂ρ ∂ ∂ρ ∂ ∂ρ
+ + + = µ + µ + µ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

Уравнение (6) дополняется соответствующими граничными условиями [9].
В результате преобразований получим: 

 ( ) ( )
( )

( )2

2

1 3

1 3 1 1 3 3

,
b

a

x

x

v v
I

t x x x x x x ρ

∂ ερ ∂ ερ   ∂ρ ∂ ∂ρ ∂ ∂ρ τ
ε + + = µε + µε − + ε  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ρ   

где ε — параметр, описывающий относительную величину объема расчетной области, свободной от растений.
Двумерная математическая модель аэродинамики приземного слоя атмосферы. Пусть далее x1 = x, x2 = y, 

x3 = z, а для компонент вектора скорости воздушной среды  v
→   — v1 = u, v2 = v, v3 = w.   

Рассмотрим основные уравнения динамики воздушной среды:
– система уравнений Навье-Стокса:

 ( ) ( ) ( )

( ) ( ) ( )

1 ,

1 ;

t x z x z xx x z

t x z x z zz x z

u u u v u P u u f

w u w w w P v w f

′ ′′′ ′ ′ ′ ′ε + ε + ε = − ε + µε + µε + ε
ρ

′ ′′′ ′ ′ ′ ′ε + ε + ε = − ε + µε + µε + ε
ρ

– уравнение неразрывности:
 ( ) ( ) ( ) ( ) ;t x zx z x zu w Iρ′ ′′ ′′ ′ ′ερ + ερ + ερ = εµρ + εµρ + ε

– уравнение состояния:
 ,i

i i

P RT
M
ρ

=∑

где ε  — параметр, описывающий относительную величину объема моделируемой области, свободной от растений.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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Предположив, что воздушная среда находится в состоянии покоя, начальные условия будут иметь вид:
u = 0, w = 0, P = Pa ,

где  v
→  = {u, w}, Pa — атмосферное давление.

Система уравнений (9), (10) рассматривается при следующих граничных условиях:
– на непроницаемой границе:

 0 0, 0;w n x,b w n z ,b n n nu ( t ), v ( t ), V ,P P′ ′ ′ ′ρ η = τ ρ η = τ = = =

– на боковых проницаемых границах:
 0 0 0;n n nu , w , P′ ′ ′= = =

– на источнике:
 0,nu U , w W , P′= = =

где P  — давление; U, W — компоненты вектора скорости на источнике; τx, τz — составляющие касательного 
тангенциального напряжения.

Схемы расщепления по физическим процессам для решения задач аэродинамики. Согласно методу 
поправки к давлению, исходная модель гидродинамики разбивается на три подзадачи [11–14].

Первая подзадача представлена уравнением диффузии-конвекции-реакции, на основе которого рассчитыва-
ются компоненты поля скорости на промежуточном слое по времени:

 ( ) ( )

( ) ( )

x z x zx z
t

x z x zx z
t

u u u u w u u u ,
h

w w u w w w w w .
h

− ′ ′′ ′ ′ ′ε + ε + ε = µε + µε

− ′ ′′ ′ ′ ′ε + ε + ε = µε + µε

∼

∼

Для аппроксимации по временной переменной уравнения диффузии-конвекции-реакции использованы схемы 
с весами. Здесь  ( )1u u u= σ + −σ∼ ; σ ∈ [0,1] — вес схемы.

Опишем граничные условия системы (11):
– на непроницаемой границе:

 ( ), ( );w n x,b w n z ,bu t v t′ ′ρ η = τ ρ η = τ

– на боковых проницаемых границах:
 0 0;n nu , w′ ′= =

– на источнике:
 0nu U , w W , P .′= = =

Вторая подзадача позволяет рассчитать распределение давлений

 
( ) ( ) ( ) ( )

2
x z

x zx z
t t t

u wˆ
P P

h h h

′ ′ρε ρερ −ρ′ ′′ ′ε + ε = ε + +
∼ ∼

или
 ( ) ( ) ( ) ( )t x zx z x z

t

P̂ P RTPu Pw kh P P , k .
h
−  ′ ′ ′ ′′ ′ε + ε + ε = ε + ε =  Μ 

∼ ∼

Третья подзадача позволяет по явным формулам определить распределение скоростей на верхнем временном слое

 ( ) ( )1 1,  ,
x z

t t

ˆ ˆu u w wP P
h h
− −′ ′ε = − ε ε = − ε

ρ ρ

∼∼

где ht — шаг по временной координате; u — значение поля скорости на предыдущем слое по времени; ∼ u  — зна-
чение поля скорости на промежуточном слое по времени;  û  — на текущем слое по времени.

Умножим систему уравнений (13) на произведение htρ и продифференцируем по переменным x, y, z соответ-
ственно, в результате чего получим

 ( ) ( ) ( ) ( ),  t xx t zzx x z z
ˆ ˆu u h P w w h P .′ ′ ′ ′′′ ′′ερ = ερ − ε ερ = ερ − ε∼ ∼

Используем выражения (14) для преобразования уравнения (9). Получим:

 ( ) ( ) ( ) ( )t t xx t zz x zx z x zu h P w h P I .ρ′ ′ ′ ′′ ′′ ′′ ′ ′ερ + ερ − ε + ερ − ε = εµρ + εµρ + ε∼ ∼

С учетом уравнения состояния выражение (15) примет вид:

 ( ) ( ) ( ) ( )t xx t zz x zx z x z

P h P h P u w I .
P t ρ

ρ ∂ ′ ′ ′ ′′′ ′′ ′ ′ε = ε + ε − ερ − ερ + εµρ + εµρ + ε
∂

∼ ∼

(11)

(12)

(13)

(14)

(15)

(16)
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На основе уравнения (16) вычисляется поле давлений. Следует отметить, что при расчете давления учитыва-
ется сжимаемость среды, тепловое расширение, источники вещества, связанные с переходом воды из жидкого со-
стояния в газообразное и обратно, а также турбулентное перемешивание многокомпонентной воздушной среды.

Построение разностных схем, аппроксимирующих рассматриваемые уравнения (16), выполнено на гидроди-
намических сетках методами, описанными в работах [15, 16] и в данной статье не приводится.

Результаты исследования. На основе построенных алгоритмов был создан комплекс программ, предназна-
ченный для численного моделирования подъема взвеси ветровыми порывами для многокомпонентной воздуш-
ной среды. Проведён ряд численных экспериментов.

На рис. 1 и 2 приведены результаты численного эксперимента по моделированию движения воздушной среды 
при порывах ветра. Модельная область имеет размеры 30 м×50 м. Исходными данными являются: плотность воз-
душной среды 1,29 кг/м3; атмосферное давление 100 кПа; скорость ветрового порыва 10 м/с, направление ветра — сле-
ва направо. При решении задачи использованы расчетные сетки с шагом 10 метров по каждому координатному 
направлению. Шаг по временной переменной равен 0,1 с, расчетный временной интервал составлял 100 с.

Рис. 1. Изображение начального момента моделирования при расчете скорости 
движения воздушной среды. Горизонтальное сечение

Рис. 2. Результат моделирования скорости движения воздушной среды. 
Горизонтальное сечение

На рис. 1 и 2 интенсивность движения воздушной среды в м/с представлена в соответствии с цветовой пали-
трой. Рис. 2 демонстрирует наличие вихря в левой нижней его части, что может быть связано с движением потока 
с разной скоростью на границе между слоями воздуха, а также с рельефом местности (часто возникают вихре-
вые потоки из-за «отталкивания» воздушных масс от поверхности). Вихревой характер течений атмосферы на-
блюдается вблизи поверхности и постепенно уменьшается с высотой. Это приводит к образованию устойчивого 
градиента плотности. Воздушный поток в приземном слое становится устойчиво-стратифицированным и вихри 
ослабевают. В результате скорость потока увеличивается.

Далее представим результаты моделирования подъема взвеси при ветровых порывах. Исходными данными явля-
ются: плотность воздушной среды 1,29 кг/м3; плотность выброса 1,4 кг/м3; температура окружающей среды 20 °C; 
скорость течения воздушной среды 10 м/с; удельная мощность выброса 5 л/с. При решении модельной задачи были 
использованы расчетные сетки размерами 30 м × 50 м. Шаги по пространственным переменным равны 1 м, ско-
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рость движения воздушной среды на левой границе задавалась равной 1 м/с. Для решения модельной задачи 
применены схемы с весами, при этом вес схемы задавался равным 0,5. Шаг по временной переменной равен 0,1 с, 
расчетный временной интервал составлял 10 с.

Рис. 3. Изображение начального момента моделирования 
при расчете концентрации взвешенных веществ

Рис. 4. Результаты моделирования при расчете концентрации взвешенных веществ
спустя 10 с после момента начала моделирования

Рис. 5. Результаты моделирования при расчете концентрации взвешенных веществ
спустя 10 с после начала моделирования — укрупнение зоны распространения вещества

Цветовой палитрой на рис. 3–5 показана концентрация взвешенного вещества в приземном слое атмосферы. 
Результаты моделирования демонстрируют распространение примеси в направлении движения воздушной среды 
на десятки метров; подъем примеси произошел более чем на 5 м.
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Обсуждение. Результаты данной работы могут быть востребованы для широкого круга задач, связанных с 
охраной здоровья человека, экологической безопасностью и планированием природопользования в засушливых 
и степных регионах страны.

Заключение. Дальнейшие исследования авторов могут быть направлены на моделирование движения воз-
душного потока, содержащего пыль, для природных ландшафтов, содержащих лесонасаждения.
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