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Аннотация
Разработка вычислительного метода не является делом простым и сводящимся к замене дифферен-циального 
оператора разностным. Для его построения необходимо грамотно поставить математическую задачу, адекватную 
рассматриваемой физической. Кроме того, алгоритм должен удовлетворять и некоторым другим требованиям. 
Поэтому для создания численного алгоритма нужна не только изобретательность и фантазия, но и глубокое 
понимание причин, которыми эти требования вызываются. 
Для описания нестационарного поведения сплошных сред используются системы дифференциальных уравнений 
в частных производных гиперболического типа. Для решения этих проблем характеристические методы раз-
рабатывались таким образом, чтобы учесть соответствующие свойства гиперболических уравнений и иметь 
возможность строить так называемую характеристическую, адаптирующую к решению задачи, нерегулярную 
сетку. Разработаны методы сквозного счета, учитывающие свойства систем уравнений гиперболического типа — 
обратные методы характеристик или сеточно-характеристические методы. 
В сеточно-характеристических методах используется регулярная расчетная сетка, на которой аппроксимируется 
не решаемая исходная система, а условия совместимости вдоль характеристических линий с интерполяцией 
искомых функций в точках пересечения характеристик с координатной линией, на которой данные уже известны. 
Полученная характеристическая форма уравнений газовой динамики позволяет понять, как правильно ставить 
граничные условия. 
При разработке метода необходимо учитывать физическую сторону решаемой задачи. При этом метод должен 
удовлетворять определенным требованиям, понимание которых необходимо при его разработке.

Ключевые слова: численные методы, системы дифференциальных уравнений гиперболического типа, вол-
новые процессы, численные решения на характеристических сетках, нерегулярная сетка, сеточно-характерис-
тические методы.
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Abstract
The development of a computational method is not a simple matter and boils down to replacing the differential operator 
with a difference one. To construct it, it is necessary to correctly set a mathematical problem that is adequate to the 
physical one under consideration. In addition, the algorithm must meet some other requirements. Therefore, to create a 
numerical algorithm requires not only ingenuity and imagination, but also a deep understanding of the reasons why these 
requirements are caused. 
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Systems of partial differential equations of hyperbolic type are used to describe the unsteady behavior of continuous media. 
To solve these problems, characteristic methods were developed in such a way as to take into account the corresponding 
properties of hyperbolic equations and to be able to build a so-called characteristic irregular grid adapting to the solution 
of the problem. Methods of end-to-end counting have been developed that take into account the properties of systems of 
hyperbolic equations — inverse methods of characteristics or grid-characteristic methods. 
In grid-characteristic methods, a regular computational grid is used, not a solvable initial system is approximated on it, but 
compatibility conditions along characteristic lines with interpolation of the desired functions at the points of intersection 
of characteristics with a coordinate line on which the data is already known. The obtained characteristic form of the gas 
dynamics equations makes it possible to understand how to set the boundary conditions correctly. 
The construction of a numerical method is not a simple matter and is not reduced to the formal replacement of derivatives 
by approximating their difference relations (for example, using finite differences). When developing the method, it is 
necessary to take into account the physical side of the problem being solved. At the same time, the method must meet 
certain requirements, the understanding of which is necessary during its development.

Keywords: numerical methods, systems of hyperbolic differential equations, wave processes, numerical solutions on 
characteristic grids, irregular grid, grid-characteristic methods.
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Для описания нестационарного поведения сплошных сред — газ, твердое деформируемое тело, жидкость, 
плазма — обычно используются системы дифференциальных уравнений в частных производных гиперболического 
типа. Это системы Эйлера в газодинамике, Ламэ — в теории упругости, Тимошенко — в теории оболочек, 
Максвелла — в магнитной гидродинамике, Био — во флюидонасыщенных пористых средах, система Марчука в 
климатологии и океанологии, и др. Области применения таких систем обширны. Соответствующие численные 
методы, применявшиеся для решения этих систем, берут начало в 40–50-х годах XX века. Их развитие было 
связано, в первую очередь, с необходимостью предсказания последствий ядерного взрыва (последствия трагедии 
Хиросимы и Нагасаки и дальнейшая реализация ядерной программы в Советском Союзе, которая пред-ставляла 
собой необходимый противовес ядерной угрозе из-за океана). Вскоре появились задачи об обтекании затупленных 
тел в плотных слоях атмосферы, движущихся с гиперзвуковыми скоростями (проблема доставки). Были созданы 
первые разностные схемы для решения задач газовой динамики — Лакса, Лакса-Вендроффа, Куранта-Изаксона-
Риса (Годунова), Ландау-Меймана-Халатникова, Русанова и др. Подробное описание истории схем и их обзор 
можно найти в известных работах [1–13].

У систем дифференциальных уравнений гиперболического типа есть наиболее общие свойства:
– уравнения описывают волновые процессы, распространение слабых возмущений или волнового фронта;
– в случае линейных задач о распространении волновых фронтов, характеристики могут быть найдены 

независимо от решения рассматриваемого уравнения (или системы уравнений), что позволяет получать точные 
решения Даламбера, Кирхгоффа, а также численные решения на характеристических сетках;

– в случае нелинейных уравнений в частных производных возможно пересечение характеристик при возник-
новении разрывов;

– характеристические свойства уравнений гиперболического типа позволяют изучать вопросы корректности 
постановки начально-краевых задач, например, определять количество краевых условий и условий на 
поверхностях раздела сред.

Главной особенностью уравнений или систем дифференциальных уравнений гиперболического типа является 
конечная скорость распространения волн (или возмущений) в среде, а также наличие характеристических поверх-
ностей (линий — в одномерном случае), обозначающих область зависимости решений. На этих поверхностях 
число независимых переменных уменьшается на единицу. Впервые характеристические свойства таких систем 
были изучены в работе [14], где было введено понятие инвариантов Римана. Численные методы, учитывающие 
характеристические свойства гиперболических систем уравнений, подробно описаны в работах  [2–12]. Отмечено
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и то важное обстоятельство, что при помощи метода характеристик были доказаны теоремы существования, 
единственности и непрерывной зависимости решения классической задачи Коши по входным данным [1]. 
Однако эта область ограничена в нелинейном случае, поскольку, в отличие от линейного, эти решения могут 
иметь, по истечении некоторого времени, неограниченные первые производные — так называемая градиентная 
катастрофа, при которой разрывы могут возникать из гладких начальных данных. В этом случае говорят об 
обобщенном решении уравнений газодинамики. Под обобщенным решением, в таком случае, понимают решение, 
удовлетворяющее законам сохранения массы, импульса, энергии, а также неравенству, означающему возрастание 
энтропии в замкнутой системе. С математической точки зрения, требование возрастания энтропии гарантирует 
единственность обобщенного решения, а также его устойчивость по отношению к малым возмущениям. Из 
сказанного следует, что построение численного метода не является простым делом и не сводится к формальной 
замене производных аппроксимирующими их разностными соотношениями (например, с помощью конечных 
разностей). При разработке метода необходимо учитывать физическую сторону решаемой задачи. При этом метод 
должен удовлетворять определенным требованиям, понимание которых необходимо при его разработке.

Для решения этих проблем характеристические методы разрабатывались таким образом, чтобы учесть со-
ответствующие свойства гиперболических уравнений и иметь возможность строить характеристическую, 
адаптирующую к решению задачи, нерегулярную сетку. Эти методы получили название прямых методов 
характеристик [14–17]. Прямые характеристические методы позволяют выделять разрывы двух типов: в первом 
случае априорно известна структура решения и расположение разрыва; во втором случае разрывы возникают 
со временем. Что касается первого типа разрывов, то их выделение в многомерном случае представляет собой 
сложную задачу, решение которой описано в  [2, 7, 9]. Во втором случае численный алгоритм должен обнаруживать 
образующиеся со временем разрывы, после чего можно решать задачу о выделении разрыва. Решение таких 
задач представляет тем большие трудности, чем больше разрывов в области интегрирования. По этой причине 
были разработаны методы сквозного счета, учитывающие свойства систем уравнений гиперболического типа — 
обрат-ные методы характеристик или сеточно-характеристические методы, (СХМ; grid-characteristic method, 
GCM). В этих методах используется регулярная расчетная сетка. Однако на ней аппроксимируется не решаемая 
исходная система, а условия совместимости вдоль характеристических линий с интерполяцией искомых функций 
в точках пересечения характеристик с координатной линией, на которой данные уже известны. В многомерном 
случае — в точках пересечения линий пересечения характеристических и координатных плоскостей с плоскостями 
с известными данными. Разработке этих методов посвящены работы [2, 7 ,9, 18–22].

Первыми были предложены методы первого порядка точности [2, 9, 18, 23–25], затем второго [25–27] 
и третьего [27–30]. Впоследствии были разработаны схемы более высоких порядков [19, 31–35, 52, 54, 57, 58].

В таких подходах (методах сквозного счета) реализуется аппроксимация производных через разрывы, которые 
при численном решении задачи имеют  область «размыва», величина которого определяется величиной численной 
вязкости (диссипации) используемого метода. Ширина этой зоны уменьшается с увеличением порядка точности 
численного метода. Кроме того, при численном решении задач с большими градиентами искомых функций 
методами, имеющими порядок аппроксимации выше первого, могут появляться численные (нефизичные) 
осцилляции. Для их устранения (или уменьшения амплитуды) используются разные подходы. В первом из них 
были использованы дополнительные диссипативные члены, в частности, искусственная диффузия (или вязкость), 
как линейная, так и квадратичная, что было опубликовано в работах Неймана и Рахтмайера [36]. Исследования 
свойств и модификации подобных искусственных решений можно найти и в других работах [6, 8, 36–38]. 
Обобщение таких диссипативных добавок на многомерный случай рассматривалось в обзорной работе [39]. 
Отмечено, что искусственные диссипативные члены изменяют решение исходной задачи [38], поэтому полученное 
численное решение задачи должно быть протестировано. В областях, где большие градиенты отсутствуют, можно 
использовать методы более высокого порядка точности (более первого). Последнее утверждение, а также свойство 
монотонности схем первого порядка аппроксимации, легло в основу идеи гибридных методов.
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В теории разностных схем вводится важное понятие монотонных (мажорантных) схем или схем с положительной 
аппроксимацией по Фридрихсу. Такие схемы сохраняют монотонный характер численного решения (в одномерном 
случае) на любом временном слое, если это имеет место в точном решении задачи. Использование немонотонных 
разностных схем приводит к появлению нефизичных осцилляций в численном решении (т. е. осцилляций, имею-
щих численное происхождение). Для одномерного линейного уравнения переноса С. К. Годуновым [42] была 
доказана теорема о том, что не существует явных линейных монотонных схем с порядком аппроксимации выше 
первого. В работе [37] эта теорема была распространена на случай произвольного шаблона (для неявных или 
многослойных схем).

Для определения монотонности разностной схемы представляются явные линейные двухслойные схемы в 
следующем виде:

где nτ = tn (t — время; τ — шаг времени; n = 0,1...); 
      хm = mh (x — координата; h — шаг по координате, m = 0,±1...);
      vn

m = v(tn, xm) — искомая сеточная функция.
Существует несколько определений монотонности [22].
1. Схемы, монотонные по Фридрихсу [41], для них: ci ≥ 0.  
2. Схемы, монотонные по Годунову [42], для которых выполнены следующие неравенства:
                                           т. е. на всех временных слоях координатные односторонние разности не меняют знак.
3. Схемы, монотонные по Хартену [43]:                                                         где                                                  есть  

                                            полная вариация сеточной функции.
4. Разностные схемы, опирающиеся на характеристические свойства точного решения [19, 45] для которых 

выполнено неравенство:                                                            здесь             ― значения сеточной функции на вре-
менном слое tn в двух наиболее близких к исходящей из узла                  , сеточных узлах (минимальное условие). 

Показано, что в линейном одномерном случае все приведенные определения монотонности эквивалентны и 
являются достаточным условием устойчивости разностных схем. 

В области гладких численных решений можно использовать разностные схемы порядка точности выше 
первого, т. е., в соответствии с теоремой Годунова [42], не являющиеся монотонными. Однако для устранения 
(либо уменьшения амплитуды), нефизических (численных) осцилляций в областях с большими градиентами 
решений, необходимо использовать монотонные схемы первого порядка аппроксимации. Объединение этих 
двух противоречивых требований было реализовано в идее построения гибридных разностных схем, которая 
была впервые предложена Федоренко в работе [28]. Эти схемы являются нелинейными, т. е. зависящими от 
решения, и могут локально, в различных точках в области интегрирования, менять порядок аппроксимации. 
Гибридные методы позволяют реализовывать сквозной счет с помощью схем повышенного порядка точности 
в областях с гладкими решениями — в областях больших градиентов численного решения. Это позволяет в 
одном вычислительном алгоритме объединить различные положительные качества разностных схем, имеющих 
разный порядок аппроксимации. Для уточнения сквозных численных решений вблизи разрывов в [46] было 
рекомендовано использование дифференциального анализатора ударных волн, позволяющего локализовать 
разрыв, используя результаты сквозного расчета, и далее уточнить численное решение. В [28] также был описан 
способ переключения со схемы первого порядка на схему второго В [47] были приведены гибридные схемы 
для линейного и квазилинейного уравнений переноса с гладким переключателем с одной схемы на другую. 
Гибридная схема для системы уравнений гиперболического типа на основе комбинации схем Лакса [23] и Лакса-
Вендроффа [25] была предложена Хартеном [48].

В работах Ван Лира [49, 50] также был изложен специальный алгоритм монотонизации схемы Лакса-
Вендроффа. Колган в [51] предложил гибридизацию схемы Годунова с использованием нескольких шаблонов, а 
также лимитра (ограничителя) minmod. Первые гибридные сеточно-характеристические разностные схемы были
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описаны в работах Холодова и Петрова в [20], а их развитие — в [11, 21, 35]. В [44] был предложен гибридный 
метод на основе коррекции потоков (flux corrected transport), в котором на первом этапе получается решение 
при помощи схемы первого порядка точности, на втором добавляется член, названный «антидиффузией», 
позволяющий повысить порядок до второго.

Использование идей гибридности [28], коррекции потоков [44], лимитров [49] привело к созданию TVD-схем 
(total variation diminishing) [43]. Обзор лимитров для этого класса гибридных методов представлен в [52].

Дальнейшее развитие TVD-методов повлекло за собой появление новых схем: ENO [53], TVB [54], TVD2, 
UNO, UNO2 [54], WENO [55], WAF (TORO [56]). Возникновение этих методов привело к созданию схем высокого 
порядка точности (high resolution schemes),например, монографии Торо, Толстых [57, 58].

При численном решении многомерных динамических задач часто приходится иметь дело с подвижными 
границами, сложными областями интегрирования. Для этого используются подвижные расчетные сетки [59], 
адаптивные сетки [60]. Теория и обзор работ по построению расчетных сеток в сложных областях интегрирования 
приведены в монографиях [61, 62]. В случаях, когда происходит динамический разлет частей сплошной сре-
ды (разлет газа, жидкости, плазмы при динамических воздействиях, разрушение деформируемых твердых 
тел при взрывах, ударах и т. д.), оказываются полезными методы частиц, впервые предложенные Харлоу [63], 
Белоцерковским и Давыдовым в [64] (метод крупных частиц). Другим подходом к решению аналогичных задач 
оказался метод сглаженных частиц (smooth partical method, SPH) [66, 67].

Дальнейшее развитие сеточно-характеристические методы получили в работах [68] (метод на неструкту-
рированных тетраэдральных сетках), [69] (комбинированный метод: SPH и сеточно-характеристический), [34] (методы 
повышенного порядка аппроксимации). Класс компактных схем, позволяющих строить схемы повышенного 
порядка точности на компактных шаблонах, развит в работах [58, 70–72], причем в [71, 72] для их построения ис-
пользовался сеточно-характеристический метод. Перспективным методом, позволяющим строить вычислительные 
алгоритмы повышенного порядка точности, оказался разрывный метод Галеркина [73, 74], соединяющий возмож-
ности метода конечных элементов [75] и метода Годунова [2]. Для численного решения динамических задач 
газовой динамики в [76] была разработана весьма эффективная схема «Кабаре» (метод прыжкового переноса), 
позволившая продвинуться в численном решении задач динамики плазмы. Обзор методов конечных объемов 
(finite volume method, FVO) для решения систем уравнений гиперболического типа, получивших в последнее деся-
тилетие заметную популярность, приведен в монографии [77]. Численные методы, разработанные для решения 
задач механики сплошных сред, успешно использовались в различных приложениях. Так, среди работ, посвященных 
расчету аэрогидродинамический свойств летательных аппаратов, отмечены [2, 7, 8, 9, 17, 29 и др.], монографии, 
посвященные изучению гиперзвукового обтекания затупленных тел [78–80]. В [81] рассматривались задачи о 
гиперзвуковом обтекании деформируемой оболочки спускаемого в плотных слоях атмосферы летательного 
аппарата, в [82] — задача о сверхзвуковом обтекании системы тел. Расчету течений стратифицированной по 
плотности несжимаемой жидкости в приближении мелкой воды посвящена работа [83].

Проблемы обтекания солнечным ветром магнитосферы Земли с использованием уравнений магнитогазодина-
мики исследовались в [84]; акустико-гравитационные волны, возникающие в атмосфере — в [85]. Движение 
в атмосфере Земли астероида, его взаимодействие с поверхностью Земли, последующее распространение 
сейсмических волн в земной коре были рассмотрены в [86].

В [59, 35, 67–69, 74 и т.д.] можно найти примеры численного решения задач механики деформируемого 
твердого тела. Волновые процессы и процессы разрушения в сложных композитных конструкциях исследовались 
в [87–89]; задачи взаимодействия концентрированных потоков энергии и деформируемых мишеней —  
в [90–92]; сейсморазведки — в [93–96]; Арктического шельфа — в [97–99]; безопасности железнодорожных 
путей — в [100]; глобальной внутрипланетной сейсмики — в [101]; распространения электромагнитных 
волн — в [102–103]; медицины — в [104–107]; интенсивности уличного движения в мегаполисах (задачи на 
графах) — в [108]; больших электросетей ― в [109]; информационных потоков в компьютерных сетях [110].

Разумеется, перечисленные статьи нельзя назвать обзором прикладных работ по численному моделированию 
физических процессов, поскольку их слишком много. Однако они могут дать определенную картину исследова-
ний в рассматриваемой области.
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Системы дифференциальных уравнений в частных производных первого порядка для двух независимых 
переменных t, x имеют вид:

Векторные функции,                                имеющие первые непрерывные производные и удовлетворяющие сис-
теме уравнений (1), являются решением данной системы.

Система (2), разрешенная относительно производной по одному из независимых переменных (t или x), 
 

называется нормальной формой.
В случае, если в системе дифференциальных уравнений (1) все функции Fi (i = 1 ÷ N) линейны относительно 

каждой из величин                  то такая система является линейной относительно указанных величин.

Если система дифференциальных уравнений в частных производных первого порядка (1) является квазили-
нейной, то она допускает запись в виде: 

где aik, bik зависят от независимых переменных t, x и решения u .
В случае, если они не зависят от u, система называется полулинейной. Если же и fi  не зависит от решения 

системы, то она является линейной.
Можно представить систему (3) в матричной форме

которая, в предположении, что матрица D неособенная, представляется в виде:

Для случая, соответственно, трех или четырех независимых переменных, (5) имеет вид:

                                                                                              где K = 2 либо 3.

Системы уравнений гиперболического типа
В дальнейшем будет рассматриваться система квазилинейных уравнений в частных производных, записанная 

в нормальной форме для одномерного случая:

Предполагая, что все собственные значения матрицы A вещественны и существует базис {ωi} из собственных 
векторов, умножаем (8) на левый собственный вектор и  
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При раскрытии в (10) скалярных произведений, получаем:

Выражение в скобках может быть записано в виде: 

где        является производной искомой функции  ui(t, x) по направлению

Таким образом, получаем линейную комбинацию производных

Уравнение, определяемое обыкновенным дифференциальным уравнением вида:

называется характеристическим.
В дальнейшем система уравнений в частных производных (8) будет называться гиперболической (или системой 

уравнений гиперболического типа) в некоторой односвязной области L, которой принадлежат величины t, x, u, 
если в любой точке L выполнены два условия:

– все соответственные значения λk(t, x, u) матрицы A (t, x, u) вещественны;
– в линейном векторном пространстве RN существует ортонормированный базис              , составленный из ле-

вых собственных векторов матрицы A и удовлетворяющий условию:

Иногда к приведенным условиям добавляется третье условие — на гладкость собственных значений векторов 
матрицы А (например, в определении Петровского приводится условие того, что λk и               должны обладать той 
же гладкостью, что и элементы матрицы A (t, x, u).

Рассматриваемая система уравнений в частных производных (8) называется гиперболической в узком смысле, 
если в любой точке LN собственные значения матрицы Aλk(k = 1 ÷ N) вещественны и различны. Из определения 
гиперболичности системы следует эквивалентность двух систем уравнений:

Система (11) называется характеристической формой исходной системы уравнений (8).
Характеристическая форма рассматриваемой системы может быть также представлена в виде:

где

Если собственные значения и собственные векторы матрицы А в системе уравнений

постоянны, то матрица А представлена в виде произведения: 

где Λ — диагональная матрица, состоящая из собственных значений {λ1,...,λN}  матрицы A, Ω  — матрица, строками 
которой являются левые собственные векторы А.

1

N
i i

i i i i
i t x

λ
=

∂ ∂ + = ∂ ∂ 
∑ ∑u u fω ωωi λi

ui ui ωi  fi .
(11)

,
i

i i i
i x

tt x t λ∂
=

∂

∂ ∂ ∂ + =  ∂ ∂ ∂ 

u u uω
ui uiωi

ui

λi

(12)

i

t
∂
∂
uui .i

dx
dt

λ= λi .

idu
dt

 
 
 

.i
dx
dt

λ= λi . (13)

{ } 1
,i N

i i

=

=
ωωi

,

{ }
1 1 1
1 2

1 2

...
det det det 0.

...

N
k
i

N N N
N

ω ω ω
ω

ω ω ω

 
 = = − − − = 
 
 

Ω
ω ω

ωΩ
ω

ω ω ω
(14)

{ }k
iωω

è 

.k
k k k

t x

t x
λ

∂ ∂
+ =

∂ ∂

∂ ∂ + = ∂ ∂ 

u uA f

u u fω ω

u uA f

и

ω u λ ω f
u

,

ãäå

.

k
k

k
k

t

t t x
λ

∂  = ∂ 

∂ ∂ ∂  = + ∂ ∂ ∂ 

u f

u u u

ωω u f

где

u u λ u

,

ãäå

.

k
k

k
k

t

t t x
λ

∂  = ∂ 

∂ ∂ ∂  = + ∂ ∂ ∂ 

u f

u u u

ωω u f

где

u u λ u

(15)

0
t x

∂ ∂
+ =

∂ ∂
u uAu A u

1 ,−=A Ω ΛΩA Ω ΛΩ,

(16)

(17)

.

,
è 

.k
k k k

t x

t x
λ

∂ ∂
+ =

∂ ∂

∂ ∂ + = ∂ ∂ 

u uA f

u u fω ω

u uA f

и

ω u λ ω f
u



Петров И. Б. Сеточно-характеристические методы. 55 лет разработки и решения сложных динамических задач

13

При умножении (16) на Ω и вводе переменных Римана v = Ωu выводится новая система вида

где                                        или в скалярном виде

Видно, что исходная система распадается на N отдельных скалярных уравнений переноса, решениями кото-
рых будут бегущие волны

каждая из которых распространяется со скоростью λk, при этом сохраняя свою начальную форму.
Общим же решением системы является суперпозиция бегущих волн, распространяющихся с указанными скоростями:

Инварианты Римана
Если система собственных векторов ортонормирована, то значения   можно интерпретировать как амплитуды 

бегущих волн. Функции   называются инвариантами Римана, а система с (18) — системой в инвариантах.
Далее рассмотрено понятие инвариантов Римана на простом примере — акустической системы их двух ска-

лярных уравнений в частных производных, описывающих распространение плоских звуковых волн:

где u — скорость сплошной среды, p — давление в среде;  ρ0 — ее плотность,  c0 — скорость распространения 
звука в среде.

Если оба этих уравнения проинтегрировать по произвольной области с границей G в плоскости  {t, x} и перей-
ти к контурным интегралам, это приведет к интегральным уравнениям:

представляющим законы сохранения импульса и массы. В данном случае уравнение состояния имеет вид:                    
p = c2

0(ρ −ρ0). 
При умножении (21.1) на ρ0u, а (21.2) на p/(ρ0 c

2
0) и их сложении, выводится тождество:

откуда следует, что для любого замкнутого контура справедлив закон сохранения энергии акустических волн:

Теперь нужно привести систему (21) к кинетическому виду. Для этого умножается второе уравнение на  (ρ0c0)
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затем складывается с первым и вычитается из него, после чего получается:
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получим уравнения в инвариантах Римана (R± — инварианта Римана):

позволяющие выписать их общее решение:

где f, g — функции, определяемые из условий задачи. Зная инварианты Римана, из (26) можно получить значения 
искомых функций:

Из соотношений (27) видно, что величины R+, R− остаются постоянными вдоль прямых x0 − c0t = const 
и x0 + c0t = const, соответственно, и их графики перемещаются со временем вправо (влево) со скоростью c0.

Прямые 

называются характеристиками системы (21), которой также необходимо добавить начальные условия:

откуда следует:

или 

В таком случае решение системы (21) с начальными данными (30) представляется в виде:

Пусть, например, начальные условия имеют следующий вид:

где ui , pi(i = 1,2) — постоянные, причем выполнено одно из равенств u1 ≠ u2 или p1 ≠ p2, либо оба одновременно.
Решение этой задачи, которое несложно получить, дается следующими соотношениями:

Полученные решения u(t, x), p(t, x) имеют разрывы вдоль прямых x + c0t = X и x − c0t = X, которые образовались 
из начального разрыва в точке x = X. По этой причине рассмотренную задачу называют задачей о распаде разрыва.
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Вообще говоря, эти функции формально нельзя считать решением данной задачи вследствие того, что они не 
являются непрерывными. По этой причине они называются обобщенным решением задачи о распаде разрыва.

Стоит отметить, что понятие инвариантов было введено Риманом в 1876 г.
Далее приведем более сложный пример — решение одномерной системы уравнений газодинамики:

где u, ρ — скорость и плотность газа; p — давление в газе, c — скорость звука газа, t, x — время и координата. 
Уравнение (27б) умножается на (ρс)−1  и складывается с (27a). Получается:

где              — производная по направлению            (u + c).

Аналогично проводятся выкладки с заменой c на (−с), после чего квазилинейная система уравнений приво-
дится к характеристической форме: 

где

а уравнение (30) выражает закон сохранения энтропии вдоль траектории частицы, т. е. на траектории, описывае-
мой обыкновенным уравнением вида: 

где функция X(t) — траектория частицы.
В случае изоэнтропического течения, т. е. при 

p = Aργ(A = const) 
и, соответственно,

выражение          становится дифференциальным: 

Тогда, после внесения множителя (ρс)−1 под знак дифференцирования полученных уравнений, получается: 
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или

где                                                     —  

инварианты Римана для одномерной квазилинейной системы уравнений газодинамики, сохраняющие свои значе-
ния на траекториях уравнений, 

Очевидно, что через значения инвариантов Римана и энтропии, которые находятся из решений обыкновенных 
дифференциальных уравнений, вычисляются остальные функции (u, p, ρ), описывающие течение газа. Однако u, c — 
сами функции S, R±, поэтому решение этих уравнений в квадратурах, в произвольном случае, найти невозможно. 
Тем не менее, точное решение находится в частном случае для γ = 3 (продукты детонации).

Так как в этом случае R± = u ± c, то траектории X± (t, X±
0) — есть семейства прямых с постоянными наклоном.

Характеристическая форма уравнений газовой динамики позволяет понять, как правильно ставить граничные 
условия. Для примера рассмотрена левая граница области интегрирования. Через любую ее точку проходят три 
характеристики с наклонами u, (u + c),(u − c). Те из них, наклоны которых положительны, называют входящими в 
область интегрирования. Таким образом, левой границе необходимо задать столько условий, сколько характери-
стик входит в область; аналогично — на правой границе.
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