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Abstract

Introduction. The main idea of the grid-characteristic method is to take into account the characteristic properties, systems
of hyperbolic equations, and the finite velocity of propagation of perturbations in the simulated media.

Materials and methods. The simplest hyperbolic equation is a one-dimensional linear transfer equation. To increase the
order of approximation of the grid-characteristic scheme to the second, you can use the Bim-Warming scheme. If we use
a four-point pattern, we get a central Lax-Vendroff scheme. Difference schemes for the linear transfer equation can be
obtained using the method of indefinite coefficients.

Results. The grid-characteristic scheme admits a conservative variant, which is relevant if there are discontinuities (shock
waves, shock waves) inside the integration domain, while the original system of equations for a matrix with constant
coefficients, in partial derivatives, should be presented in a divergent form.

Discussion and conclusions. The construction is performed similarly, when numerically solving a three-dimensional
problem, in the case of upper and lower bounds, after scalar multiplication of the scheme by eigenvectors, relations

approximating the compatibility conditions with the first order of accuracy are obtained.
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AHHOTaNMsA

Beeoenue. OcHOBHOM Heeil CETOYHO-XapaKTEPHUCTHUSCKOTO METO/IA SIBIICTCS YIET XapaKTePHCTHUECKIX CBONCTB, CHCTEM
YPaBHEHHI THIICPOOTMYCCKOrO TUITA, KOHEYHOIH CKOPOCTH PaclipOCTPaHCHHS BO3MYIIICHHIA B MOJICIHPYEMO cpenax.
Mamepuanst u memoost. IIpocTefimM ypaBHEHHEM TUIIEPOOIMIESCKOTO THIIA SABISETCS OMHOMEPHOE JJHHEHHOE ypaBHe-
HUe nepeHoca. i MOBbIIIEHUS MOPSAIKa alMPOKCUMAIIUN CETOYHO-XapPaKTEPUCTHUECKON CXEMBI 10 BTOPOTO, MOXKHO
HCIONB30BaTh cxeMy buma-Yopmuara. Ecnm ncmonp30BaTh YeTHIPEXTOYCUHBIH MIAOIOH, TO MOMYYHM IEHTPAJbHYIO
cxemy Jlakca-Bennpodda. PazHocTHBIC CXEMBI TS THHEHHOTO YPAaBHEHHUS TEPEHOCA MOXKHO TTOJTy4YaTh, HCIONB3YS METO
HEOIIpeeICHHBIX KOA(PUITHECHTOB.

Pesynomamut uccnedosanusn. CeTOUHO-XapaKTEPUCTHUECKAsI CXeMa JO0MyCKaeT KOHCePBAaTUBHBINM BapHAHT, aKTyaJbHBIN,
€CJIM BHYTPH OOJIACTH WHTETPUPOBAHIS HMEIOTCS Pa3pBIBHI (CKAUKH YIUTOTHEHHS, yAapHBIC BOJHEI) IIPH STOM HUCXOIHAS
CHUCTEMa ypPaBHCHUW Ui MATPHUIBI C TOCTOSHHBIMH KOA((GHUIMEHTAMH, B YaCTHBIX MPOM3BOMHBIX MOJDKHA OBITh

MIPEACTaBIICHA B JUBEPIEHTHON (opMme.
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Oodcyscoenue u 3aknouenus. Ilpu dUCICHHOM pelIEHUHN TPEXMEPHOH 3a7]a4i TIOCTPOEHHUE TPOU3BOIUTCS aHAJIOTHYHO,
B Cllyyae BepXHEW W HWXHEH TPaHUIl, TOCIE CKAISIPHOTO YMHOXXECHHUSI CXEMbl Ha COOCTBEHHBIC BEKTOPHI MOIYYCHBI

COOTHOIICHU allIIPOKCUMUPYIOHIUE C TIEPBBIM IMOPAAKOM TOUYHOCTH YCJIOBUSA COBMECTUMOCTH.

KuroueBble cjioBa: CETOUHO-XapaKTEPUCTHUECKHI METO/, YpaBHEHUS! THIIEpOOIMYECKOTO THIIA, YpaBHEHHE Tepe-
Hoca, cxema buma-Yopmunra, cxema Jlakca-Benapodda, meTon HeompeneneHHBIX KO3((UIIUEHTOB, yCIOBHUS CO-

BMECTUMOCTH.
dunancupoBanue. Pabora BeInoHeHa B pamkax rnpoekra Poccuiickoro Hayunoro donma Ne 21-71-10015.

Jns umTupoBanus. [lerpos, U. b. CewmeiicTBO METOZI0B 0oOpaTHbIX xapaktepuctuk  /  W. B. [letpos,
O. U. TlerpoB // Computational Mathematics and Information Technologies. — 2023. — T. 6, Ne 1. — C. 53-609.
https://doi.org/10.23947/2587-8999-2023-6-1-53-59

Introduction. The main idea of the grid-characteristic method is to take into account the characteristic properties,
systems of hyperbolic equations, and the finite velocity of propagation of perturbations in the simulated media. Reviews
of relevant works are given in monographs [1—4].

The simplest hyperbolic equation is a one-dimensional linear transfer equation:

6u+a6_u_0 a=const, a >0, )
ot ox

and the simplest difference scheme that takes into account the characteristic properties of (1) is the “corner” scheme, or
the Courant-Izakson-Riess scheme:

W =(1-o)u +ou’ c:a%. )

This scheme takes into account the direction of the characteristic of this equation and can be obtained by linear

interpolation of the numerical solution from its known values at the nodes x , x | calculation grid. This scheme can be

n Il
un+l :u; _G{umﬂ m’ a<0’

m
u' —u" ., a<O0,

represented in the following forms:

m—12

(the difference is selected taking into account the slope of the characteristic):

n+l _ . n T + n n - n n
u, —um—z[a (um+1—um)+a (um—um_l)],

), a”=0,5(a—la|); u'" =u" —E(“:m _“:1—1)4'@(“:’” 2u, + iy 1)

e a* =0,5(a+ " "
2 2

(a scheme with an explicit allocation of a dissipative term that ensures its stability):

u::l =u, - G((D:ln+l/2 @, 1/2)
@ == |aluy,, — al\uy,. —ty,
e ol =)l -z
(streaming form). o= 1 [ ( ,)—|a|(u,'; -y )]
In the case of a nonlinear transfer equation: )
6_”+_:o,f:”_, (3)
ot Ox 2

the “corner” scheme, taking into account the directions of characteristics, can be presented in the following form:

n+l _un _1 -f;::H _frr’:’ u:l <O

S V)

The reduced difference scheme has the first order of approximation in time and coordinate. To increase the order

u

of approximation of the grid-characteristic scheme to the second, you can use the Bim-Warming scheme, which can be

n
m—12

obtained on a 4-point template {x_ ,,x) ,,x} by quadratic interpolation of the solution on the n-th time layer by nodes

m—22
n n n

xm72 b xmfl b xm
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un+1 =U,: _ G(un _u;17 )_

m m m—1

If use four-point template {x,';“

%(1— 6)(u —2u" |+

ul). “)

X0 X xmﬂ} can get a central Lax-Vendroff scheme:

2

%( = 2u Ul 1) %)

This scheme, like the Bim-Warming scheme, has a second-order approximation in time and space O (t? + /%), which

is verified by decomposing grid functions %, into a Taylor series, and is stable when the Courant condition t < A/a, is

met, which can be obtained using the Neumann spectral stability feature. When adding a point x

; to the template

-2

corresponding to the Lax-Wendroff scheme, we obtain a scheme of the 3rd order of approximation on a four-point

template{ XD Xl xm+1}

1
un+ — u;’z (214"
6

m m+1

6

To increase the order of accuracy of the scheme, we add a point x

4th order of approximation will have the form:

n n
+3u, —6u, | +

3
9 n
__(”m+| +3u

2

u;72)+%(um+l —2u) +u,_ 1)—
—3u), _“;72)~ (©)

to the last template, the difference scheme of the

ur’:lJrl = u (Sumﬂ 8”!’:1 m+2 + u ) (16um+1 30”/’711 + 16“/’11171 - ur”n+2 - utnan) -
12 4 7
. . (7
_E(Zu:’n 2um+] m+2 - um—Zn) + _4(6”:1 - 4urnn+| - 4“::1-1 m+2 + ” )
If a linear acoustic system of equations of the form is considered

ou 1 op
_— ==
o P ox ®)
6_p c? 6_“ =0,
ot Oox

where u, p is the local velocity of the medium and pressure, p is the density, ¢ is the speed of sound, then, as noted in the

second chapter, it can be reduced to the form:

or
ot
Os
ot
_ p _ p . . .
where r=u+—, s=u—— are Riemann invariants.
pa pa

a—
ox
Os

a2

or ~0 )

= 0,
ox

In this case, the grid-characteristic method can be presented in the following form:

n+|
n+l

ntl, m

The corresponding template has the form.

n, m—1
n, m

=(1-0)-r +or.

=(1-0)-s. + os!

(10)

m+1*

nt+l, m

n, m+1
n,m

Fig. 1. Template of the grid-characteristic method for a linear acoustic system of equations
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The given difference schemes can be obtained as follows.
t

n+l

—h —AT=x 0
Fig. 2. Two-point template (x = 0, x =)

Figure 2 shows a two-point template (x =0, x =—h), on which, in the case of a Ist-order scheme, a 1st-order polynomial
is constructed P (x)=a x + a,, whose coefficients are found from the conditions:

n __ n — .
u,=a,x, +a0, u,,=ax +a0 .

m—1

n
me

a, =(u;+u,';_])/h, a,=u

Then get: "y
8 P(x) = " Uy hu’"’l X+u
Since u))" =u(X)=u(-2At), get the “left corner” scheme:
wt=u'-oc (u:; —u )

n
m+12

If add a point x to this template, get a second-order polynomial: P, (x) =a,x’ +a,x + a,, whose coefficients are

in the same way (from the conditions for passing the polynomial P(x) through the values of the function at the nodes of

the t late):
(5] empae) azz(un —214::1"‘1/[’:71)/2}12,

m+1
a, = (ufn+] —u ) /2h,
a,=u,.
In this case, we get the Lax-Wendroff scheme. When adding a point x_, to this template, we get a third-order
polynomial: P, (x) =ax’ +a,x’ +a,x+a,
with coefficients that are from the same conditions:
ay = (u),, +3ul, = 3u)  —u) )/ 6},

m—1

a, = (u,';+I —2u) +u )/2h2,

m+1

a, = (2}, +3u), — 6u),_, +u_,)/ 6h,

— n
a, =u,.

he Rusanov scheme of the third order of accuracy is obtained. If we add a point x _ to the template, we get a polynomial

m+2°
of the fourth degree: P, (x) = a,x* + a,x’ + a,x* +a,

with coefficients: a,= (6u; — 4 A"+ u;_z)/24h4,

m+1

m+1

a, = (2u;’171 =2ul, u ., tu ) /12h°,
a, = (16, —30u), +16u), , —u), , —u), )/ 241’

a, = (8u” =8u  —u ., + u,’;_z)/12h,

m+1
— n
a,=u

m?2

and, accordingly, a scheme of the fourth order of approximation.
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Difference schemes for the linear transfer equation can also be obtained using the method of indefinite coefficients.

{0 (0, o1 0) (15, )

can represent all linear schemes with undefined coefficients {af; j=-2,-1,0, 1} in the following form:

For example, on the template

n+l 0 n

u = 0o_,u +a

m T =2%m=2

0, n

0 n 0, n
U, TOgu, 00U

1% m+1"

After decomposing the grid functions into a Taylor series:
m = m

2 3
R ) vy ¥ T

2 3
o =), )+ ) O ()

2 3
ul, =ul +hu)) +h—(“) +%(“z)m +0'(h4) ;

11
m+1 m 2 m

m=2 x/m

3
o =+ 20, 20 ), - S, 4 O

taking into account the consequences of the linear transfer equation:

r_ ' " _n2..n m__~3..n
u =-hul, u,=Aul, u'=—\ul,
"o_ _ "o Aa2.m mo_ m
U, = )\‘uxx’ Uy = X Uper Upy = }“ux

and by equating the coefficients in the left and right sides of equation (10), we obtain the approximation conditions:

AL+ A A =1,
200, +A° A =6 (b
-2 -1 17 M
for a first-order scheme: A L+ 2 o+ k% n k(f 1,
2%, +2%, -2 =0, (12)
4, +20, +A) =o7,
for a second-order scheme: 2 L+ 2 o+ )\% + 7\2 -1,
00,420, —3 =, 13
M, 420, 420 = o,
87&2 +7»°7, —ko, =c°,

for a fourth-order precision scheme.
If we find all the undefined coefficients from (13) and substitute them into (10), then we can find the first differential
approximation of the scheme:

1w

Ml =2 h (W 42T+ AR 207, (14)
24

that is, on the considered template, it is possible to build difference schemes no higher than the third order of approximation:
O (T + ).

In the case of a template of the general form of sets of difference schemes can be represented in the following form:

w," =2 0 (o), (15)
i=1,0,—1,...;j=0,+1,£2, ...

The conditions of approximation of the first order in this case can be written as:

2 =1 2 (o) (o) =0
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The conditions of approximation of the second and higher orders will have the form:
S (j-ic) -ai=(-0)"; p=2.3,..
So, for a 4-point template and a two-layer explicit difference scheme:
{t”“, x5t %, thx, sthx, X, }
can represent the entire family of linear difference schemes with undefined coefficients

L,(j=-2,-10,1)
in the following form:

n+l _ 50
u, = L—2 '

w L+ 0l Ll Ll (16)
The approximation conditions of the first, second and third order on the solutions of the problem are linear with respect
to indefinite coefficients of equality:
o, +a’ +a)+a) =1,
{2(102 +a’ —-a/ =0,
40’ +0’ +al =02,
8o’ +a’ —a'=0".
These conditions can be easily obtained if we decompose all the projection values of the exact solution of the problem
when substituting into the Taylor series relative to any point of our grid pattern, for example, (%, x ):

2 3

=y (), (), (), 0 (),
aut = o () )+ ) 0 (1)
1%m+1 = 71 m x)m 2 x)m 6 xxx ), H
s = afu,
. R W p
a?lufﬂfl = a?l [u;’, —h(ux)m +7(ux)m +?(um )m + O (h“)}.
o .n _ 0 n o_ n 2 n _4_}13 n 4
AU, 5 =0, | U, 2h(uX)m +2h (ux)m 3 (um )m + 0 (h )
The consequences of the equation should be used:
u, =-Au,u, = Nu_,u, =-2hu_,
uttt == x3uxxx’uttx = }\'zuxxx’urxx = _}\‘u.rxx'

Using these expressions, you can get rid of partial derivatives in time by expressing them in terms of spatial derivatives:

n+l _ on N n }\.ZTZ n }\,3’[3 n o 4
u}'ﬂ - u"’l - T(ux)m + 2 (u)(x )m - 6 (uxx)( )VIZ + (‘t ).

By equating the values v” , (u )" , (u_)" ,(u_)" in the left and right parts, we obtain the approximation conditions.
In this case, o', =0 we get a difference Lax-Wendroff scheme aa’, = %(G -1), Bim-Warming scheme at

al, = %(G i 1) and a third-order approximation scheme (Rusanov), the only one on the template under consideration.

Research results. Consider the case of a linear system of transfer equations of the form:
(17

ou +A4 Qu_ 0,
ot Ox

where A(nxm) is a matrix with constant elements and real eigenvalues A, i = 1,..., n. Then this matrix is represented as:
A=QTAQ,

where A is a diagonal matrix consisting of eigenvalues: A = diag {A A, ..., A }=diag{A }; i =1, which are determined from

the equation: det (4 —AE) =0,

where E is a unit matrix; Q is a matrix, whose rows are the left eigenvectors of the matrix 4 p to their length from a system

of linear homogeneous equations
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o, (A=-LE)=0;i= 1,.,n
In this case (17) we write in the form:
%+ Q' AQH =,

ot Ox
then we multiply this system by Q:
Q% aq %o (18)
ot ox
By introducing the Riemann variables w = Qu present the last equation as:
v\ (19
ot Ox

from where it can be seen that the system decays into separate equations, the exact solutions of which are traveling waves:
w=w, (x=11); i=1.,n
The functions w, are called Riemann invariants of the system (17); A, are the propagation velocities of perturbations

in the medium. The general solution of the system of partial differential equations under consideration is the sum of n

traveling waves, each of which propagates with its own characteristic velocity A.:

U= ibfwi (x—=Ap).

i=1
Note that if the vectors b, are normalized, i.e. | b,| = 1, the values w, can be interpreted as the amplitudes of the
corresponding traveling waves.

Let’s represent (18) in scalar form:
Ou, Ou, . (20)
Next, we introduce a difference grid in the integration domain{t >0,0<x<X } the difference grid
{t" =nt;n=0,1,..;x,=(m-1)hm=1,.,M;X =(M - l)h}
and carry out the approximation (20) using finite difference relations taking into account the slope of the characteristics:

Oox _

— =
o !
(or taking into account the sign A):
ntl _ on L (21)
o Lo TUn gy Lem "t o 20, i= 1.0
T h
The latter relation can be represented in matrix form if put:
.1 C .
AL={2J1 A7 =S (A +[A]), A== (A =]A]): (22)
Q(u',;” - u;)— oA Q (ui;_l - ufn)+GA'Q(uZ1+l —uZ)+er: 0.
Since the matrix Q is not degenerate, the resulting difference scheme can be represented as follows:
upt =y = A (= ) = T+ S QA Qw5 = 20 ) 23

n

1 n n
Uprrn = E(u m*l + um)'

In this scheme, the summand is clearly highlighted:

m+l1

%Q" lAlQ(u),, —2u), +ul,.,),

which ensures its stability when the CFL condition (Courant — Friedrichs— Levy) is met:
<1
max ||
An additional “dissipative” term is introduced into the initial system, which ensures the monotony of the obtained
scheme of the first order of approximation, but is also a non-physical source having a difference origin (approximation

viscosity).
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This difference scheme, when generalized to the multidimensional case, belongs to the class of Friedrichs positive-

definite schemes, as can be seen from the following representation of it:

m

u™ = ( —ocQ” |A| Q)u; +6Q AN Qu" | —cQ'Au’ | —1f.

The numerical method under consideration can also be presented in the following form:
ntl _ on -1 B -1 B 2

u —um—G(Q AQ)Au+G (Q |A| Q)A u,

m

where

m m+1

Au=%(u””—u:H)/2; Azuzé( —2u"+um1)

This scheme has the first order of approximation at § = 1 and the second at § = 2.

Let’s imagine this scheme as a scheme with a weighting factor a (0 < a < 1):

ul' =u’ —o (Q_IAQ)AM +20 (Q'l |A|B Q)Azu +(1-a)o’ (Q'IAQ)Azu.
At o =1 get a scheme of the first order of approximation, at o = 0 — the second. At 0 < o < 1 obtain a scheme having
a formal first order, but with proper choice of value a, it will improve the description of numerical solutions with large
gradients by reducing the approximation of viscosity [7].
The grid-characteristic scheme also admits a conservative variant, relevant if there are discontinuities (shock waves,
shock waves) inside the integration domain, while the original system of equations for a matrix with constant coefficients,

in partial derivatives, should be presented in a divergent form:
0 0 Ou 0O 0 0
_u+A£:_u+_u(Au)=_u+A _u:()’ (24)
ot ox Ot Ox ot ox

oD

a—; @ = Au; since the system in question is hyperbolic, then: 4 = Q'AQ.
u
In this case, the difference scheme, which has the property of conservativeness, i.e. ensuring the implementation of

where 4 =

conservation laws, can be presented in the following form:

m m+1/2 m+1

unt =, — (q)n -0, ) +o |:Dm+l/2 (”n —u, ) /h=D, ), (“:, — U, ) / h:|’ (25)

n 1 n n
Where cDm-*—l/Z = E(‘Dmtl + q)m ) .
It is clear that in the resulting difference scheme, in addition to physical flows through the cell boundaries there are

also flows of difference origin:

Du" ,where D = 3 Q'|A|Q
However, for neighboring cells on their common border, they are equal and opposite in sign: therefore, in general,
inside the integration area, the scheme is conservative, which is checked by their addition over the entire area.
Note that among the schemes of the first order of approximation, this scheme has a minimum approximation viscosity.
In the case of three independent variables {¢, x, y} conservative and non-conservative schemes will have, respectively,

the following form:

T

n+l _ n T n n T n n
Upy =Upy =7 (cDmtl/Z,l — D12 ) - _(G mas2 =G i ) -7
hy h, hy

'I:D 1n+l/2,l (” il T ”:11)/}11 _Dln—l/Z,l (”21 U, 11)/h :|

T (26)

+h_|:D i,m/z (”21,1+1 _unml)/hZ _Dfn,l—l/z (” it~ Ui 1)/h:|
2

i =+ [0 u —ut) - (1,

m,l
1

[ (g ) - AT () )]

2
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where D* :h_kQ;‘|Ak|Qk; k=12;
2

the matrices A,, A*,, Q,, as in the one-dimensional case, consist of eigenvalues and eigenvectors of matrices 4,; in the
integration domain {t > 0; x <x < X, 0 <y < Y} difference grid is introduced:
{t” =nt,n=0,1L,..;x, =(m=1)h; m=1,..,.M; y,=(I-1)h;I=1,..L;X =(M-1)h, Y =(L- l)hz}.
Difference schemes for three variables are constructed similarly.
Let’s return to the relation (18), which can be represented in scalar form:

mia—u+k[mia—u=m u +X, u =0,i=1,.,n, 27
ot ox o ox
where each component of the vector:

i, (28)
ot ox

is the transfer equation for the corresponding component of the vector u:
o, +A M, =0;j=1
o Thg O = b

moreover, for each of these equations, it is possible to construct an already known scheme:
n+1 n+Y _ n+Y
Z(ﬂ (9 7 Z(ﬂ (o)u’) (29)

Next, we replace the vector (28) with its difference approximation:

e }\’ e n+] n+y , -:1,“, , (30)
[QF (6[ 6)6) |: im Z(x‘ 1 ! m+;l n

and note that each equation in (30) is the i-th component of the vector:
ou ou
Q—+AQ—=0;
ot ox
0 % FAQ ‘;i‘ S
X
o,u," =30 (0, )o, u,l

Multiplying the obtained ratio by the matrix !, obtain a general view of the difference scheme for the numerical
solution of a system of hyperbolic equations (17):

+1 1RY n+y
_ZQ B Qumw, (32)
where B =diag {OLYH(G,-)} is a diagonal matrix with components that are coefficients o’ , defining a specific type of
scheme.

For example, in the case of considering a difference grid-characteristic scheme earlier, we obtain (see (22), (23), (24)):

u™ =(QTEQ)u"+>(Q'A Q) (u”  —u" )—c (QTAQ)(u" . —u"); 33
= (@ EQ)ui+ QTN Q(u], —up )0 (N Q)(u] -u}) (33)
or, in another form:
For the Lax-Wendroff scheme (5) obtained earlier for the scalar equation, have:
2
n+l _ n o n n ~-1 34
ul —um+3(d)m —CDmH) > (Q |A|Q)( —2u” +um+1) (34)
Grid-characteristic parametric schemes of higher approximation orders can be presented in the following form:

m

W=y 2(<DZ~—<DZM)+—(Q NQ)(u ~2u u )+ (35)

+§(Q*‘G/\Q)(u:n,z—zum1+um+1 U, )+ (Q 'GIA|Q) (], , —4u,

m—1

n n
m-2 +6umﬂ +um+2)9

where G = diag {g (c,)},i=1, ..., nis a diagonal parametric matrix.
This scheme can also be represented as a “predictor-corrector” scheme:
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iy =+ (@ = @)+ QAR — 20 ),
u;+]=u;+Ql(%ZAZ—%|A|]Q( —2u +Mm+1>+
+QflGQ|:( -2a" +uml) (u —2u” +Mm+1)]

So, at o’ 1
&= 6

get a scheme of the 3rd order of accuracy (analogous to the Rusanov scheme).

m—1/2 m+1/2
n+l

m—1 h m m+1

Fig. 2. Predictor-corrector scheme

The grid-characteristic method can also be represented as a flow method, or as an integro-interpolation method, if
equation (23) is written in integral form:

H(au o t-dx = m(udx @dr) =0, (36)

ox

and then the last integral will be approximated:
x+1/2 Xm )/
Jurtdxs j D, 13de - f u'dx - I D, =0.

x-1/2 s

It follows from the last equality, if the approximation of 1ntegrals is carried out by the method of averages, get:

" h =@~ h =) =0 (37)
(integro-interpolation method),
or:
atl _oon n+l/2 a2 38
u m+ =u,—-0 (q)mil/z D, ) (38)
(flow method).

Note that in the foreign literature these methods are called finite volume methods. It is clear that (40) is a family of
ntl1/2

numerical methods whose properties depend on the method of calculating flows @125 for example, the linear transfer

equation (1) flows can be calculated as follows, but with a half-integer upper index):
+. 1 1 n n n n 1 n+ n+ n+
®/:+}g :E{E[a(um+l/2 _um)_lal(umﬂ _um):|+_|:a(um+ll/2 _um ) |a|(um+ll _uml)J}’ (39)

@;i}g=%{%[a(uﬁz—ufn,l) |a ul —ul ]+ [a n+l _ Ztﬂl) |a|( il u;tll):|}'
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Similarly, methods (33), (34), etc. can be presented in streaming form.
In the two-dimensional case, the first-order grid-based approximation method can be presented in the following form [2]:

n+l

Uy = uml + b 1ml + b 2ml + Tf;,1]7 (40)
where

bl =0, [ (@A) (1,0, =10,,) (AR, (#,—10,) |-

b = |:(Q AZQZ)W( meil T ml) (Q AiQ )m,( mers ~ W )n];

A= (A A =2 D), = A=
i=1,..., N are the diagonal matrix; A, are the eigenvalues; Q, = {('Okij} are the nonsingular matrices whose rows are linearly
independent eigenvalues o, of the matrix 4,.

For matrices 4, = {a"ﬁ}, in the case of a system of equations of mechanics of a deformable solid, we have:
M=y +)y,i=1,..,7 k=12

Using the usual kinematic relations for the components of the symmetric strain rate tensor [8] in a spatially fixed
curvilinear orthogonal coordinate system x, and x,, x,.

1( 180, 1 0v), 1 Soog 0H, ) 1 oH, OH,
emn + + 6 mn - Um + >
H ox, H, ox, H, o H Oxg 2H, ox, Ox

m

m,n=1,2,3.

and choosing the defining relations in the form:

do, do. v, dcij+ v, dcij dG

y _— g

3
—— = — + = emn,ij =1,2,3,
G @ TH an I, M, d, = 2 Gyl

m,n=1

write a closed system of two-dimensional unsteady equations in the form:
ou ou ou
+A—+A —=
o ox,  ?ox,
Strictly speaking, instead of a substantial derivative doij / dt the so-called Yaumann derivative should be used for the
deviator components of a stress tensor of the type:

dS _as 2
Syp®; +8,0
dt dt kl( ik = jk zk)

8\; ov. 1 3
®. =— ——L , S..:G..—S..— (PN
y (ax axiJ y y 1/3; ki

which ensures zero rate of change of the stressed state of the particle during its rotation as a rigid whole.
Here the symbol u = {v,, v,, 6,,, G,,, G,;, T} is a vector of the desired variables, including the components of the
velocity vector v, and v, (along the axes — x,, x, respectively), nonzero components o, of the symmetric stress tensor and

temperature T f{t, x, X,, u) = {f,, £, /11 f00 o f30 /7 18 the vector of the right parts Wlth the following components in a
curved orthogonal coordinate system x,, x,, x,:

f =F+l (011 _622)+8H2 +(011_ 633)+6H12 iaHl +L8H3 _ V2 12 OH, +V, oH,
el HH o, H,H, H, \ H, ox, H, ox, H,H,\ 0x, ox, )
f=F L1 (0 — 033)+6H3 +(<s22 - G“)+6H12 20H, LOH )| ™ [, oH, ., 0H,

P p H,H, Ox, H,H, H, \ H, ox, H, ox H,H, Ox, ox, )
o4, OH, (2 —9521) y OH, L OH, )| dpv, OH, | dyo( Y OH, vy OH.)_ o010
" HH, ox, 2H H, HH, ox, H,\H ox H, ox, pc

f = 190,V 0H, 5y, +| v, 8H1+V2 OH, 4+ 22V OH, _'_& V_I%_'_V_Z% +0|.
pc| HH, ox, Hle HH, ox,; H,\H ox H, ox,

>
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Here F1, F2 are the components of the vector of mass forces, T's the internal energy for a thermoelastic medium, c is
the specific heat capacity of the material, T is the temperature, Q is the volumetric density of heat sources, H, i =1, 2, 3

are the Lamb coefficients characterizing the selected orthogonal curved coordinate system, p is the density, defined by the

equation of state of a solid, for example:

3
ln% ——(3k) " Y6, 30T,
i=1

0

p, is the density of the material in the undeformable state, K is the volume compression ratio. In accordance with the two-

dimensionality of the deformable state assumed here, there are no displacements of material points in the x, direction and

6,=6,=Vv,=0, 0/0x;=0. Matrices 4, = {a,-];}»k =1,2, i=1,...,7, atthe same time have the form:

v, 0 -1/p 0 0 0 O
0 v 0 -1/p 0 0 O
1 4 _(‘11112 +‘I1121)/2 ¢ 0 0 0 0
4, :F 9211 _(qmz +q1221)/2 0 Vi 0 0 0},
1 Don _(q2211 +q2221)/2 0 0 vi 00
d3n _(%312 +q3321)/2 0 0 0 v 0
-c,,/p, -0,/p, 0 0 0 0
v, 0 -1/p 0 0 0 0
0 v, 0 -1/p 0 0 O
| _(q1112+QI121)/2 ~qun Vs 0 0 0 0
4, :F _(912|2 +q|221)/2 411 0 V) 0 0 0
? _(%211 +CI2221)/2 “9an 0 0 v, 00
VE _(‘13312 +q3321)/2 0 0 0 v 0
-c,/p, -0c,,/P, 0 0 0 0 v,

For the Prandtl-Reiss model adopted in this paper, the components of the fourth-rank qiikl tensor ¢, of an elastic-

plastic material have the form [8]:

YG;0, Tup,S;
D = 7\85,6/{1 _#‘* H (Sik 8]‘ - Sjkﬁil) _Tju’

where A, p are the Lyame parameters, & is the shear yield strength, § = are Kronecker symbols, stress tensor deviator:

3

1
Smn = Gmn - 8 _zcss’

mn
3 S=1

vy =(BA+2p) a (a is the coefficient of linear expansion of the material during heating).
1 is determined from the Mises plasticity condition:
I Oat S=S"+85,+S5+S, <2k,
lat §>2k%

The defining relations at / = 0 are the usual “Hooke’s law” for elastic isotropic materials. For y = 0, O = 0, the first 6

equations do not include temperature and they can be solved independently of the energy equation.

k k 2 12772 k K 2 1272 K k k
ylz_y7:|:ak+(ak_4dk) :| ’y2:_y6:|:ak_(ak_4dk) :| » Y3=—Y,;=y5=0.

kK k Kk Kk k&
a, = a;az taua, +a,a, +a,das,,

k _k

_ kK Kk k k Kk kK Kk k (( kK Kk k
d, =a;a; ((a31a42 T as3ay )) +a,a;s % ((a41a32 - a42a31)) +a,3a;s ((azlasz —asas, ))>
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1 1 1 1 1
O, I o, o; o, os; 00
1 1 1 1 1
®, 0y 1 W3 (OF7 ©ys 00
1 1 1
o, 0 0 0, O, 1 0 0
Q |1 = 1 1
1=|o,|[=] 0 0 o, o 0 1 0
1 1 1
o, 0 0 oy, oy 0 01
1 1 1 1 1
g 0, 1 -0, -0, -0, 0 0
1 1 1 1 1
0, 1 ®,, O -0, O3 00
2 2 2
Oy 1 O3 Wy os; 00
2 2 21 2
I o, oy o, ©5 00
2 2
0 0 1 o, oy 00
Q 2 2
=1 0 0 0 o, o, 1 0
2 2
0 0 0 oy, oy 0 1
2 2 2 2
1 Wy —Wy 0 0 0
2 2 2 2
QN 1 ®3 —Oy ®i5 00
Here: 1 1 ol
ere: N o = 2
e )
A, Vo) — 0y
2 2 2
o = ) 1 _ (yz )_al
n=7, S O =,
— o
(yl )2 oy 2
k_ k& k& k_ Kk k K ko
O =ay3ay +a,ay, Oy =aydy, +dyds, k=12,
k ok k ok kK
1 _ 430, 1 _ G140 +a5,0;,
i3 ko Wy = k >
Vi Vi
kok
i _ rsOp -12
i5 = k s b T Lyss
Yi
k qpl 1l Kl 1 qpl
of = apPi—aubi ko apP, —as B,
i3 1 nl 1l ? i4 7 1 Qql 1 pl 2
apPi, —ayBi, az B —axnPy
22 22 2 n2 22
ol = asB; —as B, ko L
i4 = is

22 12 ° T 22 1 p2 °
a5, —asPiy as,Pi —as Py

1 11 11 11
By = as;0;s5 + g0 + 7,07,

2 2.2 2 2 2 2 . .
Bj =as,05 +ag,0; +ay,05, j=12,i=345,

Ok
. . . . Q, _{pij}‘
in this case, for inverse matrices have:
k k k k
phn P 0 0 0 pp, P
k k k k
Py Pn 0 0 0 py  py
k k k k k
Py Pn Py 0 0 —py, —py
1|k k k k k
QY =lps Pn pPs 0 0 —py, —py
k k k k k
Pss Ps, DPss 0 0 —p§, —p5
k k k k k
Ps Po P 1 0 —pg —pg
k k k k k
P Pn P 0 1 —pi, —py
where
1 1 1
11 (A) 1 O 1 Oy 1 11
P = P» > > P =" N > Py =" N > A, =1-0,0,,.
2 2
11 11 1 1.1
plo= Lo = Cu®as 1 Dig ~ OO
31 32
2A] 2A,;
11 11 1 11
1 OO0y, — 040y 1 _ 0y — 0,505
P33 = > = >

2A! Pa 2A!
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1 1 1 1 1

pfu — (’)115(’)313 1_(’)13 R 41;3 — ®,505 _1(")15(’)23 ,
2A] Al
1 _ 0);40);3 _0);3033]4 , 1 0)113(’)214 031140)3]3 ,
51 2A} Ds> 2A;
1 0)14(’3213 13924
53 Ai

Py = |:0‘)i1—2,3 ((’0;4 - (D;S(D314) - CO1'1—2,4 ((D — 0,50 ):| (ZAI) >
Ph= |:('0i1—2,4 ((’3'1]3 — 0505, ) - 031'172,3 (0)114 — 0505, )](ZAi )71 >
pi13 = |:0351—2 3 ((D114C0;5 - 0)115(’3;4) - 0‘)1'1—2 4 (03113(’);5 _('0‘115(’);3 ):I(Ai )7l >
A} = o (032403 03230334) + o, (0’13(034 (’3114(’)313) + ((’311403213 — 050, ) .

And, similarly:

2 2 2 2 2 2
2 mzsmzs @ @, pl W,; 0 ey
43 = 2 54 2
Al 2A]
2 2 2 2 2 2 2
p2 _ Oy - ©13934 1 O 0, — 007,
52 2 53 — 2
2A A

-
2 [ 2 2 2 2 2 2 2 2 2
Pn= I:‘Di-zg (m24 (’)25“)34) ®; 4 (“)25 T 03035 ):|(2Al ) ’

-1
2 _[ 2 2 2 2 2 2 2 2 1
Pin = |:('0i—2,4 ((DIS - (’)13(’)35) 05 ((‘)14 W30 ):I(zA ) )

[

-1
[ .2 2 2 2 2 2 2
Pz = I:(Oi—2,4 (“)13@25 T 0,503 ) O s (0014“)23 0313“)24 ):|(Al ) ,
i=6,7,

2 _ 2( 2 2 2 2 2 2
A (013(0)24(’335 (‘)25@34)+(‘)23 (0315(034—0314c035)+(0)140)25 (’)15@24)'

When constructing calculation formulas on the boundaries of a rectangular (in coordinates ¢, x,, x,) integration domain,
we limit ourselves to considering only the upper (x, = 0) and lower (x, = 1) boundaries, bearing in mind that the remaining
boundaries (x, = 0, x,,) are often the plane (or axis) of symmetry or periodicity of the solution, or are chosen in such a way
that perturbations do not reach these boundaries during the time under consideration # < ¢,. Generalization to the case of
more complex conditions at the borders x, = 0 does not present fundamental difficulties and is similar to the one discussed
below.

Multiplying scalar by eigenvectors (w?)”, , obtain the relations:

L - - o Ll 2
ihi(k% ):nz(ﬂ)f xnl(”m,m +u:1,),i =1....7,

2
compatibility conditions approximating with the first order of accuracy along the intersection lines of the characteristic

surfaces of the system and the coordinate plane x, =x, (with equations dx, = \? dt):
o’ u +Nou,=o (f-Au,),i=1

As is known, the number of boundary conditions for a hyperbolic system of equations of the type is determined by the
number of negative (positive) eigenvalues of the matrix Au at the upper (respectively, lower) boundary of the integration domain.
In the problems considered below, there is a situation A* <A? < 0, at the upper boundary x, = 0, and at the lower boundary x, = 0
respectively A? > 2% > 0 therefore, two boundary conditions are required at each of these boundaries, which look like

@, x,u,..,u)=0,i=1,2npux,=0,
D, x, Uy, u)=0,i=167Tpu x, = 1,

npudeM HeoOxonumo, uToOs! det Q # 0, det Q, # 0,
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T [

— — T
where, respectively, Q_ =“w1mzm3...m7u , “ml 0506 M7

Where o = {6(1)1. /ou,,...,00; / Ou, },i =1,2,6,7,ai=1,...7are the eigenvectors of the A, matrix. For the problems considered
below, the boundary conditions were chosen semi-linear and after their approximation had the form:
¢i = wi(tn+1’xlm)l:1+1 gl( n+1’x1m): O’
i=12npux,=0,i=67npux,=1.
Consider a possible splitting scheme for the case of two variables:
ou Ou Ou
—+ +
ot Ox

1 2 2 =0,
b Goptalt oo Gt
B+B, =1, B0, By >0;u =B +Busn,

whereu,” "and u,,, are from the numerical solution of two one-dimensional systems of equations:

a2 ou g a2,
o o ot oy

In the case of a spatial dynamic problem: 6—+ z A,
o = 8xk

Oy _0

. 1
the matrices have the form: 7, = E(qiﬂd + q,.j,d),l #k;

u= {vl,vz,v3,011,012,013,622,023,033,U} is the vector column of the desired values.

v, 0 0 -l1/p 0 0 00 0 0
0 vy, 0 0 -1/p 0 00 0 0
0 0 v, 0 0 -1/p 00 0 O
— 4y, -7y, 0 v, 0 0 00 0 O
A _ =4 —r,, 0 0 v, 0 00 0 O
9311 Ty O 0 0 v, 00 0 of
9o i 0 0 0 0 v,0o 0 0
9y "0 0 0 0 0 ov, 0 O
Tyon Py 00 0 0 00 v, 0
-0,/p —o,/p 0 0 0 0 00 0 v,
v, 0 0 -1/p 0 0 00 0 O
0 v, 0 0 -1/p 0 00 0 O
0 0 v, 0 0 -1/p 00 0 O
T Gy 0 v, 0 0 00 0 O
A, — T —4 3, 0 0 v, 0 00 0 O ’
T —45, 0 0 0 v, 00 0 O
Ty ~ Gy 0 0 0 0 v, 0 0 0
R s 0 0 0 0 0v, 0 0
—Tan — 93 0 0 0 0 00 v, 0
-o,/p =—o,/p O 0 0 0 00 0 v
v, 0 0 -1/p 0 0 00 0 O
0 vy 0 0 -1/p 0 00 0 O
0 0 v, 0 0 -1/p 00 0 O
s ATES — 4133 v, 0 0 00 0 O
A= AT iy 413 0 vy 0 00 0 O .
“Fan o Tl " qnw 0 0 vi 00 0 0
T — Ty — s 0 0 0 0 0 O
— Ty =Ty — D3 0 0 0 0v, 0 0
T~ Tam o 0 0 0 00 v 0
—6,/p —oy/p —oy/p O 0 0 00 0 v
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One of the possible grid-characteristic schemes for the numerical solution of the reduced system can be represented as:
ur =uit =6 QAN u+ol QA QAL - 6,0 A A u+

+0,Q, A, ' QA u— 0, Q) AA u+6 QA Q,A2u,

_ n _n
um _O’S(um+l,l,p umfl,l,p)’

u, = O,S(ufml,pﬂ — U )’

ui = O,S(ufnﬂ,,,p - Zunmlp tu nm—lgl,p)’
u 12 =0,5 (” :ln,l+l,p - Z”Zz/p tu Z’»’*"P)’
ul = 0,5(u et = 2 Uy T U )’

h, (rh — IIary rare the steps by time and three coordinates; k = 1,2,3), or

n+l _ . n
mip u

u mlp

+o0, [(Q;‘AjAm )mlp A, u— (Q;IAI*Q1 )mlp A u}” +

+o, [(Q;A;Am) A —(0'A50,) A;u}" +o, [(Q;'A;Am ),, A —(Q3'A30,) A;uT :

m mip
= _
Al - um,li],p umlp’
+ _ _
Ap - um,l,pil umlp'

The scheme has the first order of accuracy at y = 1 which was implemented in the work), the second at y = 2; the
“damping” (viscous) term is clearly highlighted, which gives the scheme stability and positive (according to Friedrichs
[5]) certainty (or monotony — in the one-dimensional case); when implemented, there is no need to find matrices A*;
the scheme is easy to hybridize (i. e., for example, to assume y = 1 in areas with large gradients of flow parameters and
vy =2 in “smooth” areas). The advantage of recording a grid-characteristic scheme is to reduce the number of arithmetic
operations.

Discussion and conclusions. The construction of a numerical algorithm at boundary points is described in detail in
[8] for the two-dimensional case. When numerically solving a three-dimensional problem, the construction is performed
similarly; for example, in the case of upper and lower bounds, after scalar multiplication of the scheme by eigenvectors
(co3l.)”m1p obtain the following relations:

AfnuJ +

mip

(@), u = (@), ul, +o, {[(Qll N, A (95'A59,)
+0, [(Q;‘ A;QZ)WP A7 u—(95'A50, )mz,, Al u] } + 0, (1; ):,,,, (] ):,,,, Afu; i=1,..,1,
compatibility conditions approximating with the first order of accuracy

3 3,53, 3 ’ ’
ou, + 0ol =-o, (Alu,]l +A2u]h).

In the case of a one-dimensional system of gas dynamics equations:

u, ou_
ot Ox
the vector of the desired functions and the matrix 4 have the following form [2]:
u p 0
P op p
U= u ;A: pil_ u pil_ s
0s O¢
& 0 p/p u

where p is the density, u is the velocity, € is the density of the internal energy of the gas.
The actual values of the matrix have the form:

A =u+c A =u; A =u—c,

where c is the speed of sound in a gas, the matrices from the eigenvectors, in fact, will be:
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0 9)
1 op Oe
2
Q=q0,,=9p 0 —p
o op
3
p —pe —
op
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