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Linear combination of the Upwind and Standard Leapfrog difference schemes
with weight coefficients obtained by minimizing the approximation error *
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In order to solve the transfer problem, it is proposed to use the scheme based on a linear
combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients
obtained by minimizing the approximation error. The estimate of the approximation error of the
proposed difference scheme shows that, for small Courant numbers, this scheme whose
approximation error is O(ch2), where the constant c is significantly less than unity, is preferable to
use than the original Upwind and Standard Leapfrog schemes whose approximation errors are O(h2).
The proposed modification of the Upwind Leapfrog difference scheme is effective for solving the
diffusion-convection problem in the range of Peclet numbers 2<Pe<20.

Keywords: Navier-Stokes equation, splitting schemes for physical processes, the Upwind and
Standard Leapfrog difference schemes with weight coefficients.

Introduction. The problem of large Peclet numbers occurs [7, 13] when solving problems of
transporting suspensions of shallow water bodies [2, 4, 11] based on central-difference schemes. One
of the solutions to this problem is grinding a step on a spatial grid, which entails an increase in labor
intensity. When solving the three-dimensional diffusion-convection problem, in order to reduce the
Peclet number by two times, it is necessary to reduce the steps in space by two times, and in time by
four times. Thus, the complexity increases by 32 times. Another approach to solving this class of
problems is the use of other difference schemes, for example, the Upwind Leapfrog scheme. The
Upwind Leapfrog schemes with limiters have shown their effectiveness in solving problems of
aeroacoustics [24, 25]. In [18], it was proposed to use a linear combination of the Upwind and
Standard Leapfrog schemes. The optimal coefficients for this scheme were calculated in [15] from
the condition of minimization of the order of approximation error [21-23]. The purpose of this work
is to determine the range of effectiveness of the application of this scheme, using a linear combination
of the Upwind and Standard Leapfrog schemes with weighting coefficients obtained from the
condition of minimizing the order of approximation error.

1. Accuracy of solving the heat conduction problem.

Formulation of the problem. Formulation of the problem. Consider the case of the heat
equation with constant coefficients.

g =m0, +f, t>0, O<x<l, (@)
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a(xt)]io=0"(x), <1, 2

0<x
q(0t)=0,(t), a(lt)=q(t), t=0. ®3)
Negotiation of initial and boundary conditions:
°(0)=%(0).  a'()=a(0).
Analytical solution of the diffusion equation. Let us find an analytical solution of the
problem (1). It should be noted that in the case of a table method for determining the value u, the

series will be limited by N -1 harmonics, as for the restoration of a continuous function, an
interpolation trigonometric polynomial is used, where N is the number of discrete values of the
function.

Functions q and f can be represented as rows:

N-1 N-1
ql D Cl (t)sin(wmx), f 0 ) CL" sin(wmx), (4)
m=1 m=1

| |
where w=r/1, C{" =|Ejf(x)sin(wmx)dx, cly :%jq(X)sin(a)mx)dx.
0 0

It should be noted that for the functions with period 2z, having a-ht derivative satisfying the
inequality f“(x)<K.

There is an estimate of the residual term of the series (4) for any integer value o:

N-1
sup|r|= 1—K|n—n+0(1/ N“) where I =U(x/a,t)=> C(t)sin(mx).
=1

Zna

Functions u and f substitute in the heat equation (1) and we get:

N1 ' N-1 " g
(ZC,E;“ sin(a)mx)j = y(chﬁ) sin(wmx)j +>_CLVsin(@mx).
m=1 t m=1 =1

XX

Changing the operation of differentiation with the summation of a series and calculating the
derivative in space, we obtain:

Nz_l(cfnq) (t))'t sin(wmx) = Nzl 1C (—0*m’ sin(a)mx))+§cr§” sin(@mx) .
m=1 m=1 n=1

Considering the linear independence of functions Sin(@mXx), we obtain:

(C V), =—pa’m’CP +CL0. (5)

The solution of equation (5) takes the form:
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CO Y e GO
(a) _ (@) m — p*m m
ce (t)_(cmq = ty | 6)

After the transformations and calculations, taking into account the given initial and boundary
conditions, the desired function will be found [8]:

“ C(q) C(f) Lot C(f)
= ——n gty I sin(wmx) . 7
q ; m (0) ﬂa)zmz /ua)zmz ( ) ( )

Difference scheme for the heat equation. To solve problem (1) numerically, we will cover
the computational domain with a uniform grid:

W, :{t” =nz,x =ih;n=0..N,,i

0.N;Nz=T,Nh=I},
where 7 is the time step, h is the space step, M is the upper time limit, N is the number of nodes
in space.

n+l _n _n+a _ _n+a _n+a
i q| — ,U q|+l 2q|2 +q|—l + fi , (8)
T h

+(1-0)q", o €[0,1] is the weight of the scheme.

Where q.n+cr :O_qin+1

Stability of an explicit scheme. To study the stability we use the harmonics method for this
we write the function g in the form [5]:

o =A"-exp(ijha), j°=-1, [e"|=1. (9)
Let us substitute (9) into (8) in the case of an explicit scheme:
/fi’n+1eijha _/Ineijha /Inei(j—l)ha . Zineijha +inei(j+l)ha

T H h?
or 1-1= y%(e‘”‘a —2+e"M),

e ™ +e" =2cos(ha)

Inasmuch as , We get

4_1-

/1:1+%,u(cos(ha)—1); A=l-5

. a
pSIN® ==y =g

Obviously,that1—4ysin2h7a2—1 = |4<1,as y=%>0.

4ysin2h7a£2,then 47/sin2h7a£4y32 = ;/s%.

Thus, we obtain 7z <z, =h?/2u. Despite the fact that this estimate is a strict limitation for

explicit difference schemes, in practice, the time step must be taken even less.
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Model problem I. It is required to find a solution to the equation
Of = uy,, u=1m?/s, 0<t<T, 0<x<lI, q(t,0)=0
with initial conditions: g°(x)=6(20—x)—6(10—x), where 6(x) is the Heaviside function.

The parameters of the computational grid: the time step is in the range from 0.001 to 10 s, the
space step is h = 1 m, the length of the time interval T is 60 s. Figure 1 shows the error in solving the
model problem | based on the scheme (8), 1 is a scheme with weights (o =0.5), 2 is an explicit

scheme. The error is calculated by the formula W = \/Z(qi - )2 /qu , Where (; is the exact value

of the solution of the diffusion problem in a node i, @ is the numerical solution depending on the
time step. The horizontal axis represents the value of the time step 7, referred to the value z,,,

(ro=717,)-
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Fig. 1. The function of the dependence of the approximation error on the time step z, (1 —for explicit
scheme, 2 — for scheme with weights)

In order for the relative error of the explicit scheme to be 0.01%, it is necessary to take the
value 7, equal to 0.0717; in the case of using the proposed scheme with weights, the parameter z,

equal 5.1858.

Model problem Il. Consider the problem occurs in the simulation of suspension transport in
shallow water bodies [6, 9]. It is required to find a solution to the two-dimensional diffusion equation
for a region stretched in one direction.

o =40y + 1,0y, t>0, O0<x<l, O<y<l,
#, =100 m?/s, p,=0.5 m%s, 1, =2000 m, I, =5 m
with initial conditions
q(x y.t)|. =(6(1100—x) —6(900-x) ) (63— y) —0(2—)),
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0<x<l,,0<y<I, and boundary conditions in the form of Dirichlet.

The parameters of the computational grid: space steps hx=100 m and hy=0.5 m, he length of
the time interval T is 600 s. Fig. 2 presents the solutions of the model problem 11 based on: 1 — schemes
with weights, 2 — explicit schemes.
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Fig. 2. The function of the dependence of the approximation error on the time step z, (1 — for
explicit scheme, 2 — for scheme with weights)

Figures 1, 2 shows that the error of achievement for an explicit scheme is that the limit on the
time step is substantially less than for the scheme with weights. In order for the relative error of the
explicit scheme to be equal to one percent, the value 7z, must be taken equal to 0.01376, in the case

of using the proposed scheme with weights, the parameter z, is 0.34844.

Remark 1. An explicit scheme has a stable solution under the constraint z < O(hz) [26],

scheme with weights with o >0.5 has no restrictions on the time. In practice, in order for the
calculation error, based on a difference scheme (8) with a weight 0 <o <1, was in an acceptable
range, you must use the following limit on the time step:

r -1
TSA'(ZZM /hizj :

i=1
where r is the dimension of space. The parameter A describes the ratio of the step that is necessary
to take in order for the accuracy of the calculations to be in an acceptable range 7 to the step obtained
from the constraint on the stability of the explicit scheme 7, , the assessment takes placer, <A.

max »
When solving problems of diffusion-convection, it is necessary to find values A differently, if the
step 7 is taken too large, then the error will be large, and if small, the computational effort is large.
For an explicit scheme, it is recommended to take the parameter A equal 0.01, and for a scheme
with a weight o =0.5, the parameter A can be taken equal to 0.3.

2. Solution of the transfer problem based on the Upwind Leapfrog scheme
Consider the transfer equation [14]
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G +ug, =0, (10)
where te[0,T], xe[0,1], q(0,x)=0"(x), a(t,0)=0, u=const.

Let introduce a uniform computational grid w=wn X, where

on={x|x =ih, i=01..,N, Nh=1}, o ={t"

n=0,1,...,T}, T=t" —t" =const.

For the numerical solution of the problem, you can use the following finite-difference
schemes:

— the Upwind Leapfrog scheme [16]:

n+l

Gi

AN n _ ~n-1 n_ AN
qi + qi—l qi—l +u qi qi—l — 0 . u > 0 , (11)
2T 2t h

ntl _ n n o _g"t ".—q
O —% GG %= g y<o;

27 27 h

— the Standard Leapfrog scheme:

n+l _ 4n-1 n _ NN
qi qi +U qi+1 qi—l — O ) (12)
27 2h

Remark 2. It is known that solving the problem (10) on the basis of central difference schemes
is not stable; at the same time, for solving this class of problems, the Upwind Leapfrog scheme with
limiters [17] showed its effectiveness

To solve problem (10), we will use a scheme built on the basis of a linear combination of the
difference scheme Upwind and Standard Leapfrog with weighting factors of 2/3 and 1/3, respectively,
obtained by minimizing the approximation error

n+l n n n-1 n n

G —0 + i G — Gy +u G — Qs +
T 3 27 h (13)
n n-1 n n

T Tk TR S W, ST}

3r 3h
n+l _ _n .I"I _ _n—l .I’] _ _n .I’] _ _n—l _n _ _n
0; g +%(q|+12 Ui +u q|+1h ! j_'_ Qi 3ql +u q'+13hq'_1 =0, u<O.
T T T

Model problem I11. Consider the problem of movement of the front of concentrations [19, 20].
Required to find a solution to the equation

g +ug, =0, u=05m/s, 0<t<T, 0<x<I, q(t,0)=0
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with initial conditions: g°(x)=6(70-x)—6(60—Xx).

Fig. 3. presents the values of the errors in the norm
Li W' =) wh, y'=

qin _q(xi’tn)

where q(xi,t“) is the exact solution of the problem (10) in the node i, g is the numerical solution at

time step n, n=T) of numerical solution of model problem 111 based on: the proposed scheme (13),
as well as the Upwind and Standard Leapfrog schemes of with limiters depending on the values of
Courant numbers (c = |u|r/ h). The length of the time interval T is 100 s. The time step 7 took values

0f 0.02 sto 2 s. Courant numbers range from 0.01 to 1.
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Fig. 3. The values of the errors of numerical solution of the model problem Il depending on the
values of Courant numbers (1 — schemes based on linear combination of the difference scheme Upwind and
Standard Leapfrog with weight coefficients 2/3 and 1/3, respectively, 2 — the Upwind Leapfrog scheme with

limiters and 3 — the Standard Leapfrog scheme with limiters)

Remark 3. From the results of the calculation of model problem I1ll, it can be seen that the
proposed scheme (13) more precisely the Upwind Leapfrog scheme with limiters solves the
convection problem for small Courant numbers (¢ = |u| 7/h <0.1). From the results of the calculation
of the diffusion problem, it follows that for explicit schemes there is a limitation
T<ATp To =N?12u, A=0.01. From these estimates it follows, that Alulh/24<0.1 or

Pe=|u|h/,u£ 0.2/ A=20, where Pe is the is the grid Peclet number [13]. In this range of Peclet

numbers, the proposed approximation of the convective transfer operator will be effective (the case
of the absence of monotonicity of schemes constructed on the basis of central difference
approximations is considered Pe > 2).

3. Solution of convection-diffusion problem

Consider the convection-diffusion equation [2,3]:

g, +Uug, = uqy, , (14)

where t €[0,T], x&[0,1], with boundary and initial conditions:
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q(0,x)=9°(x), a(t,0)=q(t,1)=0, u=const.

The approximation of the problem (14), taking into account the difference analogue of the
convective transfer operator (13), is written in the form:

n n n-1 n n
-G + ﬂ G — 9 +u . +
T 3 2t h

n+l

0

(15)

n_ _n—l no_ N no_ n n
+ qi ql +u q|+1 ql—l — 2,U qH—l 2q| + ql—l

,  u=0,
3r 3h h?

n+l

0

n n n-1 n n
-G +f Qs —Gin tu Gia — n
T 3 2t h

n_ ~n-1 n AN no_ n n
+ qi qi +Uu qi+l qi—l — 2/,[ qi+1 2q| +qi—1

, u<0.
37 3h h2 =

Model problem IV. It is required to find a solution to the equation:
O +ud, = x40, , u=05 m/s, u=const, 0<t<T, 0<x<I

with initial and boundary conditions:

q° (x)=6(70-x)-0(60—x), q(t,0)=q(t,1)=0.
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Fig. 4. The graphs of the error function " of the model IV solution based on the difference scheme
(15) and the cabaret scheme with limiters of the solution in the L1 norm depending on the grid Peclet number

The solution of the model problem IV can be represented as [8]:

m=1

U 2 2 !
q(t,x)=> coe ™ ™ sin(wmx), co =%jq°(x+ut)sin(a)mx)dx ,a)=|£ ,
0
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Fig. 4 shows the graphs of the error function ¥" of solving the model problem IV based on
the difference scheme (15) and the Upwind Leapfrog scheme with limiters of the solution in the L
norm depending on the grid Peclet number. The parameters of the computational grid: space step h =
1 m, time step = = 0.02 s, space interval L =200 m, time interval value T is 100 s, the diffusion
coefficient is in the range from 5 x 10 to 0.5 m?/s.

Remark 4. From the results of calculating the model problem 1V, it can be seen that the
proposed scheme (15) has an insignificant error in the range of Peclet numbers Pe < 20.

The approximation of the problem (14) on the basis of explicit central difference schemes will
be written in the form [10,12]:

_n+l_ n no_qn n _2 _n+ n
ql . ql +u q|+12hq|—1 :,Uqu r?; ql—l . (16)

Fig. 5 shows the graphs of the error function " of solving the model problem IV based on
the difference scheme (15) and the central difference scheme (16) in the L1 norm, depending on the
grid Peclet number. The parameters of the computational grid: space step h =1 m, time step = 0.02
s, space interval L =200 m, time interval value T is 100 s, the diffusion coefficient is in the range
from 5 x 102 to 5 m%/s.
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Fig. 5. The graphs of the error function " of solving a model problem IV based on a difference
scheme (15) and a central difference scheme (16) in the L, norm, depending on the grid Peclet number

Remark 5. From the results of the calculation of the model problem 1V, it can be seen that
the central difference scheme (16) has a smaller error in the range of Peclet numbers from 0 to 2
compared to the proposed difference scheme (15). Based on the above, it can be concluded that the
proposed modification of the Upwind Leapfrog scheme (15) is effective for solving the diffusion-
convection problem in the range of Peclet numbers 2 < Pe <20.
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Conclusion. An explicit scheme has a stable solution under constraints = so(hz), and a

scheme with weights with o > 0.5 has no restrictions on the time step. In practice, in order for the
calculation error, based on a difference scheme with weights 0 <o <1 to be in an acceptable range,

-1

.

you must use the following restriction for the time step ’[SA-(ZZﬂi /hizj , Where r is the
i=1

dimension of space. The parameter A describes the ratio of the step that is necessary to take in order

for the accuracy of the calculations to be in an acceptable range 7 to the step obtained from the

constraint on the stability of the explicit scheme z_,,, and there is an estimate z, <A. When solving

max
problems of diffusion-convection, it is necessary to find values A differently, if the step 7 is taken
too large, then the error will be large, and if small, the computational effort is large. For an explicit
scheme, it is recommended to take the parameter A equal 0.01, and for a scheme with weight o =0.5
, the parameter can be taken equal to 0.3.

The solution of the convection problem on the basis of central difference schemes is not stable;
at the same time, for solving this class of problems, the Upwind Leapfrog scheme with limiters
showed its effectiveness. From the results of the calculation of model problem I11, it can be seen that
the proposed modification of the Upwind Leapfrog scheme is more accurate than the Upwind
Leapfrog scheme with limiters for small Courant numbers (¢ <0.1). From the results of the
calculation of the diffusion problem, it follows that for explicit schemes there is a limitation

T<At., T =h?12u, A=0.01. It follows from these estimates Pe <20, where Pe is the grid

Peclet number.

From the results of the calculation of the model problem IV, it can be seen that the central
difference scheme has a smaller error in the range of Peclet numbers from O to 2 compared to the
proposed difference scheme. Based on the foregoing, it can be concluded that the proposed
modification of the Upwind Leapfrog scheme is effective for solving the diffusion-convection
problem in the range of Peclet numbers 2 <Pe <20.

max !
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IloBblllIeHHE IJIAAKOCTH YHCJIEHHOIO peuicHus MOJC/JIMPOBaHUA 3adad 'MAPOAUHAMMUKHA Ha

NMPSAMOYTI0JIbHBIX CETKaXx *

A.E. UncrsakoB, A.M. Atasin

JIOHCKOI ToCyHAapCTBEHHBIM TEXHUYECKUW yHuBepcureT, Pocrtos-Ha-Ilony, Poccuiickas ®enepanus

Jlnst pemieHus 3aqadd TEepeHoca IpeiaraeTcsi MCIOJb30BaTh CXEMY, OCHOBaHHYIO Ha
nuHeitHo# komOuHanuu cxembl «Kabape» u «Kpect» ¢ BecoBbIMU K03 puieHTaMu, OJTy4EHHBIMU
W3 YCIOBHS MHHHMHU3AIMHM TIOPSIKA MOTPEIIHOCTH amnmpokcuMmanuu. OIleHKa MOrpenrHOCTH
aNMPOKCUMAITUH TIPEIUIOKESHHOW Pa3HOCTHON CXEMBI IMOKa3bIBaeT, UTO IS MajbIX yncen Kypanra
MPEeNNOYTUTEIbHEE HCIOIb30BaTh 3TY CXEMY, MOTPEIIHOCTh AalMpOKCUMAIMi KOTOpPOW paBHA
O(ch2), rme koHCTaHTa C 3HAYUTEIHHO MEHBIIE CMHUIIBI, Y€M HCXOJHbIC cxembl «Kabape» u
«Kpect», norpemHocTu annpokcuMaimu Kotopsix paBHbl O(h2). TlpemnoxenHas moaudukaims
pazHocTHOM cxeMbl «Kpect» addexTuBHa 11 pereHus 3aaaun 1udPpy3un-KOHBEKIIUN B JUATIA30HE
yrcen nekie 2<Pe<20.

KawueBble cjioBa: cXeMbl pacHICIUICHHMsT 1O (U3HUYECKHM TpolieccaMm, JIMHEHHAs
koMmOuHarnms cxembl «Kadape» u «Kpect» ¢ BecoBbIMH K0P DUITHUSHTAMH.

ABTOpBI:

YucrakoB AJjiekcanap EBrenbeBud, J[OHCKOW TOCYyAapCTBEHHBIM TEXHUYECKUH YHUBEPCUTET
(344000 PoctoB-na-/ony, . I'arapuna, 1. 1), 1oKTOp PU3HKO-MaTeMaTHUYECKUX HAYK, TOIEHT

ATtasiH Acsa MuxaiisioBHa, [loHckoll rocynapcTBeHHbIH TexHuueckui yHusepcuteT (344000
PocroB-Ha-Jlony, 1. ["arapuna, a. 1), acnupast

* PaGora BoimonHena mpu noguaepikke PODOU (mpoext Ne 19-07-00623).



	Remark 2. It is known that solving the problem (10) on the basis of central difference schemes is not stable; at the same time, for solving this class of problems, the Upwind Leapfrog scheme with limiters [17] showed its effectiveness
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