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Linear combination of the Upwind and Standard Leapfrog difference schemes 

with weight coefficients obtained by minimizing the approximation error  

A.E. Chistyakov, A. M. Atayan 

Don State Technical University, Rostov-on-Don, Russia 

 

In order to solve the transfer problem, it is proposed to use the scheme based on a linear 

combination of the Upwind and Standard Leapfrog difference schemes with weight coefficients 

obtained by minimizing the approximation error. The estimate of the approximation error of the 

proposed difference scheme shows that, for small Courant numbers, this scheme whose 

approximation error is O(ch2), where the constant c is significantly less than unity, is preferable to 

use than the original Upwind and Standard Leapfrog schemes whose approximation errors are O(h2). 

The proposed modification of the Upwind Leapfrog difference scheme is effective for solving the 

diffusion-convection problem in the range of Peclet numbers 2≤Pe≤20.  

Keywords: Navier-Stokes equation, splitting schemes for physical processes, the Upwind and 

Standard Leapfrog difference schemes with weight coefficients. 

 

Introduction. The problem of large Peclet numbers occurs [7, 13] when solving problems of 

transporting suspensions of shallow water bodies [2, 4, 11] based on central-difference schemes. One 

of the solutions to this problem is grinding a step on a spatial grid, which entails an increase in labor 

intensity. When solving the three-dimensional diffusion-convection problem, in order to reduce the 

Peclet number by two times, it is necessary to reduce the steps in space by two times, and in time by 

four times. Thus, the complexity increases by 32 times. Another approach to solving this class of 

problems is the use of other difference schemes, for example, the Upwind Leapfrog scheme. The 

Upwind Leapfrog schemes with limiters have shown their effectiveness in solving problems of 

aeroacoustics [24, 25]. In [18], it was proposed to use a linear combination of the Upwind and 

Standard Leapfrog schemes. The optimal coefficients for this scheme were calculated in [15] from 

the condition of minimization of the order of approximation error [21–23]. The purpose of this work 

is to determine the range of effectiveness of the application of this scheme, using a linear combination 

of the Upwind and Standard Leapfrog schemes with weighting coefficients obtained from the 

condition of minimizing the order of approximation error. 

1. Accuracy of solving the heat conduction problem. 

Formulation of the problem. Formulation of the problem. Consider the case of the heat 

equation with constant coefficients. 

, 0, 0 ,t xxq q f t x l          (1) 
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   0

0, , 0 ,tq x t q x x l   
 

    (2) 

       00, , , , 0.lq t q t q l t q t t      (3) 

Negotiation of initial and boundary conditions: 

       0 0

00 0 , 0lq q q l q  . 

Analytical solution of the diffusion equation. Let us find an analytical solution of the 

problem (1). It should be noted that in the case of a table method for determining the value 0u  the 

series will be limited by 1N   harmonics, as for the restoration of a continuous function, an 

interpolation trigonometric polynomial is used, where N is the number of discrete values of the 

function.  

Functions q  and f  can be represented as rows: 
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where / l  , ( )

0

2
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f

mC f x mx dx
l

  , ( )
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2
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q
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l
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It should be noted that for the functions with period 2π, having α-ht derivative satisfying the 

inequality ( ) ( )f x K  . 

There is an estimate of the residual term of the series (4) for any integer value α:  

2

4 ln
sup (1/ )

K n
r O n

n
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  , where  
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

  . 

Functions u  and f
 
substitute in the heat equation (1) and we get:  

1 1 1
( ) ( ) ( )

1 1 1

sin( ) sin( ) sin( )
N N N

q q f

m m m

m m nt xx

C mx C mx C mx   
  

  

 
   

    
   
   . 

Changing the operation of differentiation with the summation of a series and calculating the 

derivative in space, we obtain:  

   
1 1 1

( ) ( ) 2 2 ( )

1 1 1

( ) sin( ) sin( ) sin( )
N N N

q q f

m m nt
m m n

C t mx C m mx C mx    
  

  


     . 

Considering the linear independence of functions sin( )mx , we obtain:  

 ( ) 2 2 ( ) ( )( )q q f

m m mt
C t m C C


   .    (5) 

The solution of equation (5) takes the form:  
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2 2
( ) ( )
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(0) 2 2 2 2
( )

f f
q q m tm m
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.   (6) 

After the transformations and calculations, taking into account the given initial and boundary 

conditions, the desired function will be found [8]: 

2 2
( ) ( )1

( )

(0) 2 2 2 2
1

sin( )
f fN

q m tm m
m

m

C C
q C e mx

m m
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

  
    

  
 .  (7) 

Difference scheme for the heat equation. To solve problem (1) numerically, we will cover 

the computational domain with a uniform grid:  

 , ; 0.. , 0.. ; ,n

h i t x t xw t n x ih n N i N N T N h l        , 

where   is the time step, h  is the space step, M  is the upper time limit, N is the number of nodes 

in space. 

1

1 1

2

2n n n n n

i i i i i
i

q q q q q
f

h

  




   

   
  ,    (8) 

where  1 1n n n

i i iq q q      ,  0,1   is the weight of the scheme. 

Stability of an explicit scheme. To study the stability we use the harmonics method for this 

we write the function n

iq  in the form [5]:  

2exp( ), 1,n n

iq ijha j     1ijhe   .   (9) 

Let us substitute (9) into (8) in the case of an explicit scheme: 
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Thus, we obtain 2

max / 2h    . Despite the fact that this estimate is a strict limitation for 

explicit difference schemes, in practice, the time step must be taken even less. 
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Model problem I. It is required to find a solution to the equation 

t xxq q  , µ=1 m2/s, 0 t T  , 0 x l  ,  ,0 0q t   

with initial conditions:  0 (20 ) (10 )q x x x     , where ( )x  is the Heaviside function. 

The parameters of the computational grid: the time step is in the range from 0.001 to 10 s, the 

space step is h = 1 m, the length of the time interval T is 60 s. Figure 1 shows the error in solving the 

model problem I based on the scheme (8), 1 is a scheme with weights ( 0.5  ), 2 is an explicit 

scheme. The error is calculated by the formula  
2 2/i i i

i i

q q q    , where iq  is the exact value 

of the solution of the diffusion problem in a node i , iq  is the numerical solution depending on the 

time step. The horizontal axis represents the value of the time step 0  referred to the value max                                 

( 0 max/   ).  

 

Fig. 1. The function of the dependence of the approximation error on the time step
0
  (1 ‒ for explicit 

scheme, 2 ‒ for scheme with weights) 

In order for the relative error of the explicit scheme to be 0.01%, it is necessary to take the 

value 0  equal to 0.0717; in the case of using the proposed scheme with weights, the parameter 0  

equal 5.1858. 

Model problem II. Consider the problem occurs in the simulation of suspension transport in 

shallow water bodies [6, 9]. It is required to find a solution to the two-dimensional diffusion equation 

for a region stretched in one direction. 

, 0, 0 , 0 ,t x xx y yy x yq q q t x l y l           

100x   m2/s, 0.5y   m2/s,  2000xl   m, 5yl   m 

with initial conditions 

    0, , (1100 ) (900 ) (3 ) (2 ) ,tq x y t x x y y            
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0 ,0x yx l y l     and boundary conditions in the form of Dirichlet. 

The parameters of the computational grid: space steps hx=100 m and hy=0.5 m, he length of 

the time interval T is 600 s. Fig. 2 presents the solutions of the model problem II based on: 1 ‒ schemes 

with weights, 2 ‒ explicit schemes.  

 
Fig. 2. The function of the dependence of the approximation error on the time step 

0
  (1 ‒ for 

explicit scheme, 2 ‒ for scheme with weights) 

Figures 1, 2 shows that the error of achievement for an explicit scheme is that the limit on the 

time step is substantially less than for the scheme with weights. In order for the relative error of the 

explicit scheme to be equal to one percent, the value 0  must be taken equal to 0.01376, in the case 

of using the proposed scheme with weights, the parameter 0  is 0.34844. 

Remark 1. An explicit scheme has a stable solution under the constraint  2O h   [26], 

scheme with weights with 0.5   has no restrictions on the time. In practice, in order for the 

calculation error, based on a difference scheme (8) with a weight 0 1  , was in an acceptable 

range, you must use the following limit on the time step:  
1

2

1

2 /
r

i i

i

h 





 
  

 
 , 

where r  is the dimension of space. The parameter   describes the ratio of the step that is necessary 

to take in order for the accuracy of the calculations to be in an acceptable range   to the step obtained 

from the constraint on the stability of the explicit scheme max , the assessment takes place 0   . 

When solving problems of diffusion-convection, it is necessary to find values   differently, if the 

step   is taken too large, then the error will be large, and if small, the computational effort is large. 

For an explicit scheme, it is recommended to take the parameter   equal 0.01, and for a scheme 

with a weight 0.5  , the parameter   can be taken equal to 0.3.  

2. Solution of the transfer problem based on the Upwind Leapfrog scheme 

Consider the transfer equation [14] 
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0t xq uq   ,      (10) 

where  0,t T ,  0,x l ,    00,q x q x ,  ,0 0q t  , u const . 

Let introduce a uniform computational grid h     , where 

 , 0,1,..., ,h i ix x ih i N Nh l     ,  0,1,...,nt n T   , 1n nt t const    .  

For the numerical solution of the problem, you can use the following finite-difference 

schemes: 

– the Upwind Leapfrog scheme [16]: 

1 1

1 1 1 0
2 2

n n n n n n

i i i i i iq q q q q q
u

h 

 

    
   , 0u  ;   (11) 

1 1

1 1 1 0
2 2

n n n n n n

i i i i i iq q q q q q
u

h 

 

    
   , 0u  ; 

– the Standard Leapfrog scheme:  

1 1

1 1 0
2 2

n n n n

i i i iq q q q
u

h

 

  
  .     (12) 

Remark 2. It is known that solving the problem (10) on the basis of central difference schemes 

is not stable; at the same time, for solving this class of problems, the Upwind Leapfrog scheme with 

limiters [17] showed its effectiveness 

To solve problem (10), we will use a scheme built on the basis of a linear combination of the 

difference scheme Upwind and Standard Leapfrog with weighting factors of 2/3 and 1/3, respectively, 

obtained by minimizing the approximation error 

1 1
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 
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 

  
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   

   (13) 

1 1 1

1 1 1 1 14
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3 2 3 3

n n n n n n n n n n

i i i i i i i i i iq q q q q q q q q q
u u

h h  

  

    
     

     
 

, 0u  . 

Model problem III. Consider the problem of movement of the front of concentrations [19, 20]. 

Required to find a solution to the equation  

0t xq uq   , u=0.5 m/s, 0 t T  , 0 x l  ,  ,0 0q t   
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with initial conditions:  0 (70 ) (60 )q x x x     .  

Fig. 3. presents the values of the errors in the norm  

L1  , , ,n n n n n

i i i i

i

h q q x t      

where  , n

iq x t  is the exact solution of the problem (10) in the node i, n

iq  is the numerical solution at 

time step n, n T ) of numerical solution of model problem III based on: the proposed scheme (13), 

as well as the Upwind and Standard Leapfrog schemes of with limiters depending on the values of 

Courant numbers ( /c u h ). The length of the time interval T is 100 s. The time step τ took values 

of 0.02 s to 2 s. Courant numbers range from 0.01 to 1. 

 

Fig. 3. The values of the errors of numerical solution of the model problem III depending on the 

values of Courant numbers (1 – schemes based on linear combination of the difference scheme Upwind and 

Standard Leapfrog with weight coefficients 2/3 and 1/3, respectively, 2 – the Upwind Leapfrog scheme with 
limiters and 3 – the Standard Leapfrog scheme with limiters) 

Remark 3. From the results of the calculation of model problem III, it can be seen that the 

proposed scheme (13) more precisely the Upwind Leapfrog scheme with limiters solves the 

convection problem for small Courant numbers ( / 0.1c u h  ). From the results of the calculation 

of the diffusion problem, it follows that for explicit schemes there is a limitation 
2

max max, / 2 , 0.01h         . From these estimates it follows, that / 2 0.1u h    or 

/ 0.2 / 20Pe u h     , where Pe  is the is the grid Peclet number [13]. In this range of Peclet 

numbers, the proposed approximation of the convective transfer operator will be effective (the case 

of the absence of monotonicity of schemes constructed on the basis of central difference 

approximations is considered 2Pe  ).  

3. Solution of convection-diffusion problem 

Consider the convection-diffusion equation [2,3]: 

t x xxq uq q    ,     (14) 

where  0,t T ,  0,x l , with boundary and initial conditions: 
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   00,q x q x ,    ,0 , 0q t q t l  , u const . 

The approximation of the problem (14), taking into account the difference analogue of the 

convective transfer operator (13), is written in the form: 

1 1

1 1 1

1

1 1 1 1

2

4

3 2

2
2 , 0,

3 3
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i i i i i i
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 
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 

  



   
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   (15) 

1 1

1 1 14
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 

  
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   
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1

1 1 1 1

2

2
2

3 3

n n n n n n n

i i i i i i iq q q q q q q
u

h h






      
   , 0u  . 

Model problem IV. It is required to find a solution to the equation: 

t x xxq uq q    , 0.5u   m/s, const  , 0 t T  , 0 x l   

with initial and boundary conditions: 

 0 (70 ) (60 ),q x x x    
 
   ,0 , 0q t q t l  . 

 

Fig. 4. The graphs of the error function 
n  of the model IV solution based on the difference scheme 

(15) and the cabaret scheme with limiters of the solution in the L1 norm depending on the grid Peclet number  

The solution of the model problem IV can be represented as [8]: 

 
2 2

1
0

1

, sin( )
N

m t

m

m

q t x c e mx 






 , 0 0

0

2
( )sin( )

l

mc q x ut mx dx
L

  ,
l


  . 
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Fig. 4 shows the graphs of the error function n  of solving the model problem IV based on 

the difference scheme (15) and the Upwind Leapfrog scheme with limiters of the solution in the L1 

norm depending on the grid Peclet number. The parameters of the computational grid: space step h = 

1 m, time step τ = 0.02 s, space interval 200L   m, time interval value T is 100 s, the diffusion 

coefficient is in the range from 5 × 10-4 to 0.5 m2/s. 

Remark 4. From the results of calculating the model problem IV, it can be seen that the 

proposed scheme (15) has an insignificant error in the range of Peclet numbers 20Pe  . 

The approximation of the problem (14) on the basis of explicit central difference schemes will 

be written in the form [10,12]: 

1

1 1 1 1

2

2

2

n n n n n n n

i i i i i i iq q q q q q q
u

h h






      
  .    (16) 

Fig. 5 shows the graphs of the error function 
n  of solving the model problem IV based on 

the difference scheme (15) and the central difference scheme (16) in the L1 norm, depending on the 

grid Peclet number. The parameters of the computational grid: space step h = 1 m, time step τ = 0.02 

s, space interval 200L   m, time interval value T is 100 s, the diffusion coefficient is in the range 

from 5 × 10-3 to 5 m2/s. 

 

Fig. 5. The graphs of the error function 
n  of solving a model problem IV based on a difference 

scheme (15) and a central difference scheme (16) in the L1 norm, depending on the grid Peclet number 

Remark 5. From the results of the calculation of the model problem IV, it can be seen that 

the central difference scheme (16) has a smaller error in the range of Peclet numbers from 0 to 2 

compared to the proposed difference scheme (15). Based on the above, it can be concluded that the 

proposed modification of the Upwind Leapfrog scheme (15) is effective for solving the diffusion-

convection problem in the range of Peclet numbers 2 20Pe  . 
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Conclusion. An explicit scheme has a stable solution under constraints  2O h  , and a 

scheme with weights with 0.5   has no restrictions on the time step. In practice, in order for the 

calculation error, based on a difference scheme with weights 0 1   to be in an acceptable range, 

you must use the following restriction for the time step 

1

2

1

2 /
r

i i

i

h 





 
  

 
 , where r  is the 

dimension of space. The parameter   describes the ratio of the step that is necessary to take in order 

for the accuracy of the calculations to be in an acceptable range   to the step obtained from the 

constraint on the stability of the explicit scheme max , and there is an estimate 0   . When solving 

problems of diffusion-convection, it is necessary to find values   differently, if the step   is taken 

too large, then the error will be large, and if small, the computational effort is large. For an explicit 

scheme, it is recommended to take the parameter   equal 0.01 , and for a scheme with weight 0.5 

, the parameter can be taken equal to 0.3. 

The solution of the convection problem on the basis of central difference schemes is not stable; 

at the same time, for solving this class of problems, the Upwind Leapfrog scheme with limiters 

showed its effectiveness. From the results of the calculation of model problem III, it can be seen that 

the proposed modification of the Upwind Leapfrog scheme is more accurate than the Upwind 

Leapfrog scheme with limiters for small Courant numbers ( 0.1c  ). From the results of the 

calculation of the diffusion problem, it follows that for explicit schemes there is a limitation 
2

max max, / 2 , 0.01h         . It follows from these estimates 20Pe  , where Pe  is the grid 

Peclet number. 

From the results of the calculation of the model problem IV, it can be seen that the central 

difference scheme has a smaller error in the range of Peclet numbers from 0 to 2 compared to the 

proposed difference scheme. Based on the foregoing, it can be concluded that the proposed 

modification of the Upwind Leapfrog scheme is effective for solving the diffusion-convection 

problem in the range of Peclet numbers 2 20Pe  . 
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Повышение гладкости численного решения моделирования задач гидродинамики на 

прямоугольных сетках  

А.Е. Чистяков, А.М. Атаян 

Донской государственный технический университет, Ростов-на-Дону, Российская Федерация 

 

Для решения задачи переноса предлагается использовать схему, основанную на 

линейной комбинации схемы «Кабаре» и «Крест» с весовыми коэффициентами, полученными 

из условия минимизации порядка погрешности аппроксимации. Оценка погрешности 

аппроксимации предложенной разностной схемы показывает, что для малых чисел Куранта 

предпочтительнее использовать эту схему, погрешность аппроксимации которой равна 

O(ch2), где константа c значительно меньше единицы, чем исходные схемы «Кабаре» и 

«Крест», погрешности аппроксимации которых равны O(h2). Предложенная модификация 

разностной схемы «Крест» эффективна для решения задачи диффузии-конвекции в диапазоне 

чисел пекле 2≤Pe≤20. 

Ключевые слова: схемы расщепления по физическим процессам, линейная 

комбинация схемы «Кабаре» и «Крест» с весовыми коэффициентами. 
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