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The article is devoted to the study of the model of transport and sedimentation of suspended
solids in the coastal zone. The model takes into account the following processes: advection
transport due to the movement of the aqueous medium, microturbulent diffusion and gravitational
sedimentation of particles of the suspension, as well as a change in the geometry of the bottom
caused by the sedimentation of particles of the suspension or the rise of particles of bottom
sediments. The article presents the results of a study of the correctness of the initial-boundary-value
problem corresponding to the constructed model. Software package has been developed for
predicting possible scenarios for changing the geometry of the bottom of reservoirs in shallow water
using high-performance computing.
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Introduction. The study of dynamic effects in the coastal zones of water bodies is very
relevant in connection with the study of sedimentation and sedimentation processes, the generation
and evolution of accumulative forms, the determination of the morpholithodynamic regime of the
adjacent coastal zone [1]-[4]. The most widely accumulative forms are presented in the conditions
of a gentle slope of the underwater and surface parts of the coast, i.e. on shallow shores, where
conditions of shallow water and deformed waves dominate at a considerable distance from the coast
[5]-[6]. Under the action of waves and currents, the material begins to move, undergoing sorting in
accordance with the shape and mass of individual fractions, as well as mechanical and chemical
changes. As a result, a flow of suspended solids is formed in the coastal zone, contributing to the
formation of sediment.

Non-stationary spatially 3D models of suspension transport have been introduced into the
practice of mathematical modeling relatively recently and have been verified by numerically
solving a number of model and some real problems [7]-[10]. The authors (Sukhinov A.l.,
Sukhinov A.A., Chistyakov A.E., Protsenko E.A., Degtyareva E.E., Sidoryakina V.V.) previously
proposed spatially 3D model of suspension transport, taking into account the following physical
parameters and processes: advection transport due to the movement of the aqueous medium,
microturbulent diffusion and gravitational sedimentation of particles of the suspension, as well as a
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change in the geometry of the bottom caused by the sedimentation of particles of the suspension or
the rise of particles of bottom sediments. In this work, an analytical study of the correctness of the
initial-boundary-value problem corresponding to the constructed model is carried out. Based on the
developed parallel algorithms implemented as a complex of programs, numerical experiments were
performed for model problems of bottom sediment transport and bottom topography transformation,
the results of which are consistent with real physical experiments.

Physical statement of the problem. Comprehensive studies of aquatic ecosystems are an
integral part of environmental management. An important place in these studies is the study of the
movement of suspensions, which are the starting material for the formation of bottom sediments.

In oceanology, particles of various origin, passively suspended in sea water and having sizes
from 0.5 um to 1 mm, are considered to be suspensions. Particles may consist of organic and
inorganic substances. Inorganic minerals consist mainly of clay minerals (silica, alumina,
montmorillonite, illite, etc.) and non-clay minerals (quartz, mica, etc.). Organic materials can exist
in the form of plants and bacteria.

The main factors of weighing, redistribution and transport of bottom material is the combined
effect of waves and currents. A particle involved in the flow moves in the direction of the water
flow and, under the influence of variables in magnitude and direction of pulsating velocities,
simultaneously continuously makes vertical movements (rises — falls) (Fig. 1).
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Fig. 1. Scheme of movement of suspended and entrained sediments

In the process of vertical mixing, the particle can sink to the bottom and remain on it until the
moment when the lifting force is sufficient to detach it.

Suspension particles differ in size, density, area and, therefore, physico-chemical activity,
different residence times in water and sedimentation rate. The mass of suspended solids in the
volume of water is characterized by their concentration. The concentration of suspended particles is
associated with seasonal factors and the hydrochemical regime of the reservoir, and also depends on
anthropogenic factors.

Since it is very difficult to obtain data on the concentration of suspended matter in a pond
from field data and in each case the available data may be incomplete, this problem often requires
solving using modern methods of mathematical modeling.

Continuous 3Dmodelofdiffusion-convection-suspensionandthecorrespondinginitial-
boundaryvalueproblem. Let us consider a continuous mathematical model of suspended matter
propagation in an aqueous medium, taking into account diffusion and convection of suspended



COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES VOL.2. Ne 2 / 2019

matter, the effect of gravity on suspension, the presence of a bottom and a free surface. We will use
a rectangular Cartesian coordinate systemOxyz, where the axis Ox passes on undisturbed water

surface and is directed towards the sea, the axis Oz directed vertically down. Let be h=H+7,— total
water depth, [m]; H — depth with undisturbed surface of the reservoir, [m];  — elevation of the free
surface relative to the geoid (sea level), [m].

Let in the closure area G_:{OSXSLX,OSySLy,OSZSH(X,y)} there are suspended particles that are

at (x,y,z) and at the time t have a concentrationc=c(x,y,zt), [mg / I]; t— temporary variable, [s].
We will also use the notationL=_max_H(xy).

OSXSLK,OsysLy

The behavior of suspended particles will be described by the following system of equations:

acIa(uc)}é(vc)Ia((WJfWg)C): (azc.azc\l of @)JFF,

o ox oy | @z o oy ) ol "ez M
oH ¢

= Cwe,

ot p?

where uyvw— vector components U fluid velocity, [m / s]; w — hydraulic particle size or

sedimentation rate, [m / s]; x, 1, — coefficients of horizontal and vertical turbulent diffusion of

particles, respectively, [m? / s]; F— power sources of particles; s— bottom porosity.

The terms on the left side (except for the time derivative) of the first equation of system (1)
describe the advective transport of particles due to the inertial motion of the aquatic environment
and sedimentation under the action of gravity. The terms on the right-hand side describe the
diffusion of the suspension. The vertical diffusion coefficient is chosen different from the horizontal
diffusion coefficient due to the fact that the effect of the difference of these coefficients is often
observed in different environments and can be caused by various factors.

Add to system (1) the initial and boundary conditions (assuming that the deposition of
particles on the bottom is irreversible).

As initial conditions at timet=0 accept

c(xy,20)=C(xy.2); ()

H(xy.0)=H,(xy). (3)

We set boundary conditions on the edges. ABCDAOCD, (set streams of suspensions both
towards the coast, and along the coast)

—on the edges S=AAOB(x=00<ys<L,0<z<L),S,=AADD(y=L 0<x<L,0<z<L) and

S,=BOCC(y=0,0<x<L,,0<z<L,)

c=c", where c'=C’(x,y,z)t€f0T]; (4)
—on the edges $,=DDCC(x=L,,0<y<L,0<z<L ) and S=A0CD, (z=0,0<x<L,,0<y<L )
c=0; ()

—on asurface S;=ABCD(z=H(xy.)0<x<L,0<y<L )



COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES VOL.2. Ne 2 / 2019

w w
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The boundary condition (5) takes place with relatively small bottom slopes:

max (BH) aH 01.
% OX 8y

The following condition of nondegeneracy of the solution domain is set for all (x,y;t) under

which the initial boundary problem is posed:
H(x,y;t)=h =const>0, 0<t<T. (7)

When studying combined sediment and sediment transport models, it is possible to increase
the concentration of suspended particles in the bottom layer due to the rise of sediment particles
when the shear stress exceeds a certain critical value [11]-[16]. Then instead of the boundary
condition (6) we will consider the boundary condition of the form

@:ac, a=const>0. (8)
0z

Linearization of the initial-boundary value problem of transport and sedimentation of
suspensions.In order to create a linearized model on a time interval O<t<T build a uniform grid

in steps ¢, ie many points @:{tnznr,n=01...,N,Nr=T}.

Functions c®(x,y,zt ) and H®(xyt ) we define at each step of the time grid o_. If a n=l,
then as c¥(x,y,zt), HY(xy.t)) it is enough to take the functions of the initial condition, that is
c(xy,z0)=c(xY,2), HO(x,y;t )=H,(xy) ~ respectively. If  n=2..N, then  functions
cO(xy,zt, )=c"3(x,y,zt, ) assumed to be known, since problem (1) - (6) for the previous time
interval is assumed to be solved t_ <t<t |

System (1) in the gap t_ <t<t we write in the form:

act  o(uct)  o(ven) 8((W+Wg)c<">): (azcm) ) o acm)j .

ot ox oy 01 o oy ) o ez ©)
OH" ¢
=——w.ch
ot p?
and supplement it with the initial conditions:
(X Y.zt )=c,(x.y.2)c(x Y,z b )=c"(xy,z8, ) n=2...,N. (10)
HO(xy.t )=H,(xy)HO(x,yt,_)=H(xyt ).n=2...,N. (11)

The boundary conditions (4) - (6) are assumed to be satisfied for all time intervals
t <t<t n=12,..,N.

Defining the function c®(xy,zt )=c"¥(x,y,zt_) in the time interval t <t<t , can find

function H<”>(x,y,tn71). To this end, we integrate both sides of the second equation of system (9) over

the variable t,t _<t<t . Will get
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t, (n)
[ gt=—w fcot. (12)
¢, Ot p o
From equality (12) it is not difficult to get
t
Ho=He—Lw > fondt (13)
p O,
We introduce at each time step t <t<t n=12..,Nregion

G, ={0<x<L,0<y<L ,0<z<H™(xyt )} .
We have a chain of linear initial-boundary value problems for each time layer, where for the
interval t <t<t n=12..,N view system is considered

ac™ o(uc) o(ve) 6((W+Wg)c(">) ocm azcm)\ o aco
: : : = : — U +F, 14)
oxe oy ) o\"" oz

ot OX oy 0z
(xY.2)€G,, , G, ={0<x<L,0<y<L,,0<z<H™(xyt )},
)
Ho=He1-Ew > fendt, n=L2,..,N. (L5)
p nzltn—l
with initial conditions:
cO(xy.zt )=coI(xy.zt ), (16)
HO(Xyt )J=HI(xyt ) (17)

Note that at each time step, the boundary surfaces will change (except the face S,).
Considering the time span t_<t<t , we carry out the task of boundary conditions on the edges of the
region G_

—on the edges S, (x=0,0<y<L ,0<z<H®(0,yt ), S, (y=L,0sx<L,0<z<H®3(xL t )) and
S, (Y=0,0<x<L,,0<z<He3(x,0t, ,))

3,n-1

cV=c", rmec’=C’(xy.zt)teft .t ]; (18)
—on the edges S, (x=L,0<y<L,0<z<H®3(L,yt )) and S, (z=0,0<x<L,0<y<L }=AOCD,
cv=0; (19)
—onasurface S, (z=H(xy}t )0<x<L,0<y<L)
0 _ Yoo or 8 Yo (20)
on u 0z u,
The boundary condition (8) will be replaced by the following
")
oc =ac™, a=const>0. (21)

Thus, it is assumed that the bottom relief within a given time step when calculating the
distribution of concentrations of suspended matter does not change and is taken from the previous
time layer. Initially at this time step t_<t<t ,n=12,.,N the initial boundary value problem is solved

for the convection-diffusion equation (14) with a fixed bottom relief function H®?, and then an
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update (recalculation) of the relief function is performed H® in accordance with equality (15). The
determination of the conditions of existence, uniqueness and continuous dependence of the solution
on the input data of the problem is carried out on a fixed time layer in these assumptions and subject
to condition (7).

We will not investigate in this paper the existence of solutions of the initial boundary value
problems (14) - (20) and (14) - (19), (21). Questions of the existence of solutions of initial-boundary
value problems for equations of parabolic type with lower derivatives (diffusion-convection
equations) are considered, for example, in monographs [17]-[18].

Investigation of the uniqueness of the solution of the initial-boundary problem of
suspension transport.Consider the initial boundary value problem (14) - (20), formulated for an
arbitrary time layert <t<t .

Multiply the left and right side of equation (14) by the function c¢® and get:

n n n () n n n
e ﬁm{a(uc( ), otven) () )}mcm{—azc( o0 )j+c<">g(uvaai“)+cw (22)
z

ot | ox oy o1 oxt oy ) oz

The left side of equality (22) can be transformed as follows:

0 o o(uc?), o(ve) ((W+W) ) _1(c"y cndiv(cT)=
ot X oy 0z 2 ot

(23)
16(c) 1 .
> dlv((c >)U)
whereU:‘p,v,w+ngT.
In view of (23), equation (22) will be written as
0 e Q)
Lo )+ dlv((c<">) U) o] &€V, O°C +c<">g(y ac )+c<">F. (24)
2 ot oxt  oy? 0z\' " 0z

Then we integrate both sides of equation (24) over time on the interval t_<t<t and, after this,
by spatial variables in the region G ,. In the first term, the order of integration is changed by the
Fubini theorem [19]. Will get

m( A, o 14 oo,
oo o

The first term on the left side of (25) is obviously equal to

03 17 e, ey xvany e oo o

-1

(25)

Next, we turn to the transformation of the second term of the left-hand side of equality (25).
Taking into account the Ostrogradsky-Gauss formula and the boundary conditions (18) - (20), it can
be written as [20]
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j( = Hdlv((d" U)dG jd j[ﬂ(c)(u n)dydz)dt+—t"jl( [[cw dxdyjdt+

6 -1

| e {0 e 2] (e fuyer - 7

2 -1

—j(ﬂ vdxdzjdt+—j£ﬂ vdxdzjdt+—tnj£jj (cm) dedy)dt

31 21 61

where U*is the known velocity of the aquatic environment on the faces, where the boundary
conditions of the first kind are specified; in fact, this is all the side faces, except S

S

5n-1"

and top cover

4,n-1
on which the suspension concentration is zero, and therefore the flows through them are zero.
Let us turn to the transformation of the right side of (25). There is equality

el g el e

( of _.oc 0 oc
_ c chn—=_ |+—={ cM dG — 28
M[ OX ) ﬂ“@y 8yj 62( 2wy 0z ﬂ (28)
2
och och oc
- dG .
m{ (6X) (5)’)”{ 62” -
= oc och oc .
Let be Q=Q ,Q ,Q =< uCV—— p c"——c"y Then, by virtue of the Ostrogradsky-Gauss
0={Q.Q,.Q} {#h Py 82} y gradsky

theorem, we have:
2C", O w9, O o, O _ _
Iﬂ[ AX(C() j !l“ay Uayj 5(C() u— ﬂdGnl ﬂjdvadG
- H Q dxdz+ ﬂ Qdydz+ jj Q dxdz+ HQ dydz+ H Q, dxdy+ ij dxdy= (29)
= II Q dxdz+ IJ Q dxdz+ J J Qdydz+ JI Quxdy.

Transforming each term from the rlght-hand side of (29) subject to the conditions on the
boundary (18) - (20), we obtain

Iﬂ[ {C(") ) ”h;,(c(maacy) ai( ol ﬂdG“: (30)

=s!£ lc*M‘a—ded“ 33” 1C*M‘a_dedz+S£C%§dydz_s!n[Wg(C("))dedy'

Taking into account (26), (28), (29) and (30), equality (25) takes the form
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M e
2w dxdyjdwj[u (o2 ol 22 oo

:Em(c@)z(x,y,z,tn_l)dGn_1+t"j£g!c<">FdGn_ljdt.

Identity (31) will be fundamental in the study of uniqueness and obtaining an a priori estimate
of the norm for the solution of the initial-boundary value problem (14) - (20). In the case of
replacing the boundary condition (20) with the boundary condition (21), the quadratic functional
(31) changes as follows:

(31)

ey xy2t )06, - ;[n( e fuscul jdydzjd

g Eeren jdXded”t"fl(szﬁl( - Cuhayjdxdz}

+:lesﬂlewg a,u)(c )y dxdy dt N Il:m( é’c() 6c(> +,uv[ag:)) JdG }dt- (32)
:Em(c@ (xyat | dGn_1+tnj£g{c(n>|:dGH]dt

Suppose that equation (14) with the same conditions (16) - (20) satisfies two different
solutions of the problem ¢=c(x,y,zt),c,=c,(x,y.zt) . For their difference c=c—c, The following initial

boundary problem is valid:

ac a(UC) (VC) o(w+ Wg)a): %(GZC 520) 9 ( 50} (33)

ot oy 0z ox? 0y?

c(x,Y,2,0)=0,(x,y,2)eGn-1, (34)
- on the edges S:Ln 1’SZn 1’Ss,n-1’sa,n—1’ Ss,n—l

¢=C'—Cc'=0; (35)
-onasurface S, |

oc_ W, W,

CAS L T S T 36

oz _ﬂv( 1 2) i ( )

For functionc equality (33) will take the form in view of equalities (34) - (36)

Slliexyat e, - jl( chzdxdyjdw

6 1

A oA (2 o

(37)



COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES VOL.2. Ne 2 / 2019

Insofar as w >0 and other known quantities under the sign of integrals are positive
4.>0, 12 >0, then equality (36) is satisfied only under the condition
e(x,y,z)=0, (x,y,2)eG ,t <t<t, (38)
which completes the proof of the uniqueness of the solution of the initial-boundary value problem
(14) - (20).
In the case of replacing the boundary condition (20) by the relation (21), instead of the
expression (37), we obtain the equality

—IHCZ(X y.zt )G, + jl( j [ 1(—w —a jczdxdyjdtJr

cY (oc (39)
+ +u| —| [dG , |dt=0.
I{m{ (8Xj (ayj ﬂ“(c’iz” ”'1}
Demandfulfillmentofinequality
1
o —ap>0, (X,y,2)eS, 1, <t<t,
or
w
as—=, (xYy.2)eS,, ,t <t<t, (40)
2u,

then all the terms in equation (39) are non-negative and equality to zero is possible if and only if
e(x.y,zt)=0, (x,y,2)eG_,t <t<t, which means the uniqueness of the solution in this case too.

n-1'
Reasoning is similarly repeated for all layers of the time grid «_. The change in the boundary

conditions associated with the continuous change of the bottom relief depending on the time
variable requires additional research and is beyond the scope of this article.

Theorem. Let given a system of equations

ac™  g(uc) a(ve) 8((W+Wg)c<">)= o 5zc(n\ o ac(n))+F
ot ox oy a2 o oy ) oo ST
(xy,2)eG, , G, {0<x<L 0<y<L,0<z<H™(xyt )}

n-1?

Ho=Hoo_Ew Zjd”dt n=12...,N
p

in a simply connected domain © =G _x(t <t<t), G, ,=(0<x<L,0<y<L 0<z<H"¥(xyt )} with a
fairly smooth boundary defined by the smoothness of the function z=H®¥(x,y), O<x<L,0<y<L,
with initial and boundary conditions (16) - (20). Let solution functions c®(x,y,zt ,), water velocity
vector Hu,v,w+ngT, initial condition c¢™3(x,y,zt ), right side F(xy,zt),boundary condition
c(xy,zt), coefficient of vertical turbulent exchange s =u(z),(xy,2)eG,, satisfy the following
smoothness conditions: cO(xy,zt )eCy(Q, )NC(Q, ), gradceC(Q, ),
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fovawsw]| <0, JnC(@, ) €(xyzt, JC(B, ). FoyateC@,),  w(eydeCi(G, )G,

c(xy.zt)eC(S Mt _<t<t] S,,=G \G, ,, %GC((OSXSLX,OSySLy, z=HOI(x )t <t<t]), as well as

the conditions of consistency of the boundary and initial conditions, c1(x,y,z,0)=c(X,y,z),

M, (0<x<L,0<y<L,z=H®¥(xy)),  then the
w

g

(xy,2)eS, \(0<x<L,0<y<L, z=H®3(x, y)) 5 T
z

solution to this problem exists and is unique.

Comment. If the boundary condition (20) is replaced by the boundary condition (21),
inequality (40) should be added as a sufficient condition for the fulfillment of the previous theorem.

Investigation of the continuous dependence of the solutions of the initial-boundary value
problem of suspension transport on the initial, boundary conditions and the function of the
right-hand side.The next stage is connected with the study of the continuous dependence of the
solution on the functions of the right-hand side, the boundary and initial conditions for the system
(14) - (15).

We will assume that

c=c=const>0,

0<x<L,0<y<L ,0<z<HO(x,yt )t <t<t. (41)

For convenience, we introduce the following notation: the union of all parts of the lateral
surface the area borders G_, denote as S_ ,, and the lower base of the area G, —S, .. By virtue of

c,n-1 n-1 b,n-1

the smoothness conditions listed under the conditions of the Theorem, extremes of functions on

bounded closed sets are reached.:
ocloch
=maxjc) M —m H
L e @

M3’"'1_rr3]c,na:1x{'uh} M4”‘1 Sen by <t<t"]{|u| M} —_rg“!p{ltlh’ﬂv}'

We will focus on equation (31) if the boundary condition (20) is used, and equality (32) in the
case of the boundary condition (21). Drawing on the Friedrichs inequality, we have a chain of

inequalities:
ac "> c<n oc
Hf( j o )jdG 2
acoY (ocmY (acy
LG W{( ox ) ( oy ) { oz ) ]dG“Z )

1 1.
o, oo e .

Let us turn to equation (26), from which, by virtue of (42) and (43), we obtain the inequality:

127
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0YdG, -+ Aty 1t h 0} -
i, {r{e o Jgee.
+3j ( I wg(c<n>)2dxdy]dtg flezdG, M, ( I (c*)zdSn_JdH )

1
6\ Sen

+zM2‘MM3,nj( i |c‘1dSn1jdt+2Mlnltn (jjj|F|dGnlet.
Sent

L) 1\ Gyt

Cad

From inequality (44) there are two inequalities

[ j j (cVYdG, < I j j cd G”1+M“'"1JLCJ j 1(c*)2d Snljdt+

) ; (45)
om,, [ [, fieaw, [P,
t\Sena 1\ G
and
[lieydG, <M [ llcdG, +
o o (46)

M, ] [ i (c*)zdSnljdt+2M2,n1M3‘nj( i |c“|dSnljdt+2Mlan(m|F|dGnJdtj.
tn& Sc,nfl tﬂfl Sc‘nfl tﬂfl anl

-1
where M, = 1 (nz L : L : 1 5| -
"1 9M sz Ly2 (H(n—l))

5n-1

From the obtained inequalities, it follows the continuous dependence (stability) of the solution
of problem (14) - (20) on the functions: the initial condition, the boundary conditions and the right-
hand side L, for any point in time O<T<+oo, as well as in time integral L, .

Obviously, with the fulfillment of inequality (45) and the conditions of the Theorem, the
initial boundary value problem (14) - (19), (20) will also have a solution that depends continuously
on the functions: the initial condition, the boundary conditions and the right side in the
corresponding norms.

Description of the parallel algorithm. A software package implemented in C++ has been
developed for constructing turbulent flows of an incompressible velocity field of the water medium
on high-resolution grids for predicting sediment transport and possible scenarios for changing the
geometry of the bottom area of shallow water reservoirs. Parallel algorithms implemented in the
software package for solving model problems arising in the process of sampling systems of grid
equations were developed using MPI technology.

To solve this problem, we used an adaptive modified alternately triangular method of minimal
corrections. In parallel implementation, the methods of decomposition of grid areas for
computationally time-consuming diffusion-convection problems are used, taking into account the
architecture and parameters of a multiprocessor computer system. The decomposition of the
calculated two-dimensional region is performed using two spatial variables . The peak performance
of a multiprocessor computer system is 18.8 teraflops. As computing nodes are used 128 similar 16-
core Blade servers HP ProLiant BL685c, each of which is equipped with four 4-core processors
AMD Opteron 8356 2.3 GHz and RAM in the amount of 32GB.
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The software package is used to calculate the geometry of the bottom of shallow water
reservoirs and includes the following blocks:

— control unit, it contains a cycle on the time coordinate and calls the functions: calculation of
the speed field without taking into account pressure, calculation of the elevation function, speed
field refinement, calculation of the depth field and data input / output functions;

—a block for constructing grid equations for the velocity field without taking into account the
pressure in accordance with the finite-difference scheme. The coefficients and the right part of the
corresponding grid equation presented in canonical form are considered and written to the array;

— block for constructing grid equations for calculating the elevation function;

— block for calculating the velocity field taking into account the elevation of the level (result
of this block is the calculation of the values of the velocity vector field on the next time layer);

— block for calculating grid equations by adaptive modified alternately-triangular method of
rapid descent;

— block of output values of the velocity field in the file.

Numerical experiments modeling the sediment transport and the dynamics of changes of
the bottom topography. After the development of the software package, a series of numerical
experiments was performed to simulate the dynamics of changes in the bottom relief of a complex
configuration in the coastal zone of the reservoir. The model problems assumed the presence of
obstacles on the bottom surface (boulders, underwater breakwaters, breakwaters, dumps, jetties,
spurs, etc.) and various irregularities underlying its surface. As an example, the paper presents the
results of modeling the dynamics of changes in the bottom for the case when there are obstacles on
its surface in the form of pointed structures-intermittent bun. Due to the retention of sediment,
boons not only stop the movement of the material carried by the waves along the shore, but also
contribute to its deposition. These structures are one of the best means to protect the coast and
prevent the invasion of the sea to the mainland.
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Fig.2. The geometry of the calculated area at the initial moment of modeling (a-the position of the
isolines of the depth function, and-the bottom relief)
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The simulation area under consideration has dimensions of 55 m by 55 m horizontally and 2
m vertically (in depth), the peak point rises above sea level up to 1 m.Assume that the liquid is at
rest at the initial moment of time. The size of the calculated grid is equal to 110by 110, the step on
spatial variables is 0.05 m, the step on time is 0.01 s, the wind speed is 5 m/s and is directed from
left to right.

Fig.2 shows the initial position of the isolines of the function of depths and bottom relief, the
feature of which is the presence of three bottom bun. Fluctuations in the isoline of the depth
function are observed in the Central part of the calculation. These structures have a length of up to
15 m and are located at a distance not exceeding 10 m from each other. The structures are
completely submerged in the reservoir, and their maximum height is 1.25 m.

Modeling the process of sediment transport showed that over time there is a «smoothing» of
the roughness on the surface, the formation of sediments, a decrease in the depth of the slope of the
bottom of the coastal zone and, as a result, a gradual shallowing of the considered area of the
reservoir. So, after 5 minutes after the beginning of modeling the isolines of the depth function in
the center of the calculated area became undulating, and in the area of the location of the boon-
sinuous.
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Fig.3.The geometry of the calculated area 5 minutes after the start of the simulation (a — the position
of the isolines of the depth function, b — the bottom relief)
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Fig. 4. The geometry of the calculated area 15 minutes after the start of the simulation (a — the position
of the isolines of the depth function, b — the bottom relief)
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Sediment deposition occurs in the interbunar compartments, and the pointed peaks of the
boon have deformed and taken the form of gentle hills. As a result of these processes, there is a
decrease in the depth of the coastal zone and the increase in the beach area (Fig. 3).

More clearly, the results are presented in Fig. 4, when the simulation time was 15 min. the
isolines of the depth function acquire a soft wavelike shape over the entire calculation area,
including the areas of peak values. There was an active process of long-distance movement of
sediments and lowering the depth level. So, during the specified estimated time in the interbunny
compartments, the depth decrease was about 0.5 m. the height of the slides is reduced, and the
slides themselves become more «smoothed» appearance.

Conclusion.The paper presents a software package for predicting possible scenarios for
changing the geometry of the bottom of shallow water reservoirs using high performance
computing. Numerical experiments were performed for model problems of bottom sediment
transport and bottom relief transformation, the results of which are consistent with real physical
experiments. The proposed mathematical model and the developed software package allow us to
predict the dynamics of the behavior of the bottom surface, the appearance of sea braids and ridges,
their growth and transformation.
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HporpaMMan‘i KOMILJIEKC ITPOTrHO3UPOBAHUA BO3MOKHBIX CHCHAPUEB UBMCHCHUSA T€COMECTPHUHA

AHA MCJIKOBOJIHBIX BOJOE€EMOB C UCII0JIB30BAHUEM BBICOKOIIPOU3BOAUTEIbHBIX BbIYHMCJICHHH "

A.H. Cyxunos!, A.E. Yucrsakos!, B.B. Cunopsikuna?, E.A. IIpouenko?, C.B. Iponenxo’

1210HCKOI71 rOCYy/JapCTBEHHBIM TEXHMYECKUN yHuUBepcuTeT, Pocros-Ha-lloHy, Poccuiickas®enepanus
2TaraHporc1cm71 uHctuTyT uMenu A.I1. Yexosa (dunman) PocToBckoro rocysapcTBEHHOrO 3KOHOMHUYECKOT 0

yaupepcutera (PUHX), Taranpor, Poccuiickas ®enepanus

Hacrosimas paboTta mocpsiiieHa M3y4eHUIO MOJETU NMEPEeHOCca M OCaX/IECHUS B3BEIICHHBIX
BEUICCTB B HpI/I6p€)KHOI71 30oHe. KommiekcHbre HCCIICA0OBAaHUA BOIHBIX DJKOCHUCTEM ABJIAIOTCA
HEOTHEMJIEMOM YacCThIO PAIIHOHAIBHOTO MPHUPOIONOIL30BaHMA. B 3THX HCCIEOBaHUAX BaKHOE
MCCTO 3aHMMACT H3YYCHHC IICPCMCIICHUA B3B€C€I71, ABIIAIONIUXCA HMCXOAHBIM MAaTCpUuaioM IJisd
o0Opa3oBaHUsl JOHHBIX 0CaaKOB.OCHOBHBIMU (DakTOpaMH B3BEUIMBAHUS, MepepaclpeieseHus] U
TpaHCIIOpPTa JIOHHOTO MaTepuaja SBISETCI KOMOWHHUPOBAHHOE BO3JCHCTBHE BOJIH WM TEUYCHHM.
qaCTI/IHa, BOBJICUCHHAA BHYTPb IMOTOKA, ABYIKCTCA B HAIIPABJIICHWKW BOAHOI'O0 IMOTOKAa W, HAXOIAChb
MO/ BO3JEHCTBHUEM IIEPEMEHHBIX [0 BEJIMYMHE W HAIPABJICHUIO MYJbCAMOHHBIX CKOPOCTEH,
OJIHOBPEMEHHO  HEMPEPHIBHO  COBEpIIAECT  BEPTHKAIbHbIE  JABMKEHHUA  (LOJHUMAETCs  —
omyckaetcsl).MoJienb yYuThIBaeT CIeAYIOIINEe MPOIECChl: aBEKTUBHBIN MEePeHOC, 00YCIOBICHHBIN
JBUKEHHEM BOJHOW Cpeabl, MUKPOTYpOYyJIeHTHYI0 AU(PQY3UI0 U TPABUTALMOHHOE OCAXKJECHUE
YacTHUIl B3BECH, a TAaK)KE€ U3MEHEHUE M€OMETPHUH JTHA, BHI3BAHHOE OCAXJACHUEM YacTHUIl B3BECH WIIU
MOABEMOM YACTHI] JOHHBIX OTJIOKEHHH.B crarbe mpencTaBieHbl pe3ynbTaThl HCCIEAOBAHMS
KOPPEKTHOCTH HAYaJbHO-KPAeBOM 3aJa4yM, COOTBETCTBYIOIICH MOCTpoeHHOW Mozenu. Paspaboran
MPOrPaMMHBIN MaKeT JUIsl MPOrHO3UPOBAHUS BO3MOXKHBIX CIICHApUEB M3MEHEHUS T'€OMETPUH JHA
BOJIOEMOB Ha MEJIKOBO/IbE C MCIOIb30BaHUEM BHICOKOIIPOU3BOUTENBbHBIX BHIUMCICHHH.

KarwueBblecsioBa: pacnpe/ie/icHHbIE BEIYUCIICHHS, BRICOKOTIPOU3BOIUTEIbHBIC BEIYHUCIICHUS,
napajuieNIbHOe TMPOrpaMMHUpPOBAHKUE, MaTeMaTHYeCKash MOJIeNb, TUHAMHUKAa MOPCKHX HAHOCOB,
penbed aHa.
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