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In the present paper the problem of non-interacting ideal gas kinetic model construction is 

considered. The direct simulation Monte Carlo method was used for the problem solution. Results of 

statistical estimates derived from numerical simulation were presented. These results were compared 

with the analytic solution. Numerical error depending on particles and computing experiments were 

researched.  
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Introduction. The paper is devoted to the study of a numerical method related to modeling 

the features of gas flow in transport problems for dynamical systems consisting of noninteracting 

particles [1, 5]. Such problems include the description of focusing areas and cumulative phenomena 

in the dynamics of a photon gas, neutrons, and so on. [3]. 

The aim of the paper is to construct an ideal gas model using the Monte Carlo direct statistical 

simulation method and to study statistical estimates of macroscopic gas parameters in an elementary 

volume. 

Kinetic model of gas dynamics. The basis of the kinetic model is a dynamical system 

consisting of a statistically large number of particles. The motion of noninteracting gas particles can 

be described using the Liouville’s equation written in vector form: 

                                                    (1) 

where ( , )f t x  is the distribution function of i-th group of particles; iv  is the speed of i-th group of 

particles; x are the coordinates of the motion of particles; t is the time. 

Since the initial state of the system is unknown, ( , , )f t x v  is introduced N is a partial 

distribution function. Despite the fact that the state of such a system displays a curve in 6N is the 

dimensional phase of Г-space, from the point of view of the study of the dynamic system as a whole 

or part of it, macroscopic parameters such as density, pressure, temperature are most interesting. 
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Below is a description of the mean values of macroscopic parameters and statistical estimates 

of the density (2), the mass (hydrodynamic) velocity (3), and the internal energy of a unit of gas mass 

(4), temperature (5), and pressure (6). 
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where V is a measure of elementary volume; D(h) is an elementary volume; mj is a mass of j-th 

particle; vj  is a speed of j-th particle; R=8,314459(84) is s the universal gas constant. From equations 

(2)-(6) follows the standard Clapeyron-Mendeleev relation for an ideal gas ( p R T ). 

Estimation of errors in macroscopic parameters. One of the main advantages of stochastic 

calculation methods is due to the fact that it is possible to estimate the statistical error, i.e. In the 

course of the calculation, it is possible to calculate not only the average values, but also the variance. 

The statistical error decreases very slowly in comparison with other numerical methods. At the same 

time, it is impossible to compare certain influences of small effects on two reports [2, 4]. The error 

in the obtained statistical estimates of macroscopic parameters (hereinafter macroscopic parameters) 

can be estimated in the following ways.  

Estimation of errors in modeling  independent stories. The confidence interval is 
, in which the true value is found  random variable , distributed according to the 

normal law, with a given probability P, is defined as follows: 
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where  is the expected value Mξ; n is the independent stories (number of tests); xi  is an unknown 

values obtained as a result of testing;  is the unbiased variance estimate Dξ. Thus, it can be argued 

that a random variable ξ will not deviate from the mathematical expectation  in absolute value more 

than 3σ with probability 0,9975 (the rule of three sigma). 

Statistical fluctuation is the estimation of the error in the oscillation of macroscopic 

parameters, which is determined by the following expression: 

,                                                (10) 

where F is a macroscopic quantity; L is the number of particles in an elementary volume. 

Comparison of numerical results with analytical ones. In the case when there is an analytical 

solution for the problem, the accuracy of the numerical solution of macroscopic parameters, one can 

estimate the maximum absolute ΔF and relative δF error: 

                                                     (11) 

where Fnum is the numerical value; Fan is the analytical value;  0;t T  is the time interval. 

The dynamic model of the Euler’s gas motion. Let us consider an example of particles 

moving in opposite directions, in which the distributional density functions are determined by the 

following relations [3]:  
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where p0 =const > 0 is the initial density; ( )x  is the Heaviside’s function; 1 0 0v v   is the velocity 

of the particle; 2 0 0v v     is the velocity of the particle. 

Then the macroscopic quantities of the analytical solution for the Euler’s model have the 

following form:                                             
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The numerical model. An algorithm designed to simulate the dynamics of an ideal gas 

consists of the following steps: 1) setting the initial conditions; 2) calculation of the new particle 
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location; 3) calculation of macroscopic parameters; 4) preservation of intermediate results; 5) check 

the exit condition. 

Step 1. Initialization of the initial conditions (figure 1) includes specifying the parameters of 

particles, elementary volume and time step Δt. The initial location of the particles is determined 

randomly with a uniform distribution law on the interval  5;5 . The particle velocity modulus is 1, 

the direction vector is determined by formula (12). Elementary volume is installed in the center, its 

size is equal to  1;1  . 

 

 

Fig. 1. Computational scheme 

 

Step 2: Calculate a new location  i-th  particle is determined by the following iteration formula 

written in the vector form:  

                                   (16) 

where k is the iteration number;  is the coordinates i-th in the previous step; vi
(k) is the speed i-th 

particle; Δt is the  time step. 

For this task, setting boundaries and boundary conditions is not required. 

Step 3. Calculation of macroscopic parameters in an elementary volume is based on formulas 

(2)-(6). The size of the elementary volume must be chosen in accordance with the distance that the 

particle overcomes in one iteration ( ). 

Step 4. Save the intermediate results. In order to save computing resources, writing to a file is 

carried out through a special accumulation buffer, which allows you to write in large blocks at a time, 

while saving space in RAM during long calculations. 

Step 5. At the last step, the exit condition is checked. Steps 2-4 are one step in time t . Before 

the end of the program, the accumulated information is written from the buffer to the file for further 

processing. 

In order to improve efficiency, the sequential algorithm written in C language has been 

adapted with OpenMP and MPI technologies for high-performance computing systems with 

traditional architecture. Computational calculations were carried out on a single computing node with 

a classic processor Intel XEON CPU E5-2690 V2 and 32 GB of RAM. 

The results of modeling. Fig. 2 and 3 show the comparison of the numerical simulation 

results with the analytical solution. It can be seen from the graphs that the statistical estimates of the 
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macroscopic parameters of a gas approach the analytic values with an increase in the number of 

particles (velocity v0 = 1, the density ρ0 = 0,1 and temperature 0,0400908  ).  

 

 

 

Fig. 2. Comparison of the macroscopic parameters of the Euler’s gas model of numerical 

simulation at Δt = 0,01 with analytical solutions for a different number of particles 

 

 

Fig. 3. Comparison of the macroscopic parameters of the Euler’sgas model of numerical 

simulation for Δt=0,01 with analytical solutions for a different number of stories: on the left N=105; 

on the right N=106
. 
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Table 1 shows the errors of macroscopic parameters obtained as a result of modeling for a 

different number of particles.  

Table 1. Maximum absolute and relative errors for a different number of particles 

N  v    T  p    T  p  

310  11,89 10  23,20 10  31,44 10  21,01 10  11,60 10  3,59  11,51 10  
410  25,58 10  21,22 10  41,25 10  34,10 10  7,27  13,12 10  7,01  

510  21,50 10  31,98 10  69,00 10  46,60 10  1,38  22,24 10  1,40  

610  33,91 10  31,00 10  75,98 10  43,34 10  15,01 10  31,49 10  15,01 10  

 

To compare the accuracy of macroscopic parameters based on ̂  and ŝ , i.e. с with a different 

number of tests , with the analytical solution, the formula (11) for the absolute error is modified as 

follows: 

  (17) 

where  is the error, depending on the number of tests. 

Table 2 presents the results of absolute and relative errors obtained by modeling a different 

number of particles and the number of stories. When comparing the number of particles with the 

number of histories, it is seen that with an increase in the number of particles by a factor of 10 in one 

test is equivalent to an increase in the number of stories by a factor of 100. 

 

Table 2. Maximum absolute and relative errors for a different number of particles and stories 

N  n  v    T  p    T  p  
510  1  

21,41 10  34,56 10  68,00 10  31,52 10  2,28  22,00 10  2,28  
510  25  34,01 10  46,72 10  63,89 10  42,21 10  15,03 10  39,69 10  14,93 10  
510  100  32,09 10  44,00 10  63,82 10  41,31 10  12,82 10  39,53 10  12,73 10  
610  1  

34,60 10  31,01 10  78,98 10  43,37 10  15,07 10  32,24 10  15,06 10  
610  25  31,16 10  43,46 10  73,38 10  41,16 10  12,25 10  48,44 10  12,26 10  
610  100  44,19 10  42,32 10  73,77 10  57,71 10  12,08 10  49,41 10  12,07 10  

 

As a result, it turns out that it is more economical to build a model with a large number of 

particles than to conduct many repeated tests. 

Conclusion. A detailed description of the construction of an ideal gas model consisting of 

noninteracting particles is presented. A software package was developed for numerical modeling of 

the dynamics of an ideal gas, which makes it possible to calculate statistical estimates of macroscopic 

parameters in elementary volumes. The implemented algorithm, which is the basis of the software 

package, allows to perform calculations on high-performance computing systems. A series of 

computational experiments was performed and an estimate of the accuracy of the results obtained 

was presented, while the numerical solution was compared with the known analytical solution. 
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УДК 519.6 

О вычислительном тесте для одной модели бесстолкновительного идеального газа  

Д.А. Быковских, В.А. Галкин 

Сургутский государственный университет, Сургут, Российская Федерация  

 

Рассматривается задача о построении кинетической модели идеального 

бесстолкновительного газа. Для решения задачи используется метод прямого статистического 

моделирования Монте-Карло. Представлены результаты статистических оценок 

макроскопических параметров, полученные в результате численного моделирования, 

проведено их сравнение с известным аналитическим решением. Исследована зависимость 

погрешности полученных результатов от числа частиц и количества испытаний  
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