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On a computing test of an ideal non-interacting gas model *
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In the present paper the problem of non-interacting ideal gas kinetic model construction is
considered. The direct simulation Monte Carlo method was used for the problem solution. Results of
statistical estimates derived from numerical simulation were presented. These results were compared
with the analytic solution. Numerical error depending on particles and computing experiments were
researched.
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Introduction. The paper is devoted to the study of a numerical method related to modeling
the features of gas flow in transport problems for dynamical systems consisting of noninteracting
particles [1, 5]. Such problems include the description of focusing areas and cumulative phenomena
in the dynamics of a photon gas, neutrons, and so on. [3].

The aim of the paper is to construct an ideal gas model using the Monte Carlo direct statistical
simulation method and to study statistical estimates of macroscopic gas parameters in an elementary
volume.

Kinetic model of gas dynamics. The basis of the kinetic model is a dynamical system
consisting of a statistically large number of particles. The motion of noninteracting gas particles can
be described using the Liouville’s equation written in vector form:
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where f(t,X) is the distribution function of i-th group of particles; v, is the speed of i-th group of
particles; x are the coordinates of the motion of particles; t is the time.

Since the initial state of the system is unknown, f(t,X,v) is introduced N is a partial

distribution function. Despite the fact that the state of such a system displays a curve in 6N is the
dimensional phase of I'-space, from the point of view of the study of the dynamic system as a whole
or part of it, macroscopic parameters such as density, pressure, temperature are most interesting.
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Below is a description of the mean values of macroscopic parameters and statistical estimates
of the density (2), the mass (hydrodynamic) velocity (3), and the internal energy of a unit of gas mass
(4), temperature (5), and pressure (6).
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where V is a measure of elementary volume; D(h) is an elementary volume; m; is a mass of j-th
particle; v;j is a speed of j-th particle; R=8,314459(84) is s the universal gas constant. From equations
(2)-(6) follows the standard Clapeyron-Mendeleev relation for an ideal gas (p = RpT ).

Estimation of errors in macroscopic parameters. One of the main advantages of stochastic
calculation methods is due to the fact that it is possible to estimate the statistical error, i.e. In the
course of the calculation, it is possible to calculate not only the average values, but also the variance.
The statistical error decreases very slowly in comparison with other numerical methods. At the same
time, it is impossible to compare certain influences of small effects on two reports [2, 4]. The error
in the obtained statistical estimates of macroscopic parameters (hereinafter macroscopic parameters)
can be estimated in the following ways.

Estimation of errors in modeling independent stories. The confidence interval is
(—38,+38), in which the true value is found p random variable &, distributed according to the
normal law, with a given probability P, is defined as follows:
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where i is the expected value M¢&; n is the independent stories (number of tests); xi is an unknown

values obtained as a result of testing; S is the unbiased variance estimate D&, Thus, it can be argued
that a random variable ¢ will not deviate from the mathematical expectation i in absolute value more
than 3o with probability 0,9975 (the rule of three sigma).

Statistical fluctuation is the estimation of the error in the oscillation of macroscopic
parameters, which is determined by the following expression:
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where F is a macroscopic quantity; L is the number of particles in an elementary volume.

Comparison of numerical results with analytical ones. In the case when there is an analytical
solution for the problem, the accuracy of the numerical solution of macroscopic parameters, one can
estimate the maximum absolute AF and relative oF error:
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where Fnum is the numerical value; Fan is the analytical value; t e [O;T] is the time interval.

The dynamic model of the Euler’s gas motion. Let us consider an example of particles
moving in opposite directions, in which the distributional density functions are determined by the
following relations [3]:

{ fi(x,1) = p,(1-O(x—-Vt)) (12)

f,(X,t) = P (X —V,t)

where po =const > 0 is the initial density; 6(x) is the Heaviside’s function; v, =v, >0 is the velocity

of the particle; v, =—v, <0 is the velocity of the particle.

Then the macroscopic quantities of the analytical solution for the Euler’s model have the
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following form: V(X,t) =9V,  X> Vg, (13)
Vo, X <=V,
20,, |X[<vpt,
p(X,t)z{ pO | | 0 (14)
Por X > Vet
V.1 (3R), [x|<vgt,
T(xt)=4"° (3R). <, (15)
0, |X| > vt.

The numerical model. An algorithm designed to simulate the dynamics of an ideal gas
consists of the following steps: 1) setting the initial conditions; 2) calculation of the new particle
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location; 3) calculation of macroscopic parameters; 4) preservation of intermediate results; 5) check
the exit condition.

Step 1. Initialization of the initial conditions (figure 1) includes specifying the parameters of
particles, elementary volume and time step At. The initial location of the particles is determined
randomly with a uniform distribution law on the interval (-5;5). The particle velocity modulus is 1,
the direction vector is determined by formula (12). Elementary volume is installed in the center, its
size is equal to [1,1] .

Elementary volume
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Fig. 1. Computational scheme

Step 2: Calculate a new location i-th particle is determined by the following iteration formula
written in the vector form:

oY =g +vUAL, (16)

where K is the iteration number; o is the coordinates i-th in the previous step; vi® is the speed i-th

particle; At is the time step.
For this task, setting boundaries and boundary conditions is not required.

Step 3. Calculation of macroscopic parameters in an elementary volume is based on formulas
(2)-(6). The size of the elementary volume must be chosen in accordance with the distance that the

particle overcomes in one iteration (Ax<v, |At),

Step 4. Save the intermediate results. In order to save computing resources, writing to a file is
carried out through a special accumulation buffer, which allows you to write in large blocks at a time,
while saving space in RAM during long calculations.

Step 5. At the last step, the exit condition is checked. Steps 2-4 are one step in time at. Before
the end of the program, the accumulated information is written from the buffer to the file for further
processing.

In order to improve efficiency, the sequential algorithm written in C language has been
adapted with OpenMP and MPI technologies for high-performance computing systems with
traditional architecture. Computational calculations were carried out on a single computing node with
a classic processor Intel XEON CPU E5-2690 V2 and 32 GB of RAM.

The results of modeling. Fig. 2 and 3 show the comparison of the numerical simulation
results with the analytical solution. It can be seen from the graphs that the statistical estimates of the
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macroscopic parameters of a gas approach the analytic values with an increase in the number of
particles (velocity vo = 1, the density po= 0,1 and temperature 7 = 0,0400908).

Particle number
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Fig. 2. Comparison of the macroscopic parameters of the Euler’s gas model of numerical
simulation at At = 0,01 with analytical solutions for a different number of particles
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Fig. 3. Comparison of the macroscopic parameters of the Euler’sgas model of numerical
simulation for At=0,01 with analytical solutions for a different number of stories: on the left N=10°;
on the right N=10°
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Table 1 shows the errors of macroscopic parameters obtained as a result of modeling for a

different number of particles.

Table 1. Maximum absolute and relative errors for a different number of particles

VOL. 2. Ne 1/2018

N Av Ap AT Ap o T p
10° 1,89-10" 3,20-10° 1,44-10° 1,01-107 1,60-10" 3,59 1,51-10"
10* 5,58-107 1,22-10 1,25-10™ 4,10-10°3 7,27 312-10" 7,01
10° 1,50-10° 1,98-10°° 9,00-10°° 6,60-107 1,38 2,24-10* 1,40
10° 3,91-10° 1,00-10°® 5,98-107 3,34-10™ 5,01-10" 1,49-10° 5,01-107

To compare the accuracy of macroscopic parameters based on 4 and s, i.e. ¢ with a different

number of tests n, with the analytical solution, the formula (11) for the absolute error is modified as
follows:

AF’ = max(] fi = Fy, | +], (17)

where 8=3§/+/n is the error, depending on the number of tests.

Table 2 presents the results of absolute and relative errors obtained by modeling a different
number of particles and the number of stories. When comparing the number of particles with the
number of histories, it is seen that with an increase in the number of particles by a factor of 10 in one
test is equivalent to an increase in the number of stories by a factor of 100.

Table 2. Maximum absolute and relative errors for a different number of particles and stories

N n Av Ap AT Ap op oT op

10° | 1 1,41.10° 4,56-10°° 8,00-10°° 1,52.10°° 2,28 2,00-10° 2,28

10° | 25 4,01-10° 6,72-107 3,89.10°° 2,21-10™* 5,03-10" 9,69-10°° 4,93.10™
10° | 100 2,09-10°° 4,00-10™* 382.10° 1,31.10* 2,82-10" 9,53.10°° 2,73-10™
10° | 1 4,60-107 1,01-10°° 8,98-10” 3,37-10% 5,07-10" 2,24-107 5,06-10™
10° | 25 1,16-10°° 3,46-10™ 3,38-10” 1,16-10™ 2,25-10" 8,44-10™ 2,26-10"
10° | 100 4,19-10° 2,32.10™ 3,77-107 7,71.10° 2,08-107 9,41-10* 2,07-10™

As a result, it turns out that it is more economical to build a model with a large number of
particles than to conduct many repeated tests.

Conclusion. A detailed description of the construction of an ideal gas model consisting of
noninteracting particles is presented. A software package was developed for numerical modeling of
the dynamics of an ideal gas, which makes it possible to calculate statistical estimates of macroscopic
parameters in elementary volumes. The implemented algorithm, which is the basis of the software
package, allows to perform calculations on high-performance computing systems. A series of
computational experiments was performed and an estimate of the accuracy of the results obtained
was presented, while the numerical solution was compared with the known analytical solution.
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