COMPUTATIONAL MATHEMATICS AND INFORMATION
TECHNOLOGIES

VOL. 2. Ne 2 / 2018

UDC 517.95, 519.6 10.23947/2587-8999-2018-2-76-90

About correctness of the suspension transport and sedimentation model, taking
into account bottom relief changes *

A.l. Sukhinov**, V.V. Sidoryakina***

Don State Technical University, Rostov-on-Don, Russia
Taganrog Institute after A.P. Chekhov (branch) of RSUE, Taganrog, Russia

This paper is devoted to the study of the spatial-three-dimensional model of sedimentation of
suspended particles in the coastal zone, taking into account changes in the bottom topography. The
model takes into account the following processes: advective transfer due to movement of the aquatic
environment, microturbulent diffusion and gravitational sedimentation of suspended particles, as well
as changes in bottom geometry caused by sedimentation of suspended particles or rise of sediment
particles. A change in the bottom relief leads to the need to solve an initial-boundary value problem
for an equation of parabolic type with lower derivatives in a domain whose geometry depends on the
desired solution function, which leads, in general, to a non-linear formulation of the problem. The
model was linearized on a time grid due to the «freezing» of the bottom relief within one time step
and the subsequent recalculation of the bottom surface function based on the changed function of
suspended matter concentration, as well as a possible change in the velocity vector of the aquatic
environment. For the linearized problem, a quadratic functional was constructed and the energy
method proved the uniqueness of the solution of the corresponding initial-boundary problem within
an arbitrary time step. Based on the transformation of the quadratic functional, an a priori estimate of
the solution norm in the L> functional space was obtained depending on the integral estimates for the
right side and the initial condition, and, thus, the stability of the solution of the initial problem against
the change of the initial and boundary conditions and functions of the right side. The model may be
of value in predicting the spread of pollution and changes in the bottom topography, both under
anthropogenic impact and due to naturally occurring natural processes in the coastal zone.
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Introduction. At present, the most important tasks of hydroecology is the assessment of the
state of water bodies under the influence of external (especially anthropogenic) factors, the
determination of optimal conditions and the intensity of their operation. Modeling the conditions of
functioning of marine systems can be considered as the foundation of a scientific understanding of
their nature. A wide range of related parameters characterizes the processes occurring in marine
systems: dynamic, thermohaline, chemical, biological, etc. [1]-[4]. When modeling intrawater
processes and reactions of ecosystems, many parameters (both continuous and discrete) are required,
that define the complex environment in which the object functions. Hence, the complexity of the
mathematical models describing these processes. When considering a complex of hydrodynamic
processes developing in a marine body of water, when mathematical modeling of the conditions of
its functioning, special attention is paid to the problems of horizontal and vertical transfer and
sedimentation of suspended matter [5]-[9]. Based on the results of field experiments, the authors
constructed a continuous mathematical model describing 3D processes associated with transport and
gravitational sedimentation of suspensions in the aquatic environment with varying bottom
topography. This model takes into account microturbulent diffusion and advective transfer of
suspended matter, the effect of gravity on suspended particles, the presence of a bottom and a free
surface, a change in the bottom relief [10]-[12].

The paper presents sufficient conditions for the existence and uniqueness of the solution of the
corresponding initial-boundary value problem, as well as an a priori estimate of the norm of the
solution, obtained depending on the integral estimates of the right-hand side, boundary conditions,
and the initial condition.

Simulation of lifting, transfer and sedimentation of suspended particles in shallow water
areas. A lot of geophysical factors influence on the processes of weighing, redistribution and
transport of bottom material are by, among which the effects of waves and currents are the most
significant (Fig. 1).

h Flow

,\ Precipitation

Fig. 1. Diagram of the process of lifting-deposition of bottom particles
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There are several mechanisms for the horizontal and vertical movement of suspended particles.
Under the action of gravity particles suspended in the water flow down. Vertical mixing occurs in the
ascending and descending directions respectively. The interaction between these two processes
provides a vertical concentration profile.

Under the action of a gravitational field or centrifugal forces, the suspension of suspended
particles in water occurs. The deposition rate depends on the mass, size, shape and density of the
particle, the viscosity of the medium, which, in turn, depends on temperature and salinity, as well as
the mode of movement of water. Organic and inorganic particles form bottom sediments, which are
the main reason for changing the topography of the water body. Inorganic substances consist mainly
of clay minerals (silica, alumina, montmorillonite, etc.) and non-clay minerals (quartz, mica, etc.).
Organic materials mainly exist in the form of plants and bacteria.

Suspended solids have a different particle size distribution. The size and shape of the water
particles are their important characteristics, allowing to draw conclusions about the processes of
transfer, sorting and sedimentation. For example, spherical particles are deposited faster than particles
of irregular shape, and therefore, sand particles (due to their shape and weight) are deposited rather
quickly, and particles of fine clay and colloids are deposited slowly if they are not grouped
(coagulated particles). Finally, quite often (during coagulation) one has to deal with the deposition of
an aggregately unstable suspension, the particles of which change their structure and size during the
deposition process.

For high-quality particle-size analysis, the entire possible range of sizes of water particles is
divided into areas, the so-called fractions. We believe that the particle size is determined by the
diameter and is expressed in millimeters. The work [13] presents the results of a comprehensive study
of the features of the particle size distribution of various types of particles in the water area of the
Taganrog Bay, which were obtained in the course of field experiments, in particular, using seismic
methods. Particles with a range of diameters from less than 0.005 mm to 1-2 mm can be found in this
reservoir. The percentage of granulometric fractions substantially depends on the specific territory of
the Taganrog Bay. Thus, silty fine-grained sands with inclusions of shell detritus predominate in the
eastern part of the bay; to the west, the particle size distribution changes in the direction of decreasing
the size of the particles; clay and silty-clay oozes are accumulated in the center of the bay.

For example, we present the results of particle size analysis of bottom sediments obtained at
one of the stations in the eastern part of the Taganrog Bay opposite Chumbur-Kosa (Table 1).

Table 1. Results of particle size analysis of bottom sediments in the eastern part of Taganrog Bay

Interval Granulometric composition in %
(sm) >1 1-0,5 0,5-0,25 0,25-0,125 0,125-0,1 0,1-0,05 0,05-0,01 <0,01
mm. mm. mm. mm. mm. mm. mm. mm.
0-14 1,43 0,47 3,52 16,47 10,3 12,34 19,46 36,01
14-67 1,53 0,76 2,06 11,86 2,89 6,02 10,99 63,89
67-95 0,06 0,22 0,63 19,48 11,52 20,14 27,7 20,25
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The particle size distribution for each fraction is characterized by hydraulic size w; or the rate
of sedimentation of particles in still water. Hydraulic size w, in the turbulent mode, one can find from

the condition of equality of the force, the moving particle and the drag force of the aquatic
environment:

W z\/4dp(pp—p0)-g, (1)
’ 35 P,

where dp is the particle diameter, g is the acceleration of gravity g=9,80665, p, is the solid particle

density, p, is the density of water, & is the coefficient of resistance of the aqueous medium (for a
spherical medium £~045).
In the laminar mode (the fluid moves in layers without transverse mixing, with no velocity and

pressure pulsations) for a single spherical particle, the rate of particle deposition is expressed as the

Stokes formula
.42 _
Wg:g p(pp pO)’ (2)
181+ p,

where 77 is the dynamic viscosity.

If the granulometric composition is fairly uniform and the average values of the particle
diameters of the fractions can be considered constant, then the Stokes formula (2) can be used
depending on the mode of water movement when obtaining estimates of sedimentation rate In the
case of a significant scatter of the average values of particle diameters and heterogeneity in the
granulometric composition of the soil, it is necessary to use the formula (1).

Mathematical continuous 3D model of diffusion-convection suspension and the
corresponding initial boundary value problem. Let us consider a continuous mathematical model
of suspended matter propagation in an aqueous medium, taking into account diffusion and convection
of suspended matter, the effect of gravity on suspension, the presence of a bottom and a free surface.
We will use rectangular Cartesian coordinate system Oxyz, where is the axis Ox passes on

undisturbed water surface and is directed towards the sea, the axis Oz directed vertically down. Let
be h=H+7 is the total water depth, [m]; H is the depth with undisturbed surface of the reservaoir,

[m]; 77 is the elevation of the free surface relative to the geoid (sea level), [m].

Let in the closure area Gz{OSXSLX,OSySLy,OSZSH(X,y)} there are suspended particles that are
at (x,y,z) and at the time t have concentration c=c(X,y,zt), [mg / I]; t is the temporary variable,
[sec]. We will also use the notation LZEOSXEYLI%SLVH(X, y).

The behavior of suspended particles will be described by the following system of equations:
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ac+8(uc)+8(vc)+8((w+wg)C): (azci&c}r 0 (ﬂvﬁc}r':

6x2'8y2 a\""oz

ot ox oy 0z 3)
oH ¢

—=—WC,

oo p°

where u,v,w are vector components, U is the fluid velocity, [m / s]; w, is the hydraulic particle size

or sedimentation rate, [m/s]; 1, 1 are coefficients of horizontal and vertical turbulent diffusion of

particles, respectively, [m?/s]; F is the power source of particles; ¢ is the bottom porosity.

The terms on the left side (except for the time derivative) of the first equation of system (3)
describe the advective transport of particles due to the inertial motion of the aquatic environment and
sedimentation under the action of gravity. The terms on the right-hand side describe the diffusion of
the suspension. The vertical diffusion coefficient is chosen different from the horizontal diffusion
coefficient due to the fact that the effect of the difference of these coefficients is often observed in
different environments and can be caused by various factors.

Asanarea G consider parallelepiped «beveled» to the shore ABCDAOCD,

1-17

top base AOCD,
which lies on the free surface (z=0), and the bottom base ABCD is part of the bottom surface

(z=H(xy)). Let be S— surface G, m— external normal to the surface of the «bevelled

parallelepiped». We assume a given U - fluid velocity on the side surfaces G . Together with the
boundary conditions of the first kind for the particle concentration function, this makes it possible to
determine the flux of suspended matter both toward the coast and along the coast (Fig. 2).

C1 Coast

>
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particles coming in

Fig. 2. Solution area for the transport of suspended matter
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Add to system (3) the initial and boundary conditions (assuming that the deposition of particles
on the bottom is irreversible).
As initial conditions at time t=0 accept

o(XY,20)=C(XY,2); 4)
H(xy,0=H,(xy). (5)
We set boundary conditions on the edges. ABCDAOCD, (we set streams of suspensions both
towards the coast, and along the coast)
—on the edges S=AAOB(x=0,0<y<L ,0<z<L)),
S,=AADD(y=L,,0<x<L,0<z<L),
S,=BOCC(y=0,0<x<L,,0<z<L))
c=c", where c'=C’(x,y,zt)t€[0T]; (6)
—on the edges S,=DDCC(x=L,0<y<L ,0<z<L)
S,=AOCD, (z=0,0<x<L,,0<y<L )
c=0; (7)
—on a surface SGEABCD(ZzH(X,y,t),OSXSLX,OSySLy)
@:ﬂc or @:ﬂc . (8)
on u 0z u,
The boundary condition (7) takes place with relatively small bottom slopes:

2 2
max (@)+ Mg,
% OX oy

The following condition of non degeneracy of the solution domain is set for all (x,yt) under

which the initial boundary problem is posed:
H(x,y;t)>h=const>0, O<t<T. 9)

When studying combined sediment and sediment transport models, it is possible to increase the
concentration of suspended particles in the bottom layer due to the rise of sediment particles when
the shear stress exceeds a certain critical value [14]-[17]. Then instead of the boundary condition (8)
we will consider the boundary condition of the form

?zac, a=const>0. (10)
z

Linearization of the initial-boundary value problem of transport and sedimentation of
suspensions. In order to create a linearized model on a time interval O<t<T build a uniform grid o

in steps 7, i.e. many points @={tn=nr,n:01...,N,Nr:T}.
Functions ¢”(x,y,zt,,) and H®(xyt, ,) we define at each step of the time grid o, . If a n=L,
then as c¥(xy.zt,), H4(x,yt,) it is enough to take the functions of the initial condition, that is

c(xy.z0=c(xy.2), HO(x Yt )=H,(xy)  respectively. If  n=2..N, then  functions
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c(x,y,zt ,)=c™(x,y,zt ) assumed to be known, since problem (3) - (8) for the previous time interval
is assumed to be solved t <t<t .

System (3) in the gap t_<t<t we write in the form:

act ouc)  o(ve) 8((W+Wg)c(”)): (azcm) . azc(n)}r 9, ( ac(")jn:
(11)

ot ox oy o1 oxt oy ) a2\"" oz
OH" ¢
ot p?
and supplement it with the initial conditions:
cU(X Y.zt )=C (X Y,2),

co(xy.zt )=c"¥(xy.zt ) n=2...N.

HEGYL)=H (%),
HO(xyt )=H(x Yt ) n=2...N.
The boundary conditions (6) - (8) are assumed to be satisfied for all time intervals
t <t<t n=12...,N.

(13)

Defining the function c®(x,y,zt )=c™(x,y,zt ,) in the time interval t_<t<t , can find function
H<”)(X,y,tn_l). To this end, we integrate both sides of the second equation of system (11) over the

variable t,t <t<t . Will get

t, (n) t
[ =Ly feout (14)
¢, ot p o
From equality (14) it is not difficult to get
£ Ak
HO=He—=w > [ codt. (15)
p W
We introduce at each time step t <t<t,n=12...N region

G, ,={0<x<L,0<y<L 0<z<H"{(xyt )}
We have a chain of linear initial-boundary value problems for each time layer, where for the
interval t_<t<t ,n=12...,N view system is considered

act o(uc) | (ve) 6((W+wg)c(n>)_ (azc(m . aZC(n)j+ % @}FF (16)
f ' ~ 0z ’

ot ox oy oz oxt oy ar”
(X¥,2)G,, ,
Gn_lz{o< x<L,0<y< Ly, O<z<H 1(x y,tn_l)},
&
HO=H (n—1>_ﬁwgi [cmdt, n=12,...,N @7)
,D n:ltni1

with initial conditions:
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C(n)(X, Y Z’tn—l):C(n_l)(X’ Y Z’tn—l)’ (18)
HO(X YL, J=H"(xyt, ) (19)

Note that at each time step, the boundary surfaces will change (except the face S, ). Considering
the time span t _<t<t , we carry out the task of boundary conditions on the edges of the region G __:
— on the edges Sm(x=o,0§ y<L,0<z<H <"-1>(0,y,tn71)) ,
S, (y=L,,0sx<L0<z<H9(x,L L )
S,,.(y=0,0<x<L,,0<z<H3(x0t )
c=c', where c=C(xy,zt)teft, t]; (20)
—ontheedges S, (x=L,0<y<L,0<z<H®H(L,yt )
S, (2=0,0sx<L,,0<y<L }=AOCD,
c"=0; (21)

—onasurface S, (z=H¥(xy} ,)0<x<L,0<y<L )

o W oW
o Yo or 20 Moo 22)
on u oz u
The boundary condition (10) will be replaced by the following
0)
aac =ac™, a=const>0. (23)
z

Thus, it is assumed that the bottom relief within a given time step when calculating the
distribution of concentrations of suspended matter does not change and is taken from the previous
time layer. Initially at this time step t _<t<t ,n=12...,N the initial boundary value problem is solved

for the convection-diffusion equation (16) with a fixed bottom relief function H®?, and then an
update (recalculation) of the relief function is performed H® in accordance with equality (17). The
determination of the conditions of existence, uniqueness and continuous dependence of the solution
on the input data of the problem is carried out on a fixed time layer in these assumptions and subject
to condition (9).

We will not investigate in this paper the existence of solutions of the initial boundary value
problems (16)-(22) and (16)-(21), (23). Questions of the existence of solutions of initial-boundary
value problems for equations of parabolic type with lower derivatives (diffusion-convection
equations) are considered, for example, in monographs [18]-[21].

Results of the study of the solution of the initial-boundary problem of suspension
transport.
Theorem 1. Let given a system of equations
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aco o(uc) o(ver) A(w+w)e)  (azcm ) of ac<n>)+F
ot ox oy oz o oy ) ol ST
(xy,2)eG,, |
G, ={0<x<L, O<y<L 0<z<H™(xyt ),
Ho=He9—Ey Z j cvdt, n=12,..,N

p Mg,
in a simply connected domain Q_=G_x(t <t<t), G, ,=(0<x<L,0<y<L 0<z<H®¥(xyt )), with a

fairly smooth boundary defined by the smoothness of the function z=H®*(x,y), 0<x<L,,0<y<L with

initial and boundary conditions (18)-(22). Let solution functions c(”)(x,y,z,tnfl), water velocity vector
luvw+w], initial condition c™¥(xy,zt ), right side F(xy.zt), boundary condition c(xy.zt),
coefficient of vertical turbulent exchange u=g(2)(xy,2)eG,, satisfy the following smoothness
conditions: c(xy,zt )eCiQ )C(Q, ), gradc"eC(Q, ), Juvw+w) (@, )NC(S, ,)
ci(xy.zt )eC(G, ), F(xy.zheC(Q,), u(xy.2)eC(G, )N (anl), c(xy,zt)eC(S, Mt <t<t]

S =G \G__, %GC((OSXSLX, O<y<L, z=H("-l>(x,y))x[tn_1ststn]), as well as the conditions of

consistency ~ of the  boundary and initial  conditions,  c(xY.z0)=C(Xy.2)
(xY.2)eS, \(0<x<L,0<y<L, z=H"¥(x,y)), %:ﬁc*, (0<x<L,0<y<L, z=H"¥(xy)), then the
z W
g
solution to this problem exists and is unique.
The idea of the proof of the theorem is as follows. It is assumed the existence of two solutions

to the specified problem with t <t<t :c=c(xy,zt),c,=C,(x,¥,zt), (XY,2)eGns. Introduces the
function c=c—c,, ¢#0,t,,<t<t, (x,Y,2)eGn.

For E(X,y,z,t) L St<t, (x,y,z)eﬁn,l an initial boundary value problem is considered, for which
equation (14) after simple transformations takes the form:

o o(uc) | o(ve) | 8((W+Wg)€)_ @ &% 2 86 o
a x oy a Moe o) ol M)
Investigating the resulting task and demanding the fulfillment of inequality

t <t<t, (25)

W,
<2 (xV,2)eS
a2y(y)€

\

6,n-1’

we get €(x,y,z,t)=0, (x,y,2)eG, ,, t, ,<t<t, which means the uniqueness of the solution.
By similar reasoning, it is proved that for all layers of the time grid «_.

Comment. If the boundary condition (20) is replaced by the boundary condition (21),
inequality (40) should be added as a sufficient condition for the fulfillment of the previous theorem.

Further, we will assume that
C"=c,=const>0,

0<x<L,,0<y<L,0<z<H™(xyt )t  <t<t

n-1—

(26)
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We introduce the notation: the union of all parts of the lateral cylindrical surface — the
boundaries of the region G_, denoteas S_, ,, and the lower base of the area G ,— S,  ,

Theorem 2. Let given a system of equations

ey Auct)  (ven) a((w+wg)c<”>)_ e azcm o( ac(n>)+F
ot ox oy oz o oy ) ol ST
(X’y’z)eGn—l !
Gn_l={0<x<L O<y<L 0<z<H™{(xy}, 1)}

Hm=H¢ -1)——W ZIC dt, n=12,...,N
p _ltn1

and function ct(xy.zt ) class C¥Q, ,)NC(Q, ). gradcmeC(@, ) Juvw+w] Ci@, )~C@, ), is a
solution to the number equation n said system in the area Q=G Xt <t<t)
G, =(O<x<L 0<y<L 0<z<H®¥(, y,tn_l)) with initial and boundary conditions (18)-(22). Let the initial
condition function ¢ (x AR ) right side F(x,y,zt), boundary condition c*(x,y,zt), coefficient
of vertical turbulent exchange ,=z,(z),(xy,z)eG, , satisfy the following smoothness conditions:
c"(xy.zt,)eC(G, ), F(xy,zt)eC(Q, ). #,(xY,2)eC(G,,)nC(G, ).
c(xy.zt)eC(S, ot <t<t ] S,,=G, ,\G, , a—ec((o<x<|_X 0<y<L, z=H"(x y)}t, ,<t<t ), as

well as the conditions of consistency of the boundary and initial conditions, c¢*(x,y,z,0)=c,(x,y.z),

(%Y, z)eSn_l\(O<x<LX,O<y<Ly, z=H"(x, y)) %=—%c*, (0<x< L.0<y<L, z=H"(x, y)) Then,
g
under the conditions (26), the following estimates take place:

e se, =]z [ i) j

27)
2M,, M, | [ }1t+2l\/|1 | [ﬂ I|F|dGn_1Jdt
o\ Sen t 1\ Goa
Il dG, <M., 1(mcoszn_1+
o (28)

+MAM_{L{nj_l(c*)Zdsn_ljduzmzn s, jdt+2MLn_ll(£{{|F|dGn_ljdtJ

l. E Q |C:(n |}

Gkl

M,,.=, max_{uM
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Conclusion. The authors proposed a mathematical continuous spatial-three-dimensional model
of transport and sedimentation of suspended matter, taking into account changes in the bottom
topography. The study of this model is carried out by its linearization. The conditions for the existence
and uniqueness of the linearized initial-boundary value problem are determined. In addition, an a
priori estimate is obtained depending on the integral estimates of the right-hand side, boundary
conditions, and the initial condition.

The results of the study of the model of transport and sedimentation of suspensions can be used
in predicting hydrodynamic processes, increasing their accuracy and reliability due to the presence
of new functionalities of taking into account physically important factors, including clarifying the

boundary conditions.
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ITocTpoenne u mcciaer0BaHHe KOPPEKTHOCTH MaTeMATH4eCKOW MoJeJiM TPaHCHOpTa M
oca:KIeHHs B3Beceil ¢ yueToM U3MeHeHHii pesibeda qna *

*

A.HU. Cyxunos **, B.B. Cunopsikuna™

JloHCKO rocyapcTBEHHBIN TeXHUUECKUN yHUBepcuTeT, PocToB-Ha-/{ony, Poccuiickas deneparus

Taranporckuii uHcTUTYT UM. A.I1. Yexosa (¢punuman) PI'DY (PUHD), Taranpor, Poccust

Hacrosmas paGota mocBsilieHa HCCIEIOBAaHUIO IMPOCTPAHCTBEHHO-TPEXMEPHON MOJAEIH
TPAaHCIOPTA M OCAKICHUS B3BECH B IPUOPEKHON 30HE C yUEeTOM M3MEHEeHHs penbeda qHa. Moenb
YUUTBIBAET CIEAYIOIINE MPOLECCHl: aIBEKTUBHBIN MEPEHOC, 00YCIOBIECHHBIM JABHKEHUEM BOJHOU
Cpefbl, MUKPOTYpOYJICHTHYIO TU(GQY3HI0 ¥ TPABUTAIIMOHHOE OCAX/IEHHE YaCTHUI] B3BECH, a TAKKE
M3MEHEHNE N'€OMETPHUH JIHA, BEI3BAHHOE OCAXJACHUEM YaCTHUI] B3BECH MJIU ITOAbEMOM YaCTHUIL JOHHBIX
oTioxeHul. M3meHeHue penbeda JHa NMPUBOAUT K HEOOXOAMMOCTH pellaTh HadajJbHO-KPaeBYIO
3ajady Juisd ypaBHEHMs apaboIMYecKoro TUIa ¢ MIaJlIMMU IPOU3BOIHBIMU B 00J1aCTH, F€OMETpUs
KOTOPOH 3aBUCUT OT UCKOMOM (DYHKIIMH PELICHUs, YTO IPUBOJIUT, B OOILEM Cilydae, K HeJIMHEHHON
IIOCTAaHOBKE 3aJ1a4H.

BrimonHena nuHeapu3anys MOJICH Ha BPEMEHHOM CeTKe 3a CUET «3aMOpaKuBaHUs penbeda
JTHA B TpeeiaX OJHOTO IIara Mo BpeMEeHH U MOCIIEAYIONIETo nepecuera (PyHKIUN TOBEPXHOCTH JTHA
Ha OCHOBE M3MCHHMBIIICHCS (DYHKIIMHA KOHIIEHTPAIMN B3BEIICHHOTO BEIIECTBA, a TAKKE BO3MOKHOTO
W3MEHEHUSI BEKTOpAa CKOPOCTH IBIKEHUS BOJHOW cpeipl. [lomydeHa ampuopHasi OIleHKa HOPMBI
peuieHuss B (PYHKIIMOHAIBHOM MPOCTPAHCTBE L, B 3aBUCUMOCTH OT WHTETPAIbHBIX OILICHOK IO
BpPEMEHH MPaBOM YacTH, TPAHUYHBIX YCIOBUN U HAYalIbHOTO yCIIOBHS, M, TAKMM 00pa3oM, JOoKa3aHa
YCTOMUYMBOCTh PEUIEHUSI MCXOJHOM 3aJa4yd OT MU3MEHEHHUs HAayalbHOTO M T'PAHWYHBIX YCIOBUU H
GbyHKIIMM TpaBoi yacTH. Mofenb MOXKET MPeCTaBIATh IICHHOCTh MPH MPOTHO3€ PacCIpOCTPaHEHUS
3arpsi3HEHUN U M3MeHeHUs penbeda AHA, KaK MPHU aHTPOIIOTEHHOM BO3ACWCTBUU, TaK U B CUIY
€CTECTBEHHO MPOTEKAIOIIUX MPUPOJIHBIX MPOIECCOB B IPHUOPEIKHOM 30HE.

KiroueBble cioBa: TpuOpPEKHBIE CHCTEMBI, MaTeMaTHUeCKash MOJeNb, TU(GPy3HOHHO-
KOHBEKTHBHBIE 3aJlaull OCAaXJCHUsS B3BECH, U3MEHEHHE penbeda J1HA, €TMHCTBEHHOCTh PEIIEHUs U
YCTOMYMBOCTh HA4aJIbHO-KPAeBOil 3a1a4u

* Pabota BemomHeHa 1o Teme Ne 2.6905.2017/BY B pamkax BEIONTHEHHs roc3ananms MuHoOpHayku Poccru B wacti HUP.
** E-mail: sukhinov@gmail.com.
** E-mail: cvw9@mail.ru.
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