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The aim of the work is to study the influence of forest plantations on the distribution of
pollutants in the ground layer of the atmosphere. The model that takes into account a variety of
factors: the presence of forest plantations, the variability of pressure, density and temperature, the
presence of a multicomponent impurity, etc., was proposed for the numerical modeling of the process
of transferring air pollutants to air. The scheme obtained as a result of a linear combination of the
central difference scheme and the «CABARET» scheme was constructed to approximate the
convection operator in this paper. The use of cabaret schemes allowed to develop the mathematical
model that has the property of stability for a wider class of input parameters. The constructed
algorithms are implemented in the form of the software complex that allows to determine the
influence of the forest plantations on the distribution of pollutants under the influence of ascending
air currents. The developed model, the algorithms that implement it, and the software complex
constructed allowed to carry out the numerical experiments that simulate the distribution of pollutants
in the surface layer of the atmosphere in the presence of forest plantations. The influence of the
presence of vegetation on the distribution of pollutants under the action of ascending air currents is
studied: pollutants under the influence of ascending air currents rise upwards in the area of forest
plantations. The influence of the forest plantations area width on the air velocity and pollutants
concentration fields is studied. An analysis of the results of numerical experiments allows to conclude
that the distribution of pollutants in a multicomponent air environment is most significantly affected
by the density of vegetation, and insignificantly influenced by the width of the forest plantations area.

Keywords: numerical modeling, process of transferring air pollutants, central difference
scheme, «CABARET» scheme, convection operator

Introduction. The growing anthropogenic load adversely affects to the state of the ground layer
of the atmosphere. In conditions of modern reality, it is impossible to avoid receipt of pollutants into
the air ecosystem. At present, a wide range of theoretical studies on atmospheric air pollution based
directly on the solution of differential equations is being conducted. Problems of this type are quite
complex from a practical point of view and very significant. Mathematical formulation is not
universal enough in works devoted to these problems.
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The transfer of impurities in the atmosphere is significantly influenced by the wind regime and
temperature stratification of the ground layer of the atmosphere, as well as meteorological conditions.
Analysis and forecast of pollutants dispersion in the atmosphere is necessary for the rational
allocation of residential areas and industrial enterprises whose production waste affects health and
comfortable living conditions. The problems devoted to the analysis of atmospheric air require a large
amount of initial data and complex mathematical methods of solution. In connection with the growth
of anthropogenic impact on ecosystems, the actual problem of research is the improvement of
mathematical models intended for assessing the state of the air environment. The mathematical
modeling is effective way to solve this problem. It allows to numerically calculate the propagation
fields of pollutants for various widths and densities of forest massifs in the ground layer of the
atmosphere. The use of the interrelated mathematical models complex of the variability of the
atmosphere gas and aerosol composition makes it possible to predict possible prospects for the
development of the ecosystem and the consequences for the development of building projects,
gardening, etc.

Significant factors in the development of aerial ecosystems are the aerodynamic processes that
determine the transfer of pollutants and mixing of the air.

Mathematical model. The mathematical model of the impurity propagation process, presented
in[1, 2], gives a theoretical description of this process, takes into account a number of physical factors
that influence the transfer of the impurity, and allows one to predict its course and consequences.
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Impurity scattering takes into account turbulence, heat and humidity propagation, the presence
of forest massifs in the presented model. These additional conditions form a system and begin to act
as a single set. Developed models also take into account the presence of forest plantations. Using the
«CABARET» schemes allowed the authors of this work to develop a mathematical model that has
the property of stability for a wider class of input parameters [3].

A set of models used to describe the motion of the air environment and the impurities
propagation in it are presented in Figure 1. The initial equations of the model are shown in Table 1.

Table 1. Initial model equations

The equation of motion (the Navier- dv, 1P
] 1 =———+d|v(ygrad (v, ))—gi
Stokes equation) d  pox
The equation of continuity (transport of W o
——+div(pV)=div(ugrad +1

matter) o+ div(pv) =div(ugrad(p))+1,
The equation of state (an analog of the P=3 pRT/M,
Mendeleev-Clapeyron equation) i

. i . do, .
The equation of impurity transport d—? =div(ugrad(¢))+1,
The equation of heat influx (L—? = div(ugrad (Q))+div(Agrad (T))+ 1,
The equation of the turbulence model Vees =(CsA)’ S

In the Table 1 ¢ is the volume fractions of the i-th phases: air, water in the gaseous state, gas

at the source, water in the liquid state, soot, v; the projection of the air velocity vector on the axis Ox;,
j =1, 2, 3; 4 the coefficient of thermal conductivity, R the universal gas constant, T the gas phase
temperature, Q the thermal energy, » the coefficient of turbulent diffusion, , the density, M the

molar mass, | the source function, P the pressure [4].

Difference scheme. The difference method was constructed to approximate the developed
model [5-6]. Comparison of simulation results with full-scale data showed that the calculation error
for the proposed model is 10-15% [1].

If the Peclet number is less than two, the central difference schemes are most effective. When
solving applied problems, the application of these schemes entails an increase in the nets size and a
significant increase in labor intensity as a consequence. Also, to solve this class of problems, it is
possible to introduce dissipative terms into the schemes, which entails a significant decrease in the
accuracy of the solution, and this approach is highly undesirable. The «left corner» scheme is an
example of a scheme which has the dissipative members. The «CABARET» scheme that has the
property of stability and nondissipativity was developed to overcome these problems. The scheme
obtained as a result of the linear combination of the central difference scheme and the cabaret scheme
is used for the convection operator.

Let consider the transfer equation
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—+u—=0, Q)
where t[0,T], xe[0,L], q(0,x)=0°(x), q(t,0)=q(t,L)=0, u=const.
Let introduce the uniform grid o= awnxw,, where on ={x|x =ih, i=01..,N, Nh=L},
. :{tj| j :0,1,...}, r=t , —t =const.

To solve the problem numerically, it is possible to use the following finite-difference schemes

[1]
— the «anti-flow» scheme or foru >0 the left corner [1]
n+l _ 'n _n _ _n
qi ql +u q| ql—l — O ’ (2)
T h
— the central difference scheme
n+1_ 'n _n _ _n
qi ql +u q|+l ql—l — O , (3)
T 2h
—the «<CABARET» scheme [2]
n+l _ n n _ n-1 n _ n
Qi Qi + Gis —Gisg +u G Yy =0. (4)
27 27 h

The scheme obtained as a result of a linear combination of the central difference scheme (3)
and the «<CABARET» scheme can be used to solve the convection problem (4)

n+l n n n n+l n n n-1 n n
1(% -q +uqm—qi_1j+qi S P A e AR

2 T 2h 2T 2T h
n+l 4N n _ ~n-1 n n_ n
qi qi + qi—l qi—l +Uu qi+l + 4q| 5Qi—l — 0 ] (5)
T 27 4h

The grid pattern for the proposed scheme is shown in Fig. 1.

I n+1

{ n
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i

Fig. 1. The grid template on which the new scheme is define

i-1

Let find the numerical solutions based on the schemes (2)-(5) of the model problem with initial
conditions q°(x) =h(20—x), where h(x) is the Heaviside function. Fig. 2 shows the solutions of the

model problem (1 - numerical solution, 2 - exact solution).
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Fig. 2. The solutions of the model problem based on the schemes (2) - (5): a) the left difference scheme; b) the
central difference scheme; c) the «<CABARET» scheme; d) the proposed difference scheme

It is seen from the figure that the left difference scheme approximates the «jump» insufficiently
accurately, the central difference scheme is unstable, the solution obtained on the basis of the
«CABARET» scheme has oscillations (entropy perturbations) [3]. The proposed difference scheme
gives the most accurate solution of the model problem. The left difference scheme has the order of

approximation O(z+h), the central difference scheme approximates the continuous model with the

order O (r + h2) , scheme «CABARET» - with the order O(r2 + hz) :
The stability of the difference scheme. Investigate the stability of scheme (5) by the method
of harmonics. Let " =¢"-e™ where j=+/~1, substitute in (5):

1 e*"k—e‘V k| 4 _5g ik
Lant T e |
T 27 4h

) 1 ur 1 .sink 3ur e K
—Z4+— |(1-cosk)—Z+ j=——| -1+=— | [p—=—=0.
(p{( 2+hj( )2“2( +hD¢ 2

Solve the quadratic equation with respect to ¢:

1 ur 1 .sink 3ur
= =——|(1-cosk)+=— j——| -1+ — | £
P2 (4 hj( )414( hj

. 2 K
+ (l—ﬁ)(l—coskhl—jﬂ(—H%J &
4 h 4 4 h 2

Let ufz X, then
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i\/((%—xj(l—cos k)+%— j%(Sx—l)j2 +% :

Consider the case x=0:

1 ek 1 e k) ek 1 gk (1 gk
Q= | 2o | 4= 2|,
272 4 2 4 2 2 4 |2 4

Hence obtain: ¢ =1, ¢, =—e " /2, consequently, ¢, is not the solution. Denote v (x,k)

absolute values of functions ¢, (x,k). Investigate the behavior of the values of functions y (x,k).
Take the values k €[0,27] with step /6 and values x <[0,1] with step 0.1. Write the obtained

values of the functions y(x k) to Table 1.

Table 1. The function y(x k) values

k

. 0 7l6 zl3 wl2 2713 5716 V4
0 1 1 1 1 1 1 1
0.1 1 0.991 0.966 0.924 0.866 0.791 0.707
0.2 1 0.984 0.939 0.877 0.812 0.755 0.707
0.3 1 0.977 0.918 0.845 0.781 0.737 0.707
0.4 1 0.973 0.902 0.821 0.759 0.724 0.707
0.5 1 0.967 0.888 0.802 0.740 0.712 0.707
0.6 1 0.964 0.877 0.785 0.721 0.698 0.707
0.7 1 0.961 0.868 0.770 0.699 0.670 0.707
0.8 1 0.959 0.861 0.755 0.648 0.428 0.378
0.9 1 0.958 0.857 0.739 0.408 0.298 0.274
1 1 0.957 0.856 0.707 0.302 0.236 0.219

Table 1 shows that the values w(x,k)e[0,1] for ke[0,7] and xe[0,1]. Under these
conditions, the new scheme is stable.

The approximation of the convection-diffusion problem. Consider the nonstationary

convection-diffusion equation
o9  0q _ g
—tu==pu—. 6
a o ax Mok (®)
where te[0,T], xe[0,L], q(0,x)=0°(x), q(t,0)=q(t,L)=0, u=const.
The scheme obtained as a result of a linear combination of the central difference scheme (3)
and the cabaret scheme (4) will be used to approximate the convection operator
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l[qimr1 - Qin +u qirl-l — qin—l _y Qin+1 — 2qin + qin—l J +

2 T 2h h?
n+l n n n-1 n n n n n
+Qi —0Gi +qi—l_qi—l +uqi —0iy _luqi+1_2qzi +0i =0;
27 2t h h
n+l 4N n _ N1 n n_ n no_ n n
qi qi + qi—l qi—l +u qi+l + 4q| 5Qi—l _3ﬂ qi+l 2qi2 + qi—l — 0 ] (7)
T 27 4h 2h

In Figure 3, the solutions of the model problem with initial conditions q°(x)=h(20—x), where

h(x) is the Heaviside function (1 — the exact solution of the transfer problem, 2 — the numerical

solution based on the proposed difference scheme for different values of Peclet numbers, 3 — the
numerical solution of the transfer problem based on the «against» flow).
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Fig. 3. The solutions of the model problem of concentrations front transport: 1 - the exact solution of the transfer
problem, 2 — the numerical solution based on the proposed difference scheme for different values of Peclet numbers, 3 —
the numerical solution of the transfer problem based on the «against» flow

The two-dimensional diffusion-convection problem. Consider the two-dimensional
convection-diffusion equation

2 2

%+u%+v%q:ugx—?+ygy—?, (8)

where te[0T], xe[0L]. vye[OL] a(0xy)=q’(xy)., a(t0,y)=q(tL,y)=0,
q(t,x,0)=q(t,x,L,)=0.

Cover the domain of definition by a uniform computational grid w:a),xz)xxz)y, where

{x|x =ih, i=01..,N, Nh,=L,}, oy ={y]y,=ih, i=01..,N, Nh =L},

Wx

0)

T

{tj| j= 0,1,...}, r=t , —t =const.
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The scheme (5) for equation (8) will have the form (the scheme of splitting in space)

1/2 n n-1/2 n-1 n-1/2 n-1
G~ Gl — O Ol — O
] i,] + " i-1,j i-1, + ” i+1, ] i+1,] + (9)
T 2T 2T
qir:-l,j _qin—l,j qir?j _qin—l,j qin+1,j _qir?j 3 qin+1,j _Zqirjj +qin—1,j )
T YT YR T h? !
X X X X
n+l n+1/2 n n-1/2 n n-1/2
qi,j _qi,j +y qi,j—l_qi,j—l +y qi,j+1_qi,j+1 n (10)
T " 27 R 27
n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2 n+1/2
qi,j+1 _qi,j—l qi,j _qi,j—l qi,j+1 _qi,j _ 3 qi,j+1 _2qi,j +qi,j—1
VY VY V= U > :
4h, h, h, 2 h?

where v, =1, w,, =0 for u>0 and v, =0, y,, =1 for u<0; v, =1, w =0 for v>0 and
v, =0, y,=1forv<0.

The simulation was performed on a grid with the dimensions 100x100 computed nodes with
the follow parameters: the dimensions of the computed area L, =100 m, L, =100 m, the horizontal

component is 4 m/c, vertical - 3 m/c, the turbulent exchange coefficient was set equal to: 0, 0.1, 0.4,
2 m%/c. In solving the two-dimensional convection-diffusion problem, the initial distribution was
given by the function [4]:

sin((x-10)/10)sin((y-10)/10),{x, y} D,
a(x.y)=10.{x.y; D, (11)
D:{x&[10,20],y €[10,20]}

The numerical solution of the convection problem with help of the difference scheme (9) - (10)
at different time intervals is shown in Fig. 4.

Fig. 4. The numerical solution of the convection problem
using the scheme (5) at different time intervals
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Figures 5 and 6 show the numerical solutions of the convection-diffusion problem for various
Peclet numbers using the «<CABARET» scheme and the scheme (5).
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Fig. 5. The numerical solution of the convection-diffusion problem for various Peclet numbers using the

«CABARET» scheme
1.041
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Fig. 6. The numerical solution of the convection-diffusion problem for various
Peclet numbers using the scheme (5)
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The limiting absolute error in solving the convection problem with help of the «<CABARET»
scheme is 0.281 units, and using the scheme (5), 0.125 units. Thus, when Pe —« the error in the
numerical solution of the model problem (11) with help of the difference scheme (5) is 2.248 times
less than the error in solving with help of the <CABARET» scheme. Figure 7 shows the errors of the
numerical solution of the convection problem for various schemes.

0.281
0.152
"
.022
-0.107
-0.236 -0.094
a) b)

Fig. 7. The error in the numerical solution of the convection problem ( x =0, Pe — ) using a) the <CABARET»
scheme and b) the scheme (5)

When modeling applied problems, such as the problem of hydrodynamics of shallow water
bodies, aerodynamics, population dynamics and others, it is necessary to solve the convection-
diffusion equations. If the problem poses the condition for the predominance of convection over
diffusion, then the standard schemes have a low accuracy. The paper proposes a three-layer difference
scheme for the convection-diffusion equation, which is a linear combination of the «<CABARET»
scheme and the central difference scheme. It is shown that the new scheme is stable for Courant

numbers belonging to the interval [0,1] and large Peclet numbers (Pe > 20). An investigation of the

numerical solution of the two-dimensional convection-diffusion equation in the limiting case (the
diffusion coefficient is zero) shows that for large Peclet numbers the error in the numerical solution
of the model problem based on the proposed difference scheme is 2.248 times smaller than the error
in solving with the <CABARET» scheme.

The results of the study and their discussion. The developed model, the algorithms that
implement it, and the constructed software complex allowed to carry out the numerical experiments
to simulate the propagation of pollutants in the ground layer of the atmosphere in the presence of
forest massifs. The influence of the presence of vegetation on the distribution of pollutants under the
action of ascending air currents was studied. Initial data: air density is 1.29 kg/m?; density of emission
is 1.4 kg/m3; ambient temperature is 200° C; emission temperature is 1200° C; speed of air flow is 1
m/s in the direction of the coastal area; specific emission power is 5 I/s; air velocity at the left
boundary is 1 m/s; air permeability coefficient of the vegetative cover is 50%; the height of the
vegetation cover is 30 m, the width of the vegetation cover area is 50 m. The palette shows the
concentration of the impurity. Numerical experiments have been performed to simulate the movement

100
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of pollutants in the presence of forest plantations (Fig. 2) and in the absence of them (Fig. 8). The
area of forest plantations is indicated by a rectangle.

The color gradation illustrates the concentration of the impurity. Analysis of fig. 8 allows to
conclude that the presence of forest plantations influences the distribution of pollutants. Impurities
under the influence of ascending air currents rise in the area of forest plantations. Fig. 9.a shows the
movement of the air in the presence of forest plantations. Gradation of color shows the intensity of

the air movement.
M M
0301
0.151
- I M -I
a) b)

Fig. 8. The field of impurity concentrations
taking into account vegetation (a) and without them (b)

029
0224
0.149

0078

M

Fig. 8 illustrates the speed field of the air in the presence of forest plantations and the vortex
structures of the air flow located beyond the forest plantations in the direction of the wind movement.
The speed of air movement is increased three times in separate areas.

. - -~ ~ —l— - — — -— 3

2 S TR -
Fig. 9. Trajectories for the distribution of pollutants
taking into account vegetation (a) and without them (b)

Fig. 9.a shows the decrease in the width of the current tube in the area of forest plantations.
Figure 9.b shows the speed field of the air in the case of forest plantations. A palette shows the
intensity of the air movement.

The presence of forest plantations affects the distribution of pollutants. Impurities under the
influence of ascending air currents rise in the area of forest plantations. Figure 9.a shows the
trajectories of pollutants: 1 - the presence of a semipermeable area, 2 - the absence of a semipermeable
area. Fig. 9.b shows the dependence of the width of the current tubes, over which the pollutants
spread, in the case of a semipermeable region and its absence.
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Fig. 10. Movement of the air in the presence of forest plantations

Fig. 10 illustrates the vortex structures of the air flow, located beyond the forest plantations in
the direction of wind movement. The speed of air movement is increased three times in separate areas.
Next, the influence of the width of the forest plantations area on the air velocity and impurity
concentration fields was investigated.

Conclusions. The proposed methods of mathematical modeling of the motion of air currents
enable to evaluate the influence of forest plantations on the propagation of pollutants in the ground
layer of the atmosphere and the change in the coefficient of turbulent exchange. The developed model
takes into account the transition of water from liquid to gaseous state, precipitation of matter, transport
of impurities and heat, heat exchange between liquid and gaseous states.

The scientific novelty of the presented results is that the scheme obtained as a result of a linear
combination of the central difference scheme and the «CABARET» scheme was used for the
approximation of the convection operator. The use of <CABARET» schemes allows to increase the
conditions for the applicability of the developed model. The constructed algorithms are implemented
in the form of a software complex that allows to determine the influence of the presence of vegetation
on the distribution of pollutants under the influence of ascending air currents. The developed model,
the algorithms that implement it, and the constructed software complex allowed the numerical
experiments to simulate the propagation of pollutants in the ground layer of the atmosphere in the
presence of forest massifs. The advantage of the model of the air environment motion is the possibility
of taking into account the influence of forest massifs and turbulent mixing in the equation of
continuity of the medium.
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MonenupoBaHue NPUOPEKHOI AIPOAUHAMUKH C YUETOM JIECHBIX HACAKTEHMIT"

10.B. BesioBa™, E.A. IIpouenko*™*, A.M. Arasin, U.A. Kypckas™

JIOHCKON ToCcyAapCTBEHHBIH TEXHUYECKUM yHuBepcurer, PocroB-Ha-llony, Pocculickas @enepanus

Taranporckuit  wmHCTUTYT uM. Al YexoBa (pumman) PI'DY (PUHD), Taranmpor, Poccus

enpro paGoThI SIBISIETCS UCCIIEAOBAHNUE BIMSHUS JIECHBIX HACAXKICHUN Ha pacmpeneicHue
3arps3HSIONIMX BEIIECTB B IPH3EMHOM clioe aTMOoc(epsl. Moeh YUUTHIBAET PA3INIHbIC (DaKTOPHI:
HaIn4yue JICCHBIX HﬁCﬁ)K}I@HPIfI, U3MCHCHUA OABJICHUA, IIJIOTHOCTH W TEMIICPATYpPhl, HAJIUYNC
MHOTOKOMIIOHEHTHOM mpumecu u Jp. Cxema, MojiyueHHasi B pe3ynbTare JIMHEHHON KOMOMHAIMH
LEHTPAJIBLHOM Pa3HOCTHOM CXEMBI M CXEMbI «Kabape», MOCTpoeHa s anmpoKCUMaIUK oreparopa
KOHBeKIMH. Vcrosib30BaHre cxeMbl «kabape» MO3BOJIMIO pa3paboTaTh MaTEMAaTHUYECKYIO MOJIENb,
00J1aTaI0NTYI0 YCTOMYMBOCTBIO SISl O0JIee MIMPOKOTo KIacca BXOAHBIX apaMmeTpoB. [Iporpammusbrit
KOMILJIEKC TI03BOJISIET ONPENIEIUTh BIUSHHUE JIECHBIX HaCaXKICHUN Ha pacipeesieHre 3arpsa3HsIOIX
BEIIECTB MO/l BIMSIHUEM BOCXOSIIMX BO3AYIIHBIX TOTOKOB. PazpaboTaHHast MOJENb, aITOPUTMBI €€
pealiv3allii M TOCTPOCHHBI MPOTPAMMHBIM KOMIUIEKC TIO3BOJIMJIM IPOBECTU YHCIIEHHBIE
HKCIEPUMEHTHI, MOJCTUPYIOUINE pacHpeesieHue 3arps3HAIOIIUX BEIIECTB MPU HAIMYUHU JIECHBIX
HacaxJeHui. M3yueHo BIUsSHUE HAMYKS HACAKICHHUM Ha pacIipe/ielieHue 3arpsA3HSIOIINX BEIIeCTB
oA JIEHCTBHEM BOCXOJAILIMX BO3AYIIHBIX MOTOKOB. AHalIM3 pe3ylbTaTOB YHCIEHHBIX
HKCIEPUMEHTOB TO3BOJIET CHEJaTh BBIBOJ, YTO HA paclpeiefieHUE 3arps3HSIOIMIUX BElIeCTB B
MHOTOKOMIIOHEHTHOM BO3JILITHOM Cpesie CYIECTBEHHO BJIMSET INIOTHOCTh PACTUTEIBHOCTH.

KiueBble cJioBa: YHCICHHOEC MOJICIMPOBAaHUE, LEHTPAIbHAS PAa3HOCTHAs CXeMa, cXema
«kabape», orneparop KOHBEKIIHH
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