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Mathematical model of gas-dynamic and thermal processes in a steam turbine *
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The paper covers the calculation of aerodynamic processes in a steam turbine using modern
information technology and computational methods for improving the calculation accuracy. The
practical significance of the paper is the next: the model of aerodynamic processes in the steam turbine
is developed and implemented; limits and prospects of the proposed mathematical model is defined.
Aerodynamic processes in the turbine are characterized by uneven steam and heat flows, which
significantly affect the reliability and efficiency of the turbine. The calculation was performed taking
into account the complex geometry of the turbine and can be applied to any turbine of similar design
with minor changes.
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Introduction. The question about the optimization problem of installation and exploitation of
steam tur-bines is the actual. Strict requirements are imposed on the development of modern
technologies and industry needs to operate the turbines, associated with the reliability and efficiency
of their operation. At present, it is necessary to put into operation more modern turbogenerators to re-
place physically and technically obsolete units. Design of steam turbines is carried out on the basis
of the theory of gas dynamics, taking into account the results of analysis of heat exchange processes,
which allow to assess the reliability and efficiency of installation. Modeling of such complex systems
is the problem of optimal control of thermal conditions, which allows choosing the best from different
implementations. Optimization of thermal conditions is reduced to solving the problem of thermal
conductivity. Mathematical modeling of gas-dynamic and thermal processes in technogenic systems
is the relevant, due to which the correctness of accepted engineering ideas can be check and correct
errors at the design stage using simple and inexpensive means. After the design stage, it is necessary
to determine the real temperature values at significant points of the steam facility and analyze the
compliance with required values.

Problem Statement. The main equations of gas dynamics of operating environment are:
— the Navier-Stokes system of equations
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where V:{vx,vy,vz}are velocity vector component values; P is the pressure; p is the density; M

is the molar mass; R is the universal gas constant; u is the turbulent exchange coefficient; T is the
temperature; & is a coefficient, describing the deviation of the superheated steam pressure from the
ideal gas.

Let us assume that the operating environment is initially at rest. Thus, the initial conditions are
following: u=0, w=0, P=P,, whereP, is the initial pressure.

The system of equations (1), (2) is considered under the following boundary conditions:

— on the impenetrable boundary

ov ov ov ,
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—on the source v, =U, v, =V,v, =W, 6—n:0;

where U, V, W are the velocity vector components on the source; z,, z, are the components of

tangential shear stress.
The Navier-Stocks system of equations (1) in the cylindrical coordinate system will take the
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The position of a point in cylindrical coordinate system is determined by the numbers r,6,z.

(4)
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The system of equations (4) in the case of axial symmetry has the form:
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The continuity equation (2) in the cylindrical coordinate system has the form:
a_p+16(prvr)+l8(pvg) . a(pv,)

=0,
ot r or r o6 0z
The equation (5) in the case of axial symmetry takes the form:
o(pr 0
a—'0+1 (p V’)+ ('OVZ):O. (6)
ot r or 0z

Condition equation. The equation of the specific Gibbs energy is the main for superheated
steam. Its consist of two parts, relating to the ideal gas condition »° and describing the real component

r

.
9(p. T/ RT =y(z,7) = y"(z,7) + " (7,7) (7)
Y= In7r+Zg:ni°rJ‘0 ®)
7 =Y (r-05)" ©

where 7 =p/p* and -=T*/T; p*=1MPa and T*=540K . The coefficients and exponents for
the equation (8) are given in the Table 2, and for the equation (9) — in the Table 3.

Table 1. Relations for calculation the thermodynamic properties by the equation (7)

Characteristic Ratio
Specific volume VP/RT =7y,
Specific internal energy U/RT =7y, —7zy,
Specific entropy sIR=zy,~y
Specific enthalpy h/RT =7y,
Specific isobaric heat capacity c,|R=—y,
Specific isochoric heat capacity e IR==2y +(r,~1..) 1 7.
2
Sound velocity w? /RT = 7”2/ [W‘?’J
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In the Table 1:
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Table 2. Coefficients and exponents for the equation (8)

i 30 n’ i 3 n

1 0 -0,969-10" 6 -2 0,142:-10"

2 1 0,100-10° 7 -1 -0,438-10"

3 -5 -0,560-107 8 2 -0,284

4 -4 0,714:10™ 9 3 0,212:10*"

5 -3 -0,40728 6 -2 0,142:10"

Table 3. Coefficients and exponents for the equation (9)

i Ii ‘]i ni I Ii ‘]i ni I Ii ‘Ji ni
1 1 0 -0,177-10% | 16 4 1 [-0,78810° |31 10 14 | -0,100-10°®
2 1 1 -0,178107 | 17 4 2 [0,127:107 32 16 29 | -0,808:101°
3 1 2 -0,459-10" | 18 4 3 ]0,482:10° 33 16 50 | 0,106
4 1 3 -0,575-10" | 19 5 7 1022910% 34 18 57 |-0,336
5 1 6 -0,503-10" | 20 6 3 [-0,167-10 |35 20 20 | 0,891-10%*
6 2 1 -0,330-10* | 21 6 16 |-0,211-10% | 36 20 35 |0,306-1012
7 2 2 -0,189-10% | 22 6 35 | -0,23810? 37 20 48 | -0,420-10°
8 2 4 -0,393-102 | 23 7 0 |[-0,590-107 |38 21 21 | -0,590-10%
9 2 7 -0,437-10" | 24 7 11 |-0,126:10° | 39 22 53 | 0,378-10°
10 2 36 -0,266:10* | 25 7 25 [-0,389-100 | 40 23 39 |-0,127-10%
11 3 0 0,204-107 | 26 8 8 |o112:10% |41 24 26 | 0,730-10%
12 3 1 0,438:10° | 27 8 36 | -0,823-10 42 24 40 | 0,554-101°
13 3 3 -0,322:10* | 28 9 13 | 0,198107 43 24 58 | -0,943-10°
14 3 6 -0,150-102 | 29 10 4 [0,10410 |31 10 14 | -0,100-10°
15 3 35 -0,406:10" | 30 10 10 |-0,102:-10% |32 16 29 | -0,808:101°

All thermodynamic properties of superheated water steam can also be obtained from equation
(7) using differential relations of thermodynamics.

Turbulence Model. Let's use the Abramovich-Secundov model, which takes into account very
important factors such as the presence of rigid walls, flow background, convective and diffusion
transfer of turbulent fluctuations:

3

myp6 ZV myp6 Z % (( Mo myp6 ) a\émypﬁ j + mep6 f (;’\rjypﬁ J D - 7 S 3

i i= Xi mon
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i=1l j i

where k=2, y =50, f=0,06; L,
viscosity; v, . is the turbulent viscosity.

is the minimum distance to a solid wall; v is the molecular

The turbulence model (10) is considered under the boundary condition:

(vmypﬁ) (t.x,»,z )|( o =0.

Add the initial condition for the model (1):

( Mypﬁ)(t Xz )

The following equatlon was used for calculation the dynamic viscosity values v,

VMOJZ :_0 (T).\71(T’5)'V* ' (11)

where v' =55,071-10° Pa-sec; =T /T"; T is the temperature, [K]; T'= 647,226 K; 5=p/p"; p
is the density, [kg/m?]; p"=317,763 kg/m?; ¥,
the zero density limit.

=V, /V"; v, is the dynamic viscosity of water steam in

=7%° (23: H,z™ j_ : (12)

where H, =1, H, =0,978197, H, =0,579829, H, =-0,202354 .

exp{dzz H, |

i=0 j=0

(L/z-1) (6~ 1)”). (13)

Coefficients H; ; for this equation are given in the Table 4.

Table 4. Coefficients and exponents for the equation (13)

i\ 0 1 2 3 4 5 6

0 0513204 | 0,215177 | -0,281810 | 0,177806 | -0,041766 | -

1 0,320565 | 0,731788 | -1,070786 | 0,460504 | - -0,015783

2 - 1241044 | -1,263184 | 0,234037 | - - -

3 - 1,476783 | - -0,492417 | 0,160043 | - -0,003629
4 -0.778256 | - - - - - -

5 0,188544 | - - - - -

475° C is equaled to the 2%, at higher pressures or temperatures — 3%.

conduction equation:

oT

Co—+V
Pat X

—+V

oT

—+
" oy

ar o

V,—=—
0z OX

7). .
OX

oy

which in the case of axial symmetry can be written as:

6T

azj %(P).

The error of the dynamic viscosity at the pressures up to 50 MPa and the temperatures up to

Heat conduction problem. Thermal processes in turbine G was described by the heat

oT 0
— |+=
3

(14)
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pCrT/+ v, T, +1v, T/ =1 (AT,) +(ArT,) +rq,(P). (15)
In the system (14), (15) T is the temperature; A is the conductivity of water; p is the metal
density; c is the heat capacity of metal; r is the polar radius; g, (P) is the source function. We will
consider the equation (15) with the boundary conditions of third kind:
T.(x,r,t)=a.T+p,, (16)
where n is the normal vector to the G .
An initial condition were added to the equation (15):
T(x,r,0) =T,(x,r), (x,r) €G. (17)
The following equation is used to determine the coefficient of thermal conductivity of water
and water steam in international practice:

A =24 (2)+ 4(6)+ 4,(z,6) (18)
where A is the conductivity; W/(m-K); = = T/T*; T'is the absolute temperature, K; 7* = =647,256 K;
8 = plp*; p is the density, kg/m?; p* = 317,7 kg/m®. The thermal conductivity of water steam A,(z) in
the ideal gas condition is determined by the equation:

3
Ao(7) = TO’SZGKTK ,
k=0
a,= 0,0102811; a,= 0,0299621; a,= 0,0156146; a, = -0,00422464.

The function 4,(6) is defined as: 4,(5) =b, +b,5 +b, exp{B,(5 +B,)*}, where b, = -0,397070;
b, = 0,400302; b, = 1,06000; B, =-0,171587; B, = 2,392190; and the function A,(z,5) has the

d . C
form: 4,(z,6) = (ﬁmz)é"’s exp[Cl(l—(S”’S)} d,Ss° exp{(%](l—ﬁl Q)}r d, exp(CZf’2 +5—§J :

where Q and S are functions of the value Ar=|r-1+C,: Q=2+C;/Ar*®;

B 1/ Az for £>1;
G IA for T<1.

The coefficients d, and C, have the following values:
d, =0,0701309; d, = 0,0118520; d, =0,00169937; d , = -1,0200; C, = 0,642857,;
C, =-4,11717; C, =-6,17937; C, = 0,00308976; C, = 0,0822994; C, = 10,0932.
The equation (14) is applicable with the following temperature and pressure values: p <100

MPa for 0<T <500°C; p <70 MPa for 500 <T <650°C; p <40 MPa for 650<T <800°C.

The error values in the liquid at temperatures 25-200 °C and pressures up to 5 MPa is equaled
to the 1.5 % in the calculations, at higher temperatures up to 300 °C — 2 %. The error is equaled to
the 1.5% at temperatures up to 550 ° C and the pressure of 0.1 MPa for the water steam, at pressures
up to 40 MPa — 3 %. The equation (18), in comparison with the theoretical conclusions, determines
the not infinite, but the final value of the thermal conductivity coefficient at the critical point, which
does not allow estimating the error value near its critical point.
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Splitting schemes into physical processes. According to the pressure correction method [1-
4], the initial model of aerodynamics (1)-(3) is devided into three subtasks. The first subtask was
represented by the diffusion-convection equation, on the basis of which the velocity field was
calculated at the intermediate time step:

Vv, ov, Vi v o(10(rv,)) o,
+V, ———+V, L=yl —| ——= +? +f.,

T "or r ‘oz orlr or
—\79_\/9 4V %4_%4_\/ %=IJ g la(rvg) +62V9 +f
T "or r oz or\r or oz° o
J 2
Y.V, +V, v, +V, v, =u gg(ravz}a_v; +f,. (19)
T or oz ror\_ or 0z

The calculation of the pressure distribution (the second subtask):
o(rv o(pv 2
r%o+ (o r)+r (Pz)zrﬁ(r@j P

+1r —- 20
or 0z ol or ) (20)
or with taking into account the condition equation
O(PM [ eRT) O(prv (v 2
i ( & )+ (,o;’\/r)_|_r (p7,) 8( 8Pj+ o°P

=7r—| r— |+7r—.
ot or 0z or or 0z°

A simplified hydrostatic model of the operation environment medium motion was used as an
initial approximation for this task. So, the calculation time was significantly reduced.

The distribution of steam velocities on the upper time layer using explicit formulas can be
obtained in the third subtask.

(21)

v -V 10P v,-V 10P

r r _ , z z - _ (22)
T p or T p 0z
where 7 is a the step at the time coordinate; v is the value of the velocity field at the previous time
layer; V is the value of the velocity field at the intermediate time layer; v is the value of the velocity

field at the current time layer.

Difference scheme for the solution of the diffusion-convection problem at high Peclet
numbers. Let’s consider the two-dimensional convection-diffusion equation:

2 2
4,87, ,0
ot ox oy o oy

where te[0,T], xe[0,L,], ye[O, Ly:| q(0,x,y)=0°(xy), q(t0,y)=q(tL,y)=0,
a(t,x,0)=q(t,x,L,)=0.
The estimated domain was covered by an uniform computational grid o= o, X wx X wy , Where

ox={x|x =ih, i=01.,N, Nh, =L}, @, ={yly=ih, i=01..N, Nh =L}, o ={t]j=01.},

, (23)

r=t ,—t =const.
The splitting scheme for the equation (23) at space will have the form:
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. (24)

where v, =1, y,, =0 at u>0, and y, =0, y,,=1 at u<0; v, =1, y =0 at v>0, and
w.=0,w,r=1atv<0.

The simulation was performed on the grid by the size of 100x100 computational nodes; the
parameters were defined as follows: the dimensions of the computational domain are L, =100 m,

L, =100 m; the horizontal component is equaled to the 4 m/sec, the vertical component is equaled
to the 3 m/sec; the turbulent exchange coefficient is equal to the 0, 0.1, 0.4, 2 m?%/sec. The initial
distribution was set by the following function at solving the two-dimensional convection-diffusion
problem [11-16]:
: sin(7(x-10)/10)sin(z(y-10)/10),{x,y} € D,D:{x€[10,20], y €[10,20]},
axy)=
0,(x,y)eD.

Numerical solutions of the convection-diffusion problem at different Peclet numbers using the
«cabaret» scheme and the modified scheme (24) are shown in fig. 1.

(25)

a) 0)

1.086

0.770

0.455

0.139

-0.177

Fig. 1. Numerical solution of the convection problem based on:
a) the «cabaret» scheme, b) the modified scheme

Discrete Model of Aerodynamics. The estimated domain inscribed in a rectangle. A uniform
mesh is introduced for the numerical realization of the discrete mathematical model of the problem
in the form:

w, ={t"=nz,r, =ih,z; = jh;; n=0,N,,i=0,N,, j=0,N,;
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N,z =I,N.h =1,N,h, = IZ}, (26)
where 7 is the time step; h,, h, are space steps; N, is the upper time bound; N, , N, are space
bounds.

To improve the discrete «smoothness» solution we assume that the cell are not completely
filled. [17-22]. The domain Q is the filled part of the domain

rz
D, e {r € [ri—112’ ri+1/2]’ z E[Zj—ll2’ Zj+1/2]}'

We introduced the notation for the following domains:
D e {r < [I’i,l’i+1,2],z < [21—1/2’ Zj+l/2]} D, e {I’ € [ri—llz’ri]’z E[Zi—llzi Zj+1/2]} ’

D, e{l’ E[rifuz"’m/z]’Z E[Zj’zjwz]} ; D, e{r e[ri—1/2’ ri+1/2]’z EI:Zj—JJZ’Zj:'} :
The occupancy coefficients q,,0,,0,,0;,d,, for the domains D,,,D,,D,, D;,D, are introduced

S S —
as the following: q, = SDH ; 0 =S—D', i=14, where S is an area of the corresponding domain part;
Q, Q

Q, is a filled part of the domain D, .

The difference scheme for the system of equations (19) will takes the form:
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The difference scheme for the calculation of pressure will takes the form:
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The difference schemes for the system of equations (22) will takes the form:
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qo M, i, =_q3 i,j+1 ij _q4 i,j i,j-1 . (31)
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Software implementation. The initial parameters of the model are: the rotation frequency of
the turbine; the range of exit velocities at the turbine blades; the number of blades; the number of
nozzle channels; the width of the nozzle channel to the impeller; the steam pressure on impellers.

The speed of steam movement is indicated by the color. The measure units is meters per second.
Due to the developed software, we can calculate movement of the operating environment within areas
with cylindrical symmetry and determine the velocity and pressure field patterns within axial steam
turbines. The permeability of the medium was used in the mathematical model for describing the
geometry of the nozzle lattice. The movement of steam in several stages at the same time can be
calculated on the basis of the developed software. The distribution fields of the main physical
computing quantities inside for the first operating chamber are shown in Fig. 2 (1 is the longitudinal
and radial component of the velocity vector, m/sec; 2 is the rotation speed, revs/min; 3 is the pressure,
atm.; 4 is the turbulent viscosity, Pa-sec; 5 is the temperature, °C; 6 is the density, kg/m°).

z z

Fig. 2. Distribution fields of the main physical computing quantities
inside for the first operating chamber
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Conclusion. The mathematical model of gas-dynamic processes in a steam turbine was
developed. The main equations of the model are the Navier-Stokes equations, the continuity and
condition equations for the real gas. The initial system of equations was written in a cylindrical
coordinate system taking into account the axial symmetry of the steam flow field in the turbine. The
splitting schemes into physical processes (the pressure correction method) were used for
approximation problem in the temporary variable. According to this method, the problem is solved
in three stages. The diffusion-convection equation with large Peclet numbers is necessary for
calculating the velocity field components without taking into account the pressure. New difference
schemes, based on the «cabaret» scheme modernization, were applied for solving this problem. These
difference schemes are in 2-2.5 times more accurately solve the diffusion-convection problem in
comparison with traditional «cabaret» schemes, which are effective in solving such problems.
Software implementation of the problem was performed on the basis of the devel-oped algorithms,
and the results of numerical calculations of aerodynamic processes in the steam turbine were obtained.
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