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The grid-characteristic method is a promising numerical method for solving hyperbolic
systems of equations, e.g., equations describing elastic and acoustic waves. This method has high
precision and allows you to physically correctly simulate wave processes in heterogeneous
media. The grid-characteristic method makes it possible to correctly take into account boundary
conditions and conditions on surfaces with different physical characteristics. Most fully the
advantages of the method are for one-dimensional equations, especially in combination with a
fixed difference grid, as in conventional grid-based methods. However, in the multidimensional
case using the algorithms of splitting with respect to spatial variables, the author has managed to
preserve its positive qualities. The use of the method of Runge — Kutta type, or integro-
interpolation method for hyperbolic equations makes it possible to effectively carry out the
generalization of methods developed for linear equations, in nonlinear case, in particular, to
enforce the difference analogs of the conservation laws, which is important for shock-capturing,
for example, discontinuous solutions. Based on the author's variant of the grid-characteristic
method were numerically solved several important problems of seismic prospecting, seismic
resistance, global seismic studies on Earth and Mars, medical applications, nondestructive testing
of railway lines, the simulation of the creation and characteristics of composite materials for the
aerospace industry and other areas of practical application. A significant advantage of the
constructed method is the preservation of its stability and precision at the strains of the
environment. This article presents the results of numerical solution based on the grid-
characteristic method to the problem of modeling elastic-plastic deformation in traumatic brain
injury.

Key words: hyperbolic type equations, elastic and plastic deformation, grid-
characteristic method, finite difference schemes, discontinuous solutions.

Introduction. The numerical solution to nonstationary dynamic problems of elastic and elastic-
plastic deformations of isotropic solids in case of two or three spatial coordinates is the object of
many works, a fairly detailed overview is given in [1], [2]. In solid mechanics various
mathematical rheological models have been developed, among which an important place is
occupied by those which are described by systems of equations of hyperbolic type, and, above
all, the models of linear and non-linear theory of elasticity and plasticity.

The most important concept for such equations is their characteristic properties. The use
of the characteristic records of the original equations when constructing a particular numerical
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methods (i.e., approximation of not the original equations, but the equivalent to them conditions
of compatibility along some characteristic directions) allows in the most natural way building
computational algorithm on the borders of the region of integration, to a certain extent taking
into account solutions dependence domain, etc. Most fully the advantages of the characteristic
approaches occur for one-dimensional equations, especially in combination with a fixed
difference grid, as in conventional grid-based methods (grid-characteristic methods [4]);
however, in the multidimensional case using the algorithms of spatial splitting the variables are
able to preserve their positive qualities. The use of the equations of = Runge — Kutta type or
integro - interpolation method [6] makes it possible to effectively carry out the generalization of
methods developed for linear equations, in nonlinear case, including by ensuring the
implementation of the difference analogs of the conservation laws, which is important for shock
capturing of discontinuous solutions.

Out of other approaches widely used for numerical solution to such problems, we will
note the method of disintegration of discontinuities and various difference schemes of splitting.
The choice of the coordinate system used is crucial at considerable strains of bodies. If for small
displacements (and strains) the traditional for solid mechanics problems, Lagrangian finite-
difference grid does not undergo significant changes then with large deformations in the area of
integration heavy distortion on it until disturbances are possible (zero area of differential cells,
their "eversion”, etc.). Used in such cases methods of regularization of difference grids
(reinterpolation on a new grid, etc.) do not always give the expected effect.

On the other hand, the use of a fixed in space Eulerian coordinates leads to serious
difficulties in the approximation of boundary conditions. Therefore, it is important to compare
calculations performed in various coordinate systems, using the same numerical scheme that is
one of the objectives of the present work.

2. Using conventional kinematic equations for a symmetric tensor of velocities of
deformations [7] in spatially fixed orthogonal curvilinear coordinate system x and x, x3

I I1éw, 1é&v | I|. (%o eH, | I cH, cH, |
e, =— —+t——"+— 4, T —=——" |- v, —=+—= 1,
- M H,éx, H,oex, | H)| \ZH: & )] 2H,\ " &x, &x, ]
m=1,2,3
choosing the defining relations in the form

! LS ) = - emn,i,j=1,2,3,
dt  df H,dx  H,dx, H,dx m;q”m” J

we write a closed system of two-dimensional nonstationary equations in the form of
6_U+A16_U+A26_U=f. (1)
O

Strictly speaking, in the case of finite deformations, instead of substantial derivative

doy; /dt one should use the so-called Jaumann derivative for the components of the stress tensor

deviator of type
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d% = dtl - Z(Sikwjk S0y ),
1 ov; 0V
“i= 2(ax o ] ” 32‘7“’

which provides a zero rate of change of the stress state of the particle during its rotation as a rigid
whole [2]. However, as the calculations show, in the examined task it is almost insignificant.

The symbol ! ={01,02,011,012.022,035. T} eans the vector of desired variables, including
the components v and ?2 of the velocity vector VV (on the axes xj, x, respectively) non-zero
components o, of the symmetric stress tensor and the temperature T,

f{t,xl,xz,u} b fu fo fo ) vector of right parts with the following components in
the curvilinear orthogonal coordinate system X, x», x3

f, =

(011 22)+6H2+(011—033)+01_2 L6H1+L8H3 ) 6H1 6H2
171" H\Hy HqHy

=F, + v +0
1 2
6x H lH 3 H 2 H. 1 6x2 H. 3 6x2 1 6x2 le

f,=F,+ 1 [("22 733/, 93 (”22'”11)+"1_2[15H2+L8H3ﬂ_ Y1 ( i 6H1Jy
p

2 T
2 3 6x2 H2H1 Hl H2 ox. H3 axl H2H1 6X 8X2
b Gij11%2 oH, _(qijlz_qij21) ) 6H1 oH, +qu22 26H2+qij33 v 6H3+_28H3 _6iij
U HH, %, 2H.H, 16x2 Y2 ax HiH, ox;  Hg [Hy o Hy 0%y pc
b= 1 0111)2 6H1 T A 6Hl+v 6H2 TooV) vy 6H ﬁ _18H3 _28H3 ‘0
T %, HiH Lox, 2 ox A ox;  Hg|Hy oxg  H, ox ’
pe| HyH, 172 2 172 3(M % 2 9%

Here F1, F, are the components of the vector of mass forces, & - internal energy for
thermoelastic medium, ¢ — the specific heat of the material, T — temperature, Q —the density
of heat sources; Hi, i=1, 2, 3 — Lame coefficients that characterize the selectable orthogonal

curvilinear coordinate system, # is the density determined by the equation of state of a solid
body, for example

3
A = _(3K)_l ZO-" - 3LeT
i=1

Po

Po__ density of material in the deformable condition, K - the coefficient of volumetric
compression. In accordance with the intended here two-dimensionality of strain state,
displacement of material points in the direction x3 and is absent, and the matrices
03 =0, =V, =0, 0/0x, =0 thus have the form:
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o 0 1/p 0 0 0 0
0 vy 0 —-1/p 0 0 0
T “Oi111 ~(Ohao+0h101) /2 oy 0 0 0 0
A= Tl Ghen (O + G0 )/ 2 0 o, 0 0 0
U Gpppy (O + 000 ) /2 O 0 o 0 0
Ogsin —(O3ip+Gs30)/2 O 0 0o 0
011/ pe 011/ pe 0 0 0 0 v
0, 0 0 -1/p 0 0 0
0 0, 0o 0 =1/p 0 0
Y ~(Oyg10 + G101 )/ 2 —O1122 v, 0 0o 0 0
A2 = H. _(q1212 01201 ) /2 —O1200 0 D 0 0 0
21015 +0ppp1 )/ 2 —O2222 0 0 v, 0 0
U311 (U331 +Ug3)/2 0 O 0 o, 0
012/ pe “022/pc 0 0 0 0 v, )

For the adopted in the present work the model of Prandtl —Reuss components of a tensor
of the fourth rank giikl elastic-plastic material have the form:

”uéu [”SuSkI
Gk =% T OO %) !

where A, u — the parameters of the Lame, k is the yield stress in shear, &, are the symbols of
Kronecker, the stress tensor deviator

Sin = Omn — Omn 32‘735

where ¥ =(32+2u) e, (a, is the coefficient of linear expansion of the material during heating),
| is determined from the Mises plasticity
{o mpu S =52 +S2 +52+52 < 2k?,
lopu S > 2k2
Defining relations for 1=0 are linear Hooke's law for elastic isotropic materials. When y

=0, Q=0 first 6 equations do not included temperature and can be solved independently from the
energy equation. It should be noted that thermal effects are usually significant only when
external heat is supplied, or for intensive computation. The above mentioned system of equations
is a formal combination of known dynamic equations for small thermo-elastic (at 1=0) and
elastic-plastic (y =0, Q=0), without the energy equation deformations of isotropic materials.
These two well-known models were used for the numerical solution is given in the work task.
For small deformations, the differences between the Lagrangian and Eulerian description of the
motion is insignificant and the system can be have further simplifications; in particular, it is
possible to neglect the convective members (leaving out v,, v, on the main diagonals of the

matrices A,, A,, which was assumed in problems on small elastic and elastic-plastic
deformations), i.e. in the matrix A, and in this case were replaced by
A=A =, /H)E A=A, =(v,/ H, )EA ={af Lk=12ij=1..7.

To account for finite deformations and displacements, we introduce the moving coordinate

system 7227l connected with the fixed Eulerian xy, xz, x3 ratios
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E=t, Xt ) =n+ [ c(tm,m)dt
0

t
X, (6, m,) =1 +_[C1(t’771’772)dt! X3 =173.
3)

in which ox, / ot|nm-const =, (t,7,,7,), k=1, 2, — the components of the local velocity of the

points in a moving coordinate system with respect to a fixed in space coordinate system xi, x», xs.
The Jacobian matrix of the transformation has the form

t ot L | 0 0
B=|X: X, Xu,[=[C 0% /0n X [0n,|,

Xy Xzz Xo | 16 X, 10m, 0%, 101, @
is nonexceptional if A=DetB=X,, X, —X,, X,, .
Then:
A 0 0 LS I

1
B= A (C1X1,71 _Clx2772) Xom, X, ||TWWhe  Thy,  Thx |
(CiXop =CoX1y) =X Xy Thi Thy, Thx,
A™ =DetB™" = Thy,TTox, = Thx,Tlox, = 17A,

and thereby it is established the connection between derivatives On /0x;=n, and

X 1017, =X, -
With this transformation, the system of equations takes the form:
u+Au, +Au, =f, A =nE+n A+ A, k=12, (5)

moreover, the diagonal member of the matrices A, ={a}} and A, ={a}} source matrices are

connected by ratios

v, 1,V V. V ]
1_ Thy Vi | Thy,Va i 2 -1
& =1, +— +_2_[[——C1Jx2m—[H——czjxlﬂz A" =V,

H, H, H, 2
Vi Ty, Vs \ Vv | -1
a|2:7717+—1+—2= (_Z_CZJX]- _(_1_0le2 A :V2
! H, H, |: H, h H, 'h_

and non-diagonal members take the form of:

51 52
2 X, & X, 85
ij — A

52y Al
ij

1 ~1 5
&j = Thy, &j +Thy, 2

. o, X, af =Xy, a
ai? =ﬂleaﬁ +772X2a§ === A .
For the used in the work the Lagrangian coordinate system:
c,=u/H, c, =0,/ H, ai'j=6k=0,
the coordinates of the nodal points x"', x)""of a uniform coordinate system 7,7, difference

ml

grid
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e =Mh, Mm=0,1..,M, 5, =lh,, 1=0,1,.., h =1/L ©)

were determined (and was memorized as vectors u! , u’') and ratios approximation, for
example the simplest:

n+l _ yn n+1
lel + 2-‘::1ml '

lel

n+1
X2m| - X2m| + TCZmI'

and their derivatives ox, / 0n; were found by numerical differentiation using central differences
in the internal nodal points 1<m<N -1, 1<I<L-1, for example

(Xz)m+1l (Xz)m—ll (Xz)ml+1 (Xz)ml—l

2h, 2h, ’
and one-sided differences for the boundary node points. In some cases, and in the internal nodal
points were used one-sided differences of form

(X27}l)m| (X2172)m|

(X Jon = G i ‘(X2m)m|+ <‘(x2m)m|—‘,
Codm s || > (o) |
where
(X Dt = (xz)m+1|h1(x2)m_1| (o, ) = (X2)m, hz(XZ)m_l'l’
For moving Eulerian coordinate system
O e Sl UL

Xy -(fx) = X5 -(f,x)’

(7)
where X; -(f,x) and X, -(f,x ) are the equations of the upper and lower limits of integration we
have

1 0 0
B'=| O 1 0|

- Pﬂzx ’ _q772x2 7, Xq

(here P =[ X, +17, (X3 = Xz0) |, a=[ Xo +7, (X3 =X )| 720 = (X5 = %5 ) ).
This allows us to directly use the ratios, or to restrict ourselves instead of calculation (and
memorizing) only of values X,"(f,x,) u X, (,x)), with the help of e.g., approximation
X _(tnﬂ,’hm) = X5 (1" My )+ X (14 ),
+(tn+l”71m) X5 (1" )+ X (1" Mim s

— — U t) 10 D t”/] )
XZt(t,’h):XZf(f’xl): HZ(('[;Z; 0))_ 1( Il-I
2 (1

+ v, (tn,,1 v, (61,1
Xaltm) = Xafhx) = HZ((t’Z; 1))_ ! .
2\ Y

szl(t 11,0)
tnl,O)
sz (tn, 1)
ty,1)

/‘\\—/

/-\\_/
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Then the necessary derivatives o7, / 6t,07; / 0x;, (mubo ox; / &t,0x, / On;) are determined
through  X," =0X,"(t, )/ &t, Xy, * =X, *(t, ;) / &3, using numerical differentiation of the
proportions.

Finally believing
c1=0, Co=v/H,,
we get a mixed Eulerian-Lagrangian coordinate system, in which you can restrict yourself to
calculation (and memorizing) only value x)i' =X}, +wvy, /Hy,, different from zero and
derivative units ox, /on,, 1=1,2.

All three of the considered system of coordinates leaves the original rectangular region of
integration
0<% (0,77,73,) =1 <71, 0< %,(0,7,73,) =1, <1
and introduced in it uniform differential grid (6) stationary in variablest,n,,n, , however, in
variables t, x;, x, the location of grid nodes for 7,7, each of these coordinate systems is

uneven and significantly affect the calculation of problems with large deformations.
When using for approximation of equations system (1) grid-characteristic method, the

design equations in the internal nodal points are the ratios
(s 7)M=12...M -11=12,...,1 -1,

urt=ul +1f " +b! +b)

noo_ olasot) Un Uni (-1 n Up,yy —Uny

bl =7 (2'A;Q; )mlh—l(szl AR h—l}

n [ 1A +O0-1\" u:1—lm un 1 n um+1| unmI

bl = 7| (2"ATQ; )ml'h—(g AL, ) |

L 2 2 (8)
in which the diagonal matrices
_AcHAY \A |

x-S A INEE
A ={AYi=1,

— eigenvalues of the matrices Ay, k=1.2, determined from the characteristic equations Det(Ax A
E):O;QK:{a)E}— nonexceptional matrix, rows of which are linearly independent left
eigenvectors @ of matrices Ay, defined with accuracy to the length of the plurality of linear
homogeneous systems of equations (A\T— A‘E)wf =0, i=1,..., 7; Q" —the inverse k of the
matrix; A} — transposed matrix Ay).

For matrices Ax={a; | we have 4 =V, +y{,i=1..,7,
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k k 2 w2 k 2 272 k K _ gk
Y1 :_y7:|:ak+(ak_4dk) } ' y2:_y6=|:ak_<ak_4dk) } v Y3 =—Ys=Y5=0.
Kok 4 Ak ak ook ok 4 ok ok Kok ((ak ak _ ok ok k Ak k Ak
8y = 58y +ay,dy +8y,A, + 885, O =ajay ((a313-42 - asza41)) A48 X ((a41a32 - a42a31)) +

Kk ((ak Ak _ Ak ok
T 385 ((331332 — 8585 ))' k=12,

OO r OO o o

9
~
=
58]
|
581
,;81
|
Ga
O O P O O O O OO0 Ok OO o

2
@ 1l -w,, -w, -o
11 13 14 15 (9)

Here

K _ akak | akak K_akak o akak |
o =38y +38y;, Ay =8y T3, K=12,
k .k k ok k Kk
ot = 213 ot = d1a® T+ 8B
137 k ! 14 )

y| yik

asol, .
Kk 25.k2'|:1’2’

W5
1

ol = a%zﬂiil - azillﬂilZ ' o, = alézﬂill - a%lﬂi12 ,
a3 b1 —anbis a3, 81 —850n
i T abpi-aipl
a51ﬂi2 - aszﬂ41 aszﬂil - a51:842
ﬂi} = aéja’uls + aéjw.le + a%ja)llﬁ

2 2 2 2 2 2 2 H H
ﬂij:a3ja),3+asja),6+a7ja},7, 1=12, 1=345.

Q' ={p}} in this case for inverse matrices we have
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Pp P, 0 00 py py
p;l pgz 0 00 pl2<2 pI2<1
pgl pgz pgs 00 - pgz - pil;l
]
Q' =|lpii Pz Pis 0 0 —ps, —pa
pg1 pgz pgs 00 - pgz _plgl
pels(l pgz p|g3 10 - pels(z - plﬁ(l
p;(1 p;(z p;(s 01 - D%‘z - pl7<1
where
(A 1 0)12 1 a)%l 1
p p ' p ’ p AAl? A; = 1_ (01 602
1= Px» = 12 = ) Al 21 2AL 20051
ol = s~ s 1 Gy~ 01,
s 2A! ComEe oAl
pL, = W03y — O,V pL = )3 — Wy,
3 2A! T 21
pL, = W53~ @ pL, = sy — D5y
42 5 Al ) 43 Ai '
pL, = _ 0005~ Oy 1 _ Dy — O3
>t 2A! b 2A! ’
pl _ 0)114(0%3 - a)ll3a)%4
o J— Al '

p|1 |:a}| 2,3 0)24 0)25(034) |1 2.4 (5023 a)%swés )}(ZAi)_l ;
P, = |:0‘)| 2,4 Wiy 50)33) |123(a’114_a’1150)%4)}(2Ai)_11
Pia = [ 2,3 a’ma’zs W50 ) ~ 0, (a)ll3a)§5 — w350y, )} (Ai )_1 ,

_ 1 1 (1 1 1 1 1111
= @i ((024(033 — Wy ) T W (0)13‘034 - 0)145033) + (0)140’23 - a’13a724)

And, similarly

2 2 2
2 _ Wy 2 A; 2 an 2 2
Py = v Pp= v Py =— v A =1- w0,
2A3 2A3 2A;
2 2 2 2 2 2 2 2 2 2
p 0)24(935 W53y 2 _ W03y — Wy Wss 2 _ 0y — W50y
31— 1 32 ) 33 — 1]
2A? 2A2 %
2 2 2 2 2 2
p2 _ 5 — ;W5 pz _ 03035 — W5
31 2 ' 31— 2 ’
2A; 2A;
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p2 WOy50053 — (03055 pl 03334 — Wy
43 ) 5 = '
A? 2A?
2 2 2 2 2 2 2
p2 _ Wy — 03005, pl _ 0300, — 0,300,
5 = ) 53 = '
2A2 A?
1
> [ 2 2 2 2 2 2 2 2 2
Pip =| B3 (a)24 — (0503 ) T W4 (wzs O3y )](ZAl ) ,

2

P> = [@272,4 (a)lzs - 0)1236055) — @ 35 (0)124 — Wiy}, )](2Aé )71 '
pils = [@72,4 (a)lzsa)zzs - wlzsa)zzs) - wuzfz,s (a)124w223 - a)lzsa)éza, )] (Af )_1 1
1=6,7,

2_ 2( 2 2 2 2 2( 2 2 2 2 ) 2 2
A} = ay (a)24a)35 - a)zsa’:m) T Wy (w15w34 — Oy Ws5 ) + (a)14a)25 — 150y )

When constructing calculation formulas on the borders of the rectangular (in coordinates
t,7,,1,) region of integration will only consider the upper (7, =0) and lower (7, =1) borders,
meaning that the remaining boundaries (7, =0, 7,) are often a plane (or axis) of symmetry or
periodicity of the decision or chosen so that during the time t <t the disturbance did not reach
these boundaries. The generalization for more complicated conditions on the boundaries 7, =0,7,
present no major difficulties and are similarly described below. Scalar multiplying by the
eigenvectors («?)",, we obtain ratios

ml ?

(), 15 (o), (s c12)2

ihlz(/liz)nml (m'z)n,m (um,m +Up, ), i=1..7,

approximating with the first order of accuracy the conditions of compatibility along the lines of
intersection of the characteristic surfaces of the system and the plane coordinates 7, =n,,, (with

(10)

equations dz, = A2dt)
ol +Aefu, =of (f-Au, ), i=1...7.

As it is known, the number of boundary conditions for hyperbolic system of equations of
the type is determined by the number of negative (positive) eigenvalues of the matrix 4; on the
upper (respectively, lower) boundary of the region of integration. In the examined tasks at the
upper boundary 7, =1loccurs A2 < A2 <0at the lower boundary#, =0, A*> A2 >0 respectively,

and; consequently, each of these boundaries requires the setting of two boundary conditions,
which we write in the form

& (tnyuy,...u; ) =0, i=1,2 nipn 17, =0,
i) (t,nl,ul,...,u7) =0,i=1,67npun, =1,
and it is necessary that DetQ)_#0, Det€2, #0, yhere respectively

— — o ol — o T
Q_:Hmlmzm3...co7u , Q+:Hcol...m5m6m7u .
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Here @, ={d¢4/0u,,...0p, /0w, }, i=1267 ai=1,..,7, - the eigenvectors of the
matrices A4,. For the considered tasks and the boundary conditions were chosen semilinear and
after approximation had the form of
¢ =0, (tn+1’771m )“anl -G (tn+1’771m) =0,
1=12npun,=0,i1=6,7npu n, =1.

Attracting the differential ratio at i=3,.., 7 for the border 7,=0 and i=1,.., 5 for border 7,
=1, we get all the necessary formulas for points belonging to these boundaries. For the
calculation of points belonging to the boundariesn, =0, r,=7,, we used calculation formulas
with additional "rays" 7, =—h,, (m=-1) and 7, =n,,+h (m=M+1) for which the components of the
sought vector u are determined according to the data inside the region of integration with
appropriate symmetry or periodicity of the decision or extrapolation (depending on the type of
boundary).

Below there are some results of calculations illustrating the capabilities of the considered
difference scheme. The data were nondimensionalized in the following way: the linear
dimensions were related to some characteristic value x0, the density — to the initial density of the
material p,, the components of the stress tensor — to some value o,, temperature T — to the

characteristic value To; the other dimensionless quantities were defined using the dimension
(index p) thus

/ p p
Vk= kp[ﬁJ ) k=1,2,t=tpM’A=/1—,lu=’u_’
Po X o, 0y
p p P p p
% % % % a4(0/ po)

(11)

The examples of numerical modeling of various complex dynamic problems are
presented in [8-19].
The results of the numerical solution of some urgent problems. Traumatic brain injuries
(the task was set by the specialists of the Institute named after Sklifosovsky and Ambulance
Central clinical military hospital named after Burdenko)
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Working together with the neurosurgeons we formulated three mechanical-mathematical
models of human head. The simplest of these is a two-component model (Fig. 1a), in which bone
tissue and brain are described by homogeneous isotropic materials with average mechanical
properties; more complex models take into account the presence of ventricle (Fig. 1b) and two
membranes (Fig. 1c). The external load is set as the collision of skull-brain system with a
completely fixed rigid barrier with a given initial velocity (1-3 m/s). It is known that a significant
contribution to the formation of a wave pattern of disturbance propagation in an elastic medium
makes heterogeneity. Therefore, a two-component model was further developed in the form of a
three-component model, consisting of bones and brain and ventricle. The dural membranes have
an inhibiting effect on the movement of brain inside skull. Therefore, subsequently, it was
decided to introduce a model of the falx cerebri, with a vertical membrane separating the
hemispheres in the parietal region. Fig. 2 a, b, ¢ shows the corresponding computational grids (3a
— quadrangular, 3b, 3c triangular) for these models, which were based on numerical calculations.
Rheological properties of biomaterials were also varied. Thus, the rheology of the medulla varied
from lianopoulos to viscoelastic. The behavior of bone material was simulated by lianopoulos
continuous medium with average properties of lamellar and trabecular bone. Modelling the
interaction of skull - brain is challenging due to the fact that brain has several different
mechanical properties of the membranes with cavities, including fluid-filled. This work
addresses the selection of the contact gap with conditions that ranged from full adhesion to slip
with the possibility of detachment.

The distribution of the shear stress in the formulation of various conditions is shown in Fig. 3, 5.
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Fig. 2

Model of traumatic brain sections: a — two-component model, b — model of ventricles, ¢ - model
with ventricles and membrane (falx cerebri).
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a b C

Fig. 3. The distribution of shear stresses a - complete adhesion; b — slide;
c - two-component model.

Fig. 4. a— CT of a patient with brain contusion of severe degree, left impact;
b — the corresponding distribution of maximum shear stress.

Fig. 5. The dependence of the distribution of the maximum shear stresses (0 + 0.04 ATM) on the impact
direction (dark regions correspond to larger shears) a - two-component model; b — model with ventricles;

¢ - model with membrane
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Fig. 3 shows the overall characteristics of the mechanical effects on the brain at a side
impact, obtained using different models with free-slip on the border of the skull - brain. The
most dangerous are concentrations of maximum tensile (positive) and shear stress. The use of
conditions for the complete adhesion on the border of the skull - brain leads to concentration of
the shear stress along the contact boundary on the lateral surfaces, while the sliding contact
completely removes them. Accounting for the presence of ventricles almost has no effect on the
distribution of the regions of maximum compression and extension, but significantly affects the
distribution of shear loads. The presence of membrane is more essential to localize areas of
compression-tension in side impacts. Fig. 4a shows an example of a CT image of a patient with
brain contusion of severe degree with left impact from an accident (data provided by the Main
military hospital named after N. N. Burdenko). The arrows on the CT scan indicate the lesion of
the brain substance. Fig. 4b shows the corresponding distribution of maximum shear stress.
When reducing the area of impact (similar to impact with a pointed object) there is a region of
concentration of the shear stress, which coincides with the center of hematoma. Fig. 5 shows the
distribution fields of shear stress in human brain depending on the angle of application of the

shock load (a:_goc’ +go°jfor the three considered models of human head, which gives the

neurosurgeon the information about the localization and the volume of region of brain damage in
traumatic brain injury.

Direct problems of seismic prospecting

Fig. 6
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Fig. 6 shows the isosurfaces of the modulus of the velocity for ten-layer geological
environment at four points in time (see Fig. 6a, 6b, 6¢, 6d for 500 ms, 600 ms, 700 ms, 800 ms,
respectively) effects of seismic loading at the upper boundary. It is seen that the used in the
paper numerical scheme gives well the complex wave pattern resulting from the interaction of
seismic waves with geological layered rock. On the calculated seismogram the reflected from all
contact boundaries waves are clearly visible. The obtained calculations show the possibility of
using a full numerical simulation of complex wave processes in layered geological media to
obtain data and study of the structure of rocks.

Let’s consider the problem of reflection of plane Ricker pulse, the direction of
propagation of which is 14 degrees with vertical (this corresponds to the displacement of the
point of the explosion along the surface to 0.5 km) from the reservoir 5 vertical filled cracks. The
pattern of reflected waves at various distances between the cracks is examined. The g value will
change from 0.5 to 4.0 (g = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0). Fig. 7 shows the corresponding velocity
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fields. A comparison of the results of calculations of the geological problems on two-
dimensional triangular grid on a three-dimensional cubic grid is done. This comparison shows
that the discrepancy of the results obtained is not more than 30%. Thus, the two-dimensional
calculation gives not only a qualitatively correct result, but also a good quantitative assessment.
Therefore, in the study of three dimensional dynamic processes in geological environments it is
possible to use two-dimensional calculations. This can significantly speed up computation time
and reduce storage costs and data processing.

@QQ«
!
a : «b . d

Fig. 8 (a, b, c, d) presents the results of calculations (velocity fields) for the impacts on
five-layer barriers with gaps (spaced obstacles) and without gaps between layers.

Impact task

Similar designs are used as protective ones (e.g., body armor). The lower (in the figures
on the right) calculated layer corresponds to the protected from hitting human body. As it can be
seen from the calculations, after hitting the upper boundary of the five-layer construction, the
effect of elastic-plastic compression waves leads to a collision of layers from top to bottom, after
which the compression waves go to a protected environment. By simulating attacks on the
multilayer barrier we obtained wave pattern corresponding to the distribution of the secondary
waves generated by the collisions of obstacles and directed against the impact. In addition, the
layers in such structures face then go away from each other, depending on the sign of the normal
stress (negative or positive) on the contact boundaries. These processes (collision and
detachment) initiate the emergence of secondary waves of compression-stretching in the design

and the protected body.
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VJIK 519.6
HpnMeHeHne CECTOYHO-XAPAKTEPUCTHIECCKOI0O ME€TO1a NJIA YUCIICHHOT0
pemeHml JUHAMHAYCCKHUX 3a/la9 MCXaHUKHU z[eq)opanyeMblx TBepI[])IX cpe)]*

H. B. llerpos ™

MockoBCckuil HU3NKO-TEXHUUECKUI HHCTUTYT

CeTouHO-XapaKTEPUCTUUECKUIM METOJ — MEPCHEKTUBHBIN YHMCIEHHBIM METOJ pEleHUs
rUNepooINYeCKUX CUCTEM YpPAaBHEHWM, HalpuMep, YpaBHEHMH, ONMCHIBAIOIIUX YIpPyrue u
AaKyCTUYECKHE BOJHBI. DTOT METOJA O0JIaZaeT BBICOKOHW TOYHOCTHIO M TMO3BOJSET (PU3NUECKU
IIPAaBWJIBHO MOJEIMPOBaTh BOJIHOBBIE IIPOLECCHI B TIE€TEPOreHHbIX cpenax. CeToyHo-
XapaKTEPUCTUYECKUN METOJ, MO3BOJISIET KOPPEKTHO YYMTHIBATH I'PAHUYHBIE YCJIOBMS, a TaKkKe
YCIIOBHS Ha IOBEPXHOCTSX pasjliesia Cpejl € Pa3IMuHbIMU (U3MUECKUMH XapaKTePUCTUKAMH.
Haubonee noiaHo npeumyIiecTBa METOAA MPOSIBIISIFOTCS JI1 OAHOMEPHBIX YPaBHEHUM, 0COOEHHO
B COYETAHUU C (PUKCUPOBAHHOM PA3HOCTHOW CETKOW, Kak B OOBIYHBIX CETOYHBIX MeETOJax.
OpHako, U B MHOTOMEpPHOM Cjy4yae IpPU MCHOJIb30BAaHUU AJITOPUTMOB PACLICIUIEHUS 110
IIPOCTPAHCTBEHHBIM IIEPEMEHHBIM, YAAJIOCh COXPAHUTHb €ro0 IOJOKUTENIbHBIE KadecTBa.
Hcnonp3oBanue i rUnepOosMyeckux ypaBHeHMH MeToqoB tuma Pynre — Kyrtra, mmGo
UHTErPO-UHTEPIOJISALMOHHOIO METO/1a T03BOJISIET 3P PEKTUBHO MPOBOAUTH 000OILEHIE METO/IOB,
Pa3BUTHIX ISl TUHEHHBIX YpaBHEHUH, HA HETMHEHHBIN ClTydaid, B TOM 4HuCIe, 175 o0ecreueHus
BBITIOJIHEHNSI PA3HOCTHBIX AHAJIOIOB 3aKOHOB COXPAaHEHUS, YTO Ba)KHO IIPU CKBO3HOM CUETE,
HanpuMep, pas3pbIBHbIX pemieHuid. Ha ocHoBe pa3paboTaHHOrO aBTOpPOM BapHaHTa CETOYHO-
XapaKTEepPUCTHUUECKOTO0 MeToJa ObUI YHMCIEHHO pEeLIeH psj BaXHBIX 3aqad celcMOpa3BelKH,
CEHCMOCTOMKOCTH, TI00ambHON ceiicMuKU Ha 3emiie © Mapce, MEIUIIMHCKUX TPUIIOKEHUM,
HEpa3pyLIAoIIEero KOHTPOJIA JKEeJIE3HOIOPOKHBIX IyTeH, MOAEIUPOBAHUS MIPOLIECCOB CO3aHUS
U XapaKTEPUCTHK KOMIIO3UTHBIX MaTEpHANIOB I adPOKOCMUYECKOM OTpaciM W B JPYTHUX
o0nacTsaX mpakTU4eckoro npuMeHeHHsa. CylIecTBEHHBIM MPEUMYIIECTBOM IOCTPOSHHOTO
METO/Ia SIBJISIETCSI COXPAaHEHHUE €r0 YCTOMUMBOCTH M TOYHOCTHU NPHU 3HAYUTENBHBIX J1ehopMaLnsix
cpenbl. B 1anHOM cTaThe NMpEACTaBICHBI PE3YIbTaThl YUCICHHOIO PELICHUs HA OCHOBE CETOYHO-
XapaKTepUCTUUECKOI0 METOJa 3aJaud O MOJIEIMPOBAHUM YIPYro-miaacTUYecKoi nedopmanun
IIPU YEPEITHO-MO3TOBBIX TPaBMaX.

KutoueBble cjioBa: ypaBHEHUs THIEPOOTUUECKOTO THIIA, YIIPYTHE U MJIACTHYECKHE
nedopMaluu, CETOYHO-XapaKTEPUCTUUECKUI METO/I, PA3HOCTHBIE CXEMbI, Pa3pbIBHBIE PEILICHUSI.
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