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Introduction. The sediment transportation is the one of major processes that defines the magnitude
and bottom surface changing rate of water basins. The most commonly used predictable researches in
this field are based on mathematical models. Modeling gives possibilities to reduce and in some cases
- to eliminate expensive and often dangerous experiments. Spatially one-dimensional models have
been usually used to predict changes of water bottom topography. For real water systems with
complicated coastal line, the flow vector is generally not orthogonal to the tangent line for the
coastline at each of its points. It also may not coincide with the wind stress vector. Therefore, it is
necessary to use spatially two-dimensional models of sediment transportation and effective numerical
methods to solve many practically important problems associated with the prediction of bottom
surface dynamics.

Materials and Methods. The spatially two-dimensional model of sediment transport that satisfies the
basic conservation laws (of material balance and momentum), which is a quasilinear parabolic
equation, was earlier proposed by the authors (A.l. Sukhinov, A.E. Chistyakov, E.A. Protsenko, and
V.V. Sidoryakina). The linear difference schemes were constructed and researched; the model and
some practically important problems were solved. However, the theoretical research of the proximity
of solutions for the original nonlinear initial-boundary value problem and the linearized continuous
problem, on which basis a discrete model (difference scheme) was developed, remained in the
shadow. The researching correctness of the linearized problem and the determination of sufficient
conditions for positivity of solutions are caused special interest because only positive solutions of this
sediment transport problem have physical value within the framework of the considered models.
Research Results. The investigated nonlinear two-dimensional model of sediment transport in the
coastal zone of shallow water basins takes into account the following physically significant
conditions and parameters: bottom material porosity; critical value of the tangent stress at which
bottom material transport is started; turbulent mixing; the dynamically varying bottom geometry;
wind currents; and bottom friction. Linearization is carried out on the time grid; nonlinear
coefficients of the parabolic equation are taken at the previous step of time grid. Then, a set of
problems, connected by the initial data, are solved; final solutions of the linearized initial boundary
value problems chain on a uniform time grid were constructed, and thus, the linearization of the initial
2D nonlinear model is carried out in total time interval. Earlier, the authors proved the existence and
uniqueness of the linear problem solution. A priori proximity estimates for the solutions of linearising
sequence of boundary value problems and initial non-linear task have been also obtained. Conditions
of its positive solution and convergence to the nonlinear sediment transport problem are defined in
the norm of the Hilbert space L; with the rate O(t), where the 1 is a time step.

Discussion and Conclusions. The obtained research results of the spatially two-dimensional nonlinear
sediment transport model can be used for predicting the nonlinear hydrodynamic processes,
improving their accuracy and reliability due to the availability of new accounting functionality of
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physically important factors, including the specification of the boundary conditions.

Keywords: 2D model of sediment transportation, nonlinear problem, linearized problem, positive
solution, convergence in Hilbert space

Introduction. At recent decades the number of papers, devoted to nonlinear boundary value problems,
was significantly increased. The emergence of new applications in the field of the ocean and
atmosphere physics is contributed to this fact in particular in papers [1-3]. Analytical and numerical
approach to investigation of sediment transport problems have been presented in [4,5] for nonlinear
case and when partial differential equations with fractional derivatives have been used. Numerical
modeling for sediment transport under the wave influence have been presented in papers [6]-[8].

We consider the nonlinear initial-boundary value problem for the spatially two-dimensional
model of sediment transportation of shallow water basins and analyzed some qualitative properties of
its solutions in this paper.

The research of this problem was performed with using the linearization. For this purpose a
grid for time variable was constructed, where the values of nonlinear coefficients are given in the left
node of the corresponding time grid. Then the decision of a chain of linear parabolic equations were
interconnected to the initial —final data.

Previously the research of the linearized initial-boundary value problem, included the proof of
existence and uniqueness of its solution with simultaneous determination of requirements to the classes
of smoothness input data, was conducted by the authors [9]. A priori estimation of the proximity of the
chain solution of the linearized tasks to the solution of the original nonlinear problem in the norm of
the Hilbert space L, depending on the integral estimations of the right side, boundary conditions and
norm of initial conditions were also obtained by the authors [9]. At the previous papers the authors
constructed and researched a stable conservative difference scheme, which is numerically implemented
to the model and real problems of the coastal zone of White Sea for the linearized problem of sediment
transport [10]-[12]. In this paper we defined sufficient conditions for positive solutions of linearized
problems and their convergence to the solution of the original nonlinear initial-boundary value
problem of sediment transport in the norm of the Hilbert space L; was carried out, when the value of
time step tends to zero, where the time step is the parameter of grid on which the linearization was
carried out.

1. The formulation of the nonlinear initial-boundary value problem for two-dimensional
models of sediment transport. Let’s consider the equation of sediment transport according to the [4]:

(1-¢). 8 = div(k-_TL- gradHJ—div(k-‘fb), (1)
ot sing,
where H=H (x,y,t) is the water depth; € is the porosity of bottom materials; 7, is the vector of

tangential stress at the water bottom; 1, is a critical value of the tangential stress; t,, =asing,, @, is
an angle of bottom relief; k =k (H,x,y,t) is the nonlinear coefficient, determined by the ratio:
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where p,, p, are the density of bottom material particles and water respectively; g is the gravity
acceleration; @ is the wave frequency; A and f are the dimensionless constants; d are
characteristic dimensions of the bottom material particles.

Let’s D < R" is domain, where a process occurs, and S is boundary with a piecewise smooth
board line. We considered a cylinder 1], = Dx(0,T) of height T with the base D as the definitional
domain of the equation (1). Its border consists of the lateral surface S x [O,T] and two bases: the upper
basis D x {0} and the lower basis D x {T }. Further, for simplicity, the equation (1) was considered in a
rectangular domain D(x,y)= {O <x<L,0<y<L, }

We added the initial condition to the equation (1), assuming that the initial conditions of
function belong to the corresponding class of smoothness:

H(x, y,0)= H (%, ¥), Ho(x, y)e C2(D)nC(D) grad,, ,H, «C(D) (x,y)eD. @3)
The conditions on the border domain D is following:
=[] =0 @
H(L.yt)=H,(yt), 0<y<L, (5)
H(0,y,t)=H,(yit), 0<sy<L, (6)
H(x,0,t)=H,(x), 0<sx<L,, (7
H(xLt)=H,(xt), 0sx<L,, L <L,. 8)

In addition to the boundary conditions (5)—(8), we assume the fulfillment of their smoothness
conditions — the existence of continuous derivatives on the boundary of the domain D:

grad(, ,)H € cla,)nctu,) (9)
We consider that there's a liquid layer of finite thickness always in this area and occur for the
specified time interval at no drainage area, i.e.
H(x,y.t)> ¢y =const >0, 0<x<L,, 0<y<Ly, 0<t<T. (10)
The condition of non-degeneracy of the operator has the form:
k >k, =const >0, ¥(x,y)e D, 0<t<T. (11)
The vector of tangential stress at the bottom is calculated using the coordinate basis vectors of
the Cartesian coordinate system:

T =Ty + [Ty, Tox =Tox (XWiL), Tpy =Ty, (XWi1). (12)
2. Linearization of nonlinear initial-boundary value problem of sediment transport. We

constructed the uniform time grid o, with the time step t (i.e. the set of points

o, ={t,=n-1t,n=0,1..,N, N-t=T}) to obtain a linearized model on the time interval 0<t<T .
We performe the linearization of the specified initial-boundary value problem using the

constructed uniform time grid. The linearization of the member div[k -Sitn—“-gradHJ (the coefficient k)

P
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was performed with using the determination of its values at the time moment t=t,, n=01,...,N and

consideration of the equation (1) on the time interval t, <t<t,,,n=012,.,N-1.

n+l1

It is assumed that we know the function H®™(x,y,t, ,)=HOD(x,y,t. ;) and its partial
derivatives at spatial variables.

In the case, if n=1, it is enough to take the function with the initial conditions H (1)(X,y,t0),
ie. HO(x,y,t,)=Hy(x,y). If n=2,.,N, the function H™M(x,y,t_)=HOD(x,y,t ) is assumed
to be known, since it is assumed that the problem (1)—(14) for the previous time interval
t,_, <t<t,; issolved.

We introduce the following designation:

~ p-1
k(Y = A®d A gradH" ™ (x,y,t ), n=12,..,N. 13
((pl—po)gd)B b Sln(po ( ) ( )
Then the equation (1) after linearization may be written in the form:
H" _ [ o e ™ | giv (K" .3
(1-¢)- - =dlv[k -mgradH —dIV(k ‘Tb), t ,<t<t,n=1..N, (14)
with the initial conditions:
H(l)(x,y,to): Ho(x,y).H (”)(x,y,tn_l): H(”‘l)(x,y,tn_l), (x,y)e D,n=2,..,N. (15)

The equation component div(k(”’l)';:b) is the known function of the right side at such

linearization. The boundary conditions (4)—(8) are defined for all time intervals
t,,<t<t,,n=12..,N.

It should be noted that the coefficients k(“‘l), n=12,..,N depend on the spatial variables X,y
and the fixed time variable value t, ;, n=12,...,N , that are defined by the choice of the interval t on
the grid o, i.e. kKO =k Y(x yt ;) n=12..N.

3. The positive solutions of the linearized initial-boundary value problem of sediment
transport. The existence and uniqueness of the solution of the linearized problem (14) with the initial
conditions (15) and boundary conditions (4)—(8) are proved authors previously. We  defined  the

solution of the linearized problem using H(x,y.t),(x,y)e D. The solution H(x,y,t),(x,y)e D
depends on the interval z on the grid o, ={t, =n-t,n=0,1,..,N, N-t=T} . Essentially, there’re the

set of solutions {ﬁ(”)(x,y,t)}, n=12,..,N, depending on a parameter t. Let’s make sure of the

positive solutions of this linearized problem.
To define a positive solution of the considered initial-boundary value problem we considered

the  function HO(x,yt), t _ <t<t, n=12,..N on the CZ([[T)mC(l_[T),
grad(x,y)l:l(”) € C(l_lT) that satisfies the equation (14) with initial and boundary conditions (4)—(8),

(15), for which H™(x,y,t)>¢, >0, ¢, =const, n=12,..,N atany n=12,...N.

We assumed that the condition for right side function of the equation (14) is following:
div(k™ %) <0 (16)
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and the positivity of the initial conditions may be formulated (15):

H, (%, y),>¢, =const >0, (x,y) e D (17)
as well as for boundary conditions (5)—(8):
H,(y,t), Ho(y,t), Ha(y,t), Hy(y,t)>cy =const >0. (18)

Firstly, we considered the case n=1, for which there’s a unique solution of the equation (14).
We defined this solution as H®(x,y,t). This decision belongs to the class Cz(utl)mc(l_[tl),

grad, ,)H W e C(thl).
Let’s suppose that the function I:I(l)(x,y,t) achieve its minimum value c, or the value which is

less than it at some inner point of the parallelepiped P, :Bx[O,tl], or at the point of its "top cover".

Then this condition contradicts of the maximum (minimum) principle: the solution of the initial-
boundary value problem cannot achieved the extremum, including the minimum at the inner point of

the domain P, = Dx[0,t,] and on its "top cover" where at all points other than those of the lateral

surface Sx|[0,t;] of a parallelepiped P, = Dx[0,t,] (Fig. 1); we defined the solution of the initial-
boundary value problem for the equation (14) at n=1 [13].

tﬂ

Fig.1. Computational domain

Thus, the function ﬁ(l)(x,y,t) achieve to the extremum, including minimum, on the lower

base D x {0} of the parallelepiped P, = Dx[0,t, ] or on its lateral borders S x[0.t,], i.e.:

~

AOx,y,t)=min  min AY%xyt).  min ﬁ(l)(x,y,t)} (19)
(x,y)eD t=0 (x,y)eS 0st<t, '

According to the conditions (17), (18), we obtained the following:

min AY(xyt)=c, >0, min HY(xyt)=¢,>0,
(x,y)eDt=0 (x,y)eS 0<t<ty

and

g (1)(x, y,t)> ¢, = const > 0. (20)
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Thus, the final solution H®(x,yt) for 0 <t <t, will be positive and greater thanc, .

In the case of n=2 we have the initial-boundary value problem with the initial condition
H@(x,y.t,)=H®Y(x,y.t,) with the same smoothness as the initial condition for equation (14) of n=1
. Similarly, the solution of the equation (14) t; <t <t, exists and is the unique. We define this solution

as H®(x,y,t). It is known that the function H® (x,y,t) belongs to the class CZ(L[t2 )mC(L_[tz),

grad( ) {2 )eC(U )

It is obvious that the solution I:I(Z)(x,y,t) of the second problem of the chain of the initial-
boundary value problems in the form (4)—(8), (14), (15) achieves its minimum value c, or less than ¢,
in some internal point of the parallelepiped P, :[_)x[tl ,tz] or at the point of its "top cover”, which

contradicts the principle of maximum (minimum). Then, the solution H@(x,y,t) of the initial-
boundary value problem achieves the extremum on the lower base of the specified parallelepiped or its
lateral boundaries S x [t1 ,tz], and so the following inequality is true:

H@(x,y.t)> ¢, = const > 0. (21)
It follows that the solution I:I(l)(x,y,t) for 0 <t <t; will be positive and more than the value c,.

Atany n=k, k=12,...,N we get a mixed problem for the linear parabolic equations, which
having the sufficient smoothness of the initial and boundary conditions. For any number
k, k=12,..N the solution of the function ﬁ(k)(x,y,t), t, <t<t,, k=12,.,N of the class

CZ(Utk )mC(ﬁt ) grad( ) A (k) GC( t ) of the initial-boundary value problem (4)—(8), (14), (15)
in the parallelepiped P, = Dx [tk_l,tk] achieves the extremum at the bottom of the parallelepiped or on
its lateral borders, where due to the conditions (17)—(18) the following is true:

ﬁ(")(x,y,t)z ¢, =const >0,k, k=12,..,N. (22)

We are coming to next theorem taking into account the estimations (20)—(22).
Theorem 1. Let’s assume that the equations (14) is in the form:

(n)
(1_8). oH

at 1{; =Dx(0,T), DcR",

= div| K" —=—.gradH ™ |~div(k"? %, ), t,, <t<t, n=12,.,N,
sm(p0

B-1
where k" =

Acd B-‘%b— T gradH " (x, y.t, ,)
((pl_po)gd) SIN Gy

conditions H(l)(X,y,t0)= Ho(x,y), H(”)(X,y,tn_l): H (”‘1)(x,y,tn_1), (x,y)eD,n=2,..,N, and
boundary conditions (4)—(8), corresponded to the conditions (17)—(18).
Thus, if kY >k, >0, k(™ eCl(B), the solution H™(x,yt), t., <t<t. , n=12,.,N

, div(k("*”%b)<o, with the initial

of the equation of the number n in the cylinder ], :5><(O,T) is positive and satisfy to estimation
forany n=12,...,N:
HO(x,y,t)>c, =const >0, t _,<t<t , n=12,.,N. (23)
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4. Convergence of solutions of the linearized problem to the solution of nonlinear initial-
boundary value problem. Let’s make sure that the solution of the linearized problem tends to the
solution of the nonlinear problem in the Hilbert space norm L,(D) when t—0, N-t=T . For this, we

denote the solution of the nonlinear problem as H(x,y,t), (x,y)e D, and the solution of the linearized

problem as H(x,y.t), (x,y)e D. We assume that the function H(x,y,t) is defined on the interval
0<t<T, and there’re all limited partial derivatives of the appropriate orders on spatial variables and
time variable t for the functions H(x,yt), H(x,yt), forall (x,y)e D,0<t<T:

2o o) Sl 2o 2)

It should be noted that the function H(x,y,t) is limited at each time interval

thq <t<t,,n=12,..,N, as it is the solution of the linear initial-boundary value problem for

parabolic equation with "smooth" input data.
Let’s return to the nonlinear problem (1)—(8). After the substitution of the decision function
H(x,y,t) in equation (1) we have:

(1—8)-%=div(k

p-1

radH |—div(k -t ),
sino, 9 j 'V( Tb) (24)

Aod
((pl_po)gd)ﬁ
We multiply the both sides of the equation (24) by the function H(x,y,t), (x,y)eD and

integrate over the variable t, 0 <t <T and over the variables (x,y) in the domain D. Thus, we get the
next:

_ The
sing,

where k = -gradH

K(l—S)ﬂ H -%dedy]dt _

D

T ) T ) (25)
=j(j H-div[k- be deddet—j[”H-div(k~rb)dxdy]dt.
o\ D SIn(pO o\ D
After some transformations in the equation (25), we obtaine the following:
1 € _U (% y, T)=H?*(x, y,O))dXdy=
(26)

T T
= I[‘[ H .div[k . .rbc . gradH]dxdy]dt —I(J.J. H ~div(k “To )dxdy]dt.
o\D SIN @, o\'D
Let’s consider the linearized problem. After the substitution of H (X, y,t) into the equation (14)
we obtain the following:
oH®™
1-¢)-
o2
Add ‘
((pl —Po ) gd )B

:div(ﬁ(”' o -gradd " J div(kN(”'l)Eb), t,, <t<t,n=1..,N, (27)
(Po

p-1

T ——2 . gradH "
sing,

where k"™ =
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We multiply the both sides of the equation (27) by function H™ =H®(x,yt), (x,y)eD,
and integrate both parts of this equation in the domain D, and then by the variable t, t,_; <t <t we

t 3
I[(l—s)'[ HN(“)-a;t dxdy}i =
tha

obtain the following:

L (28)
= j [HH dlv( ﬁ gradti dedy}i i[gﬁ(") -div(k~(”‘1) -%b)dxdy]dt.
After summing the both parts of equation (28), over n,n=1,...,N we obtain the following:
ﬂ 1-¢) (ZL‘ ] ]dxdy:
t" (29)
_1[!1(”'_' dlv[ e gradH ]dxdyjdt—i[g dIV( " %b)dxdy]dt}
After converting the left part of equation (29), we obtain:
1 € ” (%Y, T)=H?(x,y,0))xdy =
(30)

Tbc . J(n) (n-1) ~
_ILJLUJ dlv( sin(po gradH ]dxdy}i _[UJ'H dIV( Tb)dXddet]
After subtraction from the equality (30) the expression (26) and taking into account

H(x,y,0)=H(x,y,0), we obtain:

1 € H( (% y.T)- 2(x,y,T))dxdy=

D

;

ZI[II H -div(k -_TL-gradHdeddet—J'(H H -div(k "Eb)dXddet— (31)
o\d SIN G, oD

S i (n-1) —

Z_;D(g dlv[ Sln(p -gradti " ]dxddet— I UJ dIV( Tb)dXdy]dt:l

Let's change the right side of the equation (31). For this, we add and then subtract the

expressions H™ . dlv(k gradHJ ”<“>-div(k-Eb) in the integral expressions. After combining the
sm(p0

items, we obtained:

E(1_8){) (H?(xy.T)=A2(x,y.T))dxdy =

:i[ju(H ). dlv[k G ored dedy}+

(32)
+J‘6|.H dIV[SI no, (k grad H - KD, gradH )dedy_,’_

+ij(H”(“)—H).div(k-%b)dxderij dlv(( k)-%b)dxdyjdt}-

Further we’ll evaluate each integral on the right side of equality (32). We introduce the

following expressions:
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o et T

I = j(j (H-A") dlv(k T gradedxddet, (33)
t.a\ D 0
ty

In = J’(I 5 d,v(ﬁ(k-grad H —k(”‘l)-gradH("))]dxddet, (34)
tnl D 0

- T[”(HW_H)-div(k-%b)dxddet, (35)

g

I(” H® dlv(( k)"_fb)dXddet, n=1..,N. (36)
D

Assuming n =1 in the equations (33)—(36), we consider the integrals on the first time interval
ty <t<t,.

Firstly, we evaluated the integral Il. Using the expansion of functions H(x,y,t) and

I:|(1)(X,y,t), according to the Taylor formula with respect to (t —to) with the remainder term in the
Lagrange form, and taking into account the condition (3), we obtained:

H () - A% y,t)=[a” ber&) A y’gz)]-(t—to), (37)

where t, <§ <t, t, <&, <t, t, <t<t.
Using the equality (37), we obtained the expression for the integral 1.

_[dt(”(H A )dlv[ ]dxdyj:

H OH (x,v,8) oA™Y (x,,,) (38)
= [(t=t)-| [[ =) RAk div{k-&-gradHdedy dt.
. 5 ot ot sing,
Taking into account the inequality t —ty =z < and (38), we are coming to estimation:
I < % oL -ME (39)
where
7@
M, = max4 max Hxy&) H(xyE) -div| k- —2—. gradH
tost<ty | (x,y)eD ot ot sin QDO

Then, the estimation for the integral I% will be obtained. It should be noted that the following
equality is true:

div[k.si‘n—“- grade—div{lZ(o) ﬁ grad,qa)j _
® ®
° ° (40)

=div (k—E(O))‘ T gradH |+ div| K© . -(gradH—gradH(l)) .
SIN G, sing,

We can see that the integral I1 taking into account the expression (40) can be represented as:

j[ﬂH dlv(sm(p ((k K )gradH +|Z(0).(gradH—gradH(l)))jdxdy)dt. (41)
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After functions representations k(x,y,t), H(x,y,t), according to the Taylor formula and using

the equalities k(x,y,ty)= IZ(O)(x,y,to), H(x,y.ty)= ﬁ(l)(x,y,to), we have:

Kk :%.(t_%), (42)
grad H —grad H" = grad (W-(t—t0 )J (43)

where t, <&, <t, t, <&, <t, t, <t<t.
Using the expressions (42) and (43) for the integral in the formula (41), we get:

I%z]l.(t—to)[ﬂﬁwdiv{ The {ak(xéty’&‘ﬁ)gradH +E(°)~grad(WDdxdy}jt. (44)

Y sin g,

Assuming the restrictions of the corresponding derivatives, we introduce a constant value:

~ ak ' Y, ~ aH D]
M? = max | max {|H Odiv| —e (Xyg’g)gradH +k©@ . grad HxyE) dxdy| bt
to<t< | (x,y)eD ot ot

sin g,
Using the notation for the value M% from the equation (44), we obtain:
Igs?rz-M;-LX-Ly. (45)

1

Fore estimation of the integral I% we use the equality (37), and we obtain the following:

|; =]1‘(t—t0)'[g[aH~(l) (X, y,is)_aH ()Zty’éﬁ)]-div(k-;:b)dxdy]dt,

|

I;s%-rz~LX-Ly-M§. (46)

where t, <& <t, t, <& <t, t, <t<t.
We introduce the notation:

tost<t [ (x,y)eD

50
Ml max{ - [aH (x¥.&) oH(x, y,ée)Jdiv(k.;b)
ot ot

after that we can write inequality:

Then we shall estimate the integral Izll. For this, we perform simple transformations of Illl
taking into account the expression (42):

1= tj(t—to)-[ijH“) -div-[(—%}-gb]dxdy]dt. (47)

Due to the existence of bounded functions I:|(1)(x,y,t), H(xy.t), ty,<t<t aswellasit’s

mixed derivatives on spatial and time variables we obtain from (47), the following inequality:

Ijs%-rz-Mj-L L (48)

X Yy

o af222) |

where

M; = max{ max {
tost<ty | (x,y)eD
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Taking into account the evaluations, obtained from (39), (45), (46), (48), and using the
inequality of the polygon for module values, we are coming to the inequality in the next form

H( (x,y,t)—HY (x,y, ti))dxdy<r Lol oM/ (49)
where
M, =é-(Mj+M;+M;+M;).
After substitution the functions H?2(x,y,t,), 5 ®? (x,y,t;) and carrying out similar reasoning
as the previous one, starting with the equality (24), we can obtain an estimation:

J‘J‘(H(l)z (X, y,tl)— H?2 (X, y,tl))dxdy <72. L, |_y ‘M. (50)
We obtained the following inequality from inequalities (49) and (50):
ml—](”z (X, y,t)—H?(x, y,tl)‘dxdy <t-L,L,-M;. (51)

Let’s transform the left part of the inequality (5 1):

‘mH X y.t)—H?*(x, y,tl)‘dxdy:
&) (52)
_m (xy.t)-H(x vt HH (X, y,t)+H(x, y,tl)‘dxdy.
Further, we’ll assume that the conditions of Theorem 1 and inequalities in the form (23) are
fulfilled for the functions H(x,y,t) and H~(”)(x,y,t), n=12,.,N,ie.:

H(x,y,t)>¢c, >0, (x,y)e D, 0<t<T, (53)
ﬁ(”)(x,y,t)zco >0, (x,y)eD, 0<t<T, (54)
Taking into account the expressions (53), (54), we readily come to inequality:
[jIA®? (x,y,t;)—H 2(x,y,tlidxdy > 2¢, -jj‘ﬁ(l)(x,y,tl)— H (x,y,thdxdy. (55)
We obtain che following estimation from formulas (;1), (52):
m (xy.t)—H(x, y,tl)‘dXdyﬁz—to‘Tz"—x'Ly'Mf- (56)

The required estimation for n =1has been received, since the inequality (56) is equivalent to
the following:

“H(l)(x,y,tl)—H(X,y,tl) IZ-LX-LY'M;. (57)

<_— .
L) 2c,
In fact, the first step in induction proof was made at n=1; this includes the sequence of
expressions (37)—(57).
Let’s take n=s, s=2,.,N. Then by reasoning similar to the previous one we get the
following inequality:
1 .
L) 26,

[A()-A(r)

where C E( ma)lx_{Mf,MS,...,M;‘} M7, M5,...,Mg are some constant functions that are defined for
X,y)eD

Lol O N (14 (58)

the time intervals t, <t <t.;, s=012,...,N —1 respectively.
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: T . . .
Since N =— from inequality (58), we obtained:
T

[AT)-H (T, < 2, -(1-7)

Taking into account 1 —0 (59), we obtained:
|H(T)- H(T]\H(D) 0.

Ll -CT (59)

It’s the proof of convergence of the linearized problem to the solution of the original problem.
Theorem 2. Let’s take the given initial-boundary value problem in the next form:

(1—8)%=div(k-si;bzpo .gradH]—div(k%b)BuT =Dx(0,T), DcR".
-1
,div(k"™w) <0 with the initial conditions (4)=(8)

Ty — -gradH
sing,

Aod
((pl_po)gd)B
H(x,y,0)=Hy(x,y), Ho(x,y)eCZ(D)mC(ﬁ), grad(x’y)HoeC(B),(x,y)ef) on the border

where k=

domain D.
The function H(x,y,t) is the problem solution of the class CZ(HT)mC(l_lT),

gradi, ,y\H € C(HT).
Further, we assumed that the linearized initial-boundary value problem is constructed on the
time grid o, ={t,=n-t,n=0,1,..,N, N-t=T}:

o
(1-) 2 = div| k™. . gragH® |~div(K" Y5, ), n=12,...N.
ot sin @,

p-1
with the initial conditions:

where k" = Add ‘_

T
o ——2— gradH " (x, y,t, ;)
((Pl_po)gd)B SN Gy
HO(y.t) = Holk ) H(,y b4 )= H Xyt ), (6y)e Dn=2....N,
boundary conditions (4)—(8), satisfying (17)—(18).
The function H(x,y,t)is the positive problem solution of the class C° (ll,)mC(l_lT),

grad(xly)ﬁ € C(l_lT). Let us suppose that there exist and are continuous partial derivatives on the

spatial and time variable t for the functions H(x,y,t), H(x,y,t) for (x,y)e D, 0<t<T:

o) sl ) 23] 5[5

If k(”—l)zko >0, kg = const, k(1) eCl([_)), n=12,..,N, the following inequality takes

place :

"H (T)_H(T)”H(D)Smt'l‘x'l‘y'c'Ti (60)
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where C is a constant value, greater than 0, i.e. the positive solution of the linearized problem
H(x,y,t)tends to the solution H(x,y,t) of the nonlinear problem in the Hilbert space norm L,(D)
whent—0, N-t=T.

Conclusion. We researched the linearized two-dimensional mathematical model of bottom
sediment transportation in coastal systems, which satisfies the basic conservation laws and takes into
account the following physical processes and parameters: porosity of the bottom material; critical
tangential stress, due to which the transportation of bottom materials are occurred; dynamically
variable geometry of the bottom surface due to the motion of water medium.

The conditions of positive solutions of the linearized initial-boundary value problems and their
convergence to the solution of the original nonlinear initial-boundary value problem in the Hilbert
space norm L;were formulated as sufficient conditions.
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JlocTaTouHbIE YCJIOBHUS CXOAUMOCTH MOJ0KUTEIbHBIX PellIeHii JTUHeapu30BaHHOi
JABYMEPHO 3a7a4i TPAHCIOPTA HAHOCOB

A. . CyXl/IHOBl, B. B. Cpmopmmnaz, Anapeit A. CyXI/IHOB3**

1 o o o v

JloHCKOM rocy1apCTBEHHbINM TEXHUYECKUI YHUBEpCUTET, I. PocToB-Ha-Jlony, Poccuiickas denepauns
2 . .

Taranporckuit nuactutyT uMenn A. I1. Yexosa (pumman) PI'OY (PUHX), r. Taranpor, Poccuiickas @eneparus
3 " o .

TOxHBIN QenepanbHbI yHUBEpCUTET, T. PocToB-Ha-/lony-Taranpor, Poccuiickas deneparms

Bseoenue. TpaHcriopT HAHOCOB ABISETCS OJHUM U3 OCHOBHBIX MPOILIECCOB, OMPEACISAIOMINX BETUNUUHBI
U TeMnbl jaedopMalyii JOHHBIX TMOBEPXHOCTEH BOJIHBIX OOBEKTOB. Yalie BCEro MpOTHOCTHYECKHE
UCCIIEIOBAHMSI B 9TOM OOJIACTH CTPOSITCS HAa OCHOBE MAaTEMAaTUYECKHX MOJeNei, KOTOpbIe MO3BOJISIOT
COKpaTUTh, a B PSJAC CIIy4aeB MCKIIOYUTH JOPOrOCTOSLINE U OMACHBIE B DKOJOTMYECKOM OTHOIICHUU
SKCIEpUMEHTHI. JlJii NpOorHO3upOBaHUS HM3MEHEHHs peibeda [Ha B OCHOBHOM HCIOJB3YIOTCS
MIPOCTPAHCTBEHHO-OJHOMEPHBIE MOAeNu. i1 peanbHbIX MPUOPEKHBIX CUCTEM CO CIOXHOU (popmoit
Oepera BEKTOp MMOTOKA HAHOCOB B OOIIIEM CiIy4ae He OPTOTOHAJIEH KacaTeJIbHOM K OeperoBoi JIMHUU B
KaXJI0M U3 ee To4eK. Takyke OH MOKET HE COBIAJIaTh C BEKTOPOM BETPOBBIX HalpsbkeHud. [loaTomy
JUISl PELIEHNs MHOTMX MPAKTUYECKNM BAXKHBIX 337a4, CBS3aHHBIX C IPOTHO3UPOBAHUEM JUHAMUKHU
JIOHHOW MOBEPXHOCTH BOJOEMOB, HEOOXOAMMO MPUMEHEHUE MPOCTPAHCTBEHHO-IBYMEPHBIX MOJEIEH
TpaHCIOPTa HAHOCOB U A(PPEKTUBHBIX YUCICHHBIX METOJIOB X peasIU3alliH.

“Pa6ota BbINOJNHEHA npu ¢puHancoBoi moanepxke PODU mo mpoekram Ne 15-01-08619, 16-07-00100, 15-07-08626, 15-
07-08408 1 no npoekty Ne 00-16-13 B pamkax [Iporpammsl pyHaamenTanbHbIxX ucciepoBanuii [pesunuyma PAH Ne
1.3311.

“E-mail: sukhinov@gmail.com,cvv9@mail.ru, andreysoukhinov@gmail.com
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Mamepuanvt  u  memoowi. ABtropamu  (A. U. CyxunoB, A.E.UYwuctsakos, E. A. Ilpouenko,
B. B. Cunopsikuna) panee Obuia MpeIoKeHA MPOCTPAHCTBEHHO-ABYMEpHAs MOJEIb TpPaHCIOpTa
HAHOCOB, YJIOBJIETBOPSIOIIAs OCHOBHBIM 3aKOHAM COXPaHEHUs (MaTepualbHOrO OajsaHca U UMITYJIbCa),
KOTOpas MpeaCcTaBiseT co00i KBa3WIMHEHHOE ypaBHEHHE Aapad0IMYeCcKOro THMA. BBITH MOCTPOEHBI U
HCCJIEIOBaHbl JIMHEWHBIE PA3HOCTHBIE CXEMBI U PELIEHBI MOJIEIbHBIE, a TAK)KE IMPAKTUUECKUE 3aJauH.
OnHako OCTaoCh B TEHU TEOPETUYECKOE UCCIIE0BaHUE «OIM30CTU» PEILICHUN HCXOAHOM HelMUHEeHHON
HayalbHO-KPaeBOW M JIMHEApPU30BaHHOW HENpPEpBIBHOM 3ajiay, Ha OCHOBE KOTOpOW OblIa MOCTpoeHa
IUCKpeTHass Mozenb (pa3HocTHas cxema). OcoOblii MHTEpec NPEACTaBISIET HCCIEJOBAHUE
KOPPEKTHOCTH JIMHEApU30BaHHOM 3aJauu U OIpeeseHHE J0CTaTOYHBIX YCIOBHM IMOJIO0XKHUTEIbHOCTU
pELIeHHH, T. K. TOJBKO IOJIOKUTEIbHbIE PEIICHUS 3aJadd TPAHCIOPTa HAHOCOB HMMEIOT CMBICI B
pamMKax paccMaTpUBAaEMbIX MOJENIEH.

Pezynomamer. Viccnenyemasi HenMHEWHas IByMEpHas MOJENb TPAaHCIOPTa HAHOCOB B IPHUOPEKHON
30HE MEJIKOBOJHBIX BOJOEMOB YUUTHIBACT CIEAYIONIME (GU3HMUECKH 3HAaUMMBbIe (DaKTOPBI U MapaMeTpHhI:
MIOPUCTOCTh T'PYHTA; KPUTHUYECKOE 3HAYEHHE KacaTelIbHOI'O HANPSDKEHUS, NPU KOTOPOM HAYMHAETCS
nepeMeIleHe HAaHOCOB; TypOyJIEHTHbIN OOMEH; TMHAMUYECKH U3MEHsIeMasi TeOMETPHsI 1HA; BETPOBbIE
TE€YEeHUs U TpeHHe O JHO. JImHeapu3alMs OCYLIECTBISETCS Ha BPEMEHHOW CETKEe — HEJIMHEHHbIe
KO3 PUIMEHTH! MapaboJuvecKoro ypaBHEeHHsI OepyTcsl ¢ 3ama3fblBaHMEM Ha OJWH LIar BPEMEHHOMH
ceTku. Jlamee CTpPOUTCS I€MOYKAa B3aMMOCBSI3aHHBIX I10 HAYaJIbHBIM YCIOBHSIM — (UHAIBHBIM
pEILIEHUAM LIETIOUKH JIMHEAPU30BaHHBIX CMEIIAaHHBIX 3a/1a4 Koy Ha paBHOMEPHON BPEMEHHOM CeTKe,
U TaKUM 00pa3oM OCYIIECTBISETCS JIMHeapu3anus B 1enoM 2D HenuHeliHoi moaenu. Panee aBropamu
ObUIM JTOKa3aHbl CYIIECTBOBAaHUE U €AMHCTBEHHOCTh PEIICHMs LENOYKHM JMHEApU30BaHHBIX 3ajad,
MOJIy4€Ha arnpuopHas OlLIEHKa OJM30CTH PELICHMs LIETOYKH JIMHEApU30BaHHBIX 3a7jad K PELICHUIO
UCXO/JHOM HenuHeHON 3anaun. B nmaHHON paboTe ompeneneHbl YCIOBHUS MOJOXKHUTEIBHOCTH €€
pelIeHnid M WX CXOAMMOCTM K PELICHUI0 HEIMHEMHOM 3aJayd TPAaHCIIOpTa HAaHOCOB B HOpME
I'ms6eproBa mpoctpancTea Ly co ckopocteio O(t), rie T — BpeMEHHOM 1iar.

Bvigoow. IlomydeHHble pe3ynbTaThl MCCIEIOBAHUS MNPOCTPAHCTBEHHO-JABYMEPHOW HETUHEHHOM
MOJIETIM TPAHCIIOPTa HAHOCOB MOTYT OBbITh HMCIOJb30BaHbl MPU IMPOTHO3UPOBAHUU HEITMHEHHBIX
TUIPOJIMHAMUYECKHUX MPOIIECCOB, MOBBIMIEHUSI UX TOYHOCTU U HAJEKHOCTU B CHUJIYy HAJIWYMS HOBBIX
(YHKIIMOHAJIBHBIX BO3MOXHOCTEH ydeTa (PU3MUECKH Ba)XKHBIX (PAKTOpPOB, B TOM 4YMCIE YTOYHEHHS
IPAHUYHBIX YCIOBH.

KuroueBble c1oBa: nmpocTpaHCTBEHHO-ABYMEpPHasi MOJENIb TPAHCIOPTa HAHOCOB, MPUOpEXHAs 30HA,
HEJNMHEWHas 3a/1a4a, JMHeapu30BaHHas 3a1a4a, OJI0KHUTEIbHOCTh PEIICHUS
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