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This work describes application of the integral transform method to solution of a quasi-static 

contact problem of the coating wear-out. Frictional heating and wear of the coating occurs during 

the sliding of a rigid body over its surface. The problem is considered in the framework of the 

coupled thermoelasticity theory. The solution of the problem is constructed in the form of contour 

quadratures of the inverse Laplace transformation. After the calculation of the quadratures the 

solution of the problem is constructed in the form of series over the poles of the integrands. 

Investigation of the poles of integrands is performed in dependence on four dimensionless 

parameters of the problem. The solutions obtained are studied in detail with respect to the 

dimensionless and dimensional parameters of the problem. Numerical examples of the obtained 

solutions for contact stresses, displacements, temperature and wear of the coating are presented.  

Keywords: coating, friction, wear, frictional heating, thermoelasticity, Laplace transform, 

contour integral 

Introduction. The study of thermoelasticity problems, taking into account the interaction of 

deformation and temperature fields, began with [1–3]. This line of research was called the coupled 

thermoelasticity. Generalization and solution of particular problems of the new direction of research 

was continued in [3–5]. In subsequent years, both analytical, starting with [4, 5], and numerical 

methods [6] were developed to solve problems of coupled thermoelasticity. In the latter paper the 

authors were one of the first who developed a scheme of application of the finite element method 

and gave its implementation for solving the coupled problems of thermoelasticity. Analysis shows 

that in the overwhelming majority of studies in the solution of coupled thermoelasticity problems 

the finite element models of a fairly general purpose were developed, for example [7–11].The 

analytical methods for solving this class of problems did not become as widespread as the 

numerical ones. The results obtained with their help were summarized in [12]. Beginning with 

papers [13–18], scientists consider uncoupled problems of thermoelasticity about the sliding contact 

of a rigid body with an elastic coating, taking into account friction, heating of the coating from 

friction, and abrasive wear. Because of the large number of parameters of the problem, the one-

dimensional and quasi-static problems were considered. In [15–18], for their solution the integral 

Laplace transform with a solution in the form of functional series along the poles of the integrands 

of the contour quadratures of the inverse Laplace transform were used. The solution method allows 
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establishing the parametric boundaries of the thermoelastic instability of a sliding contact, to 

investigate the properties of the solutions obtained. Beginning with [20–22], a new direction of the 

development of the model of the sliding contact of two elastic bodies arose, taking into account 

friction, wear and heat generation, built on the principle of virtual energy and the basic laws of 

thermodynamics. The solution of problems on the basis of this model is carried out by the finite 

element method [22]. The present paper demonstrates the application of the Laplace integral 

transform and complex analysis methods to solution of the coupled thermoelastic problem on the 

coating wear occurring during sliding frictional contact with frictional heating. 

1. Statement of the coupled problem of wear. To investigate the effect of thermoelastic 

coupling on the occurrence of thermoelastic instability in sliding contact problems, the contact 

problem of coupled thermoelasticity about sliding with a constant velocity V  of a rigid heat-

insulated half-plane I   xh  over the upper )( hx   surface of an elastic thermal-conducting 

coating of thickness h   hx 0 , is considered. The lower surface of the coating is rigidly 

coupled to a non-deformable non-heat-conducting substrate in the form of a half-plane II 

 0 x . Sliding of the half-plane I along the surface of the elastic coating takes into account 

Coulomb friction and abrasive wear of the coating surface [15–19]. The heat flux generated at the 

contact due to friction is directed into the coating. From the initial instant of time, the half-plane I 

moving along the axis y deforms the surface )( hx  of the elastic coating, moving in the direction 

opposite to the axis x , according to the law )(t . Until the initial moment, the coating was at rest, 

and its temperature was equal to 0T . 

The formulation of the problem assumes that the distribution of temperature, stresses and 

displacements in the coating does not depend on the choice of the horizontal coordinate along the 

axis y
 
parallel to the direction of motion of the half-plane I, and are functions of only the x

coordinate and time t  [15–19]. Two-dimensional differential equations of the theory of elasticity in 

the case of quasi-static and in the absence of mass forces, describing the stress-strain state of the 

coating, take the form 

 0




x

xx ,   0




x

xy
,     hx 0 ,   0t  (1.1) 

where ),( txxxxx  , ),( txxyxy   – normal and tangential stresses in the coating. 

The temperature in the coating is described by the equation of thermal conductivity [23] 
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T xx
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









02

2 231
     hx 0 ,   0t  (1.2) 

where ),( txT  – temperature distribution in the coating,   – coefficient of thermal diffusivity,   – 

coefficient of linear expansion of coating material,  ,   – Lame coefficients, K  – coefficient of 

thermal conductivity, 0T  – initial temperature in the coating, xx  – deformation of the coating along the 

x  axis. 

The relationship between stresses and strains is determined from a form of the Hooke’s law: 
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      0232 TTxxxx  ,   xyxy   (1.3) 

in which the deformations in our case are expressed in terms of the displacements by the following 

formulas 

 
x

u
xx




 ,   

x

w
xy




  (1.4) 

where ),( txu , ),( txw  – vertical and horizontal displacements in the coating. 

The relations (1.4) are substituted in (1.3), after which (1.3) is substituted into the 

differential equations of the theory of elasticity (1.1) to obtain the equations of thermoelasticity 
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w
,     hx 0 ,   0t  (1.5) 

Differential equations of coupled thermoelasticity are represented by a system of differential 

equations of thermoelasticity (1.5) and the differential heat-transfer equation (1.2) describing the 

stress-strain state of an elastic coating. The boundary conditions of the problem for the differential 

equations (1.5), (1.2) are the following:  

mechanical 0t  

hx   )()(),( tutthu w   (1.6) 

 ),(),( thfth xxxy    (1.7) 

0x  0),0( tu   (1.8) 

 0),0( tw   (1.9) 

temperature 0t  

hx   ),(
),(

thfV
x

thT
K xx




           (1.10) 

0x   0),0(
),0(

TtTk
x

tT
K 




           (1.11) 

where f  — coefficient of friction, k  — coefficient of heat transfer, )(tuw  — half-plane I 

displacement due to the wear of the coating. Further, the abrasive wear model [24] is used, 

according to which 

  

t

xxw dhfVKtu
0

* ),()(      0t  (1.12) 

where ),( thxx  – normal compressive stresses on the contact, *K  — coefficient of proportionality 

between the work of frictional forces and the amount of material removed from contact. In addition, 

according to (1.10), it is assumed that all the heat at the contact is formed due to friction. 

The initial conditions for displacement in the coating are zeros 

 0
)0,(

)0,(
)0,(

)0,( 



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




t

xw
xw

t

xu
xu ,      0)0(   (1.13) 

and the initial conditions for temperature are nontrivial 
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 0)0,( TxT            (1.14) 

Thus, the solution of the formulated coupled contact problem of thermoelasticity for the 

wear of an elastic coating on the sliding contact between a rigid body and an elastic coating, taking 

into account the heating from friction, is reduced to solving the system of differential equations 

(1.2), (1.5) with the boundary (1.6) - (1.11) and initial conditions (1.13), (1.14). It should be noted 

that the vertical displacements ),( txu , normal stresses ),( txxx and temperature ),( txT  in the 

coating are determined independently from the horizontal displacements ),( txw . Horizontal 

displacements ),( txw are determined from (1.5), (1.7), (1.9) using normal stresses. 

2. Exact solution of the problem. The solution of the coupled contact thermoelasticity 

problem given in §1 is constructed using the Laplace integral transformation [25]: 

 



0

),(),( dtetxupxu ptL ,   





ci

ci

ptL dpepxu
i

txu ),(
2

1
),(      cp Re , 0c  (2.1) 

The index in (2.1) denotes the transform of the Laplace transformation. 

The Laplace transformation (2.1) is applied to the differential equations (1.2), (1.5) taking 

into account the initial conditions (1.13), (1.14) and the existence conditions for the Laplace 

integrals (2.1) [25]. As a result, we obtain a system of ordinary differential equations with respect to 

the transforms ),( pxuL  and ),( pxT L  
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     hx 0  (2.2) 
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)1(21 


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





      hx 0  (2.3) 

Differentiating equation (2.3) and substituting the second derivative of ),( pxuL  from (2.2) into the 

resulting relation, we obtain a differential equation with respect to ),( pxT L  
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The general solution of the differential equation (2.4) has the form 
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AApxT L chsh),( 321  (2.5) 

in which
1A , 2A , 3A  are arbitrary constants. 

Substituting ),( pxT L from  (2.5) into (2.2), we obtain an inhomogeneous differential 

equation with respect to ),( pxuL , after double integration, we obtain its general solution 
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where 
2A , 3A  from (2.5), 

4A , 5A are new unknown values, depending on p . 

Substituting ),( pxT L  from (2.5) into (2.2), we obtain an inhomogeneous differential 

equation with respect to ),( pxuL , after double integration, we obtain its general solution 
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where 
2A , 3A  are from  (2.5), 

4A , 5A  are new unknown values dependent on p . 

Substituting (2.5) and (2.6) into the original (2.3), we obtain a connection between 
1A  and 

4A  of  the form 
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ˆ
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Replacing 
1A  by 

4A  in (2.5) according (2.8) we obtain the general solution for ),( pxT L  

from (2.2), (2.3) 
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Thus, ),( pxuL from (2.6) and ),( pxT L from (2.8) with constants 52A   are general solutions 

of the system (2.2), (2.3), and the constants 52A  are found from the boundary conditions (1.6), (1.8), 

(1.10), (1.11), after applying the integral Laplace transform to them: 
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Substituting (2.6) into (2.11) we obtain a connection between 
2A  and 5A  

 25
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From (2.13) after substituting (2.9) into it we obtain the relation 
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Substituting 5A  and 
4A  from (2.15), (2.16) into (2.6), and (2.16) – into (2.9) we obtain 

),( pxuL  and ),( pxT L  in the new form, depending only on 
2A  and 3A  

 
p

T
x

p
Ax

p
h

p
ApxT L 0

32 1chshBi
Bi

1
),( 






































  (2.17) 

The constants 2A  and 3A  are determined by substituting (2.16), (2.17) into the boundary 

conditions (2.9) and (2.11), after which a system of linear algebraic equations is formed with 

respect to 2A  and 3A  
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where ib , ija  2,1, ji  are calculated from the formulas 
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Solving the system (2.18) with respect to the constants 2A , 3A , and substituting them into 

(2.17), (2.16), (2.13), we obtain Laplace transforms of temperature, displacements and stresses, 

which are not written out here. 

After inversion of the resulting transforms ),( pxT L , ),( pxuL , ),( pxL

xx , with the help of 

the inverse Laplace transform (2.1) of the solution of the problem under consideration ),( txT , 

),( txu , ),( txxx , it is convenient to write down in the form of convolutions 
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where the integration contour    dtidtiz ,:  represents a straight line in the complex 

plane of the variable of integration z  parallel to the imaginary axis and spaced from it by an amount 

dt  that is selected so that the integration contour passes to the right of all isolated singular points of 

the integrands. It should be noted that the stresses ),( txxx  depend on the x  coordinate according to 

formula (2.28) for ),(0 zxN , in contrast to the corresponding uncoupled problem [15, 19], where 

they did not depend on. 

The wear )(tuw  calculation formula can be obtained from (1.6) 
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where )()(0 zrzNw  , and )(zr  from (2.22). 

In the obtained formulas ),( txT , ),( txu , ),( txxx , )(tuw  for solving the problem there are 

contour quadratures (2.20), (2.24), (2.27), (2.30). In the complex plane of the integration variable z , 

the integrands of the contour quadratures (2.20), (2.24), (2.27), (2.30) are meromorphic functions 

that contain a countable set of poles. At infinity in the complex plane of the variable of integration, 

the integrands in (2.20), (2.24), (2.27), (2.30) behave as follows when || z  

  2/110 ˆ
1

1
)(),(  




 zOT

v

v
zRzxNT

  hx 0   

  2/110 )(),(   zO
h

x
zRzxNu

  hx 0  (2.31) 

  2/1

*

10 ˆ)(),( 

  zOTzRzxN   hx 0   

  110 )()(   zOzRzNw  

The asymptotics (2.31) show that the quadratures (2.20), (2.24), (2.27) do not exist in the 

usual sense, but are understood as generalized [26]. To calculate the quadratures in (2.20), (2.24), 

(2.27), regularization of the integrands at infinity when || z  is performed with the estimates 

(2.31) taken into account. As a result, the quadratures are represented as a superposition of the 

regular part of the generalized component and the quadrature, existing in the usual sense 
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where ),(0 zxNT , ),(0 zxNu , ),(0 zxN , )(zR  from the formulas  (2.21), (2.25), (2.28), (2.22), *T̂  is 

given after (2.28). 

To calculate the quadratures in (2.33), (2.35), (2.37), in which the integrand functions are 

meromorphic and decreasing at infinity in the complex plane of the variable of integration, 

according to estimates 
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the methods of the theory of functions of a complex variable [27] can be used. When implementing 

these methods, it becomes necessary to determine the poles of the integrands in (2.33), (2.35), 

(2.37) in the complex plane of the variable of integration. 

3. Poles of integrands.  The poles of the integrands in (2.33), (2.35), (2.37) coincide with 

the zeros )(zR  of (2.22) except for those zeros that are removable singular points of the integrands. 

To determine the zeros )(zR  in the complex plane  iz , equation is solved 

    0shBiˆBi)(1ˆ)()( 2  zzTzrkVzzrzR w  (3.1) 

where 2 , Bi , T̂ , V̂ , wk  from (2.15), (2.16), (2.18), )(zr  from (2.22). 

In equation (3.1), the zeros )(zR  depend on four dimensionless parameters of the problem

V̂ , wk , T̂ , Bi  since the fifth parameter 2  is expressed in terms of T̂  in (2.14). Using the 

experience of [14, 15], we will investigate the behavior of the zeros from (3.1) for fixed wk , T̂ , Bi  

and variable parameter V̂ , which varies from 0  to  . Assuming 0ˆ V  in (3.1) we obtain the 

equation 

 0shBiˆ)(  zzTzzr  (3.2) 

to determine the zero approximations )0(0

kk   ,2,1,0k  of the roots of equation (3.1)  Vk
ˆ  

,2,1,0k .. Equation (3.2) does not have convenient analytical solutions. Assuming 0Bi    in 

(3.2), for the zero approximation of the roots k  ,2,1,0k   of (3.1), we can take 

  20 kk       ,2,1,0k  (3.3) 

that does not depend on wk , T̂ . Assuming Bi  in (3.2), as the zero approximation of the roots

k  ,2,1,0k  in (3.1) when 1Bi  , we can use equation 

 0shˆch  zTzz  (3.4) 

that when 0ˆ T  has the analytical solution 

  220 2/1 kk      ,2,1,0k  (3.5) 

For the averages Bi  and 0ˆ T for the definition of 0

k  ,2,1,0k , (3.2) is used. 

Asymptotics 0

k  for large numbers k  has the form (3.3). From the above formulas (3.3), 

(3.5), and also from equation (3.4) it follows that all zero approximations of zeros )(zR  from (3.1) 

are located on the negative part of the real axis or at zero. Nevertheless, when changing V̂  from 0  

to   for fixed wk , Bi , T̂ , first of all the first two poles 0  and 1  can be located: I - on the 

negative part of the real axis   0,Re 10  ,   0,Im 10   at I
ˆˆ0 VV  ; II - in the left half-plane 
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  0,Re 10  ,    10,Im  at IIIII
ˆˆˆ VVV  ; III - in the right half-plane   0,Re 10  , 

   10,Im  at IIIII
ˆˆˆ VVV  ; IV - on the positive part of the real axis   0,Re 10  , 

  0,Im 10   at VV ˆˆ
III . As will be shown below, roman I, II denotes regions where 

  0,Re 10   at II
ˆˆ0 VV   which are called domains of stable solutions, and regions III, IV with 

  0,Re 10   at VV ˆˆ
II   are called regions of unstable solutions. In Fig. 1 we give examples of 

the trajectories of the poles  V̂0  and  V̂1  with a change of  V̂1  from 0  to   when 1Bi  are 

fixed for three values of T̂  = 0; 0,01; 0,02 (shown as solid, dashed and dot-dashed lines, 

respectively) and different  wk = 0.5 (set of curves 1), 0.9 (2), 1.0 (3), 1.35 (4), 5.0 (5). The marked 

points indicate the location of the poles  V̂0  and  V̂1  at V̂  = 0, punctured - at V̂ . The 

crossed-out square marks the point of the trajectory, with the passage of which with the increasing 

of V̂  the real poles  V̂0  and  V̂1  become a pair of complex conjugate poles, and vice versa. It 

should be noted that even a small change in the coefficient wk , containing the ratio of the size 

parameters 
*K  and  , regulating respectively the wear and thermal expansion of the strip, leads to 

significant changes in the trajectories  V̂0  and  V̂1 , to a lesser extent, of the others  Vk
ˆ  

,4,3,2k . When wear is prevalent (curves 5, 6), then 0 , 
1  and even more k  ,4,3,2k  at  

1wk are in regions I, II. The prevalence of the expansion of the strip from the incoming heat over 

wear 10  wk  (curves 1-4) leads to the fact that 0  and 
1  go to the right half-plane in the region 

III, IV (Fig.1). 

 

 

Fig. 1. Location of the initial boundary value problem eigenvalues  

in the complex plane 
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An important feature of poles located in the complex plane in the regions II, III is noted, 

which for neighboring 0  and 
1  consists in their complex conjugacy, i.e. 01   and 10  . 

According to the results of the investigation of the poles  V̂0  and  V̂1  in the complex 

plane, when V̂  is changing from 0  to  , a remark should be made. 

Remark. In contrast to problems with friction and heat generation from friction, but without 

wear, when the poles 0  and 
1  at   ,0V̂  always remained on the real axis and did not come out 

into the complex plane [14, 15], in the corresponding problems, taking into account wear, friction 

and heat release from friction, the poles 0  and 
1  move into the complex plane, and the poles 

themselves are complex conjugate 01  , 10  . 

4. Formulas for the exact solution of the problem.  Let the poles of the integrands k  

,2,1,0k  in (2.33), (2.35), (2.37) be known. The calculation of the quadratures in (2.33), (2.35), 

(2.37) in this case reduces to calculating the sum of the residues at the poles of the integrands. 

Assuming that the poles k  ,2,1,0k  are single-valued, we obtain the following formulas for 

calculating the quadratures (2.33), (2.35), (2.37) 

  






 


 0

~~

,
)(

),(

2

1

k

t

ka

tza kexBdze
zRt

zxN

i
,     




t

t
t
~

 (4.1) 

 
)(

),(
),(

zRt

zxN
zxB a

a





 (4.2) 

where )(zR  – derivative of )(zR . The index a  in (4.1), (4.2) takes literal images: if instead of a  it 

is written T , then in (4.1) we get the formula for computing (2.33); If u , then we get the formula 

for computing (2.35), if  , then we get the formula for computing (2.37). If k  and  1k  

,2,1,0k  represent a complex conjugate pair kk  1  ,2,1,0k , then 
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and the summation in (4.1) can be carried out over even numbers nk 2 , ,2,1,0n , for complex 

conjugates k  ,2,1,0k . Then, taking into account (2.32) - (2.37) and (4.2), (4.3) we obtain 
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The solutions of the problem are written in the following series 
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where ),( zxBa  are calculated according formulas (4.2) or (4.3), ),( tzD  using formula 

    

t

dttztzD
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/)(exp)(),(      0t  (4.8) 

After calculation of )(0 tfw  in (2.30) using formula 
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and substituting it in (2.29), we obtain the formula for calculating the wear )(tuw  of the coating 

material on the contact 

  





0

),()(
k

kkww tDBtu      0t  (4.10) 

The horizontal displacements ),( txw  are determined from (1.5), (1.7), (1.9) and after 

integration in (1.5) we obtain the formula 

 ),(),( 1 thxftxw xx       hx 0 ,   0t  (4.11) 

 

5. Analysis of the solution of the problem. Areas of stable and unstable solutions.  An 

investigation of the solutions of the problem ),( txT , ),( txu , ),( txxx , represented by formulas 

(4.5) - (4.7), shows that in   0Re k  ,2,1,0k   the solutions of the problem are stable and tend 

to a stationary state with increasing time t . If at least one k  ,2,1,0k    0Re k , then the 

amplitude of the solution increases indefinitely at t , while at   0Im k  is oscillating with 

frequency  kIm , which indicates the instability of the solution of the problem. If we assume that 

the law of penetration )(t  is a bounded function  

 Mtm  )(      0, Mm ,      t0  

then for the integral (4.8) in this case the estimate  
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t
t  

In the complex plane z , the pole trajectories  Vk
ˆ  ,2,1,0k    ,0V̂  in the left half-

plane represent stable solutions   0Re k , and the regions I and II themselves are called the 

regions of stable solutions. Regions III and IV in the right half-plane (   0Re k  1,0k ) are 

regions of unstable solutions of the problem, since in region III the limits ),(lim thT
t 

 and  
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),(lim thxxt


  
do not exist because of   0Im k  1,0k , and in region IV 




),(lim),(lim ththT
tt

, since   0Im k  1,0k . 

Areas I-IV of stable and unstable solutions of the problem are compactly represented in the 

space of dimensionless parameters V̂ , wk , Bi , T̂ .. In Fig. 2 on the plane (V̂ , wk ) the regions of 

stable I, II and unstable III, IV solutions of the problem with pointing out the boundaries for T̂  = 0 

(in this case the boundary between regions is represented by a solid line), 0.1 (dotted line), 0.5 (dot-

dash line). The effect of the parameter Bi on the change of stability domains boundaries can be 

studied from comparison of Fig. 2a, b, c, which are presented for different values of Bi: a) Bi = 1, b) 

Bi = 10, c) Bi = 100. When 0wk for Bi = 1 and Bi = 100, the boundaries of regions I–IV 

converge on the axis V̂  at the points 1,2A , respectively, with an abscissa  Bi2/Bi2ˆ V  that does 

not depend on T̂ . 

 

 

 

Fig. 2. Domains of stable and unstable solutions in the problem parameters space for different 

values of Biot number: a) Bi = 1, b) Bi = 10, c) Bi = 100  

The graphs of the boundaries of regions I-IV (Figure 2) show that, depending on the value 

wk  during change of V̂ from 0 to , it is possible to cross regions I-IV in different order ( Bi  and T̂  

are fixed), for example: IIIIIIIV when 75.0wk ,  for 0.75wk  the order of intersection 

IIIIIIII or III etc. 

6. Numerical analysis of the obtained solutions.  Numerical analysis of the solutions of 

the coupled thermoelasticity problem under consideration on the sliding thermal and friction contact 

of a rigid body with an elastic coating under wear conditions at a contact is carried out by the 

formulas: temperature ),( txT  (4.5), wear )(tuw  (4.10) and stresses ),( txxx  (4.7) in the space of 

dimensionless parameters V̂ , wk , Bi , T̂ . Suppose that the maximum level of subsidence of the 

rigid half-plane I into an elastic coating is given by h1,00  , and the law of its penetration )(t , 
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consisting of the active phase of the penetration in the time interval  tt0  and the passive phase 

of the penetration in the interval  tt , described, for example, by the formulas  
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 (6.1) 

 

where 2ln1

 t  is the time of the end of the active penetration phase,  is the parameter of the 

penetration law. 

The nature of the loss of stability in case of the uncoupled thermoelastic problem solutions 

),( thT , )(tuw , ),( thxx  on sliding frictional contact depending on the parameters of the problemV̂ , 

wk , Bi  was described in detail in [15, 19]. Here the effect of the parameters V  (m/s), *K  (m
2
/N), 

0T  (K) on the obtained solutions of the coupled thermoelasticity problem on frictional sliding taking 

into account coating wear is studied. The following sliding characteristics are analyzed: temperature 

0),(),( TthTth   from (4.5), contact stresses ),()( thtp xx  from (4.7) that arise and develop 

in time on the sliding contact between the rigid half-plane I and the coating, wear of the coating 

material )(tuw  from (4.10), wear rate of the coating )(tuw
  from (4.10). The coating is considered to 

be of a aluminum alloy with the following thermomechanical characteristics:  μ = 24.8 GPa, 

ν = 0.34, κ = 88.1 ∙ 10
−6

 m
2
/s, α = 22.9 ∙ 10

−6
 1/К, K = 209.3 W/(mK), f = 0.47, h = 25 mm, 

h01.00   = 0.25 mm.  Wear of the coating surface ends at t = tw, when the contact stresses turn to 

zero ( 0),()(  wxxw thtp ); in other words, tw is the wear time of the coating. 

The effect of the wear coefficient *K  and the initial temperature 0T  on the solutions of the 

problem under consideration is illustrated in Fig. 3a–c, which show the graphs 0),(),( TthTth  , 

)(tp , )(tuw  for the following parameters of the problem: V = 3.22 mm/s ( V̂  0.86085), 

Bi  = 11.9446. V = 3.22 mm/s ( V̂  0.86085), Bi  = 11.9446. The graphs on Fig. 3a are constructed 

at *K  = 7.5 ∙ 10
−12

 m
2
/N (kw = 0.3833); Fig. 3b at *K  = 1.5 ∙ 10

−11
 m

2
/N (kw = 0.7665); Fig. 3c at 

*K  = 2.25 ∙ 10
−11

 m
2
/N (kw = 1.1498). The solid line in Fig. 3a–c represents the graphs of the 

solution of the present coupled thermoelasticity problem at 0T  = 0 К ( T̂ = 0) , which coincide with 

the graphs for the solution of the corresponding uncoupled problem; the dashed line plots the 

solution at 0T  = 300 К ( T̂ = 0.0279), the dash-dot line plots the solution at 0T  = 525 К ( T̂ = 0.0489). 
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Fig. 3. Contact pressure p(t), wear uw(t), temperature 0),(),( TthTth   for different values of 

wear coefficient: a) *K  = 7.5 ∙ 10
−12

 m
2
/N (kw = 0.3833), b) *K  = 1.5 ∙ 10

−11
 m

2
/N (kw = 0.7665), c) 

*K  = 2.25 ∙ 10
−11

 m
2
/N (kw = 1.1498) 

Conclusion. Mathematical modelling of a coating wear process was carried out based on the 

solution of a problem of the coupled thermoelasticity theory. The Laplace integral transform and 

complex analysis methods were used to present the solution in the form of series over eigenvalues 

of the corresponding initial boundary value problem. 

It was found that eigenvalues of the problem are strongly influenced by the 

thermomechanical coupling parameter of the problem. From the other hand, the boundary between 

regions of stable (I, II) and unstable (III, IV) solutions of the problem remains unchanged for any 

values of the thermomechanical coupling parameter. From the analysis of the solutions, it was 

found that increase in the thermomechanical parameter of the coupling of the problem, as well as an 

increase in the wear coefficient, leads to a decrease in both the temperature and the stresses at the 

contact. 
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УДК 004.942 :: 539.621 : 517.958 : 517.442 

Математическое моделирование термоупругого поведения покрытия с учетом 

разогрева и износа от трения

 

В.Б. Зеленцов, И.А. Лубягин, Б.И. Митрин, С.М. Айзикович


 

Донской государственный технический университет, Ростов-на-Дону, Российская Федерация 

В работе описывается применение метода интегральных преобразований для решения 

квазистатической контактной задачи об износе покрытия. Разогрев и износ покрытия от 

трения происходит при скольжении жёсткого тела по его поверхности. Задача 

рассматривается в рамках связанной теории термоупругости. Решение задачи построено в 

виде контурных квадратур обратного преобразования Лапласа. В результате вычисления 

полученных квадратур, решение записано в виде рядов по полюсам их подынтегральных 

функций. Проведено исследование полюсов подынтегральных функций решения задачи в 

зависимости от четырех безразмерных параметров задачи. Подробно изучена зависимость 

полученных решений в зависимости от безразмерных и размерных параметров задачи. 

Приведены численные примеры полученных решений — контактных напряжений, 

смещений, температуры материала покрытия.  

Ключевые слова: покрытие, трение, износ, фрикционное тепловыделение, 

термоупругость, преобразование Лапласа, контурный интеграл 
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