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Mathematical modelling of thermoelastic behavior of a coating taking into
account frictional heating and wear®
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Don State Technical University, Rostov-on-Don, Russian Federation

This work describes application of the integral transform method to solution of a quasi-static
contact problem of the coating wear-out. Frictional heating and wear of the coating occurs during
the sliding of a rigid body over its surface. The problem is considered in the framework of the
coupled thermoelasticity theory. The solution of the problem is constructed in the form of contour
quadratures of the inverse Laplace transformation. After the calculation of the quadratures the
solution of the problem is constructed in the form of series over the poles of the integrands.
Investigation of the poles of integrands is performed in dependence on four dimensionless
parameters of the problem. The solutions obtained are studied in detail with respect to the
dimensionless and dimensional parameters of the problem. Numerical examples of the obtained
solutions for contact stresses, displacements, temperature and wear of the coating are presented.

Keywords: coating, friction, wear, frictional heating, thermoelasticity, Laplace transform,
contour integral

Introduction. The study of thermoelasticity problems, taking into account the interaction of
deformation and temperature fields, began with [1-3]. This line of research was called the coupled
thermoelasticity. Generalization and solution of particular problems of the new direction of research
was continued in [3-5]. In subsequent years, both analytical, starting with [4, 5], and numerical
methods [6] were developed to solve problems of coupled thermoelasticity. In the latter paper the
authors were one of the first who developed a scheme of application of the finite element method
and gave its implementation for solving the coupled problems of thermoelasticity. Analysis shows
that in the overwhelming majority of studies in the solution of coupled thermoelasticity problems
the finite element models of a fairly general purpose were developed, for example [7-11].The
analytical methods for solving this class of problems did not become as widespread as the
numerical ones. The results obtained with their help were summarized in [12]. Beginning with
papers [13-18], scientists consider uncoupled problems of thermoelasticity about the sliding contact
of a rigid body with an elastic coating, taking into account friction, heating of the coating from
friction, and abrasive wear. Because of the large number of parameters of the problem, the one-
dimensional and quasi-static problems were considered. In [15-18], for their solution the integral
Laplace transform with a solution in the form of functional series along the poles of the integrands
of the contour quadratures of the inverse Laplace transform were used. The solution method allows
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establishing the parametric boundaries of the thermoelastic instability of a sliding contact, to
investigate the properties of the solutions obtained. Beginning with [20—22], a new direction of the
development of the model of the sliding contact of two elastic bodies arose, taking into account
friction, wear and heat generation, built on the principle of virtual energy and the basic laws of
thermodynamics. The solution of problems on the basis of this model is carried out by the finite
element method [22]. The present paper demonstrates the application of the Laplace integral
transform and complex analysis methods to solution of the coupled thermoelastic problem on the
coating wear occurring during sliding frictional contact with frictional heating.

1. Statement of the coupled problem of wear. To investigate the effect of thermoelastic
coupling on the occurrence of thermoelastic instability in sliding contact problems, the contact
problem of coupled thermoelasticity about sliding with a constant velocity V of a rigid heat-
insulated half-plane I (h < x <o) over the upper (x=h) surface of an elastic thermal-conducting

coating of thickness h (0<x<h), is considered. The lower surface of the coating is rigidly
coupled to a non-deformable non-heat-conducting substrate in the form of a half-plane 11
(00 < x <0). Sliding of the half-plane | along the surface of the elastic coating takes into account
Coulomb friction and abrasive wear of the coating surface [15-19]. The heat flux generated at the
contact due to friction is directed into the coating. From the initial instant of time, the half-plane 1
moving along the axis y deforms the surface (x = h)of the elastic coating, moving in the direction
opposite to the axis X, according to the law A(t). Until the initial moment, the coating was at rest,
and its temperature was equal to T, .

The formulation of the problem assumes that the distribution of temperature, stresses and
displacements in the coating does not depend on the choice of the horizontal coordinate along the
axis y parallel to the direction of motion of the half-plane I, and are functions of only the x
coordinate and time t [15-19]. Two-dimensional differential equations of the theory of elasticity in
the case of quasi-static and in the absence of mass forces, describing the stress-strain state of the
coating, take the form

0
Oun _g, ©Ov_g, 0<x<h, t>0 (1.1)
OX OX

where o, =c,(x1t), o, =0o,(xt) —normal and tangential stresses in the coating.

The temperature in the coating is described by the equation of thermal conductivity [23]

O°T 10T  3\+2u_ 0O,
—-=—=a T,

ox® x ot K ot
where T (x,t) — temperature distribution in the coating, « — coefficient of thermal diffusivity, o —
coefficient of linear expansion of coating material, L, u — Lame coefficients, K — coefficient of

0<x<h, t>0 (1.2)

thermal conductivity, T, — initial temperature in the coating, ¢,, — deformation of the coating along the

X axis.
The relationship between stresses and strains is determined from a form of the Hooke’s law:
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=(+2u)e, —Gr+20)a(T -T,), o, =He, (1.3)
in which the deformations in our case are expressed in terms of the displacements by the following
formulas

ou ow
€y =" &y =—
OX Yoox
where u(x,t), w(x,t) — vertical and horizontal displacements in the coating.

The relations (1.4) are substituted in (1.3), after which (1.3) is substituted into the
differential equations of the theory of elasticity (1.1) to obtain the equations of thermoelasticity

(1.4)

u_1+v LT o'w
2 1v x| X

Differential equations of coupled thermoelasticity are represented by a system of differential
equations of thermoelasticity (1.5) and the differential heat-transfer equation (1.2) describing the
stress-strain state of an elastic coating. The boundary conditions of the problem for the differential
equations (1.5), (1.2) are the following:
mechanical t>0

0<x<h, t>0 (1.5)

X=h u(h,t) =—A(t) +u,(t) (1.6)
o, (h,t)=—fo, (h,t) (1.7

x=0 u(0,t)=0 (1.8)
w(0,t) =0 (1.9)

temperature t >0

x=h Km:—f\/cm(h,t) (1.10)

x=0 K%:kﬁ(o,t)—n) (1.11)

where f — coefficient of friction, k — coefficient of heat transfer, u,(t) — half-plane I

displacement due to the wear of the coating. Further, the abrasive wear model [24] is used,
according to which

u, (t) = — va*jcxx(h,r)dr t>0 (1.12)

where o, (h,t) — normal compressive stresses on the contact, K~ — coefficient of proportionality

between the work of frictional forces and the amount of material removed from contact. In addition,
according to (1.10), it is assumed that all the heat at the contact is formed due to friction.
The initial conditions for displacement in the coating are zeros

u(x o)_6u(x0) W(x O)_aw(xO)

and the initial conditions for temperature are nontrivial

0, A(0)=0 (1.13)
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T(x,0)=T, (1.14)

Thus, the solution of the formulated coupled contact problem of thermoelasticity for the

wear of an elastic coating on the sliding contact between a rigid body and an elastic coating, taking
into account the heating from friction, is reduced to solving the system of differential equations
(1.2), (1.5) with the boundary (1.6) - (1.11) and initial conditions (1.13), (1.14). It should be noted
that the vertical displacements u(x,t), normal stresses o, (x,t)and temperature T(x,t) in the

coating are determined independently from the horizontal displacements w(x,t). Horizontal
displacements w(x,t)are determined from (1.5), (1.7), (1.9) using normal stresses.

2. Exact solution of the problem. The solution of the coupled contact thermoelasticity
problem given in §1 is constructed using the Laplace integral transformation [25]:
U (x, p) = [ulx e dt, u(x,t) =% [ut(x p)e”dp  Rep<c,c>0 2.1)
0 I —ioo+C
The index in (2.1) denotes the transform of the Laplace transformation.
The Laplace transformation (2.1) is applied to the differential equations (1.2), (1.5) taking
into account the initial conditions (1.13), (1.14) and the existence conditions for the Laplace
integrals (2.1) [25]. As a result, we obtain a system of ordinary differential equations with respect to

the transforms u-(x, p) and T-(x, p)

du" 1+v dT:
2 a
dx 1-v dx
2T L L
0T _ppo_lp_2s@v) o di oy, 2.3)
dx K K 1-2v K dx

Differentiating equation (2.3) and substituting the second derivative of u“(x, p) from (2.2) into the

0<x<h 2.2)

resulting relation, we obtain a differential equation with respect to T"(x, p)

2T L 2
((jj_x(dd; —% pTszo 0<x<h (2.4)
2 2

A-v)(1-2v) K °

The general solution of the differential equation (2.4) has the form

T-(x,p)=A + Azsh(\/EBxJ+ AJCh(\/Eij (2.5)

inwhich A, A,, A, are arbitrary constants.

Substituting T“(x, p)from (2.5) into (2.2), we obtain an inhomogeneous differential

equation with respect to u“(x, p), after double integration, we obtain its general solution



COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES Ne 1 /2017

ut(x, p)=i+—zai(A2 ch(\/ngJ+A35h( EBXDJF AX+ A (2.6)

where A,, A, from (2.5), A,, A;are new unknown values, dependingon p.
Substituting T“(x,p) from (2.5) into (2.2), we obtain an inhomogeneous differential
equation with respect to u“(x, p), after double integration, we obtain its general solution

ut(x, p)=i+—voci(A2 ch{\/EBxJ+&sh( B[3XD+ AX+A (2.7)
-V BB K K

K
where A,, A, are from (2.5), A,, A are new unknown values dependenton p.

Substituting (2.5) and (2.6) into the original (2.3), we obtain a connection between A and
A, of the form

ATo v 8)

p l+va

Replacing A by A, in (2.5) according (2.8) we obtain the general solution for T*(x, p)

from (2.2), (2.3)
L T, p p 1-vT
T-(x,p) = _p + Azsh(1 /—KBXJ + %Ch(‘/_KBXJ__l o A, (2.9)

Thus, u“(x, p) from (2.6) and T"(x, p) from (2.8) with constants A, . are general solutions
of the system (2.2), (2.3), and the constants A, . are found from the boundary conditions (1.6), (1.8),
(1.10), (1.11), after applying the integral Laplace transform to them:

mechanical
Xx=h ut(h, p) = —A"(p) +u:(p) (2.10)
x=0 U (x. p)=0 (2.11)
temperature
L
*=h Kw:_‘%;(h’ P) (212)
L
k=0 kTOP k(TL(o, p)—ij .13)
dx p
L
in which uvb(p)z_va*cxx(hl p)
L 2u(l—v) dut(x, p) 2u(d+Vv) (. T,
P)= - T-(x,p)-—> 2.14
Gy (X P) =y » Lo (X, p) (2.14)
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Substituting (2.6) into (2.11) we obtain a connection between A, and A

1+v  «
= 2.15
1—v,/p/1<ﬁA2 (215)
From (2.13) after substituting (2.9) into it we obtain the relation
1+v «a . p . kh
=————| Bi —1/— hA, |, Bi=— 2.16
A 1—vTBi( A KB AZJ K (2.16)

Substituting A, and A, from (2.15), (2.16) into (2.6), and (2.16) — into (2.9) we obtain
u-(x, p) and T-(x, p) in the new form, depending only on A, and A,

T(x,p) = Azé(\/gﬁh+8ish\/§[3x}+ﬁ{ch \/gﬁx—ljﬂ% (2.17)

The constants A, and A, are determined by substituting (2.16), (2.17) into the boundary

conditions (2.9) and (2.11), after which a system of linear algebraic equations is formed with
respectto A, and A,

2

DaAL,=h =12 (2.18)

=

where by, a; i, j=12 are calculated from the formulas
. ~ h?
an:(TBi chvz-1h-nhz +ka—[32)\/§
K
2
a,= Bi(fhﬁ sh~/zh + hz —kah;BZJ

a, = ;—X(Bif ch/z —VBZ)\E
TBi

b1=—?ZAL(p), b, =0

_ Va 2u+v)h K _1-v KK”

’ \i 1 w
K 1-2v 1+v ok

BZ

Solving the system (2.18) with respect to the constants A,, A,, and substituting them into

(2.17), (2.16), (2.13), we obtain Laplace transforms of temperature, displacements and stresses,
which are not written out here.

After inversion of the resulting transforms T"(x, p), u“(x, p), o (X, p), with the help of
the inverse Laplace transform (2.1) of the solution of the problem under consideration T(x,t),

u(x,t), o, (x,t), itis convenient to write down in the form of convolutions
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T T, = LV VE jA()f (xt-tdt  0<x<h, t>0 (2.19)
1+v
N (X Z) zt “’_l _h_2
£2(x,t) = th(Z) dz, t—tK, L= (2.20)
NY(x,2) = \/_(Blsh\/_ +yzchz 2 j+—Tz(r(z)+Blch\/_ j (2.21)
R(z) = zr(z) -VB*((1—k, )r(z) - Bi)+TBivzsh+/z (2.22)
r(z)=Bich\/E+\/Esh\/E
u(x,t)=—jA(r)fu°(x,t—r)dr 0<x<h, t>0 (2.23)
N (X Z) zt "‘_l
fO(x,t) = letR(z) dz, t_tK (2.24)

N(x,z) = zr(z)%—\?ﬁz(Bich ﬁ%+ﬁ$hﬁ%— Bi)—

i (2.25)
—'I:Biﬁ(shﬁ%x—shﬁj
crxx(x,t):—HjAh)ff(x,t—r)dr 0<x<h, t>0 (2.26)
N (X Z) zt T _i
fO(x,t) = > Ij LR dz, t_tK (2.27)
N2(x,2) = z['lir(z) +TBiV. ch ﬁu} (2.28)
o1+ 12V p2, WL TBl(l—l—VVB j
1+v l+v

where the integration contour T" = {z : —ioo+dtK,+ioo+dtK} represents a straight line in the complex

plane of the variable of integration z parallel to the imaginary axis and spaced from it by an amount
dt_ that is selected so that the integration contour passes to the right of all isolated singular points of

the integrands. It should be noted that the stresses o, (x,t) depend on the x coordinate according to
formula (2.28) for N2(x,z), in contrast to the corresponding uncoupled problem [15, 19], where

they did not depend on.
The wear u,,(t) calculation formula can be obtained from (1.6)

u, (t) = kWVBZjA(r) fo(x,t—t)dt  t>0 (2.29)
0 N (X Z) zt Iy _i
fO(x,t) = 2m CR() dz, t= C (2.30)
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where N2(z) =r(z), and r(z) from (2.22).

In the obtained formulasT (x,t), u(x,t), o, (x,t), u,(t) for solving the problem there are
contour quadratures (2.20), (2.24), (2.27), (2.30). In the complex plane of the integration variable z,
the integrands of the contour quadratures (2.20), (2.24), (2.27), (2.30) are meromorphic functions

that contain a countable set of poles. At infinity in the complex plane of the variable of integration,
the integrands in (2.20), (2.24), (2.27), (2.30) behave as follows when| z |—» o

N?(x,z)R‘l(z)=1_—V'I° +O(z‘“2) O<x<h

1+v
NO(x,2)R™(z) :%+O(z’l’2) 0<x<h (2.31)
NO(x, z)R’l(z):'I:*+O(z’1’2) O<x<h

N2(z)R™(z)=0(z )
The asymptotics (2.31) show that the quadratures (2.20), (2.24), (2.27) do not exist in the

usual sense, but are understood as generalized [26]. To calculate the quadratures in (2.20), (2.24),
(2.27), regularization of the integrands at infinity when |z |— oo is performed with the estimates

(2.31) taken into account. As a result, the quadratures are represented as a superposition of the
regular part of the generalized component and the quadrature, existing in the usual sense

T(x,t)—Tozl_VVBZ( TA(t)+IA(r)f (xt— r)er 0<x<h,t>0 (2.32)
1+v ah {1+v
N;(x,2) ot _NO 1-vo

it = j LR dz, Ni(x,2)=Np(x,2)-—TR@) (2.33)
u(x, t) :-A(t)f—jA(r) f.(xt-t)dt 0<x<h, t>0 (2.34)

_ N, (x,2) ot _ NO X
L= j LR dz, N,(x2)=NJ(x2)~R(2) (2.35)
cm(x,t):—% TlA(t)—jA(r) f (xt—t)dt| 0<x<h,t>0 (2.36)

N (X Z) zt __nNJO T
f (x,t)= 2n| LRQ) dz, N_(x,2)=N_(x,z)-T.R(z) (2.37)

where N2(x,z), N°(x,z), N2(x,z), R(z) from the formulas (2.21), (2.25), (2.28), (2.22), T. is

given after (2.28).

To calculate the quadratures in (2.33), (2.35), (2.37), in which the integrand functions are
meromorphic and decreasing at infinity in the complex plane of the variable of integration,
according to estimates
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N (X,2)
N,(x,2) IR (2)=0(z"?) |z}>», 0<x<h (2.38)
N, (X, 2)

the methods of the theory of functions of a complex variable [27] can be used. When implementing
these methods, it becomes necessary to determine the poles of the integrands in (2.33), (2.35),
(2.37) in the complex plane of the variable of integration.

3. Poles of integrands. The poles of the integrands in (2.33), (2.35), (2.37) coincide with
the zeros R(z) of (2.22) except for those zeros that are removable singular points of the integrands.

To determine the zeros R(z) in the complex plane z = £ +in, equation is solved
R(z) = zr(z) -VB*((1—k,, )r(z) - Bi)+ TBivz sh/z =0 (3.1)
where p?, Bi, T,V , k, from (2.15), (2.16), (2.18), r(z) from (2.22).
In equation (3.1), the zeros R(z) depend on four dimensionless parameters of the problem
V, k,, T, Bi since the fifth parameter p* is expressed in terms of T in (2.14). Using the
experience of [14, 15], we will investigate the behavior of the zeros from (3.1) for fixedk,, T , Bi
and variable parameter V , which varies from 0 to 0. Assuming V =0 in (3.1) we obtain the
equation
zr(z) + TBivz shv/z =0 (3.2)

to determine the zero approximations &) =¢,(0) k =0,.2,... of the roots of equation (3.1) Qk(\i)
k=012,..... Equation (3.2) does not have convenient analytical solutions. Assuming Bi=0 in
(3.2), for the zero approximation of the roots, k=0,1,2,... of (3.1), we can take

0 =—(nkf k=012,... (3.3)

that does not depend on k,,, T . Assuming Bi=co in (3.2), as the zero approximation of the roots
¢, k=012,...in(3.1) when Bi>>1, we can use equation

Jzehz +Tshyz =0 (3.4)

that when T =0 has the analytical solution
£ =-n*(k+1/2f k=012,... (3.5)

For the averages Bi and T = 0 for the definition of ¢ k=012,...,(3.2) is used.

Asymptotics ¢, for large numbers k has the form (3.3). From the above formulas (3.3),
(3.5), and also from equation (3.4) it follows that all zero approximations of zeros R(z) from (3.1)
are located on the negative part of the real axis or at zero. Nevertheless, when changing V' from 0
to « for fixed k,, Bi, T, first of all the first two poles {, and ¢, can be located: | - on the
negative part of the real axis Re((,,5,)<0, Im(¢,,&,)=0 at 0<V <V,; Il - in the left half-plane
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Re(Gy,6,)<0, [Im(G,, &) <o at V, <V <V,; Il - in the right half-plane Re(G,,¢,)>0,
IM(&,, G, ) <0 at V, <V <V,; IV - on the positive part of the real axis Re(G,&)>0,
(
Re(
Re(&,,&,)>0 at V, <V <o are called regions of unstable solutions. In Fig. 1 we give examples of

the trajectories of the poles (;067 ) and (;1(\7) with a change of C;N ) from 0 to oo when Bi=1are
fixed for three values of T =0; 0,01; 0,02 (shown as solid, dashed and dot-dashed lines,
respectively) and different k,= 0.5 (set of curves 1), 0.9 (2), 1.0 (3), 1.35 (4), 5.0 (5). The marked
points indicate the location of the poles Qoﬁf) and gl(\i) at V =0, punctured - at V — 0. The
crossed-out square marks the point of the trajectory, with the passage of which with the increasing
of V the real poles QO(\f) and Ql(\f) become a pair of complex conjugate poles, and vice versa. It
should be noted that even a small change in the coefficient k,, containing the ratio of the size

Im(&,,&,)=0 at V,, <V <co. As will be shown below, roman I, Il denotes regions where

0,(;)<0 at 0<V <V, which are called domains of stable solutions, and regions IIl, IV with

parameters K™ and o, regulating respectively the wear and thermal expansion of the strip, leads to
significant changes in the trajectories Coﬁf) and Qlﬁi), to a lesser extent, of the others Ckﬁi)
k=2,34,.... When wear is prevalent (curves 5, 6), then {,, ¢, and even more £, k=2,34,... at
k, >1are in regions I, Il. The prevalence of the expansion of the strip from the incoming heat over
wear 0<Kk, <1 (curves 1-4) leads to the fact that £, and ¢, go to the right half-plane in the region
I, 1V (Fig.1).

Fig. 1. Location of the initial boundary value problem eigenvalues
in the complex plane



COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES Ne 1 /2017

An important feature of poles located in the complex plane in the regions II, 11l is noted,
which for neighboring £, and ¢, consists in their complex conjugacy, i.e. ; = C_O and ¢, = C_l

According to the results of the investigation of the poles Qow) and Qlﬁi) in the complex
plane, when V is changing from 0 to oo, a remark should be made.

Remark. In contrast to problems with friction and heat generation from friction, but without
wear, when the poles ¢, and ¢, at V €[0,0) always remained on the real axis and did not come out
into the complex plane [14, 15], in the corresponding problems, taking into account wear, friction
and heat release from friction, the poles £, and £, move into the complex plane, and the poles

themselves are complex conjugate &, =&, , C, =, -

4. Formulas for the exact solution of the problem. Let the poles of the integrands &,
k=0.22,... in (2.33), (2.35), (2.37) be known. The calculation of the quadratures in (2.33), (2.35),
(2.37) in this case reduces to calculating the sum of the residues at the poles of the integrands.
Assuming that the poles £, k=012,... are single-valued, we obtain the following formulas for
calculating the quadratures (2.33), (2.35), (2.37)

1 N(X2) iy, S o op_t
2niJ; LR() e’dz kZ:(;Ba(x,Qk)e , ot =0 (4.1)
B.(x,2) = Taéi’zz)) 4.2)

where R'(z) — derivative of R(z). The index a in (4.1), (4.2) takes literal images: if instead ofa it
is written T , then in (4.1) we get the formula for computing (2.33); If u, then we get the formula
for computing (2.35), if o, then we get the formula for computing (2.37). If {, and ¢, ,

k=012,... represent a complex conjugate pair C,., = Q_k k=0.12,..., then
B, (x, z)e” =2 RemeZE (4.3)
t R'(2)
and the summation in (4.1) can be carried out over even numbers k =2n, n=0,1,2,..., for complex
conjugates ¢, k=0,12,.... Then, taking into account (2.32) - (2.37) and (4.2), (4.3) we obtain

1 N (X1Z) 7t < Ct~
f.(x,t)=——|—2—"Fe"dz= ) B,(X, K 4.4
= R 2 B.(xCoe (4.4)
The solutions of the problem are written in the following series

VB2 (1-v -
T(xt)-T, = = —TA®) + D B (%, DG, t)| 0<x<h, t>0 (4.5)

ah (1+v r
u(x,t)=—%A(t)+ZBU(x,Ck)D(Qk,t) 0<x<h, t>0 (4.6)

k=0
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2ud-v)

o) == o

(TA(t) ZB X,C,) (Qk,t)JOSXsh,bO (4.7)

where B, (x,z) are calculated according formulas (4.2) or (4.3), D(z,t) using formula

D(z,t):jA(r)exp(z(t—r)/tK)dr t>0 (4.8)

After calculation of f2(t) in (2.30) using formula

0 —i NW—(Z) ty, — N Gt — NW(Z)
fW(X’t)_ZniltKR(z)e az ;BW(CK)G - B t R'(z) (4.9)

and substituting it in (2.29), we obtain the formula for calculating the wear u,(t) of the coating
material on the contact

0,0 =Y B,(E)DEG.) >0 (4.10)

The horizontal displacements w(x,t) are determined from (1.5), (1.7), (1.9) and after
integration in (1.5) we obtain the formula

w(x,t) =—fu'xo, (h,t) 0<x<h, t>0 (4.11)

5. Analysis of the solution of the problem. Areas of stable and unstable solutions. An
investigation of the solutions of the problem T(x,t), u(xt), o,/(Xt), represented by formulas

(4.5) - (4.7), shows that in Re(ck)< 0 k=01.2,... the solutions of the problem are stable and tend
to a stationary state with increasing time t. If at least one ¢, k=012,... Re(g,)>0, then the
amplitude of the solution increases indefinitely at t — oo, while at Im(¢, )= 0 is oscillating with
frequency Im(ck), which indicates the instability of the solution of the problem. If we assume that
the law of penetration A(t) is a bounded function

m<At) <M mM>0, O<t<owo

then for the integral (4.8) in this case the estimate
1—e&t t
: when Re(Z,)>0 k=012,... t=—

k

ID(G,.t)=m

K

In the complex plane z, the pole trajectories Ck(\i) k=012...Ve [0, oo) in the left half-
plane represent stable solutions (Re(¢, )<0), and the regions 1 and Il themselves are called the
regions of stable solutions. Regions 111 and IV in the right half-plane (Re(,)>0 k=01) are
regions of unstable solutions of the problem, since in region Il the limits !inOT(h,t) and
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limo,(ht) do not exist because of Im(¢, )=0 k=01, and in region IV
limT (h,t) =limo(h, t) = o, since Im(¢, )=0 k=01.

Areas I-1V of stable and unstable solutions of the problem are compactly represented in the
space of dimensionless parameters V , k,, Bi, T .. In Fig. 2 on the plane (V , k,) the regions of

stable I, Il and unstable 1, IV solutions of the problem with pointing out the boundaries for T =0
(in this case the boundary between regions is represented by a solid line), 0.1 (dotted line), 0.5 (dot-
dash line). The effect of the parameter Bi on the change of stability domains boundaries can be
studied from comparison of Fig. 2a, b, ¢, which are presented for different values of Bi: a) Bi = 1, b)
Bi =10, ¢) Bi = 100. Whenk, —»0for Bi = 1 and Bi = 100, the boundaries of regions -1V

converge on the axis V at the points A ,, respectively, with an abscissa V= 2Bi/(2+ Bi) that does

not depend on T .

Bi=1 Bi =10

m
M
2 3IVavrs

b)

Fig. 2. Domains of stable and unstable solutions in the problem parameters space for different
values of Biot number: a) Bi = 1, b) Bi = 10, c¢) Bi =100

The graphs of the boundaries of regions I-1V (Figure 2) show that, depending on the value
k, during change of V from 0 to oo, it is possible to cross regions I-1V in different order (Bi and T

are fixed), for example: I->1l->111—-IV when k, <0.75, for k,>0.75 the order of intersection

== 1l1=I1 or Il etc.

6. Numerical analysis of the obtained solutions. Numerical analysis of the solutions of
the coupled thermoelasticity problem under consideration on the sliding thermal and friction contact
of a rigid body with an elastic coating under wear conditions at a contact is carried out by the

formulas: temperature T(x,t) (4.5), wear u,(t) (4.10) and stresses o,,(X,t) (4.7) in the space of
dimensionless parameters V , k,, Bi, T . Suppose that the maximum level of subsidence of the

rigid half-plane I into an elastic coating is given by A, =0,1h, and the law of its penetration A(t),
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consisting of the active phase of the penetration in the time interval 0 <t <t_ and the passive phase

of the penetration in the interval t_ <t < oo, described, for example, by the formulas

—1+e* O<t<t
A(t)=A ‘ 6.1

® O{l t. <t<o (61)
where t_ =g In2 is the time of the end of the active penetration phase, ¢is the parameter of the

penetration law.
The nature of the loss of stability in case of the uncoupled thermoelastic problem solutions

T(h,t), u,(t), o (h,t) onsliding frictional contact depending on the parameters of the problemV
k,, Bi was described in detail in [15, 19]. Here the effect of the parameters V (m/s), K™ (m?/N),
T, (K) on the obtained solutions of the coupled thermoelasticity problem on frictional sliding taking

into account coating wear is studied. The following sliding characteristics are analyzed: temperature
O(h,t) =T(h,t) -T, from (4.5), contact stresses p(t) =—o,,(h,t) from (4.7) that arise and develop

in time on the sliding contact between the rigid half-plane | and the coating, wear of the coating
material u,(t) from (4.10), wear rate of the coating u,,(t) from (4.10). The coating is considered to

be of a aluminum alloy with the following thermomechanical characteristics: p=24.8 GPa,
v=034, «=88.1-10°m%s, 0=22.9-10°1/K, K=209.3W/mK), f=0.47, h=25mm,
A, =0.01h =0.25 mm. Wear of the coating surface ends at t = t,,, when the contact stresses turn to
zero ( p(t,) =—o,(h,t,)=0); in other words, t, is the wear time of the coating.

The effect of the wear coefficient K™ and the initial temperature T, on the solutions of the
problem under consideration is illustrated in Fig. 3a—c, which show the graphs ®(h,t) =T (h,t)-T,,
p(t), u,(t) for the following parameters of the problem: V=3.22 mm/s (V = 0.86085),
Bi = 11.9446. V = 3.22 mm/s (V = 0.86085), Bi = 11.9446. The graphs on Fig. 3a are constructed
at K" =7.5-10"m?N (ky=0.3833); Fig.3b at K" =1.5-10 "' m%N (kw = 0.7665); Fig. 3c at
K" =2.25-10" m?N (ky = 1.1498). The solid line in Fig. 3a—c represents the graphs of the
solution of the present coupled thermoelasticity problem at T, =0 K (T =0) , which coincide with
the graphs for the solution of the corresponding uncoupled problem; the dashed line plots the
solution at T, = 300 K (T = 0.0279), the dash-dot line plots the solution atT, =525 K (T = 0.0489).
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Fig. 3. Contact pressure p(t), wear uy(t), temperature ®(h,t) =T (h,t) —T, for different values of
wear coefficient: a) K* =7.5-10 "> m%N (k, = 0.3833), b) K" =1.5- 10" m%N (k. = 0.7665), c)
K" =2.25-10"" m?N (ky = 1.1498)

Conclusion. Mathematical modelling of a coating wear process was carried out based on the
solution of a problem of the coupled thermoelasticity theory. The Laplace integral transform and
complex analysis methods were used to present the solution in the form of series over eigenvalues
of the corresponding initial boundary value problem.

It was found that eigenvalues of the problem are strongly influenced by the
thermomechanical coupling parameter of the problem. From the other hand, the boundary between
regions of stable (I, 11) and unstable (I11, V) solutions of the problem remains unchanged for any
values of the thermomechanical coupling parameter. From the analysis of the solutions, it was
found that increase in the thermomechanical parameter of the coupling of the problem, as well as an
increase in the wear coefficient, leads to a decrease in both the temperature and the stresses at the
contact.
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MaremMaTH4eCKO€e MOIeJTHPOBAHNE TEPMOYIIPYIOro MOBeIeHHsI MOKPBITHS € YYeTOM
pasorpeBa u H3HOCA OT TPEHHS

B.B. 3enennos, U.A. JIy6arun, .. Mutpun, C.M. Alizukosua”
JIOHCKO# rocy1apCTBEHHBIN TEXHUYECKHIA yHUBepcuTeT, Pocto-Ha-Jlony, Poccuiickas ®eneparus

B pabote onuchiBaeTcss IpUMEHEHHE METOJa MHTErpaJIbHBIX IPeo0pa30BaHUM JUIsl pelieHus
KBa3MCTAaTHUECKOW KOHTAaKTHOW 3a1aud 00 M3HOCE MOKPHITHA. Pa3orpeB W HM3HOC MOKPBITHA OT
TPEHMsI TMPOMCXOAUT HPHU CKOJBXKEHMM JKECTKOTO Tejla [0 €ro IOBEPXHOCTHU. 3ajaya
paccMaTpuBaeTcs B paMKaxX CBSI3aHHOM TEOpUH TEPMOYHPYrocTH. PemreHue 3amadm moCTpOEHO B
BUJEC KOHTYPHBIX KBaaparyp oOpaTHOro mpeoOpasoBanus Jlamumaca. B pesymbraTe BbIUMCICHUS
IIOJIyYEHHBIX KBaJIpaTyp, PELICHHE 3allCAHO B BHUJIE PSANOB IO IOJIOCAM MX IOABIHTETPAIbHbIX
¢ynkuuii. [IpoBeneHo ucciaeoBaHUE MOJIOCOB IMOJABIHTEIPAIIBHBIX (YHKLUUI pelIeHus 3a7adyd B
3aBHCUMOCTH OT YeTbIpex Oe3pa3MepHbIX MapameTpoB 3ajgaud. [logpoOHO M3yueHa 3aBUCUMOCTh
HOJYYEHHBIX pEIIEHUH B 3aBHUCHMOCTH OT O€3pa3MEepHBIX M Pa3MEpHBIX IMapaMeTpoB 3aJlayu.
[IpuBeneHbl YHUCIEHHBIE NPUMEPHI IOJYYEHHBIX PEIICHWH — KOHTAaKTHBIX HAaIpsSKEHUH,
CMELIEHUH, TEMIIEPATYPhl MaTepraia MOKPBITHS.
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