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Solving the eigenvalues and eigenfunctions problems for the Helmholtz equation
by the point-sources method”
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The paper provides the developed approach to solve the eigenvalues and eigenfunctions prob-
lems for the Helmholtz equation in domains with an arbitrary configuration. In developing the ap-
proach for numerical solution of problems, the point-sources method (PSM) was used. The proposed
method is based on the analysis of the condition number of the PSM system or the error of the numer-
ical solution of problems. The concept of "eigenvalues criteria” is introduced. The research result is a
developed effective method - an algorithm for solving problems of eigenvalues and eigenfunctions
for the Helmholtz equation. It is shown that at the approach of the Helmholtz parameter to the prob-
lem eigenvalue, the condition number of the PSM system and the error of the numerical solution rise
sharply. Therefore, we calculate the dependence of the condition number of the PSM system or error
of the problem numerical solution on the Helmholtz parameter. Then, according to position of the
maximum of the received dependences we find the eigenvalues of the Helmholtz equation in a given
domain.. After finding the eigenvalues, it is possible to proceed to the determination of the eigenfunc-
tions. At that, if the eigenvalue appears degenerate, that is some eigenfunctions correspond to it, then
it is possible to find all the eigenfunctions taking into account the symmetry of the solution domain.
The two-dimensional and three-dimensional test problems are solved. Upon the results obtained, the
conclusion about the efficiency of the proposed method is made.

Keywords: point-sources method, eigenvalues, eigenfunctions, Helmholtz equation, funda-
mental solution, the method of fundamental solutions.

Introduction. A number of problems of mathematical physics, having great practical im-
portance in the development of electro-mechanical devices, lead to the decision of the Helmholtz
homogeneous equation

AU(r)+2U(r)=0 (1)

with a positive value of the Helmholtz parameter A>0. This is a broad class of problems related to
the steady-state oscillations (mechanical, acoustic, thermal, electromagnetic, etc.). Numerical solu-
tion of mass and heat transfer problems also leads to the Helmholtz equation, having a negative val-
ue of the parameter A <0. The importance of the Helmholtz equation is also conditioned the fact that
all elliptic equations with constant coefficients are equivalent to the equation of this kind.

Solution to a number of applied problems required to find the eigenvalues and eigenfunc-
tions for the Laplace equation in domains with a different configuration. The analytical solution to
such problems, and numerical solution using traditional numerical methods, can cause considerable
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difficulties and are not always advisable especially if a domain of the solution has a complicated
configuration, and the boundary conditions include the normal derivative.

One of the most effective methods for the numerical solution to boundary value problems
for elliptic equations is the point-sources method (PSM) [1-7]. This method is used in the simula-
tion of electrical, magnetic, thermal, concentration, elastic stress and other physical fields [8-17].
PSM advantage is its simplicity, and a much smaller amount of computation in comparison with
traditional numerical methods for solving boundary value problems, such as, for example, a finite
element method (FEM). Application of PSM can be justified as in the problems solution of eigen-
values for elliptic equations, for example, the Helmholtz equation [18, 19], the Schrédinger equa-
tion [20, 21].

Description of the numerical method. Suppose that in Q domain Helmholtz equation (1) is
performed, and on 022 - 2 domain boundary condition type is defined

@(r)%g(rpj\m () @

where a, B, y- continuous functions defined on the boundary 622 domain Q.

For finding unknown function U(r) PSM may be used. For this purpose N nodes were locat-
ed on the boundary 02 at points with coordinates r;. Around the domain ©, at some distance from
its border, are located N point sources of the field with the charges g;, at points with coordinates R;.
The defined field is approximately represented as a sum

N
ur)=>a,9(rR,), 3)
j=1
where g(r, R;) - the fundamental solution of the Helmholtz equation. In three-dimensional version.
exp (ir Ja|r - R|)
R)= . 4
o(nR) 47lr —R] *)

The solution to the problems of two-dimensional fundamental solutions [22], is expressed in
terms of modified Bessel functions of the second kind (if A <0):

1
g(r,R):gKo(\/—Mr—RD, (42)
or through the Hankel function of the first kind of zero order (when A> 0):
o(r.R)= HY (VA -R). )

Sign in (4,) is selected depending on the specific features of the problem being solved. De-
pending on the sign of the parameter A, exponent argument in the expression (41) will be either real
or imaginary number.

When A = 0, the equation (1) degenerates into the Laplace equation and the fundamental so-

lution (4,) for three-dimensional problems takes the form g(r, R)=1/(4n|r—R|); accordingly for

two-dimensional problems
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The solution g(r, R) can be considered as a potential field, created at the point r, by unit
point charge, located at R. For any charge values g;, function U(r) satisfies the Helmholtz equation
(1). It is necessary to choose the charges g so that the boundary conditions (2) are performed in all
the N boundary nodes. For the node with number i, the condition (2) can be written as

N

ij[ammwm o) |-t ®

= on

As a result, writing the equation (5) for all N nodes, we obtain a system of linear algebraic
equations, the PSM system. After the solution of the system (5), the unknown field U(r) is approx-
imately expressed by the formula

U(r)ii;qjg(r,R,-)- (6)

It is known, that for some positive values of the parameter A, the boundary value problem
(1)-(2) for the homogeneous Helmholtz equation with homogeneous boundary conditions (y(r)=0)
may have a non-zero solution. Finding these parameter values A=\,, eigenvalues, and the corre-
sponding solutions, the eigenfunctions of the boundary value problem, is the main purpose of this
paper.

When y(r)=0, PSM system is the system of homogeneous linear algebraic equations. As it is
known, for the existence of a nonzero solution of this system it is necessary that its determinant is
equal to zero. However, the rounding errors in calculating the determinant, leads to the fact that the
approach of the parameter A to some of their eigenvalues, there is a sharp decrease in the absolute
value of the determinant (instead of its conversion to zero) and, accordingly, a sharp increase in the
condition number of the PSM system. It, therefore, leads to a sharp increase in the error of the nu-
merical solution of the boundary value problem.

Thus, the eigenvalues of the problem can be approximately installed in the calculation de-
pendence of the determinant, or the condition number of the PSM system, or error in the numerical
solution of the boundary value problem, from the Helmholtz parameter A. Let us call these parame-
ters as criteria of eigenvalues.

When the eigenvalue is found, it is possible to determine the eigenfunctions corresponding
to this eigenvalue problem boundary value. It is possible to proceed as follows. Set ready Uq(r) so-
lution for the homogeneous Helmholtz equation. Such decision can be an expression corresponding
to the field of a point charge Q (4,), located outside the solution domain of boundary value problem.
The values of this field in 6Q boundary of the domain 2 are used as a right-hand member of equa-
tion in the boundary condition (2). The solution boundary value problem obtained by using PSM,
when value of the parameter A is equal to one of the eigenvalues A=\, and can be represented as the
sum of U(r)=U,(r)+u(r), where u(r)- eigenfunction, eigensolution, corresponding to a given eigen-
value. It follows that the proper function will be equal to the difference between the solution of the



COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES Ne 1 /2017

boundary problem, obtained by PSM, and the given decision Ug(r) of the homogeneous Helmholtz
equation:

u(r)=U(r)=U,(r). W)

Of course, the accuracy of such a decision, due to ill-conditioning of the PSM system, may
not be very high. However, as it will be shown below, this accuracy is usually quite acceptable.

Usually, some eigenfunctions of the boundary value problem correspond to the given eigen-
value. In this case it is possible to find all eigenfunctions, corresponding to a given A,. For this pur-
pose, using the method described above, we find eigenfunctions, corresponding to different loca-
tions of the charge Q, created the field Ug(r). Then, if necessary, between the obtained eigenfunc-
tions produce orthogonalization.

Test example of finding the eigenvalues for two-dimensional problem. As an example,
we consider the test to find the eigenvalues and eigenfunctions of the Dirichlet problem for the ho-
mogeneous Helmholtz equation in a circular domain of radius ro. It is known [23], the eigenvalues
for this problem have the form

where unm - positive roots of the transcendental equation J,(«)=0; J,(x) — Bessel function of order
n, n=0,12,...; m=123,....
Two eigenfunctions correspond to each n> 0:

uﬁﬂ(r)an(rM)cosn(p, u uf]fn)(r):Jn(rM)sinn(p. (8)

For n=0 the eigenfunctions have axial symmetry and equal
ud (r)=3,(r oy ). (©)

When solving a test problem, the coordinate origin was placed in the center of the circular
domain of radius ro=2. Point charges, modeling the researched field by using PSM, were evenly dis-
tributed on the auxiliary circle of radius R = 3. The charge Q, creating a known field Uy(r), was lo-
cated on the X-axis at a distance p=2r, from the center of the domain Q. When finding eigenfunc-
tions u®@(r) the charge Q is moved to the axis Y.

Fig. 1 shows graphs of the criteria for the eigenvalues of the parameter A. The x-axis repre-
sents the value of (A-Ao1)/ho1, Where Xo;- the smallest eigenvalue of the boundary value problem cor-
responding £1~2.405. The ordinate axis is a value 0f C/Cpax, Where Cpax - the condition number of
the PSM system at A=Ao; (curve with square markers); a relative error &/gmax, Where gmax- PSM error
at A=Xo1 (curve with round markers); or the value of Dpin/D, where D, - determinants (in absolute
value) of the matrix system at PSM A=Ly; (curve with triangle markers). The calculations were per-
formed with the number of charges, simulating the field, N=30.
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Fig. 1. Dependencies of eigenvalues criteria on the relative value of the parameter A

As it can be seen from Fig. 1, we use the dependence of the condition number C on the pa-
rameter A, to find the eigenvalues of the problem, of the least preferred. Since the maximum of cor-
responding curve is expressed weakly (the maximum value differs of the minimum by less than 6
times). In addition, the change in the number conditionality takes place in a very narrow range Ai
value of the parameter A (AA~0.02X;). Therefore, to find the eigenvalues of the boundary value
problem it is advisable to use the dependency PSM error from parameter A, since in this case it is
possible to find eigenfunctions simultaneously.

Note that, the results which are shown in Fig. 1 were calculated, using the number
1o1~2.405. By substituting a more accurate value of this parameter p;~2.4048255577, the maxi-
mum of dependences presented in Fig. 1 become sharper. In our test problem solving we intention-
ally used approximate values of the eigenvalues, as in the solution of real problems in the process of
finding the eigenvalues, given by step variation AA, parameter A, which cannot be infinitesimal. In
reality, we can only approach the eigenvalue. In this case eigenvalue can be found only if the step
variation AA is less than the maximum width in the corresponding dependency.

The results shown in Fig. 1 were obtained when the amount of charges, simulating the field,
was N=30. Computational experiments showed that increasing the number N of charges does not
lead to significant improvement dependencies in Fig. 1. Moreover in the graph of the dependence of
condition number of the PSM system from the parameter A, the maximum becomes much less ex-
pressed. Therefore, we recommended using a small number of modeling field charges, when search-
ing for the eigenvalues.

When searching for the following eigenvalues Any, with large values of n and m the noted
above features of the method are the same with one significant addition. Namely, the greater the
eigenvalue, the corresponding maxima on the curves of dependence of the eigenvalues criteria on
the value of the parameter A, become narrower. Therefore, if you search for A, as it can be seen in
Fig. 1, it is enough to set the step of the variation order AA=0.1Xg;, then searching Aq3, as shown by
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calculation, varying the step will have to decreased to values AA=0.02X03, Which, of course, will in-
crease the amount of computation.

Test example of finding the eigenvalues for three-dimensional problem. As another test
example, we consider the determination of the Dirichlet problem eigenvalues for the homogeneous
Helmholtz equation in a cube domain with side L = 2. For this problem, the eigenvalues are [21]

Mo =207+ M2 + K212 5 n=1,23..; m=123,..; k=123,..,
and the eigenfunctions are
U, (X, y, z)=sin(mnx/ L)sin(zmy/ L)sin(rkz/ L).

Thus, the eigenvalues are determined by the value of the number| =n® + m? +k?. The first
eigenvalue, determined by n=1, m=1;, k =1, | =3, the unique eigenfunction is corresponding to it.
This eigenvalue is not degenerate. The next larger eigenvalue, correspondingl =6, has three times
degenerated already.

When solving the test problem, the point charges of the modeling the researched field with
the help of the PSM were evenly distributed on the surface of the auxiliary cube with rib length
L,=1,3L. The charge Q, creating the known fieldU,(r), was located on the X axis at a distance p= L

from the cube center.

The graphs of the dependence of the relative PSM error on the relative deviation of the
Helmholtz parameter from the eigenvalue are shown in Fig. 2. The value (A-Xo)/Aq is plotted along
the abscissa, where X is the test eigenvalue of the boundary-value problem. Calculations were per-
formed with the number N=600 of charges modeling the field.
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Fig. 2. Dependencies of the PSM relative error on the relative value of the parameter A

In Fig. 2, the curve with round markers was obtained for the first eigenvalue, accoding to
I=3; the curve with triangle markers - for the next eigenvalue corresponding to 1=6 . As it can be
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seen from Fig. 2, the curve accoding to the first eigenvalue has a sharper and higher maximum than
the corresponding curve obtained for the second eigenvalue. For the subsequent eigenvalues, the
maxima on the corresponding curves become more diffuse and less pronounced.

Test example of finding the eigenfunctions. After eigenvalue, example Ao, was found, we
can find eigenfunction of boundary value problem (7). In this case, it is necessary, to be able to con-
trol the error of the result. To assess the error of the eigenfunction u (r), obtained by PSM, firstly we
perform the normalization of this function, and of the known eigenfunction (9), by dividing these
functions at their maximum values in the domain of solution. After this the estimated value of the

€ = max

—_y9
na) u(r)-ul (r]
For the eigenfunctions in Fig. 3 it is shown the dependence of the PSM error from the num-

ber of charges N, modeling the field. The dependences, obtained for Xo; (curves round markers), for
hos (curve with triangle markers) and Ao4 (curve with square markers), are shown in Fig. 3.
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Fig. 3. Dependence of the PSM relative error for the eigenfunctions,
on the number of charges N, simulating the field.

Fig. 3 shows that the PSM relative errors are very small (up to 10™°) for the eigenfunctions.
It is evident that PSM is characterized by the rapid exponential decrease of errors with increasing
number of charges N. The smallest error is observed for the smallest eigenvalue. For iq4 error of
PSM is several orders of magnitude higher than for Ao, while remaining sufficiently low (about 10
for N = 55).

As it is noted above, the eigenvalues A, with n> 0 correspond two eigenfunctions (8). In the
calculation of eigenfunctions (7), using PSM, we find one of them, or their linear combination. This
depends on the known solution Uy(r), i.e. the position of the charge Q, creating a field Ug(r).

Fig. 4 shows the computer screen, with the distribution of the values eigenfunction graphics
along the X-axis from the center of the solutions domain to its boundary. The parameter A relied
close to the property value of A;5.
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Fig. 4. Screenshot, which shows the distribution of the values eigenfunctions graphics along the X-axis
from the center of the field of solutions domain to its boundary

The solid curve in Fig. 4 corresponds to the exact value of eigenvalue A;,. The curve ob-
tained through PSM, merges with the graph of analytical solutionu®(r). However, a small change in
a parameter A leads to a significant distortion of the numerical solution, as it is evident in Fig. 4,
where the dashed curve was obtained at A=1.0124,.

In modeling the eigenfunctions, as before, the charge Q creating the field uU,(r) was located
on the X axis at a distance p= 2ry from the center of the domain Q. In doing so, we obtained the ei-
genfunction ul(r). When the charge Q, generating the field u,(r) ,was moved to the axis Y, the ei-
genfunction u?(r) is modeled . This is due to the fact that the symmetry of the eigenfunction agrees
with the symmetry of the field U,(r).

When solving the three-dimensional boundary value problem in the volume of a cube, the
choice of the charge Q location creating the fieldu,(r) also determines one or another eigenfunc-
tion. For example, for the second eigenvalue, when the charge Q is located on the X axis, the eigen-
function u,,,(x,y,z) is determined. To find the eigenfunction u,,(x,y,z), Q must be placed on the Y

axis, and for the eigenfunction u,,,(x,y,z) — on the Z axis.

Conclusion. The above examples of test problems demonstrate the effectiveness of using PSM in
solving problems of finding the eigenvalues and eigenfunctions of the Helmholtz equation. Taking
into account that these tasks can be performed using a small number of point charges (no more than
a few tens in solving two-dimensional problems, several hundred - for three-dimensional problems)
it should be recognized that the method is very economical. The difficulties associated with the
multiplicity of eigenvalues, are easily overcome by the use of several different Uy(r) of the known
solutions, which do not necessarily have to match the field of a point charge, but must be consistent
with the symmetry of the required eigenfunctions.
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Pemenne 3a1a4 Ha cOOCTBEHHbIE 3HAYEHUS U COOCTBeHHbIE PyHKUMH 1151 ypaBHeHus ['ebM-
*

rojibia MeToA0M TOYEYHbIX HCTOYHUKOB MOJIs

E. E. II_IepﬁaKOBa**

JIoHCKOH rocy1apCTBEHHBIA TEXHUYECKUI YHUBEPCUTET, I'. PocToB-Ha-/{ony, Pocculickas ®enepanus

Paspabotan croco0 pemieHus 3a7a4 BBIYUCICHHS COOCTBEHHBIX 3HAUEHHUH M COOCTBEHHBIX (YHK-
Ui 1 ypaBHeHHs [ enbMrosbIia B 00JIaCTsIX ¢ MPOW3BONIbHON KoH(puryparuei. [Ipu paspadbotke
crocoba YMCICHHOIO PEUICHUs 3aJlad UCIOJb3YETCSl METOJ TOUE€YHBIX MCTOUHUKOB mnois (MTU).
[Ipemmaraemsprii crmocod OCHOBaH Ha aHalM3e 4Hcia 00ycioBieHHOCTH cuctemMbl MTU wmmu mo-
TPEUIHOCTH YHUCICHHOTO peIlleHus 3aJadyd. BBOIUTCS moOHsATHE «KPUTEpUN COOCTBEHHBIX 3HAYe-
HUil». Pe3ynbraToM paboThl siBsieTcs pa3paboTaHHBIM APGEKTUBHBIN CIIOCOO — AJITOPUTM pelle-
HUS 3a/lad Ha HaXOXKJEHHE COOCTBEHHBIX 3HAYEHHUH M COOCTBEHHBIX (DYHKIMH 111 ypaBHEHUS
I'ensmrombia. [lokazaHo, 4To npu npubIKeHUHN napaMmerpa ['enbmronbia K COOCTBEHHOMY 3Ha-
YEHHUIO 3a/la4i 4uciao o0ycioBieHHocTH cucteMbl MTU u morpenHocts YMCIEHHOIO pelieHust
pe3ko BozpacTaroT. OrnpeneianB 3aBUCHUMOCTb MOTPEHIHOCTH YHUCICHHOIO PEIIeHUs 3aJaud WM
yucia o0ycioBieHHOCTH cucteMbl MTU oT mapameTpa ['enpMrosnibiia, MOXHO TIO PaCIOIOKEHUIO
MakCUMyMa JJisi TOJYYEHHBIX 3aBUCHMOCTEW HaWTH COOCTBEHHbIE 3HAa4YeHMs! ypaBHeHUsS ['enbm-
rojiblia B 3a7aHHON oOxnactu. Ilocne HaxokaeHHs cOOCTBEHHOIO 3HAYEHUS MOXKHO MPHUCTYNHUTH K
HaXOXXJEHNUI0 coOCTBeHHBIX (GyHKUUH. [Ipu 3TOM, eciu coOCTBEHHOE 3HAUE€HUE OKa3bIBAETCS BbI-
POXJIEHHBIM, TO €CTh €My COOTBETCTBYET HECKOJbKO COOCTBEHHBIX (PYHKLHUH, TO, C yIETOM CHM-
METpUH 00JacTH pelIeHHs], BO3SMOXHO HaXx0X/IeHHe BceX cOOCTBeHHBIX (pyHKIuil. [IpuBenens! pe-
3y/bTAThl PEIIEHUSI TECTOBBIX JBYMEPHBIX U TPEXMEPHBIX 33]la4, HA OCHOBAaHUHU KOTOPBIX JI€TaeTCs
BBIBOJ] 00 2((hEeKTUBHOCTH TIPEITIOKEHHOTO METO/Ia.

KuroueBblie c¢ji0Ba: MeTOJ| TOYEUHBIX MCTOYHMKOB, COOCTBEHHBIC 3HAYCHHS, COOCTBEHHBIE (DYHK-
1uu, ypaBHeHue ['enbMromnbia, pyHaaMeHTaabHOe peleHne, MeTol yH/IaMeHTaIbHbIX PEHICHUH.
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