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The paper provides the developed approach to solve the eigenvalues and eigenfunctions prob-

lems for the Helmholtz equation in domains with an arbitrary configuration. In developing the ap-

proach for numerical solution of problems, the point-sources method (PSM) was used. The proposed 

method is based on the analysis of the condition number of the PSM system or the error of the numer-

ical solution of problems. The concept of "eigenvalues criteria" is introduced. The research result is a 

developed effective method - an algorithm for solving problems of eigenvalues and eigenfunctions 

for the Helmholtz equation. It is shown that at the approach of the Helmholtz parameter to the prob-

lem eigenvalue, the condition number of the PSM system and the error of the numerical solution rise 

sharply. Therefore, we calculate the dependence of the condition number of the PSM system or error 

of the problem numerical solution on the Helmholtz parameter. Then, according to position of the 

maximum of the received dependences we find the eigenvalues of the Helmholtz equation in a given 

domain.. After finding the eigenvalues, it is possible to proceed to the determination of the eigenfunc-

tions. At that, if the eigenvalue appears degenerate, that is some eigenfunctions correspond to it, then 

it is possible to find all the eigenfunctions taking into account the symmetry of the solution domain. 

The two-dimensional and three-dimensional test problems are solved. Upon the results obtained, the 

conclusion about the efficiency of the proposed method is made. 

 

Keywords: point-sources method, eigenvalues, eigenfunctions, Helmholtz equation, funda-

mental solution, the method of fundamental solutions. 

 

 Introduction. A number of problems of mathematical physics, having great practical im-

portance in the development of electro-mechanical devices, lead to the decision of the Helmholtz 

homogeneous equation 

 

     0 rr UU       (1) 

 

with a positive value of the Helmholtz parameter  λ>0. This is a broad class of problems related to 

the steady-state oscillations (mechanical, acoustic, thermal, electromagnetic, etc.). Numerical solu-

tion of mass and heat transfer problems also leads to the Helmholtz equation, having a negative val-

ue of the parameter λ <0. The importance of the Helmholtz equation is also conditioned the fact that 

all elliptic equations with constant coefficients are equivalent to the equation of this kind. 

Solution to a number of applied problems required to find the eigenvalues and eigenfunc-

tions for the Laplace equation in domains with a different configuration. The analytical solution to 

such problems, and numerical solution using traditional numerical methods, can cause considerable 
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difficulties and are not always advisable especially if a domain of the solution has a complicated 

configuration, and the boundary conditions include the normal derivative. 

One of the most effective methods for the numerical solution to boundary value problems 

for elliptic equations is the point-sources method (PSM) [1-7]. This method is used in the simula-

tion of electrical, magnetic, thermal, concentration, elastic stress and other physical fields [8-17]. 

PSM advantage is its simplicity, and a much smaller amount of computation in comparison with 

traditional numerical methods for solving boundary value problems, such as, for example, a finite 

element method (FEM). Application of PSM can be justified as in the problems solution of eigen-

values for elliptic equations, for example, the Helmholtz equation [18, 19], the Schrödinger equa-

tion [20, 21]. 

 Description of the numerical method. Suppose that in Ω domain Helmholtz equation (1) is 

performed, and on ∂Ω - Ω domain boundary condition type is defined  
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where α, β, γ- continuous functions defined on the boundary ∂Ω domain Ω. 

For finding unknown function U(r) PSM may be used. For this purpose N nodes were locat-

ed on the boundary ∂Ω at points with coordinates ri. Around the domain Ω, at some distance from 

its border, are located N point sources of the field with the charges qj, at points with coordinates Rj. 

The defined field is approximately represented as a sum 
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where g(r, Rj) - the fundamental solution of the Helmholtz equation. In three-dimensional version.  
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The solution to the problems of two-dimensional fundamental solutions [22], is expressed in 

terms of modified Bessel functions of the second kind (if λ <0): 

      RrRr, 


 0
2

1
Kg  ,     (42) 

or through the Hankel function of the first kind of zero order (when λ> 0): 

        RrRr,  1

0
4

H
i

g .     (43) 

Sign in (41) is selected depending on the specific features of the problem being solved. De-

pending on the sign of the parameter λ, exponent argument in the expression (41) will be either real 

or imaginary number.  

When λ = 0, the equation (1) degenerates into the Laplace equation and the fundamental so-

lution (41) for three-dimensional problems takes the form    RrRr,  4/1g ; accordingly for 

two-dimensional problems 



COMPUTATIONAL  MATHEMATICS  AND  INFORMATION  TECHNOLOGIES № 1 / 2017   

  
 

56 

 

 
Rr

Rr,



1

ln
2

1
g  . 

 

The solution g(r, R) can be considered as a potential field, created at the point r, by unit 

point charge, located at R. For any charge values qj, function U(r) satisfies the Helmholtz equation 

(1). It is necessary to choose the charges qj so that the boundary conditions (2) are performed in all 

the N boundary nodes. For the node with number i, the condition (2) can be written as 
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As a result, writing the equation (5) for all N nodes, we obtain a system of linear algebraic 

equations, the PSM system. After the solution of the system (5), the unknown field U(r) is approx-

imately expressed by the formula 

      



N

j

jj gqU
1

, Rrr .      (6) 

It is known, that for some positive values of the parameter λ, the boundary value problem 

(1)-(2) for the homogeneous Helmholtz equation with homogeneous boundary conditions (γ(r)≡0) 

may have a non-zero solution. Finding these parameter values λ=λn, eigenvalues, and the corre-

sponding solutions, the eigenfunctions of the boundary value problem, is the main purpose of this 

paper. 

When γ(r)≡0, PSM system is the system of homogeneous linear algebraic equations. As it is 

known, for the existence of a nonzero solution of this system it is necessary that its determinant is 

equal to zero. However, the rounding errors in calculating the determinant, leads to the fact that the 

approach of the parameter λ to some of their eigenvalues, there is a sharp decrease in the absolute 

value of the determinant (instead of its conversion to zero) and, accordingly, a sharp increase in the 

condition number of the PSM system. It, therefore, leads to a sharp increase in the error of the nu-

merical solution of the boundary value problem.   

Thus, the eigenvalues of the problem can be approximately installed in the calculation de-

pendence of the determinant, or the condition number of the PSM system, or error in the numerical 

solution of the boundary value problem, from the Helmholtz parameter λ. Let us call these parame-

ters as criteria of eigenvalues. 

When the eigenvalue is found, it is possible to determine the eigenfunctions corresponding 

to this eigenvalue problem boundary value. It is possible to proceed as follows. Set ready U0(r) so-

lution for the homogeneous Helmholtz equation. Such decision can be an expression corresponding 

to the field of a point charge Q (42), located outside the solution domain of boundary value problem. 

The values of this field in ∂Ω boundary of the domain Ω are used as a right-hand member of equa-

tion in the boundary condition (2). The solution boundary value problem obtained by using PSM, 

when value of the parameter λ is equal to one of the eigenvalues λ=λn, and can be represented as the 

sum of      rrr uUU  0 , where u(r)- eigenfunction, eigensolution, corresponding to a given eigen-

value. It follows that the proper function will be equal to the difference between the solution of the 
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boundary problem, obtained by PSM, and the given decision U0(r) of the homogeneous Helmholtz 

equation:  

     rrr 0UUu  .      (7) 

 

Of course, the accuracy of such a decision, due to ill-conditioning of the PSM system, may 

not be very high. However, as it will be shown below, this accuracy is usually quite acceptable.  

Usually, some eigenfunctions of the boundary value problem correspond to the given eigen-

value. In this case it is possible to find all eigenfunctions, corresponding to a given λn. For this pur-

pose, using the method described above, we find eigenfunctions, corresponding to different loca-

tions of the charge Q, created the field U0(r). Then, if necessary, between the obtained eigenfunc-

tions produce orthogonalization.  

 

Test example of finding the eigenvalues for two-dimensional problem.  As an example, 

we consider the test to find the eigenvalues and eigenfunctions of the Dirichlet problem for the ho-

mogeneous Helmholtz equation in a circular domain of radius r0. It is known [23], the eigenvalues 

for this problem have the form 

2

0

2

r

nm

nm


 , 

where μnm - positive roots of the transcendental equation   0nJ ;  nJ  — Bessel function of order 

n, ,...3,2,1,...;2,1,0  mn . 

Two eigenfunctions correspond to each n> 0: 

 
       nrJu nmnnm cos1

r ,  и         nrJu nmnnm sin2
r .    (8) 

 

For n=0 the eigenfunctions have axial symmetry and equal 

 
     mm rJu 00

1

0 r .     (9) 

 

When solving a test problem, the coordinate origin was placed in the center of the circular 

domain of radius r0=2. Point charges, modeling the researched field by using PSM, were evenly dis-

tributed on the auxiliary circle of radius R = 3. The charge Q, creating a known field U0(r), was lo-

cated on the X-axis at a distance ρ=2r0 from the center of the domain Ω. When finding eigenfunc-

tions    r
2

nmu  the charge Q is moved to the axis Y. 

Fig. 1 shows graphs of the criteria for the eigenvalues of the parameter λ. The x-axis repre-

sents the value of (λ-λ01)/λ01, where λ01- the smallest eigenvalue of the boundary value problem cor-

responding μ01≈2.405. The ordinate axis is a value of C/Cmax, where Cmax - the condition number of 

the PSM system at λ=λ01 (curve with square markers); a relative error ε/εmax, where εmax- PSM error 

at λ=λ01 (curve with round markers); or the value of Dmin/D, where Dmin - determinants (in absolute 

value) of the matrix system at PSM λ=λ01 (curve with triangle markers). The calculations were per-

formed with the number of charges, simulating the field, N=30. 
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Fig. 1. Dependencies of eigenvalues criteria on the relative value of the parameter λ 

As it can be seen from Fig. 1, we use the dependence of the condition number C on the pa-

rameter λ, to find the eigenvalues of the problem, of the least preferred. Since the maximum of cor-

responding curve is expressed weakly (the maximum value differs of the minimum by less than 6 

times). In addition, the change in the number conditionality takes place in a very narrow range Δλ 

value of the parameter λ (∆λ≈0.02λ01).   Therefore, to find the eigenvalues of the boundary value 

problem it is advisable to use the dependency PSM error from parameter λ, since in this case it is 

possible to find eigenfunctions simultaneously.  

Note that, the results which are shown in Fig. 1 were calculated, using the number 

μ01≈2.405. By substituting a more accurate value of this parameter μ01≈2.4048255577, the maxi-

mum of dependences presented in Fig. 1 become sharper. In our test problem solving we intention-

ally used approximate values of the eigenvalues, as in the solution of real problems in the process of 

finding the eigenvalues, given by step variation Δλ, parameter λ, which cannot be infinitesimal. In 

reality, we can only approach the eigenvalue. In this case eigenvalue can be found only if the step 

variation Δλ is less than the maximum width in the corresponding dependency.  

The results shown in Fig. 1 were obtained when the amount of charges, simulating the field, 

was N=30. Computational experiments showed that increasing the number N of charges does not 

lead to significant improvement dependencies in Fig. 1. Moreover in the graph of the dependence of 

condition number of the PSM system from the parameter λ, the maximum becomes much less ex-

pressed. Therefore, we recommended using a small number of modeling field charges, when search-

ing for the eigenvalues. 

When searching for the following eigenvalues λnm, with large values of n and m the noted 

above features of the method are the same with one significant addition. Namely, the greater the 

eigenvalue, the corresponding maxima on the curves of dependence of the eigenvalues criteria on 

the value of the parameter λ, become narrower. Therefore, if you search for λ01, as it can be seen in 

Fig. 1, it is enough to set the step of the variation order Δλ≈0.1λ01, then searching λ03, as shown by 
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calculation, varying the step will have to decreased to values Δλ≈0.02λ03, which, of course, will in-

crease the amount of computation. 

Test example of finding the eigenvalues for three-dimensional problem. As another test 

example, we consider the determination of the Dirichlet problem eigenvalues for the homogeneous 

Helmholtz equation in a cube domain with side L = 2.  For this problem, the eigenvalues are [21] 

 

  22222 / Lkmnnmk   ; ,...3,2,1,...;3,2,1,...;3,2,1  kmn , 

and the eigenfunctions are 

       LkzLmyLnxzyxunmk /sin/sin/sin,,  . 

Thus, the eigenvalues are determined by the value of the number 222 kmnl  . The first 

eigenvalue, determined by  3;1;1;1  lkmn , the unique eigenfunction is corresponding to it. 

This eigenvalue is not degenerate. The next larger eigenvalue, corresponding 6l , has three times 

degenerated already. 

When solving the test problem, the point charges of the modeling the researched field with 

the help of the PSM were evenly distributed on the surface of the auxiliary cube with rib length  

Lq=1,3L. The charge Q, creating the known field  r0U , was located on the Х axis at a distance ρ= L 

from the cube center.  

The graphs of the dependence of the relative PSM error on the relative deviation of the 

Helmholtz parameter from the eigenvalue are shown in Fig. 2. The value (λ–λ0)/λ0 is plotted along 

the abscissa, where λ0 is the test eigenvalue of the boundary-value problem. Calculations were per-

formed with the number N=600 of charges modeling the field.  

 

Fig. 2. Dependencies of the PSM relative error on the relative value of the parameter λ 

 

In Fig. 2, the curve with round markers was obtained for the first eigenvalue, accoding to 

l=3; the curve with triangle markers - for the next eigenvalue corresponding to l=6 . As it can be 
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seen from Fig. 2, the curve accoding to the first eigenvalue has a sharper and higher maximum than 

the corresponding curve obtained for the second eigenvalue. For the subsequent eigenvalues, the 

maxima on the corresponding curves become more diffuse and less pronounced. 

Test example of finding the eigenfunctions. After eigenvalue, example λ01, was found, we 

can find eigenfunction of boundary value problem (7). In this case, it is necessary, to be able to con-

trol the error of the result. To assess the error of the eigenfunction u (r), obtained by PSM, firstly we 

perform the normalization of this function, and of the known eigenfunction (9), by dividing these 

functions at their maximum values in the domain of solution. After this the estimated value of the 

     rr
r

1

0max muu 


. 

For the eigenfunctions in Fig. 3 it is shown the dependence of the PSM error from the num-

ber of charges N, modeling the field. The dependences, obtained for λ01 (curves round markers), for 

λ03 (curve with triangle markers) and λ04 (curve with square markers), are shown in Fig. 3. 
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Fig. 3. Dependence of the PSM relative error for the eigenfunctions, 

 on the number of charges N, simulating the field. 

 

Fig. 3 shows that the PSM relative errors are very small (up to 10
-10

) for the eigenfunctions. 

It is evident that PSM is characterized by the rapid exponential decrease of errors with increasing 

number of charges N. The smallest error is observed for the smallest eigenvalue. For λ04 error of 

PSM is several orders of magnitude higher than for λ01, while remaining sufficiently low (about 10
-6

 

for N = 55). 

As it is noted above, the eigenvalues λnm with n> 0 correspond two eigenfunctions (8). In the 

calculation of eigenfunctions (7), using PSM, we find one of them, or their linear combination. This 

depends on the known solution U0(r), i.e. the position of the charge Q, creating a field U0(r). 

Fig. 4 shows the computer screen, with the distribution of the values eigenfunction graphics 

along the X-axis from the center of the solutions domain to its boundary. The parameter λ relied 

close to the property value of λ12. 
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Fig. 4. Screenshot, which shows the distribution of the values eigenfunctions graphics along the X-axis 

from the center of the field of solutions domain to its boundary 

 

The solid curve in Fig. 4 corresponds to the exact value of eigenvalue λ12. The curve ob-

tained through PSM, merges with the graph of analytical solution   r
1

12u . However, a small change in 

a parameter λ leads to a significant distortion of the numerical solution, as it is evident in Fig. 4, 

where the dashed curve was obtained at λ=1.01λ12. 

In modeling the eigenfunctions, as before, the charge Q creating the field  r0U  was located 

on the Х axis at a distance ρ= 2r0 from the center of the domain Ω. In doing so, we obtained the ei-

genfunction   r
1

12u . When the charge Q, generating the field  r0U  ,was moved to the axis Y, the ei-

genfunction   r
2

12u  is modeled . This is due to the fact that the symmetry of the eigenfunction agrees 

with the symmetry of the field  r0U .  

When solving the three-dimensional boundary value problem in the volume of a cube, the 

choice of the charge Q location creating the field  r0U  also determines one or another eigenfunc-

tion. For example, for the second eigenvalue, when the charge Q is located on the X axis, the eigen-

function  zyxu ,,211  is determined. To find the eigenfunction  zyxu ,,121 , Q must be placed on the Y 

axis, and for the eigenfunction  zyxu ,,112  —  on the Z axis. 

Conclusion. The above examples of test problems demonstrate the effectiveness of using PSM in 

solving problems of finding the eigenvalues and eigenfunctions of the Helmholtz equation. Taking 

into account that these tasks can be performed using a small number of point charges (no more than 

a few tens in solving two-dimensional problems, several hundred - for three-dimensional problems) 

it should be recognized that the method is very economical. The difficulties associated with the 

multiplicity of eigenvalues, are easily overcome by the use of several different U0(r) of the known 

solutions, which do not necessarily have to match the field of a point charge, but must be consistent 

with the symmetry of the required eigenfunctions. 
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Решение задач на собственные значения и собственные функции для уравнения Гельм-

гольца методом точечных источников поля
*
  

 

Е. Е. Щербакова
**

  

Донской государственный технический университет, г. Ростов-на-Дону, Российская Федерация 

 

Разработан способ решения задач вычисления собственных значений и собственных функ-

ций для уравнения Гельмгольца в областях с произвольной конфигурацией. При разработке 

способа численного решения задач используется метод точечных источников поля (МТИ). 

Предлагаемый способ основан на анализе числа обусловленности системы МТИ или по-

грешности численного решения задачи. Вводится понятие «критерий собственных значе-

ний». Результатом работы является разработанный эффективный способ — алгоритм реше-

ния задач на нахождение собственных значений и собственных функций для уравнения 

Гельмгольца. Показано, что при приближении параметра Гельмгольца к собственному зна-

чению задачи число обусловленности системы МТИ и погрешность численного решения 

резко возрастают. Определив зависимость погрешности численного решения задачи или 

числа обусловленности системы МТИ от параметра Гельмгольца, можно по расположению 

максимума для полученных зависимостей найти собственные значения уравнения Гельм-

гольца в заданной области. После нахождения собственного значения можно приступить к 

нахождению собственных функций. При этом, если собственное значение оказывается вы-

рожденным, то есть ему соответствует несколько собственных функций, то, с учетом сим-

метрии области решения, возможно нахождение всех собственных функций. Приведены ре-

зультаты решения тестовых двумерных и трехмерных задач, на основании которых делается 

вывод об эффективности предложенного метода. 

Ключевые слова: метод точечных источников, собственные значения, собственные функ-

ции, уравнение Гельмгольца, фундаментальное решение, метод фундаментальных решений. 
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