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Introduction. The paper is devoted to the research of effective numerical methods for solving eu-
trophication problem of shallow waters taking into account water environment, spatially-
nonuniform distribution of temperature and salinity, microturbulent diffusion, gravitational sedi-
mentation, and spreading of biogenic pollution, oxygen, phyto- and zooplankton, etc. The simula-
tion objects are shallow waters — the Azov Sea and Taganrog Bay.

Materials and Methods. The mathematical model of eutrophication of shallow waters was devel-
oped. Parallel implementation was performed for computationally laborious convection-diffusion
problems, taking into account the architecture and parameters of supercomputers based on the de-
composition methods of grid domains. We determined that the maximum acceleration was 43 times
on 128 computational nodes. We developed two algorithms including the algorithm based on the k-
means method for data distribution between processors in parallel implementation. Due to the using
these algorithms, the efficiency of algorithm for solving the problem is increased on 15% compared
to the algorithm of the standard partition of computational domain.

Results. New mathematical models and software complex were developed for mathematical model-
ing of eutrophication processes in shallow waters. The concentrations of pollutants and plankton
calculated for different wind situations were taken into consideration, if the relative error did not
exceed 30%.

Due to expedition researches the primary verification of the model of ecosystem of the Azov Sea
was performed. The problem of modeling and forecasting the state of water ecosystems of the Azov
Sea in conditions of anthropogenic influence and comprehensive research of the unique water ob-
ject was implemented. Because of the water object is shallow, it’s more affected by anthropogenic
influence.

The software complex, combining mathematical models and databases, was designed. Using this
complex we researched conditions which are contributed by the eutrophication processes in shallow
waters.

Discussion and Conclusions. Due to the solving the water ecology problem we can forecast differ-
ent scenario of changing the water quality in shallow waters, and to investigate the mechanisms of
formation of zones with low oxygen content.

Keywords: mathematical modeling, eutrophication, minimum corrections method, parallel
computing, supercomputer.

Introduction. Researching of shallow waters is important and significant in mathematical
modeling of aquatic ecosystems. The example of such waters is the Azov Sea, the great shallow wa-
ter. Such water areas experience a tremendous anthropogenic influence, but not many of them are
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unique fish-producing ecological systems. The biogenic matters enter the shallow waters with the
river flows which causing the growth of the algae — «water bloomy.

The results of satellite monitoring of the Earth are used in this paper to control the quality
modeling of processes of hydrodynamics and biological kinetics [1, 2]. The satellite monitoring da-
ta of the Azov Sea, obtained by SRC «Planetay, are given in Fig.1 [3]. The analysis of satellite data
reveals the water areas of suffocations.

Colorized images of Azov Sea
(spectral channels: 0.620-0.670 mem, 0.545-0.565 mcem, 0.459-0.479 mcm)

Fig. 1. The wide areas of the «water bloom» in the Azov Sea

The 3D spatially heterogeneous mathematical model was performed for the reconstruction
of the «water bloom». This process caused the suffocation in the South-Eastern part of the Azov
Sea in July 2013. The information about the wind velocity and direction in the Temryuk Bay in July
2016, provided the meteorological station in Kerch city (WMO_ID 33983) and shown in Fig.2, was
used for this model as input data.

11.07.13 13.07.13 15.07.13 17.07.13 19.07.13 21.07.13 23
12.07.13 14.07.13 16.07.13 18.07.13 20.07.13 22.07.13

Fig. 2. Wind velocity and direction, July 16, 2013

Water temperature in the computational domain for the simulated time interval is shown in

Fig.3.
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Fig. 3. Water temperature, July 16, 2013

We used classes, described by the Institute for nature protection and reserves Ministry of
ecology of Russia and given in Table 1, for analyzing the water quality of the Azov Sea. In Table 1:
1 — trophicity, class quality, the nature of saprobity, options; 2 — oligotrophy, very clean,
xenosaprobic (I); 3 — esotropia, clean, batalhas-fineness (11); 4 — esotropia, moderately polluted, al-
fareros-fineness (I11); 5 — eutropia, polluted, betamatch-fineness (IV); 6 — polytrope, dirty, alpha-
bets-fineness (V); 7 — hypereutrophy, very dirty, polycarobonate (V1); *) - watercourses; **) — stag-
nant waters; ***) — possible the higher values.

Table 1
Parameters and alphabet of classes of the state estimation of aquatic ecosystems
1 2 3 4 5 6 7
Water transparency by Secchi disk,
m, *) 3 0,7-3 | 0,5-0,70,3-0,5| 0,1-0,3 || 0,05-0,1
*x) 6 4 4 2 1 0,5
Specific conductivity of water,
mks/sm *) >400 700 700 1100 1300 1600
**) 150 250 ||300***)|| 500 1000 1000
The saprobity phytoplankton index | 85-100 | 70-85 || 50-70 | 30-50 | 15-30 0-15
according to Watanabe
Concentration, CI «a», mkg/l, **) 3 8 8 15 30 60
Phytoplankton biomass, mg/I 0-0,1 |/0,1-0,5(0,5-1,0 1,0-5,0 | 5,0-50,0 || 50-100
Gross daily phytoplankton produc- || 0-1,5 || 1,5-3 || 3-45 | 4,5-7,5]| 7,5-10,5 | 10,5-12
tion
, gO/sg.m
The Shannon index, H. 0-4 1-4.5 0-5 0-5 1,5-45 0-4
Range of variation, H. 0-1,5 1-2 0-2 0-2 1,5-2 0-15
H min. — H max. 3-4 4-45 || 45-5 || 455 4-4.5 2-4

Materials and methods. Hydrodynamic Mathematical Model. The initial equation of hydrody-
namics of shallow waters is the next:
— motion equations (The Navier-Stokes motion equations):
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— continuity equation was written for the case of variable density:

Pt + (pu)x + (pv)y + (pW)z = 0' (2)
where u = {u,v,w} - velocity vector components; p is an excess pressure above the undisturbed flu-

id hydrostatic pressure; p is density; £2 is Earth's angular velocity; € is an angle between the angu-

lar velocity vector and the vertical vector; u, v are horizontal and vertical components of turbulent
exchange coefficient.

We consider the equation system (1), (2) with the following boundary conditions:
— at the entrance ( the mouth of Don and Kuban rivers):

u(x,y,z,t)=u(t)v(x,y,z,t)=v(t), p,(x,y,z,t)=0,u,(x,y,z,t)=0,
— the lateral boundary (beach and bottom):
PyH(U ) (X, Y,2,8) = =1, (), py (V' ) (X,Y,Z,t) = =1, (1),
u,(x,y,z,t)=0, p;(x,y,z,t)=0,
— the upper boundary:
pr(u ) (X, y,z,t) = =1, (1), pu(v' ) (X, y,2,t) = -1 (1),
W(X,Y,t) =-o-p;/pg, ph(X,y.t)=0, 3)
— at the output (Kerch Strait):
p,(x,y,z,t)=0, u;(x,y,z,t)=0,
where o is a liquid evaporation intensity; 7,,T, are tangential stress components (Van-Dorn law);
P, Is suspension density.
Tangential stress components for free surface are in the form:
Tx = pan([V\l|)\NX|W|, Ty = panqW|)‘Ny|W|’
where W is a wind velocity vector relative to the water; p, is atmosphere density,
C, ()= {0.0088; Xx<6.6m/s
0.0026; x>6.6m/s
Tangential stress components for bottom are in the form:
Tx = pCp(]u|)J|u| » Ty = pCp(}u|)\/|u| :
We can define the coefficient of the vertical turbulent exchange with inhomogeneous depth on the
basis of the measured velocity pulsation:

— non-dimensional coefficient.
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where A is a grid scale; C, is non-dimensional empirical constant, defined on the basis of attenua-

tion process calculation of homogeneous isotropic turbulence.

Grid method was used for solving the problem (1) — (3) [4]. The approximation of equations by
time variable was performed on the basis of splitting schemes into physical processes [5 — 9] in the
form of the pressure correction method.

Three-dimensional mathematical model of eutrofication processes of shallow water. Com-

putational domain G (Fig. 4) is a closed area, limited by the undisturbed water surface 2, , bottom
Xy =2Z4(xy), and the cylindrical surface, the undisturbed surface ofor O<t<T,.
2 =2,YU2y o — the sectionally smooth boundary of the domain G [10 — 14].

¥

Fig. 4. Diagram of the computational domain G

The developed model is described by equations:

. 8S, 8S, 85, o( &5

where S; is the concentration of i-th impurity, index i indicates the substance type, i =117:1is
hydrogen sulfide (H,S); 2 is elemental sulfur (S); 3 are sulfates (SO, ); 4 are thiosulfates (and
sulfites); 5 is the total organic nitrogen (N); 6 is ammonium (NH4) (ammonia nitrogen); 7 are
nitrites (NO, ); 8 are nitrates (NO,); 9 is dissolved manganese (DOMn); 10 is suspended man-
ganese (POMn); 11 is dissolved oxygen (O, ); 12 are silicates (SiO; is the metasilicate; SiO, is
the orthosilicate); 13 are phosphates (PO, ); 14 is ferrum (Fe2+); 15 is silica (H,SiO, is meta-
silicic; H,SiO, is orthosilicic); 16 is phytoplankton; 17 is zooplankton; u = (u,v,w) is the water
flow velocity; W, Is the gravitational sedimentation velocity of i-th component (in a suspended
state); ;,v; is the coefficient of turbulent diffusion in horizontal and vertical directions corre-
spondingly; ; is a chemical-biological source or component describing the aggregation if the cor-
responding component is suspension.

3
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We consider the system (5) with the following boundary conditions:
S;=0ong,if U, <O;@:O on c,if U, >0;
on (6)

S{;=00n X;;S;, =-¢;S; on I,
where g; is the absorption coefficient of the i-th component by the bottom material.
We has to add the following initial conditions to (5):
Siliy = Sio(x.,y.,2),i=16. )

Water flow velocity fields, calculated according to the model (1) — (3), are used as input data
for the model (1) — (3). The discretization of models (1) — (4), (5) — (7) was performed on the basis
of the high-resolution schemes which are described in [15].

Using the eutrofication model (5) — (6) the processes of ammonification, nitrification, nitra-
tereductase (denitrification), assimilation NH,, oxidation H,S, sulfate reduction, oxidation and
recovery of manganese can be described, and we can research the formation of zones of reduced
oxygen and forecast changes of oxygen and nutrient regimes in shallow waters.

The processes of biogeochemical cycles of chemical elements, due to which the transfer of
aerobic conditions in anaerobic is performed, were parameterized in developing the model.

The three-dimensional eutrophication model of the Azov Sea (5) — (6) was investigated, and
sufficient conditions for the existence and uniqueness were obtained and formulated as theorems.

Theorem 1. Let S;(X,y,zt), w; eC*(L,)nC(I],), where I], =Gx(0<t<T,);
p; =const>0; U :(u,v,w—wgi ),vi(z)eCl(é); S, €C(G), i =117. Thus, when the following

inequalities are held: mgx{ui,vi}—x—lomgxﬂpi|}>0 for all =117, where y; = pi(S;)S; + Wi,

o _ s .. o( s,

Ao = 7:2(1/ L2 +1/ 12 +1/ Lﬁ); L,.L,,L, — the spatially maximum dimensions of the computa-
tional domain; the model problem of eutrofication of shallow water in Eq. (5) — (7) has a solution.

Theorem 2. Let S;(X,y,z,t), v, e C*(L],)NC(,), u; =const>0; U, v;(z)eCYG),
i =117. Thus, when the following inequalities are held: Zui(ll L2 +1/ Lf,)+ 2v, [ L2 > ¢; for all

i =117 (where ¢, are functions, defined by Sources of pollutant) the model problem of eutrofica-

tion of shallow water in Eq. (5) — (7) has a unique solution.

We constructed the coherent grid , for discretization the model (5) — (6). h,,h,,h, are

yrz
vector parameters, characterizing the density of nodes:

@ =X = iy =kh,,z, =Th,; j=0,N;k=0,N ;I =O,N, ;
Ny, = LNy, =L Nyh, =L, L@y, = @, x 8,0, = {t, =nen=0,N, |,

where i, j,k are indexes in X, Y, zdirections; N,,N,, N, is the number of nodes in the coordinate

directions.
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The computational domain in spatial directions X, Y, Z is represented by the combination of
parallelepipeds. We performed the discretization of model (5) — (7) using the difference schemes
with weights:

S(rilirjl,k,l _S(ri])j,k,l Hlgn 'Ys(r;;rjl+1,k,l +(1_Y)S(?)j+1,k,l " 'YS(ri]irjl—l,k,l +(1—Y)S(?)j—1,k,| N
T ok 2h =Pk 2h,

X

n+1 n n+1 n
_ S(i)j kLl +(1—Y)S(i)j,k+1,| _ VS(i)jk-1s +(L=7)S()j k-
{V;my ! _Vin’k-%v' 2h, "

YS@ s+ (X=7)S0)j ks _
j k |+y Djkl+1 2h,

Ys(ri]irjl,k,l—l +(1_Y)S(r;)j,k,l—1 B
Wiki-3; Mok s, on,

i

1+1k|+(1 Y)S (i)j+Lk I ZYS jkl_z(l Y)S jkl)

<N

-2 (s
(YS 11k|+(1 Y)S —1k|)

( 1k+1|+(1 Y)S (i)j k+L1 2YS(Jkl 2(1- Y)S jkl)

= =
<~|“: s |

hz(YS( )ik (1= Y)S (i)ik 1|)

1 , 'YS(?;rjl,k,Hl +(1—Y)S(?)j,k,|+1 —YS(?fjl,k,l —(1—Y)S(?)j,k,|
_h_[v(i)j,k,n% h, + (8)

n YS(?)+jl,k,| +(1_V)S(ri])j,k,l —YS(?)+j1,k,|—1 —(1—Y)S(?)j,k,|-1 —
i)iki-1 -y, =0

1
+—|v
h, h,

1<j<N,-11<k<N,-11<I <N, -1i=117.

We added the approximated initial and boundary conditions to the system (8). We investi-
gated the stability of difference schemes. The difference scheme (8) in the canonical form:

B S()j+lk| +B S() ki +B S( j|<|+1+A'lS ikl —B S(n)+1—1k|
-B S()]k Al = BGS()jkI a= Azs ikl +B S()j+lk| +BBS()Jk+1I +
+BgS(i)j ks~ BioS()j-tks ~Bu1S()jk1s ~BraS{)jki1— W, »
1<j<N,-11<k<N,-11<I<N,-10<n<N, -1i=117.
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Sufficient condition for the stability and monotonicity of the model (8) is determined based
on the maximum principle of A.A. Samarsky with the following limitations:
=N =N N f 11
h, <[2u /0 e ool <[2v; 1w —wr, ]\C(%),u ~117.
The analysis of the accuracy of approximation of the scheme with weights in the form (8)

ohy <l 1"

showed that it has the highest order of accuracy on temporary and spatial variables: 0(1:2 +|h|2),

where |h| = /hZ +h? +h? , in the case of y=0.5 (the Crank-Nicholson scheme).

The initial data for proposed model of eutrofication of shallow water in the form (5) — (7) is
the velocity vector field of the water flow calculated by model (1)-(4).
Method for solving grid equations. The grid equations, obtained in the finite-difference approxi-
mations of tasks (1) — (3), (5) — (8), can be presented in the matrix form [16]:
Ax=T, 9)
where A is a linear, positive definite operator (A > 0). We use the implicit iterative process for
solving problem (8):

B——+AX" =f. (10)

Tma
In Eq. (10) m is the number of iteration, z > 0 is an iterative parameter, and B is an invertible opera-
tor (a stabilizer). The inverting of the operator B in Eq. (10) should be significantly easier than the
directly inverting of the original operator A in Eq. (9). We construct B using the additive represen-

tation of operator A, i.e., the symmetric part of the operator A:
Ay =R, +R,, R =R, , (11)
where A=A +A, Aj=A, , A=-A .

The operator-stabilizer can be written as follows:
B=(D+oR,)D}(D+0R,),D=D" >0, ®>0, (12)
where D is some, generally diagonal, operator.
Relations (11), (12) define the modified alternating triangular method (MATM) for solving the

problems if the operators R,,R, are defined and methods of determining the parameters t 0]

m+1
and the operator D are specified.

The algorithm of the adaptive modified alternating triangular method of minimal corrections for
calculating the grid equations with nonself-adjoint operators is in the form:

(Dwm W )
(DRW",Rw™ )’

rm:Axm—f,B(com)wm:rm,me=\/ (13)

3 ) ~ (AOWm,Wm)Z o (B‘lAiwm,Alwm)
BAW™ Aw™Bw™ w™) " (BTAwW™, Aw™)
(B AW A" | ) (B Aw™ Aw")

m
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1— Sm km
_ (1+km) . _ (AOWm,Wm)
Lk, [-s,2) ™ " (B AW, AW
where ™ is the residual vector, w™ is the correction vector, the diagonal part of the operator A is

used as the operator D . [17, 18].
The estimation of convergence rate of this method is in the form:

p< Vi _1, v ZV(M+\/E)2, k= (B__lAl(Dm’A'L(Dm),
v +1 (B 1'A‘owmﬂb‘o(’)m)

where v is the condition number of the operator C,, C, = B™/?A,B™%2,

m o~
m m+1W » Oy = Wy

)’ Xm+1=Xm—Z'

Parallel implementation. We describe the parallel algorithms, which are used for solving
problems (1) — (3), (5) — (7), with different types of domain decomposition.

Algorithm 1. Each processor receive its computational domain after the partition of the initial com-
putational domain into two coordinate directions, as shown in Fig. 5. The adjacent domains overlap
by two layers of nodes in the perpendicular direction to the plane of the partition [19].

The residual vector and it uniform norm are calculated after that as each processor will re-
ceive the information for its part of the domain. Then, each processor determines the maximum el-
ement in module of the residual vector and transmits its value to all remaining calculators. Now re-
ceiving the maximum element on each processor is enough to calculate the uniform norm of the re-
sidual vector [20].

Fig. 5. Domain decomposition

The parallel algorithm for calculating the correction vector is in the form:
(D+o,R )DHD+w,R, W" =r™,
where R, is the lower-triangular matrix, and R, is the upper-triangular matrix. We should solve
consistently the next two equations for calculating the correction vector:
(D+o,R)Yy" =r", (D+w,R, )W" = Dy".
At first, the vector y™ is calculated, and the calculation is started in the lower left corner.
Then, the correction vector w™ is calculated from the upper right corner. The calculation scheme of

the vector y™ is given in Fig. 6 (the transferring elements after the calculation of two layers by the
first processor is presented).
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In the first step of calculating the first processor operate on with the top layer. Then the
transfer of overlapping elements is occurred to the adjacent processors. In the next step the first
processor operate on with the second layer, and its neighbors — the first. The transfer of elements
after calculating two layers by the first processor is given in Fig. 6. In the scheme for the calculation

of the vector y™ only the first processor does not require additional information and can

independently operate on with its part of the domain. Other processors wait the results from the
previous processor, while it transfers the calculated values of the grid functions to the grid nodes,
located in the preceding positions of this line. The process continues until all the layers will be
calculated. Similarly, we can solve the systems of linear algebraic equations (SLAE) with the
upper-triangular matrix for calculating the correction vector. Further, the scalar products are
calculated (12), and the transition is proceeded to the next iteration layer.

Fig. 6. Scheme of calculation the vector y™

We constructed the theoretical estimate of the time. It’s required to perform the MATM step
for SLAE with seven-diagonal matrix with using decomposition in two spatial directions on a clus-
ter of distributed calculations. All computational domain is distributed among processors (n is the

total number of processors, n=n, -n,, n, >n, ), i.e. each of them received the domain by the size

N/n,N=N,N/N,, where N,,N,,N, is the number of nodes in the spatial directions; t, is an
execution time of one arithmetic operation; t, is response times (latency); t. is the time, required
to transfer the floating point numbers.

For computing the residual vector the % arithmetical operations should be performed by

each processor, and 2(n, —1) transfers at N, N, variables and 2(n, —1) transfers at N,N, varia-

bles should be performed. Thus, the total computational time for residual vector is following:
14N

—to +2(n, —1)t,N N, +2(n, —=1)t, N, N, .
n
We defined the computational time of the vector W™ .

N, N, . :
—*_Y js the number of elements in one layer;

ne ny
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N
9= Y .1, is the computational time by one processor of each layer;
n

12,..,n, =Ln ,ny,...,n,n, —1,...2 is the sequence of starting processor,
%f—/

ny—ny+1

N, N
9(nX +n, — 2) Xn Y t, is the latency time of starting the last processor (without the time for

transferring data);

N

9—-t, [ the computational time by the last processor;
n

(n, —1)(tnNy +txny)NZ +(n, ~1)(t,N, +t,n, )N, is the total transferring time at computing the

vector y".

We obtained that the computational time for vector W™ which equals to the following:
18Nty /n+18(n, +n, —2)N N to / n+

+ 2N, ((ne 1)t N, +tyn, )+ (n, —1)(t.N, +t,n,))
16Nt, / n — the computational time for calculating scalar products of fast descent. Time for the
transition to the next iteration was equal to 2Nt, /n.

Thus, the computation time for calculating on n processors is following:
50Nty / n+18(n, +n, —2)N, N to / n+

+2N, ((ny ~1)(2t, N, +t,n, )+ (n, —1)(2t,N, +t,n,))
Let’s consider the case N, = ny = \/ﬁ ; S0, the computational time is following:
ty =500ty + (VR —1)36N,N,t, /n+4N, (t,(N, + N, )+t,/n).
n

The obtained theoretical estimations [21] of acceleration 8(1) and efficiency E(l) of the par-

allel algorithm 1:

S = tt_1 _ ' NsoNt0

N 50':-to+(\/ﬁ—1(36 < yt0+4NZ(tn(NX+Ny)+tX\/ﬁ)j
or

Sw = )

I
wn
=

I
-

n .
1+(fmog] 36 4nf 1 1] tn
50N, 50t,| "( N, N N,N
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We considered the case of the problem solution with the rectangular domain. The domain
has a complex shape in the case of real water. At the same time the real acceleration is less than its
theoretical estimation. The dependence of the acceleration, obtained in the theoretical estimates, can
be used as the upper estimate of the acceleration for parallel implementation of the MATM
algorithm by the domain decomposition in two spatial directions.

We describe the domain decomposition in two spatial directions with using the k-means
algorithm.

Algorithm 2. The k-means method was used for geometric partition of the computational domain
for the uniform loading of MCS calculators (processors). This method is based on the minimization
of the functional of the total variance of the element scatter (nodes of the computational grid) rela-

tive to the gravity center of subdomains: Q =Q(®). Let X; is the set of computational grid nodes,

included in the i-th subdomain,ie{l,...,m}, m is the given number of subdomains.

Q® =Zﬁ >d?(x,c; ) — min, where c; :ﬁ > x is the center of the subdomain X;, and
i i|xeX; i| XeX;

d(x,c; ) is the distance between the calculated node and the center of the grid subdomain in the Eu-

clidean metric. The k-means method converges only when all subdomain will be approximately
equal.

The algorithm of k-means method.

1) The initial centers of subdomains are selected with using maximum algorithm.

2) All calculated nodes are divided into m Voronoi’s cells by the method of the nearest neighbor,

i.e. the current calculated grid node X € X, where X is a subdomain, which is chosen according

to the condition |x—s.| = Jr_nin||x —s; |, where the s, is the center of the subdomain X, .
<I<m

(k+1) _

3) New centers are calculated by the formula: s; = ‘ O
Xi

X.
xex{®)

4) The condition of the stop is checked s{*™) =s{*), k=1,...,m. If the condition of the stop is not

performed, then the transition proceeds to the item 2 of the algorithm.

The result of the k-means method for model domains is given in Fig. 7 (arrows indicate the
exchanges between subdomains). All points in the boundary of each subdomains are required to da-
ta exchange in the computational process. The Jarvis’s algorithm was used for this aim (the task of
constructing the convex hull). The list of the neighboring subdomains for each subdomain was cre-
ated, and an algorithm was developed for data transfer between subdomains.
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Fig. 7. Domain decomposition

Theoretical estimates of the acceleration and efficiency of the algorithm 2 were obtained
similarly to the corresponding estimates of the algorithm 1:

n-y
Se) = ot
1+(,\/__1 i_ﬁ_ﬂ tn i+i +tx n
SON, 50t, N, Ny NXNy
S
(2) X
Boy=——=

n - 1
1o(frog] 36 anf 1, 1], tn
50N, 50t, Ny, N, ) NgN,
where y is the ratio of the number of computational nodes to the total number of nodes (computa-

tional and fictitious).
Parallel algorithms of the adaptive alternating triangular method was implemented on super-

computer with the peak performance 18.8 TFlops. The system includes 8 computational racks. The
computational field is designed on the basis of the HP BladeSystem c-class infrastructure with inte-
grated communication modules, power and cooling systems. The computational nodes are 128 sin-
gle-type 16-core HP ProLiant BL685c Blade-servers, each of which has the four 4-core AMD Op-
teron 8356 2.3 GHz processors and the operative memory in the volume of 32 GB. The total num-
ber of cores in the complex — 2048, the total amount of RAM — 4 TB.

The comparison of the developed parallel algorithms 1 and 2 for the solution (1) — (3), (5) —
(7) was performed. The results are given in Table 2.
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Table 2

Comparison of acceleration and efficiency of algorithms
n t) St Sw Lo Ep, Ep
1 7.490639 1.0 1.0 6.072899 1.0 1.0
2 4.151767 1.653577 1.804205 3.121229 1.181126 1.945675
4 2.549591 3.256077 2.937976 1.810628 2.325769 3.354028
8 1.450203 6.317738 5.165234 | 0.996729 4.512670 6.092825
16 0.88242 11.928279 | 8.488745 0.619345 8.520199 9.805356
32 0.458085 21.482173 | 16.352072 | 0.317173 15.344409 | 19.146924
64 0.265781 35.954877 | 28.18350 | 0.183929 25.682055 | 33.017611
128 0.171535 54.617841 | 43.668283 | 0.116936 39.012744 | 51.933099

In Table 2: n is a number of processors; t.,,S,E, are the calculation time, accelera-

tion and efficiency of the k -th algorithm; S(tk),E(‘k) are the theoretical estimations acceleration and

efficiency of the k -th algorithm, k = {1,2}.

According to Table 1, we can conclude that the developed algorithms based on the decom-
position method in two spatial directions and k-means method can be effectively used for solving
hydrodynamics problems in the case the sufficiently large number of computational nodes.

The graphs of accelerations of algorithm 1 and 2 for solving the WB problem (5) — (7), ob-
tained theoretically and practically, are given in Fig. 8.
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Fig. 8. Graphs of accelerations for the developed parallel algorithms: 1 — the theoretical estimation of accel-
eration algorithm 1; 2 — the acceleration of the algorithm 2, obtained practically; 3 — the acceleration of the
algorithm 1, obtained practically; 4 — the theoretical estimations acceleration of algorithm 2
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The estimation was used for comparison the efficiency values of the algorithm 1 and 2, ob-

tained practically:
n 2 n
&= El(Emk ~Eay) \/ElE(Zak :

The value 0 in the Eq. (13) was calculated by:
n 9 n 5
0= kgl(E(z)k - E(l)k) kZ_llE(z)k =0.154.

Thus, the use of the algorithm 2 and k-means method for the WB problem (5) — (6) in-
creased the efficiency on 15%.;

Results. The external frequency, leading to complication of the system, is taken into account in
modeling spatially heterogeneous euthophication water processes of the Azov Sea (1) — (3). In this
case the fluctuations of plankton density can be so much that it cannot be explained by the random
fluctuations. Relatively small areas of high density (“slicks”, “clouds”) are separated by zones with
low densities, sometimes not fixed by standard observational methods. Especially clearly this phe-
nomenon is expressed in water areas which are characterized by the necessity for nutrient elements.
Vegetative period of phytoplankton were taken into account in modeling eutrophication processes.

Diffusion processes occur in the direction of smoothing the spatial distribution and disper-
sion of “slicks”. One of the attempts to explain the paradox of stability "slicks" with the help of
numerical experiments is to assume the active movement of heterotrophic organisms (zooplankton
and fish) in the direction of the gradient "food" that provides consolidation of spatial heterogeneity
of nutrients in the aquatic environment. Sustainable heterogeneity of the spatial distribution can be,
for example, due to diffusion processes and the presence of phytoplankton mechanism actoring reg-
ulation, i.e. regulation the rate of growth through selection in the environment of the biologically
active metabolites.

Results of modeling the concentration of pollution (total organic nitrogen) for the eutrophi-
cation model of the Azov Sea (the initial distribution of water flow fields with the northern wind)
are given in Fig 9. The influence of water flow structures in the Azov Sea on the distribution of bio-
genic pollution and phytoplankton are shown in the figures below.
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Fig. 9. Distribution of pollution concentration in different time interval

Results of modeling the phytoplankton dynamics in the Azov Sea are given in Fig. 10.
(N is a number of iteration).

Maximum concentration of biogenic pollution is assigned by white color, minimum concen-
tration of phytoplankton is assigned by the black color.

The verification criterion of the developed models (1) — (3), (5) — (7) was an estimate of the
error modeling taking into account the available field data measurements at the same time, calculat-

ed according to the formula: S:Ji(sknat —Sk)2 / \/iskznat , Where S, .. is the value of the
k=1 k=1

harmful algae concentration, obtained through field measurements; S, is the value of the harmful
algae concentration, calculated by the model (1) — (3).
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Fig. 10. Distribution of phytoplankton concentration in different time interval
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The concentrations of pollutants and plankton calculated for different wind situations were taken into
consideration, if the relative error did not exceed 30%.

Discussion and Conclusions. Due to expedition researches the primary verification of the
model of ecosystem of the Azov Sea was performed. The problem of modeling and forecasting the
state of water ecosystems of the Azov Sea in conditions of anthropogenic influence and comprehen-
sive research of the unique water object was implemented. Because of the water object is shallow,
it’s more affected by anthropogenic influence.

The software complex, combining mathematical models and databases, was designed. Using this
complex we researched conditions which are contributed the eutrophication processes in shallow
waters.

The distinctive features of the developed algorithms, implementing hydrobiological model
problems, are the following: high performance, reliability and accuracy of the results. High perfor-
mance is achieved by using efficient numerical methods for solving grid equations, aimed for use
on parallel computer systems in real and accelerated time intervals. The accuracy is achieved by
taking into account the important physical factors, such as: the Coriolis force, turbulent exchange,
the complex geometry of bottom and coastline, evaporation, river flows, a dynamic rebuild of the
computational region, wind stress and friction on the bottom, and also taking into account the devia-
tion of the pressure field from the hydrostatic approximation. The accuracy is achieved by using
detailed computational grids, taking into account the degree of "fullness” of computational cells,
and the absence of nonconservative dissipative terms and revision sources arising from finite differ-
ence approximations.

The comparison of the developed software complex that implements the designed scenarios
for the development of ecological situation in the Azov Sea using the numerical realization of mod-
el plankton evolution problems of the biological kinetics use with the similar works in the mathe-
matical modeling of hydro-biological processes.

The analysis showed that due to using the developed software system we increased the accu-
racy of forecasts of changes in concentrations of pollutants, phyto- and zooplankton in the Azov Sea
on 10 — 15% depending on the model problem of water ecology.
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3arps3HSIONINX OMOTEHHBIX BEIMIECTB, KUCIOpOAa, GUTO- U 300IUIAHKTOHA U JIp. OOBEKTOM MOIeTH-
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* PaGoTa Bemonsena npu nogaepke PH®, mpoext Ne 17-11-01286
** E-mail: nikitina.vm@gmail.com , j.a.s.s.y@mail.ru



mailto:nikitina.vm@gmail.com
mailto:j.a.s.s.y@mail.ru

COMPUTATIONAL MATHEMATICS AND INFORMATION TECHNOLOGIES Ne 1 /2017

JacTel Al BBIYUCIUTENBHO TPYIOEMKHUX 3a1ad AU(PPy3UH-KOHBEKIUH, YYUTHIBAIOIINX APXHUTEK-
Typy U napametpsl cynep-OBM. Bbu10 ycTaHOBJIEHO, YTO MAKCUMAJIBHOE YCKOPEHUE JOCTUTAIOCH
Ha 128 BBIYMCIUTENBHBIX y3JIax U cocTaBuiio 43 pa3za. [Ipu peann3zanuu napamieabHOIO airOpuTMa
pemienus 3agaun Ha MBC aiis pacnipeneneHusi JaHHBIX MEXIy MpoLeccopaMu OblTH pa3paboTaHbl
JIBa aJITOPUTMA, B TOM YHUCJIE aJlTOPUTM Ha OCHOBE MeToja K-means, mpuMeHeHrne KOTOporo mo3Bo-
JIMJIO TIOBBICUTH A(P(PEKTUBHOCTH aJITOPUTMa PEIICHUs] MOCTaBICHHOW 3a1aun Ha 15% mo cpaBHe-
HUIO C aJITOPUTMOM, OCHOBAaHHOM Ha CTaHJAPTHOM pa30OMEeHHUU PAcUeTHOU OOJIACTH.

Peszynomamur uccnedosanus. PazpaboTansl HOBbIE MaTEMaTHYECKUE MOJICNIN U IIPOrpaMMHOe obec-
MeYeHHE JUIsI MaTeMaTHYEeCKOr0 MOJEITUPOBAHUS MTPOLIECCOB IBTPOPUKALMN MEITKOBOIHBIX BOJOE-
MOB. PaccunTaHHble IPU pa3IMUHBIX BETPOBBIX CUTYALUSIX KOHLICHTPALIUU 3arPSA3HSAIOIINX BEIIECTB
U IJIAHKTOHA MPUHUMAIUCh K PACCMOTPEHUIO, €CIIM OTHOCHUTEINIbHASI MOTPEIIHOCTh HE MpEBbIIIAa
30%.

C mOMOIIBIO KCIIEANIIMOHHBIX UCCIIETOBAaHMA MMPOBEACHA NMEPBUYHAS BEpUPHUKAIISI MOACITH KO-
cucteMbl A30Bckoro mops. PeannsoBana 3ajadya MOJENMPOBAHUS M MPOTHO3Aa COCTOSIHMSI BOJHOM
9KOCUCTEMBI A30BCKOTO MOpSl B YCJIIOBUSAX aHTPOIOI€HHOTO BO3JIEHCTBUS U BCECTOPOHHEIO U3yue-
HUSl YHUKAJIBHOTO BOJHOTO OOBEKTa, KOTOPHIH B CHIIy MEIKOBOAHOCTH B OOJIBIICH CTENEHU IOJ-
BEpKEH aHTPOIIOT€HHOMY BIIUSHUIO.

Cozfan MporpaMMHBIN KOMILJIEKC, OOBEIUHSIONINI pa3paboTaHHbIE MaTeMaTHUYECKUE MOJEIH U
0a3bl TaHHBIX, C TIOMOIIBI0 KOTOPOTO M3Y4EHBI YCIOBHS, MPU KOTOPHIX MEJIKOBOIHBIE BOJAOEMBI
MOJIBEPratoTCcs IBTPOPHUTPOBAHUIO.

Obcyorcoenue u 3aknroyenus. PelieHre mocTaBIeHHON 3a1a4i BOAHOM 3KOJIOTUH MTO3BOJUT NMPOTHO-
3UpOBaTh BO3MOXHbBIE CLIEHAPUH W3MEHEHHUs KayecTBa BOJ MEJIKOBOJHBIX BOJIOEMOB, a TaKKe M3Y-
yaTh MEXaHU3Mbl (POPMHUPOBAHUS B HUX 30H C IOHM)KEHHBIM COZAEpKAHUEM KHCIIOPOAA.

KutoueBble c1oBa: MareMaTH4eCKOE MOJEIMPOBAHUE, dBTPOPUKAIUSA, METOJ MUHHUMAJIbHBIX IO-
MIPaBOK, MapaJijielibHble BHIYMCIEHUS, cynep-OBM.
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