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Introduction. The paper is devoted to the research of effective numerical methods for solving eu-

trophication problem of shallow waters taking into account water environment, spatially-

nonuniform distribution of temperature and salinity, microturbulent diffusion, gravitational sedi-

mentation, and spreading of biogenic pollution, oxygen, phyto- and zooplankton, etc. The simula-

tion objects are shallow waters – the Azov Sea and Taganrog Bay. 

Materials and Methods. The mathematical model of eutrophication of shallow waters was devel-

oped. Parallel implementation was performed for computationally laborious convection-diffusion 

problems, taking into account the architecture and parameters of supercomputers based on the de-

composition methods of grid domains. We determined that the maximum acceleration was 43 times 

on 128 computational nodes. We developed two algorithms including the algorithm based on the k-

means method for data distribution between processors in parallel implementation. Due to the using 

these algorithms, the efficiency of algorithm for solving the problem is increased on 15% compared 

to the algorithm of the standard partition of computational domain.  

Results. New mathematical models and software complex were developed for mathematical model-

ing of eutrophication processes in shallow waters. The concentrations of pollutants and plankton 

calculated for different wind situations were taken into consideration, if the relative error did not 

exceed 30%. 

Due to expedition researches the primary verification of the model of ecosystem of the Azov Sea 

was performed. The problem of modeling and forecasting the state of water ecosystems of the Azov 

Sea in conditions of anthropogenic influence and comprehensive research of the unique water ob-

ject was implemented. Because of the water object is shallow, it’s more affected by anthropogenic 

influence.  

The software complex, combining mathematical models and databases, was designed. Using this 

complex we researched conditions which are contributed by the eutrophication processes in shallow 

waters. 

Discussion and Conclusions. Due to the solving the water ecology problem we can forecast differ-

ent scenario of changing the water quality in shallow waters, and to investigate the mechanisms of 

formation of zones with low oxygen content. 

 

Keywords: mathematical modeling, eutrophication, minimum corrections method, parallel 

computing, supercomputer. 

 

Introduction. Researching of shallow waters is important and significant in mathematical 

modeling of aquatic ecosystems. The example of such waters is the Azov Sea, the great shallow wa-

ter. Such water areas experience a tremendous anthropogenic influence, but not many of them are 
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unique fish-producing ecological systems. The biogenic matters enter the shallow waters with the 

river flows which causing the growth of the algae – «water bloom».   

 The results of satellite monitoring of the Earth are used in this paper to control the quality 

modeling of processes of hydrodynamics and biological kinetics [1, 2]. The satellite monitoring da-

ta of the Azov Sea, obtained by SRC «Planeta», are given in Fig.1 [3]. The analysis of satellite data 

reveals the water areas of suffocations. 

 

 
 

Fig. 1. The wide areas of the «water bloom» in the Azov Sea 

 

The 3D spatially heterogeneous mathematical model was performed for the reconstruction 

of the «water bloom». This process caused the suffocation in the South-Eastern part of the Azov 

Sea in July 2013. The information about the wind velocity and direction in the Temryuk Bay in July 

2016, provided the meteorological station in Kerch city (WMO_ID 33983) and shown in Fig.2, was 

used for this model as input data. 

 

 
 

Fig. 2. Wind velocity and direction, July 16, 2013 

 

Water temperature in the computational domain for the simulated time interval is shown in 

Fig.3. 
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Fig. 3. Water temperature, July 16, 2013 
 

We used classes, described by the Institute for nature protection and reserves Ministry of 

ecology of Russia and given in Table 1, for analyzing the water quality of the Azov Sea. In Table 1: 

1 – trophicity, class quality, the nature of saprobity, options; 2 – oligotrophy, very clean, 

xenosaprobic (I); 3 – esotropia, clean, batalhas-fineness (II); 4 – esotropia, moderately polluted, al-

fareros-fineness (III); 5 – eutropia, polluted, betamatch-fineness (IV); 6 – polytrope, dirty, alpha-

bets-fineness (V); 7 – hypereutrophy, very dirty, polycarobonate (VI); *) - watercourses; **) – stag-

nant waters; ***) – possible the higher values. 

Table 1 

Parameters and alphabet of classes of the state estimation of aquatic ecosystems 

1 2 3 4 5 6 7 

Water transparency by Secchi disk, 

m, *)  

**) 

 

3 

6 

 

0,7-3 

4 

 

0,5-0,7 

4 

 

0,3-0,5 

2 

 

0,1-0,3 

1 

 

0,05-0,1 

0,5 

Specific conductivity of water, 

mks/sm *)  

**) 

 

>400 

150 

 

700 

250 

 

700 

300***) 

 

1100 

500 

 

1300 

1000 

 

1600 

1000 

The saprobity phytoplankton index 

according to Watanabe 

85-100 70-85 50-70 30-50 15-30 0-15 

Concentration, Сl «a», mkg/l, **) 3 8 8 15 30 60 

Phytoplankton biomass, mg/l 0-0,1 0,1-0,5 0,5-1,0 1,0-5,0 5,0-50,0 50-100 

Gross daily phytoplankton produc-

tion  

, gО/sq.m 

0-1,5 1,5-3 3-4,5 4,5-7,5 7,5-10,5 10,5-12 

The Shannon index, H. 0-4 1-4.5 0-5 0-5 1,5-4,5 0-4 

Range of variation, H. 

Н min. – Н max. 

0-1,5 

3-4 

1-2 

4-4,5 

0-2 

4,5-5 

0-2 

4,5-5 

1,5-2 

4-4,5 

0-1,5 

2-4 

 

Materials and methods. Hydrodynamic Mathematical Model. The initial equation of hydrody-

namics of shallow waters is the next: 

– motion equations (The Navier-Stokes motion equations):  
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      ),θcoswθsinv(uuupuwuvuuu
zzyyxxxzyxt 
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



 2

1
 

      θsinuvvvpvwvvvuv
zzyyxxyzyxt 






 2

1
,     (1) 

       ;/gθcosuwwwpwwwvwuw
zzyyxxzzyxt 12

1
0 







  

– continuity equation was written for the case of variable density: 

      ,wvu zyxt 0








     (2) 

where  w,v,uu   - velocity vector components; p is an excess pressure above the undisturbed flu-

id hydrostatic pressure; ρ is density;   is Earth's angular velocity;   is an angle between the angu-

lar velocity vector and the vertical vector; μ, are horizontal and vertical components of turbulent 

exchange coefficient. 

We consider the equation system (1), (2) with the following boundary conditions: 

– at the entrance ( the mouth of Don and Kuban rivers): 

),t(v)t,z,y,x(v),t(u)t,z,y,x(u  ,)t,z,y,x(u,)t,z,y,x(p nn 00   

– the lateral boundary (beach and bottom): 

),t()t,z,y,x()v(),t()t,z,y,x()u( ynvxnv   

,)t,z,y,x(p,)t,z,y,x(u nn 00   

– the upper boundary: 

),t()t,z,y,x()v(),t()t,z,y,x()u( ynxn   

0 )t,y,x(p,g/p)t,y,x(w nt ,     (3) 

– at the output (Kerch Strait): 

00  )t,z,y,x(u,)t,z,y,x(p nn , 

where  is a liquid evaporation intensity; ,x y   are tangential stress components (Van-Dorn law); 

v is suspension density. 

Tangential stress components for free surface are in the form: 

  wwwC xpax  ,   wwwC ypay  , 

where w  is a wind velocity vector relative to the water; a  is atmosphere density, 

 









s/m.x;.

s/m.x;.
xC p

6600260

6600880
 – non-dimensional coefficient. 

Tangential stress components for bottom are in the form: 

  uuuCpx  ,   uvuC py   . 

We can define the coefficient of the vertical turbulent exchange with inhomogeneous depth on the 

basis of the measured velocity pulsation:  
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where   is a grid scale; sC  is non-dimensional empirical constant, defined on the basis of attenua-

tion process calculation of homogeneous isotropic turbulence. 

Grid method was used for solving the problem (1) – (3) [4]. The approximation of equations by 

time variable was performed on the basis of splitting schemes into physical processes [5 – 9] in the 

form of the pressure correction method. 

Three-dimensional mathematical model of eutrofication processes of shallow water. Com-

putational domain G  (Fig. 4) is a closed area, limited by the undisturbed water surface 0 , bottom 

)y,x(HH  , and the cylindrical surface, the undisturbed surface  for .Tt 00   

 H0  – the sectionally smooth boundary of the domain G  [10 – 14]. 

 

 

Fig. 4. Diagram of the computational domain G  

 

The developed model is described by equations: 

  ,
z

S

z
S

z

S
ww

y

S
v

x

S
uS i

i
iii

i
gi

ii
t,i 
































    (5) 

where iS  is the concentration of i-th impurity, index i  indicates the substance type, 1,17i  : 1  is 

hydrogen sulfide  SH2 ; 2  is elemental sulfur  S ; 3  are sulfates  4SO ; 4  are thiosulfates (and 

sulfites); 5  is the total organic nitrogen  N ; 6  is ammonium  4NH  (ammonia nitrogen); 7  are 

nitrites  2NO ; 8  are nitrates  3NO ; 9  is dissolved manganese  DOMn ; 10  is suspended man-

ganese  POMn ; 11 is dissolved oxygen  2O ; 12  are silicates ( 3SiO
 
is the metasilicate; 4SiO  is 

the orthosilicate); 13  are phosphates  4PO ; 14  is ferrum  2Fe ; 15  is silica ( 32SiOH
 
is meta-

silicic; 42SiOH  is orthosilicic); 16  is phytoplankton; 17  is zooplankton;  w,v,uu   is the water 

flow velocity;
 igw  is the gravitational sedimentation velocity of i-th component (in a suspended 

state); ii ,  is the coefficient of turbulent diffusion in horizontal and vertical directions corre-

spondingly; i  is a chemical-biological source or component describing the aggregation if the cor-

responding component is suspension.  
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We consider the system (5) with the following boundary conditions: 

,onSS;onS

;Uif,on
n

S
;Uif,onS

Hiiz,iz,i

n
i

ni









00

0000
   (6)

 

where i  is the absorption coefficient of the i-th component by the bottom material. 

We has to add the following initial conditions to (5): 

.,i),z,y,x(SS iti 6100



      (7) 

Water flow velocity fields, calculated according to the model (1) – (3), are used as input data 

for the model (1) – (3). The discretization of models (1) – (4), (5) – (7) was performed on the basis 

of the high-resolution schemes which are described in [15]. 

Using the eutrofication model (5) – (6) the processes of ammonification, nitrification, nitra-

tereductase (denitrification), assimilation 4NH , oxidation SH2 , sulfate reduction, oxidation and 

recovery of manganese can be described, and we can research the formation of zones of reduced 

oxygen and forecast changes of oxygen and nutrient regimes in shallow waters. 

The processes of biogeochemical cycles of chemical elements, due to which the transfer of 

aerobic conditions in anaerobic is performed, were parameterized in developing the model.  

The three-dimensional eutrophication model of the Azov Sea (5) – (6) was investigated, and 

sufficient conditions for the existence and uniqueness were obtained and formulated as theorems.  

Theorem 1. Let )t,z,y,x(Si , )Ц(C)Ц(C tti  2 , where )Tt(GЦ t 00  ; 

0 consti ;   )G(C)z(,ww,v,uU igi
1 ; )G(CSio  , 171,i  . Thus, when the following 

inequalities are held:     0
0

1 
 i

G
ii

G
pmax,max  for all 1,17i  , where   iijii SSp  ,

ji  ; iiiii SpDSLS  ,  ii
i

i USdiv
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S
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
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iiii 



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
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 2222
0 111 zyx L/L/L/  ; zyx L,L,L  – the spatially maximum dimensions of the computa-

tional domain; the model problem of eutrofication of shallow water in Eq. (5) – (7) has a solution. 

Theorem 2. Let )t,z,y,x(Si , )Ц(C)Ц(C tti  2 , 0 consti ; U , )G(C)z(i
1 , 

171,i  . Thus, when the following inequalities are held:   iziyxi L/vL/L/  222 2112  for all 

171,i   (where i  are functions, defined by Sources of pollutant) the model problem of eutrofica-

tion of shallow water in Eq. (5) – (7) has a unique solution.  

We constructed the coherent grid h  for discretization the model (5) – (6). zyx h,h,h  are 

vector parameters, characterizing the density of nodes: 

 ;N,l;N,k;N,j;lhz,khy,jhx zyxzlykxjh 000 

   ,N,n,nt,,LhN,LhN,LhN tnhhzzzyyyxxx 0   

where , ,i j k  are indexes in , ,x y z directions; , ,x y zN N N  is the number of nodes in the coordinate 

directions. 
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The computational domain in spatial directions , ,x y z is represented by the combination of 

parallelepipeds. We performed the discretization of model (5) – (7) using the difference schemes 

with weights: 

 

           















 




 













x

n
l,k,ji

n
l,k,jin

l,k,j
x

n
l,k,ji

n
l,k,jin

l,k,j

n
l,k,ji

n
l,k,ji

h

S)(S
u

h

S)(S
u

SS

2

1

2

1 1
1

1

2
1

1
1

1

2
1

1

 

       














 















y

n
l,k,ji

n
l,k,jin

l,k,j
y

n
l,k,ji

n
l,k,jin

l,k,j h

S)(S
v

h

S)(S
v

2

1

2

1 1
1

1

2
1

1
1

1

2
1  

 
   

















 






z

n
l,k,ji

n
l,k,jin

l,k,jig

n

l,k,j h

S)(S
ww

2

1 1
1

1

2
1

2
1

 
   















 






z

n
l,k,ji

n
l,k,jin

l,k,jig

n

l,k,j h

S)(S
ww

2

1 1
1

1

2
1

2
1  

        

    

        

    








































n
l,k,ji

n
l,k,ji

y

i

n
l,k,ji

n
l,k,ji

n
l,k,ji

n
l,k,ji

y

i

n
l,k,ji

n
l,k,ji

x

i

n
l,k,ji

n
l,k,ji

n
l,k,ji

n
l,k,ji

x

i

S)(S
h

S)(SS)(S
h

S)(S
h

S)(SS)(S
h

1
1

12

1
1

1
12

1
1

12

1
1

1
12

1

1221

1

1221

 

 
       














 









z

n
l,k,ji

n
l,k,ji

n
l,k,ji

n
l,k,jin

l,k,ji
z h

S)(SS)(S

h

111
1

1
1

1

2
1    (8) 

 
       

,
h

S)(SS)(S

h i

z

n
l,k,ji

n
l,k,ji

n
l,k,ji

n
l,k,jin

l,k,ji
z

0
111 1

1
1

1

2
1 













 










 
.,i,Nl,Nk,Nj zyx 171111111   

 

We added the approximated initial and boundary conditions to the system (8). We investi-

gated the stability of difference schemes. The difference scheme (8) in the canonical form: 
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Sufficient condition for the stability and monotonicity of the model (8) is determined based 

on the maximum principle of A.A. Samarsky with the following limitations: 

   
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nn
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
 

The analysis of the accuracy of approximation of the scheme with weights in the form (8) 

showed that it has the highest order of accuracy on temporary and spatial variables:  22 hO  , 

where 222
zyx hhhh  , in the case of 50.  (the Crank-Nicholson scheme). 

The initial data for proposed model of eutrofication of shallow water in the form (5) – (7) is 

the velocity vector field of the water flow calculated by model (1)-(4).  

Method for solving grid equations. The grid equations, obtained in the finite-difference approxi-

mations of tasks (1) – (3), (5) – (8), can be presented in the matrix form [16]:  

      ,fAx        (9) 

where A is a linear, positive definite operator (A > 0). We use the implicit iterative process for 

solving problem (8): 

     fAx
xx

B m

m

mm










1

1

.     (10) 

In Eq. (10) m is the number of iteration, τ > 0 is an iterative parameter, and B is an invertible opera-

tor (a stabilizer). The inverting of the operator B in Eq. (10) should be significantly easier than the 

directly inverting of the original operator A in Eq. (9). We construct B using the additive represen-

tation of operator 0A , i.e., the symmetric part of the operator A: 

           *
RR,RRA 21210  ,                (11) 

where **
AA,AA,AAA 110010  . 

The operator-stabilizer can be written as follows: 

    002
1

1   ,DD),RD(D)RD(B * ,  (12) 

where D  is some, generally diagonal, operator. 

Relations (11), (12) define the modified alternating triangular method (MATM) for solving the 

problems if the operators 21 R,R  are defined and methods of determining the parameters 1m ,   

and the operator D  are specified. 

The algorithm of the adaptive modified alternating triangular method of minimal corrections for 

calculating the grid equations with nonself-adjoint operators is in the form: 

  fAxr mm  , mm
m rw)(B  , 

 
 mm
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m
wR,wRD

w,Dw~
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 
  mmmm

mm

m
w,BwwA,wAB

w,wA
s

00
1

2

02
1


 , 

 
 mm

mm

m
wA,wAB

wA,wAB
k

00
1

11
1





 , 



COMPUTATIONAL  MATHEMATICS  AND  INFORMATION  TECHNOLOGIES № 1 / 2017   

  
 

90 

 

 

 2

2

11

1
1

mm

m

mm

m
sk

k

ks






 ,
 

 mm

mm

mm
wA,wAB

w,wA

00
1

0
1   , 

1

1

m m m

mx x w

  , 
1m m   , 

where 
mr  is the residual vector, 

mw  is the correction vector, the diagonal part of the operator A is 

used as the operator D . [17, 18]. 

The estimation of convergence rate of this method is in the form: 

,
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where   is the condition number of the operator 0C , .BABC // 21
0

21
0

  

Parallel implementation. We describe the parallel algorithms, which are used for solving 

problems (1) – (3), (5) – (7), with different types of domain decomposition. 

Algorithm 1. Each processor receive its computational domain after the partition of the initial com-

putational domain into two coordinate directions, as shown in Fig. 5. The adjacent domains overlap 

by two layers of nodes in the perpendicular direction to the plane of the partition [19].  

The residual vector and it uniform norm are calculated after that as each processor will re-

ceive the information for its part of the domain. Then, each processor determines the maximum el-

ement in module of the residual vector and transmits its value to all remaining calculators. Now re-

ceiving the maximum element on each processor is enough to calculate the uniform norm of the re-

sidual vector [20]. 

 
 

Fig. 5. Domain decomposition 

 

The parallel algorithm for calculating the correction vector is in the form: 
mm

mm rw)RD(D)RD(  
2

1
1 , 

where 1R  is the lower-triangular matrix, and 2R  is the upper-triangular matrix. We should solve 

consistently the next two equations for calculating the correction vector: 
mm

m ry)RD(  1 , mm
m Dyw)RD(  2 . 

At first, the vector my  is calculated, and the calculation is started in the lower left corner. 

Then, the correction vector 
mw  is calculated from the upper right corner. The calculation scheme of 

the vector my  is given in Fig. 6 (the transferring elements after the calculation of two layers by the 

first processor is presented).  
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In the first step of calculating the first processor operate on with the top layer. Then the 

transfer of overlapping elements is occurred to the adjacent processors. In the next step the first 

processor operate on with the second layer, and its neighbors – the first. The transfer of elements 

after calculating two layers by the first processor is given in Fig. 6. In the scheme for the calculation 

of the vector 
my  only the first processor does not require additional information and can 

independently operate on with its part of the domain. Other processors wait the results from the 

previous processor, while it transfers the calculated values of the grid functions to the grid nodes, 

located in the preceding positions of this line. The process continues until all the layers will be 

calculated. Similarly, we can solve the systems of linear algebraic equations (SLAE) with the 

upper-triangular matrix for calculating the correction vector. Further, the scalar products are 

calculated (12), and the transition is proceeded to the next iteration layer. 

 

 
 

Fig. 6. Scheme of calculation the vector 
my  

 

We constructed the theoretical estimate of the time. It’s required to perform the MATM step 

for SLAE with seven-diagonal matrix with using decomposition in two spatial directions on a clus-

ter of distributed calculations. All computational domain is distributed among processors (n is the 

total number of processors, yx nnn  , )nn yx  , i.e. each of them received the domain by the size 

,NNNN,n/N zyx  where zyx N,N,N  is the number of nodes in the spatial directions; 0t  is an 

execution time of one arithmetic operation; xt  is response times (latency); nt  is the time, required 

to transfer the floating point numbers. 

For computing the residual vector the 
n

N14
 arithmetical operations should be performed by 

each processor, and )n( x 12   transfers at zy NN  variables and )n( y 12   transfers at zx NN  varia-

bles should be performed. Thus, the total computational time for residual vector is following:  

zxnyzynx NNt)n(NNt)n(t
n

N
1212

14
0  . 

We defined the computational time of the vector 
mw . 

y

y

x

x

n

N

n

N
 is the number of elements in one layer;   
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09 t
n

NN yx
  is the computational time by one processor of each layer;  

21121

1

,...,n,n,...,n,n,n,...,, y

nn

yyyy

yx






 is the sequence of starting processor, 

  029 t
n

NN
nn

yx

yx   is the latency time of starting the last processor (without the time for 

transferring data);   

09 t
n

N
  is the computational time by the last processor; 

    zxxxnyzyxynx NntNt)n(NntNt)n(  11   is the total transferring time at computing the 

vector 
my . 

We obtained that the computational time for vector 
mw  which equals to the following: 

 
    .ntNt)n(ntNt)n(N

n/tNNnnn/Nt
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016 /Nt n  – the computational time for calculating scalar products of fast descent. Time for the 

transition to the next iteration was equal to 02 /Nt n . 

Thus, the computation time for calculating on n processors is following: 

 
    .ntNt)n(ntNt)n(N

n/tNNnnn/Nt
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Let’s consider the case x yn n n  ; so, the computational time is following:  

     ntNNtNn/tNNnt
n

N
t xyxnzyxN  436150 00 . 

The obtained theoretical estimations [21] of acceleration  1
S  and efficiency  1

E  of the par-

allel algorithm 1: 
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We considered the case of the problem solution with the rectangular domain. The domain 

has a complex shape in the case of real water. At the same time the real acceleration is less than its 

theoretical estimation. The dependence of the acceleration, obtained in the theoretical estimates, can 

be used as the upper estimate of the acceleration for parallel implementation of the MATM 

algorithm by the domain decomposition in two spatial directions.  

We describe the domain decomposition in two spatial directions with using the k-means 

algorithm. 

Algorithm 2. The k-means method was used for geometric partition of the computational domain 

for the uniform loading of MCS calculators (processors). This method is based on the minimization 

of the functional of the total variance of the element scatter (nodes of the computational grid) rela-

tive to the gravity center of subdomains: )(QQ 3 . Let iX  is the set of computational grid nodes, 

included in the i-th subdomain,  1,...,i m , m  is the given number of subdomains. 

min,)c,x(d
X

Q
iXx

i
i i

)( 


23 1
 where 

 iXxi

i x
X

c
1

 is the center of the subdomain iX , and 

)c,x(d i  is the distance between the calculated node and the center of the grid subdomain in the Eu-

clidean metric. The k-means method converges only when all subdomain will be approximately 

equal. 

The algorithm of k-means method. 

1) The initial centers of subdomains are selected with using maximum algorithm. 

2) All calculated nodes are divided into m  Voronoi’s cells by the method of the nearest neighbor, 

i.e. the current calculated grid node cx X , where cX  is a subdomain, which is chosen according 

to the condition i
mi

c sxminsx 
1

, where the cs  is the center of the subdomain cX . 

3) New centers are calculated by the formula: 




)k(
iXx

)k(
i

)k(
c x

X
s

11 . 

4) The condition of the stop is checked )k(
c

)k(
c ss 1 , m,...,k 1 . If the condition of the stop is not 

performed, then the transition proceeds to the item 2 of the algorithm. 

The result of the k-means method for model domains is given in Fig. 7 (arrows indicate the 

exchanges between subdomains). All points in the boundary of each subdomains are required to da-

ta exchange in the computational process. The Jarvis’s algorithm was used for this aim (the task of 

constructing the convex hull). The list of the neighboring subdomains for each subdomain was cre-

ated, and an algorithm was developed for data transfer between subdomains. 
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Fig. 7. Domain decomposition 

 

Theoretical estimates of the acceleration and efficiency of the algorithm 2 were obtained 

similarly to the corresponding estimates of the algorithm 1: 
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where   is the ratio of the number of computational nodes to the total number of nodes (computa-

tional and fictitious). 

Parallel algorithms of the adaptive alternating triangular method was implemented on super-

computer with the peak performance 18.8 TFlops. The system includes 8 computational racks. The 

computational field is designed on the basis of the HP BladeSystem c-class infrastructure with inte-

grated communication modules, power and cooling systems. The computational nodes are 128 sin-

gle-type 16-core HP ProLiant BL685c Blade-servers, each of which has the four 4-core AMD Op-

teron 8356 2.3 GHz processors and the operative memory in the volume of 32 GB. The total num-

ber of cores in the complex – 2048, the total amount of RAM – 4 TB. 

The comparison of the developed parallel algorithms 1 and 2 for the solution (1) – (3), (5) – 

(7) was performed. The results are given in Table 2.  
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Table 2 

Comparison of acceleration and efficiency of algorithms 

n  (1)t  (1)

tS  (1)S  (2)t  (2)

tE  (2)E  

1 7.490639 1.0 1.0 6.072899 1.0 1.0 

2 4.151767 1.653577 1.804205 3.121229 1.181126 1.945675 

4 2.549591 3.256077 2.937976 1.810628 2.325769 3.354028 

8 1.450203 6.317738 5.165234 0.996729 4.512670 6.092825 

16 0.88242 11.928279 8.488745 0.619345 8.520199 9.805356 

32 0.458085 21.482173 16.352072 0.317173 15.344409 19.146924 

64 0.265781 35.954877 28.18350 0.183929 25.682055 33.017611 

128 0.171535 54.617841 43.668283 0.116936 39.012744 51.933099 

 

In Table 2: n  is a number of processors; )k()k()k( E,S,t
 
are the calculation time, accelera-

tion and efficiency of the k -th algorithm; t
)k(

t
)k( E,S  are the theoretical estimations acceleration and 

efficiency of the k -th algorithm,  .,k 21
 

According to Table 1, we can conclude that the developed algorithms based on the decom-

position method in two spatial directions and k-means method can be effectively used for solving 

hydrodynamics problems in the case the sufficiently large number of computational nodes. 

The graphs of accelerations of algorithm 1 and 2 for solving the WB problem (5) – (7), ob-

tained theoretically and practically, are given in Fig. 8. 

 
Fig. 8. Graphs of accelerations for the developed parallel algorithms: 1 – the theoretical estimation of accel-

eration algorithm 1; 2 – the acceleration of the algorithm 2, obtained practically; 3 – the acceleration of the 

algorithm 1, obtained practically; 4 – the theoretical estimations acceleration of algorithm 2 
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The estimation was used for comparison the efficiency values of the algorithm 1 and 2, ob-

tained practically:  

   
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The value   in the Eq. (13) was calculated by: 
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Thus, the use of the algorithm 2 and k-means method for the WB problem (5) – (6) in-

creased the efficiency on 15%.; 

 

Results. The external frequency, leading to complication of the system, is taken into account in 

modeling spatially heterogeneous euthophication water processes of the Azov Sea (1) – (3). In this 

case the fluctuations of plankton density can be so much that it cannot be explained by the random 

fluctuations. Relatively small areas of high density (“slicks”, “clouds”) are separated by zones with 

low densities, sometimes not fixed by standard observational methods. Especially clearly this phe-

nomenon is expressed in water areas which are characterized by the necessity for nutrient elements. 

Vegetative period of phytoplankton were taken into account in modeling eutrophication processes. 

Diffusion processes occur in the direction of smoothing the spatial distribution and disper-

sion of “slicks”. One of the attempts to explain the paradox of stability "slicks" with the help of 

numerical experiments is to assume the active movement of heterotrophic organisms (zooplankton 

and fish) in the direction of the gradient "food" that provides consolidation of spatial heterogeneity 

of nutrients in the aquatic environment. Sustainable heterogeneity of the spatial distribution can be, 

for example, due to diffusion processes and the presence of phytoplankton mechanism actoring reg-

ulation, i.e. regulation the rate of growth through selection in the environment of the biologically 

active metabolites. 

Results of modeling the concentration of pollution (total organic nitrogen) for the eutrophi-

cation model of the Azov Sea (the initial distribution of water flow fields with the northern wind) 

are given in Fig 9. The influence of water flow structures in the Azov Sea on the distribution of bio-

genic pollution and phytoplankton are shown in the figures below.  
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Fig. 9. Distribution of pollution concentration in different time interval 

Results of modeling the phytoplankton dynamics in the Azov Sea are given in Fig. 10. 

( N  is a number of iteration). 

Maximum concentration of biogenic pollution is assigned by white color, minimum concen-

tration of phytoplankton is assigned by the black color.  

The verification criterion of the developed models (1) – (3), (5) – (7) was an estimate of the 

error modeling taking into account the available field data measurements at the same time, calculat-

ed according to the formula:    


n

k
natk

n

k
knatk SSS

1

2

1

2
, where natkS  is the value of the 

harmful algae concentration, obtained through field measurements; kS  is the value of the harmful 

algae concentration, calculated by the model (1) – (3).  

 

   

   
 

Fig. 10. Distribution of phytoplankton concentration in different time interval 
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The concentrations of pollutants and plankton calculated for different wind situations were taken into 

consideration, if the relative error did not exceed 30%. 

Discussion and Conclusions. Due to expedition researches the primary verification of the 

model of ecosystem of the Azov Sea was performed. The problem of modeling and forecasting the 

state of water ecosystems of the Azov Sea in conditions of anthropogenic influence and comprehen-

sive research of the unique water object was implemented. Because of the water object is shallow, 

it’s more affected by anthropogenic influence.  

The software complex, combining mathematical models and databases, was designed. Using this 

complex we researched conditions which are contributed the eutrophication processes in shallow 

waters. 

The distinctive features of the developed algorithms, implementing hydrobiological model 

problems, are the following: high performance, reliability and accuracy of the results. High perfor-

mance is achieved by using efficient numerical methods for solving grid equations, aimed for use 

on parallel computer systems in real and accelerated time intervals. The accuracy is achieved by 

taking into account the important physical factors, such as: the Coriolis force, turbulent exchange, 

the complex geometry of bottom and coastline, evaporation, river flows, a dynamic rebuild of the 

computational region, wind stress and friction on the bottom, and also taking into account the devia-

tion of the pressure field from the hydrostatic approximation. The accuracy is achieved by using 

detailed computational grids, taking into account the degree of "fullness" of computational cells, 

and the absence of nonconservative dissipative terms and revision sources arising from finite differ-

ence approximations. 

The comparison of the developed software complex that implements the designed scenarios 

for the development of ecological situation in the Azov Sea using the numerical realization of mod-

el plankton evolution problems of the biological kinetics use with the similar works in the mathe-

matical modeling of hydro-biological processes. 

The analysis showed that due to using the developed software system we increased the accu-

racy of forecasts of changes in concentrations of pollutants, phyto- and zooplankton in the Azov Sea 

on 10 – 15% depending on the model problem of water ecology. 
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Введение. Статья посвящена исследованию эффективных численных методов решения зада-

чи эвтрофикации вод мелководного водоема с учетом множества факторов, таких, как дви-

жение водного потока, пространственно-неравномерное распределение температуры и соле-

ности, микротурбулентная диффузия, гравитационное оседание, а также распространение 

загрязняющих биогенных веществ, кислорода, фито- и зоопланктона и др. Объектом модели-

рования выступают мелководные водоемы – Азовское море и Таганрогский залив. 

Материалы и методы. Разработана математическая модель эвтрофикации мелководных во-

доемов. Параллельная реализация выполнена на основе методов декомпозиции сеточных об-
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ластей для вычислительно трудоемких задач диффузии-конвекции, учитывающих архитек-

туру и параметры супер-ЭВМ. Было установлено, что максимальное ускорение достигалось 

на 128 вычислительных узлах и составило 43 раза. При реализации параллельного алгоритма 

решения задачи на МВС для распределения данных между процессорами были разработаны 

два алгоритма, в том числе алгоритм на основе метода k-means, применение которого позво-

лило повысить эффективность алгоритма решения поставленной задачи на 15% по сравне-

нию с алгоритмом, основанном на стандартном разбиении расчетной области. 

Результаты исследования. Разработаны новые математические модели и программное обес-

печение для математического моделирования процессов эвтрофикации мелководных водое-

мов. Рассчитанные при различных ветровых ситуациях концентрации загрязняющих веществ 

и планктона принимались к рассмотрению, если относительная погрешность не превышала 

30%. 

С помощью экспедиционных исследований проведена первичная верификация модели эко-

системы Азовского моря. Реализована задача моделирования и прогноза состояния водной 

экосистемы Азовского моря в условиях антропогенного воздействия и всестороннего изуче-

ния уникального водного объекта, который в силу мелководности в большей степени под-

вержен антропогенному влиянию.  

Создан программный комплекс, объединяющий разработанные математические модели и 

базы данных, с помощью которого изучены условия, при которых мелководные водоемы 

подвергаются эвтрофитрованию.  

Обсуждение и заключения. Решение поставленной задачи водной экологии позволит прогно-

зировать возможные сценарии изменения качества вод мелководных водоемов, а также изу-

чать механизмы формирования в них зон с пониженным содержанием кислорода. 

Ключевые слова: математическое моделирование, эвтрофикация, метод минимальных по-

правок, параллельные вычисления, супер-ЭВМ. 
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