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Introduction. The paper is devoted to research of the wave processes with free boundary based on the
finite-difference method.

Materials and methods. A mathematical model describing the dynamics of distribution of wave
fluctuation was proposed on the basis of heterogeneous wave equation with the appropriate initial and
boundary conditions. Discretization of the model was conducted using the integro-interpolation
method taking into account the partial "filling" of computational cells. The adaptive modified
alternating triangular iterative method of variational type with the highest rate of convergence in the
class of two-layer iterative methods for solving the developed difference equations.

Results. The developed discrete mathematical model for numerical simulation of wave propagation.
The results of numerical experiments were obtained. The developed numerical algorithms and their
computer implementation were used to research the dynamics of distribution of wave processes in the
presence of the free boundary.

Discussion and conclusions. The obtained results can be used for research of the dynamics of
distribution of the wave processes with a free boundary and controlling in conducting experimental
researches, evaluation and diagnosis, etc.

Keywords: wave oscillations, grid equations, adaptive modified alternating triangular iterative
method.

Introduction. The improving of monitoring systems and increasing of detailing the
experimental information lead to the need of the consideration of wave fields with more precision at
present. Despite the large number of studies in this direction, the problem of mathematical modeling of
the distribution of wave distribution is relevant because of the wide diversity of problems, the specifics
of which should be considered in the development of methods and algorithms for constructing
numerical solutions and their computer implementation. Methods of mathematical modeling using
high-performance computers are the most effective approach for obtaining information about research
processes. Theoretical and experimental researchers of these phenomena are limited to methodological
and technical difficulties.

Traditional methods, used at modeling processes of wave distribution, are the following:
asymptotic (radial) methods; integral methods (based on the Huygens' principle); direct numerical
methods.

It should be noted that the characteristic feature of radial methods (method of zero radial
approximation, matrix methods, and methods of the generalized ray) is to research a limited part of the
wave field. The wave field is represented as sum of waves, which are distributed with the local
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velocity along the ray trajectories imposed by law of Snellius. The amplitude of these waves is
determined by the geometric divergence of rays in the path from source to receiver. In Haskell-
Thomson matrix method and it’s modifications, the problem is investigated in the frequency domain:
when a set of frequencies solve the system of Helmholtz equations is solved with a further shift in the
time domain at a certain set of frequencies.

We can calculate the total wave field using direct numerical methods for solving the wave
equation. The modeling of total wave field is performed at solving differential equations of wave
motion. The wave field is calculated at a set of nearby discrete grid nodes by approximation of
derivatives by finite differences and recursive solution of differential equation.

The purpose of this paper is mathematical modeling and development of the software complex,
implemented the model and intended to describe the distribution of wave fluctuations with free
boundary based on the finite-difference method.

The following problems were solved in accordance with the purpose of this paper:

— the discrete model taking into account the fullness of computational cells was developed
which guaranteed the implementation of the basic conservation laws at the discrete level;

— the dependence of the approximation error from step of temporary variable was researched;

— the conditions of stability of three-layer difference schemes were obtained;

— the optimal values for the weight parameter of three-layer difference schemes were
calculated;

— the variant of adaptive modified alternating triangular iterative method of variational type
(MATM), which has the best rate of convergence, was developed;

— the software complex for modeling the distribution of oscillatory processes with a free
boundary was designed.

Materials and methods. Problem statement. We must solve the heterogeneous wave

equation [1-3]: py =c’Ap+ f with the following initial conditions:
P Y,0) =@ (X% y), p(X%Y.0)=¢(xY)
And boundary conditions:
— on the solid boundary: p(x,y,t)=0, (x,y)e7,

— on the soft boundary: p;(x,y,t)=0, (x,y)e7,

— on the free boundary: p; =cp;, (X,y) €7,
where n is the internal surface normal.

The computational domain is inscribed in a rectangle and covered by a uniform computational
grid  o=oxo,xo,: o, ={t"=nh,0<n<N,I,=hN} o ={x=ih,0<i<N_,I| =hN}

o, ={y; = jh,,0< j<N, -1l =h (N, —1}}, where I, j, n —are indexes by the time and spatial

directions Ox, Oy, accordingly; hy, hy, hy are steps by time and spatial coordinate directions; N;, Ny, Ny
is the number of nodes by the time variable and spatial coordinate directions; I, Iy, Iy is the length of
computational domain by the time variable and spatial coordinate directions.

Discrete model. The approximation of model equations was performed on rectangular grids
using the modification of integro-interpolation method [4, 5] that takes into account “filling” of
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computational cells. So, we can dynamically vary the discrete computational domain without
transforming the grid, i.e. without additional computational costs [6, 7].

The approximation of operator of the second differential derivative has the form:

!
Ci+l,j -G —C

i, G —Cij
(qo)i,j (:uc;) « = (ql)i,j Hia, Tj_(qZ )i,j Hiyz, | JTIJ_

axci '+ﬂx - -
—\(a), (), |4 —2—,i=12,..,N, -1, j=12,..,N, -1,
] ] h

X

in the case of third order boundary condition u; (X, y,t)=au+ S.

“Filling” coefficients of control domain ¢, M= 0,4 can be calculated by formulas:

(q ) S, <CI) 010,110,110 (q) 01, T 051
m i S ! 0 ij 4 ! 1 i, ] 2 ’

m

0 T0ja _01,ju 10 ja 0T 0
(qz)i j _T’( 3)i,j _f’ ( 4')i,j _T
o, ; — the “filling” of cell (,j),i=01..,N, -1, j=01,.., N, -1.

The location of the nodes relative to cells is shown in Fig. 1.

We used the integro-interpolation method for obtaining the discrete model. The difference
scheme, approximated the wave equation, is in the form:

n+1 n n-1 = = —= — — —
pi,j _2pi,j + pi,j =CZ pi+1,j _2pi|j + pi—l,j +C2 pi,j+1_2pi,j + pi,j—l

v b A

i1=12,.,N, -1, j=12,..,N, -1,

n=01..,N, -1,

where P, ; =o,p;" +(1-0,-0,) p; +0,p;" are weights of scheme.
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Fig. 1. Location of nodes relative to cells

Discrete analog of wave equation with boundary conditions in the Dirichlet’s form (p=0) is
following:

pinJ'r1 —2 pin' + pinTl n . §i+ j _Zﬁi it ﬁi— j
htzj 0o, j ’;\2 =0 ) +C° mln(ql,i.j'qz,i,j) = 2 =l

h2
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C e o
+e2min (g, .G, ) et ﬁ;”p'l‘l n=0%..,N,~-1,i=12..,N, -1, j=12,..,N, 1.

Discrete analog of wave equation with boundary conditions in the Neumann’s form (p '=0) is

following:
p|n-j+l _2p| i + p| j 2 p|+1] pl i 2 ﬁi,j - ﬁi—l,j 2 ﬁi,j+l - ﬁi,j
qO,i =C ql,i,' —> ¢ q2,i,' — t¢C q3,i,' - 2
i htz J hf J hf J hj
2 p pl j-1 -
—C q4yilh—+q0,jf,1, n=01..,N,-1,i=12,.. -1, j=12,.,N -1
y

The condition of free boundary for problem of distribution of wave fluctuations takes the form:

n+l D..—D .
p|J pl] =C pH'le pI’J , i:01 j:l,z,...,Ny_la
h h,
n+el D.. —D.
pIJ pl] =C pI'J+1 p|vJ ’ j=01 i:112!""NX _1
h h,

Discrete model research. We analyzed the wave equation c; :div(ygrad (c)) with initial

conditions ¢|_, =¢,, ¢|_, =¢;.
Approximation of problem by spatial variables can be defined in the form: ¢ =—Ac wu

Cq = Z(,uc ) where r is a space dimension.

1=1
The analytical solution in the basis, composed of eigenvectors, has the form:

c= ZaX,, AX; = AX;; a,ocos(J_t)+TS|n(J_t)

Symmetric scheme for the wave problem takes the form:

n+l n n-1
o 20 tap ~Aoo" =4 (1-20) o — Aoo™, 21,

T
_n+1_ .n a
a| 2a| __:_ﬂﬁo-a _21(1/2_0_)aln’ n:0
T T

Numerical solution is corresponded to the following: «" = Acos(ng) + Bsin(ng),

where cosp=k/2, k=2-47z"/(1+ Ao7?).
The stability condition of difference scheme taking into account the estimation of the maximum

condition number A, <4ru/h* has the form: 7 <h((1-4c) ry)_ﬂz.

Numerical solution is represented in the form:
AT%12 j

) N ;. - n — _
a =a,cos((p/ )t )+\/i, (1+/1I(;_1/4)T2)sm((¢/r)t ), (o—arccos[l—“ﬂ/lmz

The approximation error of the fluctuation frequency is following:
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: At 1 | acti2 Y

arccos| 1— -~ /22 L [ LELLS +0(z°)
p 1+ Aot 1+ Aot 62 1+ Aot 1-120 , , 4

— - =1+ At +O(r).

TJZ‘ TJZ- TJZ- 24
According to the obtained estimation, we concluded that the fluctuation frequencies are slightly
differed from the actual values and depend on the time step related to the wave period and weight in
computing the distribution of oscillatory processes on the basis of differential methods.

The dependence of approximation error of the fluctuation frequency ¢/ r\//?_,, -1 from T\/Z, is

shown in Fig. 2. This parameter describes the time step, referred to the wave period; the unit interval is
corresponded to the 1/2x of wave period.
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Fig. 2. The dependence of approximation error of the fluctuation frequency from parameter describing
the time step, referred to the wave period

2
We considered the function f (y,o)=(1/ y)arccos[l— y lzzj—l, where y:rﬁsl.

1+oy

The dependence of the function f on y is shown in the Fig. 3.
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Fig. 3. The dependence of the function fony

Optimal values from the point of view of preserving values of the frequency of distribution of
oscillatory processes depended on the constraints to the y and deviation of the fluctuation frequency

from the actual values max(f) are given in Table 1.
Table 1
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Deviation of the fluctuation frequency from the actual values
depended on the weight of the scheme

Value of weight parameter ¢ | Constraints to they | Value of f,%
1 0.08375 0.34667 0.0005198
2 0.084 0.43794 0.001329
3 0.0842042 0.5 0.002266
4 0.0845 0.57782 0.004061
5 0.085 0.68882 0.008268
6 0.08531575 0.75 0.01168
7 0.0855 0.78332 0.01394
8 0.086 0.86674 0.02107
9 0.0865 0.94204 0.02964
10 0.0869172 1 0.0379

The approximation error of the second derivative differential operator based on schemes
of the second and fourth order accuracy. Difference schemes of the second and fourth order
accuracy were obtained in paper [9].

The scheme of the second order of accuracy: a, (r)=1-2(1-cos(z/r))/(z/r)".

The scheme of the fourth order of accuracy:

a,(r)=1-(15-16cos(z/r)+cos(2z/r))/6(z /).

The value r describes the number of nodes for the half of wave period (for a description of the
object). Based on the obtained estimations we can calculate numerical values of winnings in
computational time using schemes of high order of accuracy.

The dependence of approximation error of the second derivative operator for schemes of
second and fourth order of accuracy are shown in Fig. 4.
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Fig. 4. The dependence of approximation error of the second derivative operator: 1 — schemes
of fourth order of accuracy, 2 — schemes of second order of accuracy
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Modified alternating triangular iterative method for calculating grid equations with non-
self-adjoint operator. Using schemes taking into account the “filling” of control domains requires the
implementation of the modified variant of alternating triangular iterative method [5-8, 10]. This
method has the quality evaluation of convergence rate and is effective for solving problems on grids
taking into account the complex geometry of researching objects. At present the modified alternating
triangular iterative method (MATM) is widely used at solving problems of aero-hydrodynamics and
transport of bottom materials [11-16].

We use the implicit iterative process for the solution of grid equations [5, 7-9]:

m+1 m
B X L A"=f, B:HH,
T
where 4 is the linear, positive definite operator; m is an iteration number; t>0 is an iterative parameter;
B is some conversion operator. Note that the conversion of the operator B should be significantly
easier than the direct conversion of the source operator A. We assume the additive decomposition of

the operator A in the construction of operator B:
A =(A+A)/2=R+R, R =R, A=(A-A")/2.
The operator-stabilizer is defined as follows:
B=(D+wR)D*'(D+wR,), D=D">0, ®>0,yeH,
where D is some operator.

(Dwm,w’“)

Erp— — where w™ is the correction vector.
(DRW™, R,W")

The value ® is minimal at a)\/

Iteration parameters for MATM of minimal corrections are defined by the formula:
(Awm,wm)

Tma = -1 m m)’

(B AW", Aw")

The algorithm of the modified alternating triangular iterative method of minimal corrections is

in the form:
:J (Dw",w") - (A)w”‘,w"‘)2

Bw" =Ax"—-f, m=0,1,...

r"=Ax"—f, Blo,W"=r", &

(D 'RW", Rw")" (B*AW", Aw")(Bw",w")’

km=(BlA1W:’A&W:),em=[1— S K ] /(l+km(1—sm2)), —— (I%W:’Wm)m ,
(B AW, Aw") (1+k,) (B*AW", AW")

m+1 m
=X —

m o~
X Tm+1W ’ wm+1 - a)m'

The estimation of convergence rate of this method is in the form:

, v*:v( k+1+\/E)2,

n+1

z

v -1
<—=|z"

v+l
(B_lA&a)m, A&a)m)
(B A", A"

where v is the condition number of the matrix Cy at k = <1.
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The additional apriory information about initial problem is the important at this approach. This
information for MATM method is associated with the estimations o and A4:

1 A
D<=A, RD'R,<=A.
5'% RD™R, 4'%

The estimation of the condition number is the following: vsl(u \/EJJ*JE e=S
2 §) 2¢ A

Software implementation. The developed software complex for calculating the distribution of
oscillatory processes with a free boundary consist of the following units: initial data input unit;
geometry calculation unit; unit for calculation coefficients of grid equations; unit for calculation
functions of right parts of grid equations; transition unit for a coarser grid; unit for calculation grid
equations using the modified alternating triangular method; calculation unit for computational
window; unit of account of boundary conditions; output unit of computing pressure functions; output
unit of spectrum; unit of calculating phase; unit of calculating the phase gradient; calculating
orientation unit; output orientation unit.

Results. The developed numerical algorithms and software complex that implements them
were used for research of the dynamics of wave processes distribution in the presence of a free boundary.

The dynamics of wave processes distribution in the presence of a free boundary is given in Fig.
5. The bottom and left boundary are free, the top and right boundary are solid.

Fig. 5. Distribution of wave processes with free boundary
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Discussion and conclusions. The paper covered the research of wave fluctuations and
development software complex designed for describing wave radiation processes with a free boundary.
The proposed mathematical model is based on the heterogeneous wave equation with appropriate
initial and boundary conditions. The grid method was used for solving problem. The discrete model
was constructed using the integro-interpolation method taking into account the “filling” of
computational cells which guaranteed the performing the basic conservation laws (for flux of the
electric field and the circulation of magnetic field) on the discrete level. Optimal values of weight
parameters were calculated.

The obtained grid equations were solved using the adaptive modified alternating triangular
iterative method of variational type that has the quality evaluation of convergence rate in the class of
two-layer iterative methods. The software complex for modeling distribution of electromagnetic waves
in waveguides with the complex geometry was designed on the basis of developed parallel algorithms
for adaptive MATM. The developed numerical algorithms and software complex implemented of them
were used for researching the dynamics of wave processes distribution with the free boundary.
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Ceepo-Kaskasckuii penepanbHbiii yHuBepeuret, I. CraBponouns, Poccuiickas @eneparys

Bseoenue. CtaTbs TOCBsIEHA MCCICIOBAHUIO IPOLIECCa BOJHOBBIX KOJeOaHWH M pazpaboTke
KOMITIEKCa MPOrpaMM, HpPEeJIHA3HAYCHHOTO Ui ONMHMCAaHHs PaclpOCTPAHEHHsS BOJHOBBIX IPOIECCOB.
Llenbro HacToAIIEH PabOTHI ABISIETCS MAaTEMAaTHUECKOE MOJEIMPOBAHHUE U pa3pabOTKa peaan3yroIero
MOJIeTIb, KOMILIEKCa NpOrpaMM, MpPEAHA3HAUYEHHOTO JUIs OINMCAHUS PACIPOCTPAHEHHS BOJIHOBBIX
Kose0aHuil co cBOOOAHOM I'paHUIIEN Ha OCHOBE KOHEUHO-PAa3HOCTHOTO METO/1a.
Mamepuanet u memoowvr. IlpemyokeHa MareMaTHuecKas MOJENb, OIMCHIBAIOMIAS JUHAMUKY
pacrpoCTpaHeHHUsT BOJHOBBIX KOJICOaHWI, B OCHOBE KOTOPOH JICKHT HEOJHOPOIHOE BOJIHOBOE
ypaBHEHHUE C COOTBETCTBYIOIIMMH HAyaJbHBIMH M IPAaHUYHBIMU YCIOBHUSAMHU. J{MCKpeTH3anus MOJEIN
MMpOBCACHA HHTCIPO-UHTCPIIOJIIIUOHHBIM MCTOAOM, IIPpHU 3TOM PCAJIM30BaH IMOAXO, yLII/ITI)IBaIOHII/Iﬁ
YACTHYHYIO «3aIllOJJHEHHOCTb» PAcUeTHBIX sueek. /i penieHus, mojJy4eHHBIX CETOYHbBIX ypaBHEHHN
NPUMEHEH aJalTUBHBI MOAMGHUIMPOBAHHBIA MONEPEMEHHO-TPEYTOJIBHBIN HTEPAIMOHHBIA METO.
BapHAallIOHHOTO THIIA, UMEIOIINKA Hanbosee BHICOKYIO CKOPOCTh CXOAMMOCTH B KJlacce ABYXCIIOMHBIX
UTEPALMOHHBIX METO/IOB.
Pesynomamur uccnedosanus. Pa3paboTaHbl MaTeMaTH4ecKas MOJIENIb U MPOrpaMMHOE oOecIieueHue
IUIS. YMCIICHHOTO MOJICIUPOBAHUSI PACIpPOCTPAaHEHUs] BOJH. [IpuBeneHbI pe3yiabTaThl YHCICHHBIX
OKCIICPUMCHTOB. PaSpa60TaHHI)IC YHUCJICHHBIC aJITOPUTMbI W HUX KOMIIBIOTCpHAA pcain3alunsi
UCTIOJIB30BAHBI ISl HCCIICAOBAaHUS JUHAMHUKH PAacIPOCTPAHEHUST BOJHOBBIX IMPOIIECCOB MPU HATHYHU
CBOOOJTHOM TPAHUIIBI.
Obcyacoenue u saxaroyenus. IlomydeHHbIE pe3yinbTaThl MOTYT OBITH HCIOJB30BaHbI B IPOIECCEe
HCCIICAOBaHUA OWHAMHUKU PACIPOCTPAHCHUS BOJIHOBBIX TIIPOLNECCOB IIPpHU HaJIW4YUHU CBO60]1HOI>1
TPaHUIIBl, KOHTPOJIS P MPOBEICHUH IKCIIEPUMEHTAIBHBIX UCCIEJOBAHUN H T.II.

Knwoueevte cnosa:  BOTHOBBIE — KONeOaHWs, CETOYHBIE  YpPaBHEHHWs,  aJlalTHBHBINA
MO (DUIIPOBAHHBIH MONIEPEMEHHO-TPEYTOJIBLHBIN HTEPAIIMOHHBIA METO/
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TexHonorun» Cepepo-KaBka3ckoro rocyapcTBEHHOTO TEXHUYECKOTO YHUBEPCUTETA

(PD, 355029, r. CraBponons, mpoci. Kymnakosa, 2),

KaHIuIaT PU3MKO-MaTeMaTHUECKUX HaYK.

"PaBoTa BbInoNHEHa npu (puHaHCcOBOU noamepkke PODU 1o npoekram Ne 15-01-08619, Ne 15-07-08626.
Astopsl; e-mail: eapros@rambler.ru, teflena@mail.ru, cheese 05@mail.ru
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