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The article studies the possibility of usage of energy-efficient Epiphany microprocessor for 

solving actual applied problem of face detection at still image. The microprocessor is a multicore 

system with distributed memory, implemented in a single chip. Due to small die area, the micropro-

cessor has significant hardware limitations (in particular it has only 32 kilobytes of memory per 

core) which limit the range of usable algorithms and complicate their software implementation. 

Common face-detection algorithm based on local binary patterns (LBP) and cascading classifier 

was adapted for parallel implementation. It is shown that Epiphany microprocessor having 16 cores 

can outperform single-core CPU of personal computer having the same clock rate by a factor of 2.5, 

while consuming only 0.5 watts of electric power. 

Keywords: face detection, local binary patterns, parallel data processing, specialized processors, 

distributed memory 

Introduction 

Development of processor manufacturing technologies led to widespread use of multicore micro-

processors, particularly in mobile devices. Typical multicore processor from the point of view of 

application programming is shared-memory system, but its low-level architecture is distributed-

memory system – each core has its own cache, caches of individual cores are synchronized using 

some cache coherence protocol [1, 2]. This approach simplifies software development but signifi-

cantly complicates the processor, increasing required die area and power consumption. In addition, 

possible efficiency of processor usage is reduced; With proper programming, you can get more per-

formance from distributed-memory system than from “simulated” shared-memory system [3]. 

The energy-efficient Epiphany microprocessor by Adapteva is an example of another approach: 

each core has a small memory that is explicitly controlled by application program. The cores are 

interconnected with on-chip data-transfer networks. 

The purpose of this article is to demonstrate the possibility of efficient usage of Epiphany micro-

processors to solve an actual application problem – detection of faces in an image. It will be 

demonstrated that Epiphany microprocessor having 16 cores can overtake the performance of sin-

gle-core processor of personal computer of the same clock frequency by 2.5 times, while consum-

ing only 0.5 watts of electrical power. 

The program code described in the article is available on the project page on the Internet [4]. 
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Epiphany architecture 

Multi-core Epiphany microprocessors are IP (intellectual property) blocks designed for system-on-

chip development. The block can be configured for a number of cores from 1 to 4096. Typical clock 

frequency is 1 GHz, kernel memory size is 32 or 64 kilobytes. In addition, it is possible to add up to 

2 gigabytes of external memory. The microprocessor is optimized to reduce power consumption 

and required die area: single core has die area of 0.3 mm
2
 and power consumption of only 14 mW 

at 1 GFLOPS performance. 

The Epiphany architecture is actively improved, so the characteristics of current microprocessor 

instances may differ from those given above. 

The small amount of per-core memory and the lack of virtual memory support do not allow running 

popular operating systems on the Epiphany microprocessors, so the microprocessor is positioned as 

computational accelerator for mobile applications, or as central processing unit for a device that 

does not have an operating system. 

Test samples of Epiphany microprocessors are available in the form of ready-to-use Parallela mod-

ules [5], which are ARM computers having the dimensions of credit card. In this module, Epiphany 

is installed as an additional processor, so we will refer to it as coprocessor. Each Epiphany core has: 

 32 or 64 kilobytes of local memory divided into banks of 8 kilobytes; Each bank can serve only 

one consumer per clock cycle. 

 An arithmetic and logic unit capable of performing operations on 32-bit numbers (integer or 

floating point) per clock cycle. 

 64 general purpose registers. 

 Dual-channel direct memory access (DMA) controller capable of issuing data-transfer com-

mands. 

 2 timers for counting various events (for example, coprocessor cycles). 

 Interrupt controller, allowing to install event handlers. 

 Data transfer controller (router for network-on-chip). 

The memory of all cores is logically combined into a single 32-bit address space, which allows 

software to uniformly transfer data between any memory cells of any pair of cores. The address 

space also includes external memory and registers of all cores. Uniform address space allows a ker-

nel to execute not only “its” code, but also the code located in the memory of another kernel or even 

in external memory. 

Physically cores form two-dimensional array and connected by a low-latency mesh network-on-

chip. The network consists of three separate mesh structures, each serving different types of traffic: 

 Write network is used for write transactions. It transfers packets containing address and data. 

When a packet reaches the target core, the data is written to the required memory locations or 

registers. 

 Read network is used for all read requests. The network transfers packets containing the address 

of data to be read and the address where the data should be stored. Such packets are routed to 

the kernel containing the read address. When the target is reached, the necessary data is read 

from memory or registers, and a response packet is sent through the write network. An interest-
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ing feature of this approach is the ability to transfer data between two memory addresses exter-

nal to the kernel that issued the command for such transfer. 

 The transit network used for write transactions destined for off-chip resources and for passing-

through transactions destined for another chip in a multi-chip system configuration. The transit 

network allows an array of chips to be connected into a mesh structure without glue logic. Traf-

fic of the transit network does not affect the traffic of other networks, which allows running re-

al-time on-chip tasks in multi-chip configuration. 

Although logically data transfer is possible between any pair of cores, physically data is transferred 

only between adjacent cores horizontally or vertically in a single clock cycle. So, there is no need to 

synchronize phases of clock frequency between cores located far apart on the crystal. Instead, clock 

frequency is propagated in a wave manner from the point of its entry into the crystal, which reduces 

power consumption. 

Data-store instructions are non-blocking and executed in a single clock cycle; There is no confirma-

tion made when data reaches the destination. Routing algorithms ensure that packets are delivered 

to the recipient (including external memory) in the same order in which they were sent by the send-

er (provided that these packets have the same sender). 

In contrast to store instructions, data-load instructions are blocking. Due to the need of a response 

packet transfer, reading from the memory of another core is much slower than writing to the 

memory of another core. 

At the boundaries of the crystal data networks are connected to the electrical terminals of the copro-

cessor. This allows connecting external memory, main processor, and also connecting several co-

processors to a rectangular grid, thereby increasing the number of cores in the address space. 

Application programming of Epiphany coprocessor 

To program the coprocessor an adapted GCC compiler can be used, which accepts source code in 

C language. In a typical usage scenario, each core executes its own code. A binary file intended for 

loading into the coprocessor is an image of the memory of all cores. Since core registers are 

mapped into the address space, this approach allows setting desired initial state for the coprocessor. 

The standard library for C language is present, but its executable code and data structures are locat-

ed in external memory, which means that standard library is slow, and that malloc() and free() func-

tions cannot be used to manage local core memory. Therefore, it is expedient to distribute the 

memory of each core statically using an LDF file (Linker Definition File), which contains instruc-

tions to the linker for layout of program objects. 

The following factors should be considered when programming the coprocessor: 

 Epiphany coprocessor can perform load, store, and arithmetic instructions only with 32-bit val-

ues (integers or floating-point numbers). Operations with other data types (including smaller 

ones) are emulated by the compiler, and therefore require several clock cycles for execution. 

 A non-aligned memory access (the address is not a multiple of the data type) causes the pro-

gram to stop. 
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 At the same time, Epiphany does not have any problems with control logic: calling a function 

and returning from it occur quickly, conditional branches do not cause a serious decrease in per-

formance (they are predicted by the compiler in static mode). 

Considering these peculiarities, it was decided to implement face detection algorithm (the part of it 

that works on the coprocessor) within the following constraints: 

 Images are stored as eight-bit pixels; All other data is stored as 32-bit memory-aligned integers. 

 Only 32-bit integers are used for calculations. 

 Coprocessor instance that we used for testing did not have operations of integer multiplication 

and division, therefore among arithmetic operations it was possible to use only addition, sub-

traction, and bitwise operations. 

As will be shown below, if the algorithm and its implementation are carefully chosen, these limita-

tions do not lead to significant complication or slowing down the executed code. 

Face detection algorithm 

It was decided to adapt one of the several face detection algorithms used in the popular image pro-

cessing library OpenCV [6]. At the moment of project execution, the OpenCV version 2.4.1 was 

actual. The implementation of popular algorithm will allow us to objectively compare the perfor-

mance of the Epiphany processor with other processors which can be used to run OpenCV code. In 

this library, face detection algorithms have the following structure: 

1. Source grayscale image is used to build pyramid consisting of layers (images) of decreasing 

resolution. High-resolution layers are needed to detect faces of small size; Low-resolution layers 

are used to detect large faces. Typical ratio of the sizes of adjacent layers is    . 

2. Each pyramid layer is scanned with a small detection window (for example,       pixels in 

size). Window positions are overlapped during the scan. 

3. For each window position a classifier is executed, which decides whether provided image frag-

ment is a face. To make such decision, the numerical characteristics obtained from the pixels of 

the window are used, which are called features. 

4. The detections are grouped together: window positions that obtained positive classifier respons-

es are grouped according to geometric similarity. Groups that have less than a certain number of 

elements (for example,  ) are discarded. For the remaining groups, average window positions 

are calculated, which are considered as detected faces. 

Most computational time is spent at small faces detection (processing high resolution pyramid lay-

ers), so the minimal size of detected faces should be limited. 

It is noteworthy that algorithms of the described structure have significantly worse accuracy in 

comparison with human vision. The reason for this loss of accuracy is insufficient information in a 

detection window to make face/not face decision; Humans for this task use context – a large amount 

of additional information about the observed scene. For example, human performs overall scene 

recognition which gives scale – approximate sizes of objects (faces) to be searched in each place of 

the image. 
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The main part of face detection algorithm is classifier, which is a statistical mathematical model 

that is parameterized automatically based on a training set, within the framework of a process called 

machine learning [7]. Machine learning is beyond the scope of this article, therefore all classifier 

coefficients mentioned below will be considered known. 

Considering very limited memory capacity of the coprocessor, the most memory efficient algorithm 

was chosen for implementation among face detection algorithms of OpenCV library. This turned 

out to be an algorithm based on LBP-features (Local Binary Patterns [8]). 

The LBP-feature (in the OpenCV implementation) is an integer value from   to     that is calcu-

lated based on rectangular image area (which is part of the detection window): 

   (       )     [       ]     [       ]     [       ]

    [       ]     [       ]

    [       ]     [       ]     [       ]

          ( )  

Here: 

(   ) – coordinates of top-left pixel of rectangular image area for LBP-feature calculation; 

(   )  (     ) – size of the area; 

    ∑ ∑  (             )   
   

   
    – the sum of pixel values over rectangle; 

 (   ) – value of pixel in column   and row  ; 

[   ]  {
         

            
  

The meaning of LBP-feature is simple: the considered rectangle is divided into 3×3 sub-rectangles, 

and the brightness relation (“higher” or “lower”) of eight non-central sub-rectangles to the central 

one is encoded as an eight-bit binary number. It should be noted that LBP-features are used here not 

for histogram generation as in the paper where they were originally introduced [8], but as a re-

placement for Haar-like features often used in face detection algorithms [9]. 

The classifier itself consists of several stages, and is therefore called cascade. Only positive pass of 

all classifier stages means positive classification result (“face detected”). This decision-making pro-

cess allows rejecting most detection windows at early stages. The positive pass of  th
 stage (   

      ) is determined by the following inequality: 
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Here: 

   – the number of features used in  th
 classifier stage; 

  
 
 – the score assigned to the feature   of stage  ; 

  
 
 – the set of “desirable” values of LBP-feature for area (  
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 – the score assigned to the area having “desirable” feature value; 

  
 
   

 
 – the score assigned to the area having “undesirable” feature value; 

   – the score that should be accumulated for positive pass of stage  . 
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All the classifier coefficients are gathered in the following expression: 

    ((  
 
   

 
   

 
   

 
   

 
   

 
   

 
)   )

   

 

               ( )  

The classifier of frontal faces in OpenCV has      stages. At the initial stage   features are cal-

culated, at the last stage there are    features. The total amount of coefficients in expression (3) is 

  kilobytes, but profiling the OpenCV library showed that loaded classifier consumes     kilobytes 

of RAM. This is caused by usage of several memory buffers (storing the stages of the classifier, at-

tributes, weights and other data) that refer to each other using indexes and memory pointers. Also, 

memory consumption was increased by usage of classes with tables of virtual functions, and storage 

of data not needed for the task. 

Software implementation of face detector 

Data structures allocation 

First, it should be decided where classifier data should be stored. The following options were 

worked out: 

 Classifier data in external memory. This is the easiest option for implementation. However, 

since calculations needed for classification (expressions (1) and (2)) are simple enough, and 

reading data from external memory is slow, most of the time coprocessor core will be idle wait-

ing for data to be received. The situation is aggravated by the fact that all the cores require data 

simultaneously, competing for the coprocessor exchange channel with external memory. 

 Classifier stages are distributed among cores. With this approach, each detection window is 

processed by coprocessor cores via a pipeline. However, the processing of most windows is in-

terrupted at the early stages; For the cores to be continuously provided with work, it is required 

that more cores are allocated for the first classifier stages than for the last stages. It requires 

non-trivial synchronization and load balancing (textured areas of the image go through more 

classifier stages than smooth ones), which is difficult to program. 

 A copy of the classifier in each core. This is the most preferable option, since cores can per-

form independent subtasks – classification of different windows. However, we had a coproces-

sor with only    kilobytes of memory per core, and no more than 8 kilobytes remained for stor-

ing the classifier, which is much smaller than the measured amount of data of the OpenCV clas-

sifier (    kilobytes). As will be shown later, we managed to store classifier data in a very 

compact way, that's why this option was chosen for implementation. 

Then we need to determine the way the image pyramid is formed and stored: 

 Only the original image is stored in shared memory. Each core processes a fragment of this 

image (it is called tile), and builds the corresponding part of the pyramid in local memory. Tiles 

must be small enough to fit in local core memory, and should overlap so that possible detections 

at their boundaries are not lost. The problem is that when pyramid layer of lower resolution is 

formed, the overlap width of tiles becomes insufficient; Cores should exchange data, passing 

missing pixels to each other to handle the overlap areas. However, if the entire image cannot be 

fit into the coprocessor, some of the pixels required for processing tile boundaries will be miss-

ing, and it is not clear how these pixels should be calculated. 
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 The whole pyramid is stored in shared memory. First, coprocessor builds pyramid from the 

original image, placing it in shared memory, and then the layers are processed by overlapping 

tiles that are transferred to local memories. This seems to be quite effective, since tile pro-

cessing takes much longer time than is required to transfer the tile to local memory. This ap-

proach was chosen, but the corresponding code did not fit into the memory of the coprocessor 

core, so in final implementation pyramid construction is performed by main processor. 

As a result, the following data structures are located in shared memory (Figure 1): an image pyra-

mid, a job queue (described below) with counters of tasks taken and completed, and classifier data. 

Also in shared memory it is located the counter of the coprocessor cores to be launched. On the 

Epiphany side the counters are protected by mutex. 

 

Fig. 1. Memory allocation diagram. The arrows show data transfers 

The memory of each coprocessor core is distributed as follows (Figure 1): 8 kilobytes is allocated 

for code, 16 kilobytes for copy of the task and the tile being processed, and 8 kilobytes for classifier 

data and the program execution stack. 

Parallel algorithm 

The algorithm of the main processor is following: 

1. Store classifier data to shared memory. 

2. Build image pyramid in shared memory. 

3. Logically divide each pyramid layer into partially overlapping rectangular tiles with dimensions 

of approximately         pixels, and create for each tile a task consisting of tile coordinates 

in the image, tile address in memory, and small buffer for recording the results of face detection 

in the tile. 

4. Set the counter of the cores to be started to a non-zero value and wait for the counter of the 

completed tasks to reach the total number of tasks. 

5. Perform grouping of the detections that are in the tasks queue. 
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The algorithm of the coprocessor core is following (Figure 1): when the counter of cores to be start-

ed becomes nonzero, reduce it by one, copy the classifier data into local memory, and go to the 

task-processing cycle. The task is executed as follows: 

1. The counter of taken tasks is incremented, and the corresponding task is copied to the local core 

memory. When all tasks are taken, the task-processing cycle is completed. 

2. The tile which memory location is specified in the task is copied to local memory. 

3. Faces are detected in the tile. 

4. The results are copied to the shared memory, the counter of the completed tasks is incremented. 

Data transfers between shared memory and a core are performed using the core DMA controller. 

Between the cores is sent only the data needed for the mutex operation (which protects the coun-

ters). 

Image pyramid implementation 

Pyramid with uniform scale step has layers of the following sizes: 

(     )  
(   )

 
 (         )  

(     )

 
                  ( )  

where (   ) – source image size; (     ) – size of pyramid layer  ,     – initial layer scale (de-

termined by minimal required size of face to be detected);     – ratio of sizes of neighboring lay-

ers (typical value is      ). The number of layers is usually increased until at least one detection 

window can be fit into the last (small) layer. 

The image pyramid should have a sufficiently small scale step (the parameter   is close to one) so 

that for any face there is a layer at which the face has size close to the optimal one (the size at 

which the classifier was trained). For pyramid with uniform scale step the maximal possible relative 

difference between size of face to be detected and optimal detectable size is √ . The closer this val-

ue to   the higher the quality of face detection, but the number of pyramid layers (and the amount 

of required computations) also grows. 

Pyramid layer can be obtained by resampling the original image or one of the previously calculated 

layers of larger resolution. To reduce aliasing [10], it is advisable to perform resampling by inte-

grating the pixels of the original image over the area of the pixels of the reduced image (the “Area” 

method in OpenCV terminology). The computational complexity of such procedure is approximate-

ly proportional to the sum of the areas of source and reduced layers. 

To minimize the amount of computations needed to build the pyramid, it is desirable to calculate 

each pyramid layer on the basis of previous layer (the one that has the lowest resolution among al-

ready calculated layers). Unfortunately, this leads to the appearance of moiré pattern [10], ex-

pressed in the form of a wave-like change in image sharpness with a period of  (   )⁄  pixels. 

Moiré itself is an insignificant phenomenon, but it accumulates with sequential resampling of imag-

es, reducing face detection quality. 

Aliasing and moiré problems are solved as follows in OpenCV library: each pyramid layer is built 

independently of the others by scaling the original image using the Area method. As a result, the 

time for constructing the pyramid in OpenCV is        (     ). 
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In our implementation, the pyramid has fixed scale factors and is constructed as follows (Figure 2): 

the original image is divided into blocks of     pixels used to construct reduced blocks of sizes of 

   ,     and     pixels. In one pass three additional layers of the pyramid are obtained, hav-

ing dimensions of   ⁄ ,   ⁄  and   ⁄  of the original. Any next layer having index   is obtained by a 

twofold decrease (by averaging the     pixels blocks) of layer    . 

 
Fig. 2. Proposed scheme of pyramid building. The source image is at top-left 

With this approach, the ratios of neighbouring layer sizes are slightly different (vary from      

to     ), but this does not affect face detection quality. Consecutive 2x size reduction does not lead 

to error accumulation and occurrence of moiré – its period is equal to   pixel. If the minimal size of 

detectable faces should be increased, then some number of high-resolution layers can be skipped at 

detection stage. 

The pyramid-building time of described algorithm is      (   ). Measurements showed that 

OpenCV builds only two pyramid layers in the time required to build the entire pyramid (approxi-

mately    layers) in our implementation. 

LBP-features implementation 

To quickly calculate the sums      in expression (1), OpenCV library uses integral image trans-

form [11]. The sum over any rectangle is calculated via   readings from memory and   arithmetic 

operations. The integral image is calculated in one pass through the pyramid layer and is stored as 

 -byte integer numbers. 

The storage of   bytes per pixel of integral image is not acceptable due to the limited memory of the 

Epiphany coprocessor, however we found a way to efficiently calculate LBP-features without using 

an integral transform. To do this, it suffices to approximate the sums      by four terms (similar to 

numerical integration by the midpoint-rectangles method). Differences in the results of face detec-

tion caused by this approximation are not significant. 

One could leave just one central pixel from each sum, and consider such features as some new 

LBP-features, but this approach requires retraining of the classifier to achieve former accuracy. The 

usefulness of our code is higher if it can use pretrained OpenCV classifiers, so we decided not to 

replace each sum      by single term. 
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Subexpressions of the form    [       ] from the expression (1) in OpenCV are implemented 

using conditional operators. In our implementation, they are computed by taking the sign bit of the 

difference        , and shifting this bit to the right by the required number of bits, which gives an 

additional performance gain. 

Cascade classifier implementation 

It is required not only to reduce the amount of classifier data, but also to make its structure such that 

executable code is compact and fast. In fact, it is needed to minimize the sum of classifier data and 

the size of executable code that uses this data: together they should be less than 16 kilobytes. 

It was decided to place all classifier data in single memory buffer in the order in which classifier 

uses it. This allowed to get rid of all memory pointers that OpenCV uses for linking different types 

of classifier data. As a result, we came to the classifier architecture resembling virtual machine. 

Classifier data is represented as a sequence of commands; Each command has fixed size and con-

tains the parameters necessary for execution, represented as integers. There are   types of com-

mands: 

 The “feature-calculation” command: calculate LBP-feature, and add its score to the current 

score of the classifier. 

 The “end-of-stage” command: compare the current classifier score with the value written in the 

command. If the current score is less, return “negative detection”, otherwise reset the current 

score. 

 The “stop” command: return “positive detection”. 

To minimize the amount of data contained in “feature-calculation” command, the modifications de-

scribed below were performed. First of all, condition (2) can be rewritten as follows: 

∑  
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In the result, the source set of coefficients (3) is shortened to 
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The largest amount of memory (    bits each) is occupied by sets   
 
 of “desirable” values of LBP-

features (  
 
). These sets can be compressed, but this will lead to a significant slowdown of the de-

tection, so they were left as is. 

The coefficients   
 
 and   

 
 are determined up to an arbitrary factor. The classification results will 

not change if they are scaled to a sufficiently large range (for example, [      ]) and then rounded. 

Therefore, the algorithm (6) can be implemented over integer values. Moreover, we can remove 

unwanted multiplication in expression (6) by observing that [   (  
 
)    

 
]  {   }. In this case, 

the multiplication can be replaced by unary minus and bitwise “AND” operation, since    in two’s 

complement form has all the bits set to one: 

∑  
 

  

   

 ( [   (  
 
)    

 
])    

 
  (  )  

The approach described in this section allowed storing classifier data in a contiguous memory sec-

tion having size of      kilobytes, which is only     more than the total volume of coeffi-

cients (7). This means that the developed data structure has only     of memory overhead. Recall 

that OpenCV requires     kilobytes to store the classifier. 

We should also mention the details of image scanning by detection window. In OpenCV, the first 

few layers are scanned with  -pixel steps in horizontal and vertical directions (a quarter of all the 

possible window positions). At the same time, the remaining layers are scanned densely – with sin-

gle-pixel step. It seems that this approach was implemented to improve performance, but it leads to 

quality decrease of small faces detection (having sizes in range from    to    pixels), as well as 

problems with detections grouping. Because of the different scanning density, the detected groups 

have in average 4x more items at low-resolution layers than at high-resolution layers. Therefore, it 

is not possible to peek a “good” value for the parameter corresponding to the minimum number of 

detections in a group: we get either many false-positive detections of large faces or lots of missed 

small faces. 

In our implementation, the detection window on all pyramid layers passes through the pixels in ac-

cordance to “checkerboard” pattern (the upper-left corner of the window passes half the pixels). As 

a result, in our approach     more window positions are classified than in OpenCV. This leads to 

better detection results (both due to larger number of windows, and due to their uniform distribution 

over the layers). 

Results 

Despite the fact that the code written for Epiphany coprocessor can run almost unchanged on “regu-

lar” processor, for comparison with OpenCV it has sense to make simplified version of the code 

intended only for CPU. This simplified version does not have tasks queue, tiles, and data-transfers. 

When running on the central processor, the simplified code runs a little faster than the full code, and 

consumes less memory. 
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Measurements were made on images of different resolutions with faces of different sizes. The re-

sults and relationships observed in all cases were similar, therefore only single image is considered 

below. 

In Figure 3 it is presented the result of faces detection in an image with dimensions of      

     pixels. The results of OpenCV library are shown by squares, the results of our implementa-

tion are shown by circles. Our implementation found more faces due to the abovementioned denser 

scanning of high-resolution layers. When detecting large faces (48 pixels or more), our results are 

almost identical to OpenCV. 

 

Fig. 3. Fragment of image with results of face detection (the whole input image is shown at top-left).  

Rectangles are OpenCV results, circles are results of our implementation 

Let's compare the amount of required memory in both implementations. Profiling showed that our 

implementation when processing the mentioned image required     megabytes of additional 

memory, at the same time, OpenCV required more than     megabytes. We come to the conclusion 

that the presented implementation consumes about     times less RAM than OpenCV library. 

The image processing time for OpenCV and our implementation turned out to be approximately the 

same –     seconds on an Intel Core I7 processor (  cores,   threads, clock speed     GHz). Given 

that our detector checks for     more windows, we can conclude that our implementation is about 

    faster than OpenCV (the pyramid construction time is a small part of the detection time), or it 

provides better detection accuracy at the same computational time. 

Let's proceed to the experiments with Epiphany. We worked with a prototype system containing the 

central processor AMD E-350 (  cores, clock frequency     MHz), and the early version of the 

Epiphany coprocessor, which has 16 cores and a clock frequency of     MHz. 

Experiment 1: Face detection at single coprocessor core. Pyramid building at central processor 

took       seconds. Face detection time measured on the coprocessor is       seconds (this does 

not include the time of synchronization and data transfer). The total running time of the algorithm, 

measured on the central processor:       seconds. 
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Experiment 2: Face detection at    coprocessor cores. Pyramid building at central processor took 

      seconds; Face detection time measured on the coprocessor cores (without synchronization 

time and data transfer):     seconds. The total detection time measured on the central processor is 

     seconds. 

Experiment 3: Face detection at single core of central processor. Almost the same code is used as 

for Epiphany, all calculations are carried out in the memory of central processor. Time to build the 

pyramid:       seconds. Total face detection time:      seconds. 

The following conclusions can be drawn from executed experiments: 

 Synchronization and data transfer between shared memory and coprocessor takes      of the 

total detection time in first experiment, and      of the time in second experiment. The in-

crease of overhead is expected, since the amount of transferred data is the same, but the total de-

tection time is reduced. 

 Parallel efficiency of the code running on    cores is      . This is a high value, meaning that 

usage of all    coprocessor cores is practical for face detection. 

 From the data of third experiment it follows that computational complexity of pyramid building 

is about      of the complexity of the entire algorithm, so taking this task out to the central 

processor does not significantly affect the total running time. 

 We should not conclude from the second and third experiments that the coprocessor is not worth 

to be used, because, firstly, we had a coprocessor with reduced clock speed, and, secondly, the 

AMD E-350 consumes much more energy. For an adequate comparison, it is necessary to take 

into account the difference in clock frequencies, as well as die areas and power consumption. 

We get that the Epiphany core with a clock speed of     MHz is about   times slower on this 

task than the core of AMD E-350. This is a good indicator, considering that the Epiphany core 

has die area of     mm
2
 and a power consumption of    mW, and the core of the AMD E-350 

has die area of    mm
2
 and a power consumption of   watts. 

Conclusion 

The Epiphany microprocessor has architecture suitable for a wide range of tasks. It is optimized to 

reduce power consumption, so it has prospects for use in mobile phones and tablet computers. 

The presence of uniform memory addressing makes it possible to implement parallel algorithms 

with different data transfer schemes, being within the C programming model. 

In addition to these advantages, the microprocessor has drawbacks, primarily associated with small 

amount of memory in each of its cores, and a limited amount of supported arithmetic operations. 

These features make it impossible to effectively use codes developed for other processors; one need 

to rewrite the code carefully thinking through data structures, their location in memory, and their 

transfer between different memories. 

Despite these difficulties, we managed to develop and implement an efficient face detection algo-

rithm that is compatible in terms of classifier data with face detection algorithm from a popular 

software library OpenCV. It was demonstrated the feasibility of parallel implementation (speeding 

up the detection) and its high efficiency when executed at 16 Epiphany cores. 



COMPUTATIONAL  MATHEMATICS  AND  INFORMATION  TECHNOLOGIES № 1 / 2017   

  
 

126 

 

References 

1. Papamarcos, M.S., Patel, J.H. A low-overhead coherence solution for multiproces-

sors with private cache memories. Proceedings of the 11
th

 annual international symposium on Com-

puter architecture ISCA’84, 1984, pp. 348-354. 

2. Archibald, J., Baer, J. Cache Coherence Protocols: Evaluation Using a Multiproces-

sor Simulation Model. ACM Trans. on Computer Systems, 1986, vol. 4, no. 4, pp. 273-298. 

3. Baumann, A., Barham, P., Dagand, P.-E., Harris, T., Isaacs, R., Peter, S., Roscoe, T., 

Sch pbach, A., Singhania, A. The Multikernel: A New OS Architecture for Scalable Multicore Sys-

tems. Proceedings of the 22
nd

 ACM Symposium on OS Principles (Big Sky, MT, USA), 2009, 

pp. 29-44. 

4. Face Detection using the Epiphany Multicore Processor. Available 

at: http://www.adapteva. com/white-papers/face-detection-using-the-epiphany-multicore-processor/ 

5. Parallela – Supercomputing for Everyone. Available at: http://www.parallella.org/ 

6. OpenCV. Available at: http://opencv.org/ 

7. Abu-Mostafa, Y.S., Magdon-Ismail, M., Lin, H.-T. Learning from Data. AMLBook, 

2012, 213 p. 

8. Ojala, T., Pietik inen, M., Harwood D. Performance Evaluation of Texture Measures 

with Classification Based on Kullback Discrimination of Distributions. Proceedings of the 12
th

 

IAPR International Conference on Pattern Recognition (ICPR 1994), 1994, vol. 1, pp. 582-585. 

9. Viola, P., Jones, M. Rapid Object Detection Using a Boosted Cascade of Simple 

Features. Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 511-518. 

10. Mitchell, D.P., Netravali, A.N. Reconstruction Filters in Computer-Graphics. ACM 

SIGGRAPH International Conference on Computer Graphics and Interactive Techniques, 1988, 

vol. 22, no. 4, pp. 221-228. 

11. Crow, F.C. Summed-Area Tables for Texture Mapping. Proceedings of the 11
th

 an-

nual conference on Computer graphics and interactive techniques, 1984, pp. 207-212. 

 

Authors: 

Sukhinov Anton A., Candidate of Sciences in Physics and Mathematics 

Developer UAB “Pixelmator Team” (Lithuania, Vilnius, J. Kubiliaus g. 6-1, LT-08234) 

Ostrobrod Georgiy B., Senior Developer 

CVisionLab LLC (Russia, Taganrog, Severnaya Ploshchad 3, office 5, 347900) 

 

 

 

 

 

 



COMPUTATIONAL  MATHEMATICS  AND  INFORMATION  TECHNOLOGIES № 1 / 2017   

  
 

127 

 

 

УДК 004.93'1, 004.272.23, 004.258, 004.272.45 

Эффективная детекция лиц на многоядерном процессоре Epiphany

 

А. А. Сухинов
1

, Г. Б. Остроброд 
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UAB “Pixelmator Team” Вильнюс, Литва 

2
 ООО «СиВижинЛаб», г. Таганрог, РФ 

 

В статье рассматривается возможность использования энергоэффективного микропроцессо-

ра Epiphany для решения актуальной прикладной задачи — детекции лиц на изображении. 

Этот микропроцессор представляет собой многоядерную вычислительную систему с распре-

деленной памятью, выполненную на одном кристалле. Из-за малой площади кристалла мик-

ропроцессор обладает существенными аппаратными ограничениями (в частности, он имеет 

всего 32 килобайта памяти на ядро), которые ограничивают выбор алгоритма и затрудняют 

его программную реализацию. Для детекции лиц адаптирован известный алгоритм, основан-

ный на каскадном классификаторе, использующем LBP-признаки (Local Binary Patterns). По-

казано, что микропроцессор Epiphany, имеющий 16 ядер, может на этой задаче в 2,5 раза 

обогнать одноядерный процессор персонального компьютера той же тактовой частоты, при 

этом потребляя лишь 0,5 ватта электрической мощности. 

Ключевые слова: детекция лиц, локальные бинарные шаблоны, параллельная обра-

ботка данных, специализированные микропроцессоры, распределенная память. 
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