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Algorithms for solving the Navier-Stokes equations on a three-dimensional tetrahedral grid 

by the discontinuous Galerkin method were realized. Under the code development a new approach to 

programming problems of mathematical physics was used which allows one compactly write and 

effectively implement mathematical expressions in particular due to introduction of the concept of 

«grid operator» similar to mathematical one and uniformly realize algorithms for various grid types 

and computing architectures. The efficiency of this numerical code is investigated.  
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Introduction. At present, numerical methods of high accuracy must be used to solve a number 

of applied problems of mathematical physics. This is especially true for solving complex, multiscale 

problems, in which it is not enough to obtain a solution by grinding the mesh and methods of the first 

order of accuracy. An example of a method providing high accuracy is the Discontinuous Galerkin 

Method (DGM) [1], which has proved itself to solve a wide class of problems in mathematical 

physics. This method has a number of advantages inherent in both finite-element and finite-difference 

approximations. In particular, it provides a given order of accuracy, can be used for grids of arbitrary 

structure and is theoretically justified [1-5]. Discontinuous Galerkin Method, with all its merits, has 

a significant computational complexity, so the question of maximizing the use of all the possibilities 

of modern computer technology is very acute. The dynamics of the development of high-performance 

computing technology dictates the creation of software complexes that are relatively easily adaptable 

for work on various hybrid parallel architectures. For this purpose, when creating calculation 

modules, it is necessary to use new approaches to programming. When creating programs based on 

numerical methods of high accuracy, such as RMG, it is necessary to use the new capabilities of 

modern programming languages. Thus, with the advent of templates in new versions of the C ++ 

language, it became possible to reduce the amount of computation by transferring some of the 

computation to the compilation stage and, as a consequence, accelerating the computations. In 

addition, template metaprogramming makes it possible to simplify the algorithm due to its 

generalization [6]. 
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1. Structure of the program code DG3D. Let's consider the three-dimensional Navier-

Stokes equation, written in a strong conservative form and supplemented by suitable initial-boundary 

conditions. ( )
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where U  – the vector of conservative variables, ( ), ( , )F U G U τ  - the functions of the inviscid and 

viscous flow, respectively, v  −  the velocity vector, µ −  dynamic viscosity coefficient, λ − bulk 

viscosity, τ − the tensor of viscous stresses. 

We assume that the liquid obeys arbitrary equations of state. 

To apply the discontinuous Galerkin method, we cover the region Ω , on which the solution 

is sought by the tetrahedral grid h
T

. On each element jT
 the approximate solution of the system of 

equations (1) will be sought in the form of polynomials ( )P x  of degree p  with time-dependent 

coefficients. In this paper, the Taylor basis is used as the basis functions. 

As is customary in solving second-order equations by discontinuous Galerkin method, in this 

paper the Navier-Stokes equations are written in the form of a system of equations of the first order 

and the solution occurs in two stages [1, 7]. At the first stage, the components of the viscous stress 

tensor are computed, and the components of the temperature gradient vector, the approximation of 

which, like the approximation of the solution, within the grid cell is in the form of polynomials of 

degree p  with time-dependent coefficients, the components of the vector of conservative variables 

are determined in the next step. 

When solving this system, it is necessary to correctly determine the flow functions calculated 

at the element boundary. Inviscid flows can be calculated using various versions of the exact or 

approximate solution of the Riemann problem. In the developed software package, a library of 

software implementations of these approximations has been created [8-10]. At the moment, various 

discrete approximations are used for both viscous [7, 11, 12] and non-viscous flow terms. 

To ensure the monotonicity of the solution obtained by the DGM, it is necessary to introduce 

so-called slope limiters, or limiters, in particular for cases when the solution contains strong 

discontinuities. In this paper we use the classical Cockburn limiter [1, 13-15], which is reliable in the 

work and is easily realized in the three-dimensional case on grids of arbitrary structure. 

When creating a software package that implements the discontinuous Galerkin method on 

unstructured tetrahedral grids [16], a fundamentally new approach to programming problems of 

mathematical physics was used, which allows one to compactly write and effectively implement 

mathematical formulas, in particular, by introducing the notion of "grid operator" uniformly 

implement the approach on different types of grids and for various computing architectures. The grid-

operator approach to programming is implemented as a class library for the C ++ language. The main 

tool of the C ++ language used in implementing this approach is template metaprogramming. This 
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tool implements a problem-oriented language (DSL) for manipulating grid functions. With the help 

of this language, grid expressions of any complexity can be built from grid functions, which can 

include arithmetic operations with brackets, as well as the application of grid operators to grid 

expressions. These grid expressions can be assigned to grid functions, and the calculations themselves 

in accordance with the given expression are started only at the moment of assignment. Prior to this, 

the chain of calculations is only remembered. The concept of so-called «deferred» calculations is 

realized. This allows, in particular, to get rid of additional arrays for storing intermediate results. 

To implement the grid-operator approach to programming, in the IMM. M.V. Keldysh RAS, 

a gridmath library was created. This library implements grids, grid functions, grid calculators, 

arithmetic of calculated objects and grid operators, parallelization of calculations on shared memory 

using OpenMP or CUDA. 

2. Analysis of the efficiency of the program code. According to Amdahl's law, the 

acceleration in the parallelization of computations by p processes is limited by a fraction of α from 

the volume of computations, which can be obtained only by consecutive calculations. The proportion 

of computations that can be paralleled ideally is in this case 1 - α and can be accelerated by a factor 

of p. Then the acceleration that can be obtained on a computer system from p processes, in 

comparison with a single process solution, will not exceed the value 
1

1pS

p

αα
= −+

. 

If the number α is small, then approximately 

1
p

p
S

pα
=

+ . 

It follows from this formula that an ideal acceleration (in p times) can be obtained only if the 

fraction of successive calculations is zero. And, for example, if the proportion of consecutive 

calculations is half, for any number of processes, the acceleration can not be more than two. Thus, as 

p increases, the acceleration asymptotically approaches the number 1 / α. 

In well-scalable programs, the number α is determined, first of all, by the exchange of 

boundaries between processes and depends on the ratio of the number of boundary cells to the total 

number of grid cells, but it is difficult to calculate in advance. But with a ready-made configuration 

of grid distribution by processes, it can be experimentally evaluated. If acceleration is known on p 

processes, then the number α can be estimated as  

( )1

p

p

p S

p S
α

−
=

− ⋅
. 

Or, approximately, for 1p ≫ . 

After that, knowing α, we can estimate the acceleration for the other p, and, most importantly, 

understand to what extent this task is scalable and on what number of processes it makes sense to run 

it. Consider an additional acceleration when the number of processes is doubled (we use the 

approximate formula): 
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We choose as the maximum such p, at which the doubling of the number of processes 

accelerates the computation by no more than 20%: 
2 1 5; 2 / .ap p a+ = =

 

To estimate the effectiveness of the software complex, we consider the solution of the problem 

of flow past a rigid body by discontinuous Galerkin method on an irregular grid containing 3 × 106 

cells. 

Calculations were performed on K-100 and K-60 clusters. The K-100 cluster consists of 64 

computational nodes, each node contains 2 Intel Xeon X5670 CPUs with 6 cores per processor, only 

12 cores and 96 GB of RAM, and 3 nVidia Fermi C2050 graphics cards with 2.8 GB of operational 

memory on each. The cluster K-60 consists of 66 computational nodes. Each node is a dual-processor 

Intel Xeon E5-2690 v4 server with 256GB of RAM. The results of calculations on the K-60 cluster 

are given in Table 1, on the K-100 cluster in Table 2, p ‒ the number of processes, t ‒  the time in 

seconds, Sp = acceleration, Ep = Sp100 / p-efficiency, α ‒ the fraction of consecutive calculations . 

 

Table 1 

p t1,c Sp1 Ep1,% α1 t2,c Sp2 Ep2,% α2 

1 1015,05 1,00   1012,68 1,00   

2 508,00 2,00 100 0,0009 504,00 2,01 100 -0,0046 

4 264,13 3,84 96 0,0136 257,50 3,93 98 0,0057 

8 149,49 6,79 85 0,0255 139,01 7,28 91 0,0140 

16 83,80 12,11 75 0,0214 69,92 14,48 90 0,0070 

32 54,69 18,56 58 0,0234 35,43 28,58 90 0,0039 

64 42,95 23,63 37 0,0271 17,41 58,17 91 0,0016 

128 41,61 24,39 20 0,0334 8,35 121,28 95 0,0004 

256 49,73 20,41 8 0,0453 3,92 258,34 101 0,0000 

 

 

Table 2 

p t1,c Sp1 Ep1,% α1 t2,c Sp2 Ep2,% α2 

1 582,57    35,2    

2 302,85 1,9 96 0,0198 18,16 1,9 97 0,0159 

4 150,6 3,9 97 0,0085 10,49 3,3 84 0,0480 

8 80,61 7,2 90 0,0134 5,47 6,4 80 0,0304 

12 55,55 10,5 87 0,0120 3,76 9,3 78 0,0235 

16 42,16 13,8 86 0,0098 2,91 12,1 76 0,0202 

32 22,51 25,9 80 0,0074 1,54 22,8 71 0,0125 

 



COMPUTATIONAL  MATHEMATICS  AND  INFORMATION  

TECHNOLOGIES 
№ 2 / 2017   

  

 

152 

 

In Table. 1 in the first series of calculations marked with the digit "1" took into account the 

total execution time of the program from the moment of initialization and recording the calculation 

results in a file. Since the results are written to a single file sequentially from all processes, the 

efficiency drops to 8%. This is not quite a correct estimate of the effectiveness of the program, since 

the actual estimated time is several orders of magnitude higher, and the time of writing to the file 

remains the same. Evaluation of the effectiveness of the directly calculated part of the program is 

given in the second part of Table. 1. The most reliable figures for assessing effectiveness are in the 

90% area. The further growth of Ep can be explained by the acceleration of computations occurring 

in fast memory, as well as by fast exchanges. 

Consider computing on graphics accelerators using CUDA. The results of the calculation are 

given in Table. 2 in the second part and denoted by the number «2». Despite the decrease in efficiency 

with the growth in the number of processes with respect to calculations performed using the MPI and 

OpenMP libraries, the computational speed on graphics accelerators exceeds the program execution 

speed by 15 or more times without the use of CUDA. In addition, these calculations allow to optimally 

choose the configuration for calculating a specific task. In this case, with 12p = and above 0,02a ≈

. This gives the maximum reasonable 2 / 100p a= = . On a relatively good scale, you can expect 

about to 128p = . 

Thus, after conducting a series of calculations on a small number of processes, you can 

evaluate the dynamics of the scalability of the calculation and choose the optimal configuration for 

launching the software package. 

The study of thermoelasticity problems, taking into account the interaction of deformation and 

temperature fields, began with [1–3]. This line of research was called the coupled thermoelasticity. 

Generalization and solution of particular problems of the new direction of research was continued in 

[3–5]. In subsequent years, both analytical, starting with [4, 5], and numerical methods [6] were 

developed to solve problems of coupled thermoelasticity. In the latter paper the authors were one of 

the first who developed a scheme of application of the finite element method and gave its 

implementation for solving the coupled problems of thermoelasticity. Analysis shows that in the 

overwhelming majority of studies in the solution of coupled thermoelasticity problems the finite 

element models of a fairly general purpose were developed, for example [7–11].The analytical 

methods for solving this class of problems did not become as widespread as the numerical ones. The 

results obtained with their help were summarized in [12]. Beginning with papers [13–18], scientists 

consider uncoupled problems of thermoelasticity about the sliding contact of a rigid body with an 

elastic coating, taking into account friction, heating of the coating from friction, and abrasive wear. 

Because of the large number of parameters of the problem, the one-dimensional and quasi-static 

problems were considered. In [15–18], for their solution the integral Laplace transform with a solution 

in the form of functional series along the poles of the integrands of the contour quadratures of the 

inverse Laplace transform were used. The solution method allows establishing the parametric 

boundaries of the thermoelastic instability of a sliding contact, to investigate the properties of the 

solutions obtained. Beginning with [20–22], a new direction of the development of the model of the 
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sliding contact of two elastic bodies arose, taking into account friction, wear and heat generation, 

built on the principle of virtual energy and the basic laws of thermodynamics. The solution of 

problems on the basis of this model is carried out by the finite element method [22]. The present 

paper demonstrates the application of the Laplace integral transform and complex analysis methods 

to solution of the coupled thermoelastic problem on the coating wear occurring during sliding 

frictional contact with frictional heating. 
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УДК 004.942 

Эффективный параллельный программный комплекс для решения уравнений Навье-

Стокса разрывным методом Галеркина∗ 

М.М. Краснов, П.А. Кучугов, М.Е. Ладонкина, В.Ф. Тишкин ∗∗ 

Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия  

Институт гидродинамики им. М.А. Лаврентьева СО РАН, Новосибирск, Россия 

 

Реализованы алгоритмы решения уравнения Навье-Стокса на трехмерной 

тетраэдральной сетке методом Галеркина с разрывными базисными функциями. При создании 

программного кода использован новый подход к программированию задач математической 

физики, позволяющий компактно записывать и эффективно реализовывать математические 

формулы, в частности, за счет введения понятия «сеточного оператора», аналогичного 

математическому, единообразно реализовывать подход на разных типах сеток и для 

различных вычислительных архитектур. Исследуется эффективность созданного 

программного кода. 

Ключевые слова: уравнения Навье-Стокса, разрывный метод Галеркина, 

параллельное программирование, шаблонное метапрограммирование 
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