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Algorithms for solving the Navier-Stokes equations on a three-dimensional tetrahedral grid
by the discontinuous Galerkin method were realized. Under the code development a new approach to
programming problems of mathematical physics was used which allows one compactly write and
effectively implement mathematical expressions in particular due to introduction of the concept of
«grid operator» similar to mathematical one and uniformly realize algorithms for various grid types
and computing architectures. The efficiency of this numerical code is investigated.
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Introduction. At present, numerical methods of high accuracy must be used to solve a number
of applied problems of mathematical physics. This is especially true for solving complex, multiscale
problems, in which it is not enough to obtain a solution by grinding the mesh and methods of the first
order of accuracy. An example of a method providing high accuracy is the Discontinuous Galerkin
Method (DGM) [1], which has proved itself to solve a wide class of problems in mathematical
physics. This method has a number of advantages inherent in both finite-element and finite-difference
approximations. In particular, it provides a given order of accuracy, can be used for grids of arbitrary
structure and is theoretically justified [1-5]. Discontinuous Galerkin Method, with all its merits, has
a significant computational complexity, so the question of maximizing the use of all the possibilities
of modern computer technology is very acute. The dynamics of the development of high-performance
computing technology dictates the creation of software complexes that are relatively easily adaptable
for work on various hybrid parallel architectures. For this purpose, when creating calculation
modules, it is necessary to use new approaches to programming. When creating programs based on
numerical methods of high accuracy, such as RMG, it is necessary to use the new capabilities of
modern programming languages. Thus, with the advent of templates in new versions of the C ++
language, it became possible to reduce the amount of computation by transferring some of the
computation to the compilation stage and, as a consequence, accelerating the computations. In
addition, template metaprogramming makes it possible to simplify the algorithm due to its
generalization [6].
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1. Structure of the pl‘%]@l_‘pﬁ(ﬁt’( G—%’djﬁf ICj)gséfler the three-dimensional Navier-

Stokes equation, written in a strong cbnservative form and supplemented by suitable initial-boundary

conditions. r= ()I _g’uj(div v) +2uS(),
Ov+(0v)"
s(v) :%, q(U)=-k0T,
where U _ the vector of conservative variables, FU), GU.,T) _ the functions of the inviscid and

viscous flow, respectively, ¥ — the velocity vector, ¢/ — dynamic viscosity coefficient, A — bulk
viscosity, T — the tensor of viscous stresses.

We assume that the liquid obeys arbitrary equations of state.

To apply the discontinuous Galerkin method, we cover the region Q, on which the solution
is sought by the tetrahedral grid Th. On each element "/ the approximate solution of the system of

P(x)

equations (1) will be sought in the form of polynomials of degree P with time-dependent

coefficients. In this paper, the Taylor basis is used as the basis functions.

As is customary in solving second-order equations by discontinuous Galerkin method, in this
paper the Navier-Stokes equations are written in the form of a system of equations of the first order
and the solution occurs in two stages [1, 7]. At the first stage, the components of the viscous stress
tensor are computed, and the components of the temperature gradient vector, the approximation of
which, like the approximation of the solution, within the grid cell is in the form of polynomials of
degree P with time-dependent coefficients, the components of the vector of conservative variables

are determined in the next step.

When solving this system, it is necessary to correctly determine the flow functions calculated
at the element boundary. Inviscid flows can be calculated using various versions of the exact or
approximate solution of the Riemann problem. In the developed software package, a library of
software implementations of these approximations has been created [8-10]. At the moment, various
discrete approximations are used for both viscous [7, 11, 12] and non-viscous flow terms.

To ensure the monotonicity of the solution obtained by the DGM, it is necessary to introduce
so-called slope limiters, or limiters, in particular for cases when the solution contains strong
discontinuities. In this paper we use the classical Cockburn limiter [1, 13-15], which is reliable in the
work and is easily realized in the three-dimensional case on grids of arbitrary structure.

When creating a software package that implements the discontinuous Galerkin method on
unstructured tetrahedral grids [16], a fundamentally new approach to programming problems of
mathematical physics was used, which allows one to compactly write and effectively implement
mathematical formulas, in particular, by introducing the notion of "grid operator" uniformly
implement the approach on different types of grids and for various computing architectures. The grid-
operator approach to programming is implemented as a class library for the C ++ language. The main
tool of the C ++ language used in implementing this approach is template metaprogramming. This
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tool implements a problem-oriented language (DSL) for manipulating grid functions. With the help
of this language, grid expressions of any complexity can be built from grid functions, which can
include arithmetic operations with brackets, as well as the application of grid operators to grid
expressions. These grid expressions can be assigned to grid functions, and the calculations themselves
in accordance with the given expression are started only at the moment of assignment. Prior to this,
the chain of calculations is only remembered. The concept of so-called «deferred» calculations is
realized. This allows, in particular, to get rid of additional arrays for storing intermediate results.

To implement the grid-operator approach to programming, in the IMM. M.V. Keldysh RAS,
a gridmath library was created. This library implements grids, grid functions, grid calculators,
arithmetic of calculated objects and grid operators, parallelization of calculations on shared memory
using OpenMP or CUDA.

2. Analysis of the efficiency of the program code. According to Amdahl's law, the
acceleration in the parallelization of computations by p processes is limited by a fraction of o from
the volume of computations, which can be obtained only by consecutive calculations. The proportion
of computations that can be paralleled ideally is in this case 1 - o and can be accelerated by a factor
of p. Then the acceleration that can be obtained onj a computer system from p processes, in

comparison with a single process solution, wilPndt exceed ghe value
a+——
p

If the number o is small, then approximagel)i p
=

ap+l

It follows from this formula that an ideal acceleration (in p times) can be obtained only if the
fraction of successive calculations is zero. And, for example, if the proportion of consecutive
calculations is half, for any number of processes, the acceleration can not be more than two. Thus, as
p increases, the acceleration asymptotically approaches the number 1/ a.

In well-scalable programs, the number o is determined, first of all, by the exchange of
boundaries between processes and depends on the ratio of the number of boundary cells to the total
number of grid cells, but it is difficult to calculate in advance. But with a ready-made configuration
of grid distribution by processes, it can be experimentally evaluated. If acceleration is known on p
processes, then the number a can be estimated as  p- S,,

(p-1)05,
Or, approximately, for 7> 1.

After that, knowing a, we can estimate the acceleration for the other p, and, most importantly,
understand to what extent this task is scalable and on what number of processes it makes sense to run
it. Consider an additional acceleration when the number of processes is doubled (we use the
approximate formula):
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+
_2(ap+1) .
S 2ap+1 2ap+1

We choose as the maximum such p, at which the doubling of the number of processes

accelerates the computation by no more than 20%:
2ap+1=5; p=2/a.

To estimate the effectiveness of the software complex, we consider the solution of the problem
of flow past a rigid body by discontinuous Galerkin method on an irregular grid containing 3 x 10°
cells.

Calculations were performed on K-100 and K-60 clusters. The K-100 cluster consists of 64
computational nodes, each node contains 2 Intel Xeon X5670 CPUs with 6 cores per processor, only
12 cores and 96 GB of RAM, and 3 nVidia Fermi C2050 graphics cards with 2.8 GB of operational
memory on each. The cluster K-60 consists of 66 computational nodes. Each node is a dual-processor
Intel Xeon E5-2690 v4 server with 256GB of RAM. The results of calculations on the K-60 cluster
are given in Table 1, on the K-100 cluster in Table 2, p — the number of processes,  — the time in

seconds, S, = acceleration, E, = S,100 / p-efficiency, a — the fraction of consecutive calculations .

Table 1

p t1,C Sp1 Ep1,% o t2,C Sp2 Ep2,% o2

1 1015,05 1,00 1012,68 1,00

2 508,00 2,00 100 0,0009 504,00 2,01 100 -0,0046

4 264,13 3,84 96 0,0136 257,50 3,93 98 0,0057

8 149,49 6,79 85 0,0255 139,01 7,28 91 0,0140
16 83,80 12,11 75 0,0214 69,92 14,48 90 0,0070
32 54,69 18,56 58 0,0234 35,43 28,58 90 0,0039
64 42,95 23,63 37 0,0271 17,41 58,17 91 0,0016
128 41,61 24,39 20 0,0334 8,35 121,28 95 0,0004
256 49,73 20,41 8 0,0453 3,92 258,34 101 0,0000

Table 2

p t1,c Sp1 Ep1,% (v} t2,C Sp2 Ep2,% o2

1 582,57 35,2

2 302,85 1,9 96 0,0198 18,16 1,9 97 0,0159

4 150,6 3,9 97 0,0085 10,49 3,3 84 0,0480

8 80,61 7,2 90 0,0134 5,47 6,4 80 0,0304
12 55,55 10,5 87 0,0120 3,76 9,3 78 0,0235
16 42,16 13,8 86 0,0098 2,91 12,1 76 0,0202
32 22,51 25,9 80 0,0074 1,54 22,8 71 0,0125
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In Table. 1 in the first series of calculations marked with the digit "1" took into account the
total execution time of the program from the moment of initialization and recording the calculation
results in a file. Since the results are written to a single file sequentially from all processes, the
efficiency drops to 8%. This is not quite a correct estimate of the effectiveness of the program, since
the actual estimated time is several orders of magnitude higher, and the time of writing to the file
remains the same. Evaluation of the effectiveness of the directly calculated part of the program is
given in the second part of Table. 1. The most reliable figures for assessing effectiveness are in the
90% area. The further growth of E, can be explained by the acceleration of computations occurring
in fast memory, as well as by fast exchanges.

Consider computing on graphics accelerators using CUDA. The results of the calculation are
given in Table. 2 in the second part and denoted by the number «2». Despite the decrease in efficiency
with the growth in the number of processes with respect to calculations performed using the MPI and
OpenMP libraries, the computational speed on graphics accelerators exceeds the program execution
speed by 15 or more times without the use of CUDA. In addition, these calculations allow to optimally

choose the configuration for calculating a specific task. In this case, with 7 = 12 and above @ = 0,02

p=2/a

. This gives the maximum reasonable =100 o 4 relatively good scale, you can expect

aboutto P~ 128 .

Thus, after conducting a series of calculations on a small number of processes, you can
evaluate the dynamics of the scalability of the calculation and choose the optimal configuration for
launching the software package.

The study of thermoelasticity problems, taking into account the interaction of deformation and
temperature fields, began with [1-3]. This line of research was called the coupled thermoelasticity.
Generalization and solution of particular problems of the new direction of research was continued in
[3-5]. In subsequent years, both analytical, starting with [4, 5], and numerical methods [6] were
developed to solve problems of coupled thermoelasticity. In the latter paper the authors were one of
the first who developed a scheme of application of the finite element method and gave its
implementation for solving the coupled problems of thermoelasticity. Analysis shows that in the
overwhelming majority of studies in the solution of coupled thermoelasticity problems the finite
element models of a fairly general purpose were developed, for example [7—11].The analytical
methods for solving this class of problems did not become as widespread as the numerical ones. The
results obtained with their help were summarized in [12]. Beginning with papers [13—18], scientists
consider uncoupled problems of thermoelasticity about the sliding contact of a rigid body with an
elastic coating, taking into account friction, heating of the coating from friction, and abrasive wear.
Because of the large number of parameters of the problem, the one-dimensional and quasi-static
problems were considered. In [ 15—18], for their solution the integral Laplace transform with a solution
in the form of functional series along the poles of the integrands of the contour quadratures of the
inverse Laplace transform were used. The solution method allows establishing the parametric
boundaries of the thermoelastic instability of a sliding contact, to investigate the properties of the

solutions obtained. Beginning with [20-22], a new direction of the development of the model of the
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sliding contact of two elastic bodies arose, taking into account friction, wear and heat generation,
built on the principle of virtual energy and the basic laws of thermodynamics. The solution of
problems on the basis of this model is carried out by the finite element method [22]. The present
paper demonstrates the application of the Laplace integral transform and complex analysis methods
to solution of the coupled thermoelastic problem on the coating wear occurring during sliding

frictional contact with frictional heating.
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¢ dexkTUBHBII NapajljieJbHbIH NPOrPaMMHBbINH KOMILIEKC JIs pelieHusi ypaBHenuii HaBbe-
Croxca paspbiBHBIM MeTonoM Iasepkunal

M.M. KpacHuos, I1.A. Kyuyros, M.E. Jlagonkuna, B.®. Tumxun T
Hucturyt npuknagunoit marematuku um. M.B. Kennesima PAH, Mocksa, Poccust

UnctutyT ruapoaunamuku uM. M.A. JlaBpentseBa CO PAH, HoBocubupck, Poccust

PeanmuzoBanbsl  anroputmel  pemieHus  ypaBHeHuss HaBbe-CTokca Ha  TpeXxMepHOU
TeTpa’pajbHON ceTke MeToIoM [ anepkuHa ¢ pa3pbIBHBIMU Oa3ucHbIMU QyHKIUAMU. [Ipu co3panun
IPOrpPaMMHOT0 KOJa HUCIIOJIb30BaH HOBBIM MOJIXOJ K MPOrpaMMHPOBAHMIO 3a7]ad MaTeMaTH4YeCKON
(bU3KKY, TTO3BOJSIONINI KOMIAKTHO 3aMUCHIBaTh U YPPEKTUBHO PEaTU30BBIBATH MATEMAaTUICCKUE
dbopMyIbl, B YAaCTHOCTH, 32 CUET BBEJCHUS MOHSITHS «CETOYHOTO OIEepaTropa», aHAJIOTHYHOTO
MaTeMaTHYECKOMY, €IMHOOOpa3HO peaTn30BBIBATH IMOAXOJ] HA Pa3HBIX THUIAX CETOK U JUIA
Pa3MUYHBIX  BBIYMCIUTENBHBIX  apxuTektyp. Hccnenyercss 3(QQPEeKTHUBHOCTH  CO3IaHHOTO
POrPaMMHOTO KOJIa.

KiarwueBbie cioBa: ypaBHeHuss Haswe-CTokca, paspeiBHBIM MeTon [ amepkuHa,
napajuieJIibHOE MPOrpaMMUPOBaHKE, IIA0JOHHOE METAlIPOrpaMMHUPOBAHKE
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