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On a class of flux schemes for convection-diffusion equations*
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The article is devoted to the investigation of difference schemes for equations of convection-
diffusion type. Such equations are widely used in the description of non-linear processes. In this
paper we consider a spatially one-dimensional variant, although the main features of the equation
are retained here: nonmonotonicity and quasilinearity.

The purposes of the work were the development and calculation of flux schemes with a
double exponential transformation. This paper presents the results of constructing and generalizing
conservative weakly monotonic schemes of second-order accuracy on space on uniform and quasi-
uniform grids. A generalization of the proposed schemes to the case of the use of cellular meshes
was performed.
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Introduction The equations of convection-diffusion are the basis for many mathematical
models [1]. These equations are used to describe many nonlinear processes in solids, liquids and
gases. The methods for solving these equations have been discussed in literature [2-5]. However,
the solution of this type equations still generates some difficulties. In this work, results of
construction and generalization of conservative weakly monotone schemes of second-order
accuracy on space on uniform and quasi-uniform grids are presented. The preliminary results are
shown in [6] and the following works [7-9]. Modification of schemes with double integral
transformation is offered in [10, 11]. However, the generalization of the proposed schemes for the
case of the use of cell meshes was not carried out. The work fills this blank.

1. Formulation of the Problem. Consider a stationary one-dimensional equation of
convection-diffusion type with real coefficients on the interval (0,1):
d| du du
Lu=—|k—+ru|+r—-qu=-f, 0<x<l, 1.1
o L Ll R et f (1.1)

It is written for an unknown scalar real function ¥ .
The formulation of the boundary value problem for equation (1.1) will be use the following
notation of boundary conditions:

xu'(x ) =(-1)" [/1 ulx,)- um], X+ AL #0, m=0,1. (1.2)

m

¥ The research is done with the financial support from Russian Foundation for Basic Research, Projects No. 15-01-04620-a, 16-07-
00206-a.
* E-mail: karamzin@imamod.ru, kudryashova@imamod.ru, polyakov@imamod.ru.

169


mailto:karamzin@imamod.ru
mailto:kudryashova@imamod.ru

COMPUTATIONAL MATHEMATICS AND INFORMATION
TECHNOLOGIES

Ne2 2 /2017

Here, it is assumed that Xy =M , X , Ay , 4 _ are some real constants (in the linear case) or
functions of the solution (in the quasilinear case). The boundary conditions (1.2) include conditions
of either the 1st, the 2nd, or the 3rd kind, and also can be mixed.

In the linear case, the coefficients of the equation (1.1) depend only on the coordinate X :
k=k(x) 2k, >0, r=r(x) (1=0,1), g=¢(x), f=f(x). (1.3a)

(0,1)

Let these functions be bounded piecewise continuous functions on , and the function

k s strictly positive and is separated from zero by a positive constant kO. Also, assume that all
functions and constants in the equation (1.1) and boundary conditions (1.2) determine the classical
solution of the corresponding boundary value problem.

In the quasilinear case, the coefficients of equation (1.1) also depend on the solution of the

problem u(x) whose range of values coincides with the whole numerical axis (- o0, +0) :
k :k(X,u) >k, >0, r, :rl(x,u) (1 :0,1), q :q(x,u), f :f(x,u)_ (1.3b)
%, =x, ) A=A () u, =u (u)

and with additional conditions (1.2), the quantities
nonlinear functions of ¥. Here we also assume the existence of a classical solution for each of the
boundary value problems.
In the nonstationary case, we consider an equation in the form:
0
a—L;:Lu+f, 0<x<l, ¢>0, (1.4)
Here, the differential operator L is defined in (1) with the replacement of the usual spatial
derivatives by the partial.

For equation (1.4), an initial-boundary value problem with boundary conditions of the form

, are

(1.2) and initial conditions is set.
u(x,0) :uo(x), 0<x<l. (1.5)
In the linear case, the coefficients of equation (4) depend only on the coordinates:
k =k(x,t) >k, >0, 7, :r,(x,t) (1=0,1), q Zq(x,t), f :f(x,t). (1.6a)
In the quasilinear case, the coefficients of equation (4) depend on the coordinates and the
solution:
k =k(x,t,u) >k, >0, r, =r,(x,t,u) (71=0,1),
g=q(x,t,u), f=f(xtu).
In both cases, it is assumed that the coefficients are bounded piecewise continuous functions

on totality of variables in the domains of their definition. It is also assumed that the coefficients of
the initial-boundary value problem (4), (5), (2) determine the classical solution in some finite time

(1.6b)

. 0,¢
1nterval[ Prmax ]

2. Construction of Different Schemes. We distinguish four situations, constructing
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difference schemes for the above equations (1.1) and (1.4):

(A) functions =07 EO;

(B) function " EO, functions "1 is not identically 0O;

(C) function " is not identically 0, function r =0 ;

(D) functions 0> "1 are not identically 0.

This separation is due to the properties of the obtaining differential solution and significantly
affects the choice of the numerical method for solving the boundary value problem. In particular,
for the case (A) a homogeneous scheme of A.A. Samarskii is used [12]. For the case (B) the
Samarskii's scheme with regularization (both schemes are in [12]) is used. For the case (C) it is
proposed to use the scheme of N.V. Karetkina [4]. A generalization for all four cases (including
(D)) is the scheme proposed in [7-9], as well as the schemes proposed in [10, 11].

3. Integral transformation of the spatial operator. To construct difference schemes,
it is convenient to transform the differential operator to the following form:
d|(,du du 1d
Lu=—|k—+rnu|+r—- qu =———(eW)- qu,
dc| dx " dx 1 e, dx ' 1 (.1
dx e, dx

. (32)

7

G =q+7ir,, e =exp| [rdx|, 7 =+, [=0,1.
q=9gThh, ¢ p 6[1 T

Here, W' is a function having the meaning of a flux of magnitude ¥ up to a sign.

It is obvious that the integral transformation (3.1), (3.2) does not impose additional
restrictions on the coefficients of the operator L and, therefore, is equivalent. This transformation
includes exponential factors. It is used below for constructing difference schemes, which it is
natural to call exponential.

In order to use formulas (3.1), (3.2) for approximation of the corresponding boundary and
initial boundary value problems, it is convenient to reformulate the boundary conditions (1.2):

u(xm) =u, or W(xm) :(-l)m[)z,nu(xm)-ﬂm],

1 (3.2

7

- m - -1
m:xmk(xm))tm+(-l) ro(xm), @, mek(xm)um, m =0,1.

This transformation also does not affect the solvability of the problems under consideration.

In addition, in many applications the boundary condition is set on the flux /', so that the quantities

A and " are known parameters of the problem. Therefore, in what follows, we assume that the
conditions (3.2') are given instead of the boundary conditions (1.2), and we omit the wave over the

A
functions 9" H
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3. Exponential schemes of flux type. We construct difference schemes, in which the
solution is determined in the centers of the cells of the spatial grid. To do this, we introduce a

:[O:x0<x1<,..<xN :ll O,...,N)

nonuniform grid @s on the segment {O’l] with nodes i (i =

_ o o . ™
Xix/2 _0'5(xi+xiil) and steps ho=x,- x_, (! —1,---,N)’ By =X " X

. ) — (-
& =0,...,. N ), Xiv1/2 —mm(xm/zaxN) Xi-12 _maX(XO’xi-l/Z)

mid-intervals

Now, we construct flux difference schemes in which the unknown function Vi (it is a grid

analog of U) is defined in the centers of the segments (cells) Yi12 (i =L..N ). A grid consisting
of such nodes will be denoted by W

Further, we use the known integral-interpolation method [5, 12] and integrate equation (1.1)

. X, X, . . .
on the interval [ - ’J . As a result of the standard transformations [12], we obtain the following
difference equations:

e W -e W, .
Ly, = = OiinYin = @ryps 1=LLN, (4.1)
he .\,
€o,iv12Vin2 ~ €012V
W, =k, 222 0. , i=lL..,N-1
i =K el (4.2)
_1 i ( v) ' _1 : ( v) ' s .
O _Ex.!q x')dx', @y, _h_ile‘f x')dx', i=l,...,N; 4.3)
k=2 T e =0, (4.4)
i hl Xt k(x') ) Heeeey D) .
e, =exp J'r,(x') dx'|, i=0,...,N, [=0,1 4.5)
0
€ .1, =€Xp fr,(x') dax'|, i=l...,N, [=0,1. (4.6)
0

Will talk that the equations (4.1)-(4.6) describe the so-called exact flux exponential
difference scheme.

If necessary, (when quadratures entering into (4.3)-(4.6) are impossible or inconvenient to
calculate accurately) the following approximations can be used in scheme (4.1)-(4.6):

Qi-l/Z Nqi-l/Z’ (pi-l/Z th"-l/2’ i :1”N’ (43')
k,' Nk(xi) or k(x;;l/Z) +k(x:-1/2) or 2k(f;+1/2)k(x:;1/2) 5i :OaaNa (44')
2 k(xi+1/2) +k(xi-1/2)

[ =

Yosln, +n,)n

Jj=

e, =L ¢, ~exp N, 1=0,1; (4.5"

3
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€12 =€ ;.1 CXP

, i=l..,N, [=0,1. (4.6

I
< 3 +13,)

Then, equations (4.1), (4.2), (4.3")-(4.6") will be called a flux exponential difference scheme.
In order to use the constructed schemes to find a solution, it is necessary to know the values

of the fluxes ", and W )

In the case of boundary conditions of the first kind, the fluxes are expressed in terms of the

known values of the solution “© and * in the boundary nodes:

€1 Vs ™ €oYe kee k, T

- 0,1/271/2 0,00 __"0%0,1/2 _ 0 = - 1L

W, ~k, = Vi ty =+ = Uy,
ho€q R hy

4.7)
W, ~k, CnVy = Con-1nnan _ky kyeon-12Yn-12 =Ty,

- +i
1 2 T
hNeO,N iy hNeO,N

In the case of boundary conditions of the second or third kind, the fluxes are expressed in
terms of the unknown values of the solution at the boundary nodes:

Wy =+A o= Uys Wy == Ay, +u,. (4.8)
These boundary values Y0 and /¥ can be determined as follows.

From the definition of a flux ' | two approximate integral relations follow:

X X
"We, g " We,
_f X X =€ 12V " €0,0)0s J.

0 XN-12

If we replace the integrals in the left hand sides of these relations by their approximate
expressions by the formulas of the left and right rectangles, respectively, and perform elementary
transformations, we obtain the following expressions for the boundary values of the unknown
function:

| -
dx e nYN T Cn-12VN-12¢

_©n _hW, _Con-112 + h Wy
Yo N2 P In YN-112 P
0 N

0.0 €N
Substituting these values into the boundary conditions (4.7) with elementary
transformations, we obtain formulas analogous to (4.8):

-1
P e - _ h
w, N"'wyl/z - Qlly =AYy - Uy, B = l+h 5
€0 2k,
" , » 4.7
e, . — _
Wy ~- MJ’N-M O =AYty G = 1+AI_N
€N 2k,

The conditions for the solvability and stability of the expressions (4.7") will be discussed
below.

As a result, with the accuracy of determining new values of % and " (l :0’1), we obtain

the same expressions (4.7) for fluxes "y and Wy .

Note that the error in the approximation of the constructed stationary flux exponential
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2
m

schemes on uniform and quasiuniform grids has the order , Where h, is the maximum grid
step. For certain conditions on the problem coefficients, it can be shown that the same order in the

L,(@,)

* has the accuracy of the constructed schemes.
By analogy with the previous one, to solve the initial - boundary value problem (1.4), (1.5),

norm

(1.2) on the basis of flux exponential approximation on a uniform grid on time “ with step T, the
nonstationary scheme with weights can be constructed:

@:a{l}j}h+@h}+(1—0)[Lhyh+q0h], XEw,, tE€w, (4.9)
y,(0) =u,,, x€a., (4.10)

. u,\ x . @, : :
where “0r — function values 0( on grid @s Weight of the scheme O must be nonnegative.
However, we will consider only three of its values, corresponding to explicit (¢ =0), implicit (

0 =1 and symmetric (¢ =0.5) schemes.
As above, under certain conditions on the coefficients of the problem, it can be shown that
the approximation error and the accuracy of the constructed nonstationary flux exponential schemes

: . . O\ +7%) .
on uniform and quasiuniform spatial grids has order ( " ) in the norm. In this case, the
exponent @ =2 for 0 =0.5 and @ =1 in other cases.

4. Realization of the constructed schemes. In this section, we discuss the details of

the implementation of the constructed exponential schemes. To do this, we make a number of
general remarks.

Firstly, the sweep algorithms are proposed to use for implemention of linear stationary
schemes. Initially, they can be taken in the form presented in [12, 13] and [4]. However, in the latter
case, the direct calculation of exponential terms (due to the application of the second exponential

transformation, i.e. function el) does not allow us to use the sweep formulas directly. Therefore, it
is necessary, the specific form of the algebraic problem coefficients to take into account and to
reformulate the algorithm. As a result, it can be shown that instead of the full integral terms in the
sweep formulas, only their ratios on the mesh template will be used, which are easily computed.
The corresponding variants of the sweep algorithm are written below.

Secondly, in the quasilinear stationary case, it is necessary to organize an iterative process of
nonlinearity. As iterations, you can use simple or Newton iterations. At each iteration of such a
process, a nonmonotonic sweep will be used.

Thirdly, in the linear non-stationary case, two approaches can be used: algorithms of
monotonic or nonmonotonic sweep [12, 13]. Each of them has peculiarities and limitations. In
particular, if we use a monotone algorithm, we get a time step limitation. If we use a nonmonotonic
run, then we obtain additional conditions on the structure of the spatial grid. As the latter is more
natural, our recommendation is to use a nonmonotonic version of the sweep.

Fourthly, in the quasilinear nonstationary case, it is possible to apply either schemes with
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delay (completely explicit or explicit by nonlinearity of the scheme) that are realized at each time
step using algorithms of monotonic or nonmonotonic sweep, or completely implicit schemes
realized at each time step by using nonlinearity by iterations and corresponding sweep algorithms.

Now we consider the linear stationary case in details. The implementation of a linear
stationary scheme is performed using sweep algorithms [12, 13]. The choice of the sweep algorithm
depends on the coefficients of the differential problem. If situations (A) or (B) are considered, then
the usual monotonous sweep is used [12, 13]. In situations (C) or (D), a nonmonotonic sweep is
used [4].

Let us consider the algorithm of a nonmonotonic sweep in detail.

For this, we multiply equations (4.1) by heive and write them in the so-called canonical
form:
Cin= AYisn = By =F, 1=2,.,N-1,

1

(5.1)
Cvin = By =F, Cyyyan = Ay Yyosn =Fy.
The coefficients in (5.1) are defined as follows:
e, . €.t .
A =e k22 B =e kM2 ji=1,.,N-1
, hieO,i , i€0.i
D, :hiel,i-l/ZQi-l/Z’ i=L..,N;
_ _ . (5.2)
C, =4+B_+D,, F =he  ,¢., =2, ,N-1
Cl :A1 +D1 +el,OA‘0’ FI :hlel,l/zq)l/z +e1,0/709
Cy =B,.,*+D, +el,NA'l’ Fy =hNe1,N-1/2§0N- e i,
Further, we introduce the following grid functions:
€. . e, . L . h )
E =——2, ny =——, & =En;, ¥y =2*, i=l..N;
€o,i €i-1/2 h,
€. e, h, :
5:1 :M’ 77:1 =—= > Citl = itln:l’ yi+ =—, [=L.,N;
€.i-1 €12 i1 (5.3)
. eol‘ﬂ/z Xisl/2 ' ‘
0° =——— =exp| = J'ro(x )dx'| or exp[iO.Shi(ro(x,._m) +r0(xi+1/2))] )
€0,iz1/2 X
i=l1,..N.

The alternative in formulas (5.3) is to distinguish the exact and approximate schemes.
Let us consider, for example, the formulas of a right nonmonotonic sweep and take into
account expressions (5.2) and (5.3):

a =i — k& v B =£ — h @y, + hing g
1 e > P T o
G h12Q1/2 +hne Ay +kEL Y, o h12Q1/2 +hnely + kG Y,
4, kE Y,
ai = = 2 - y + + ’ (54)
Ci - Bi-lai-l hi Qi-1/2 +ki§i Y; +ki-1§i-l%-1 (1' ai-l)
_FE+4.6., _ hiz(pi-l/Z +k 5y B

B, i=2,.,.N-1,

_Ci - B, _hi2Qi-l/2 +kC Y, +ki-léi‘f1yi‘tl(1- ai-l) ,
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_Ey+ Ay By — B3Py + I + Ky 1 v Vi1 B

Y- 2 - T + + s
e Cy= Byityy  ByOy i +hyiy +kN-1§N-1yN-1(1' aN-l) (5.5)
B . , '
Ve :jaiyiﬂ/z 5, =0y p B, =N-1..L
Analogously, we consider the formulas of the left nonmonotonic sweep:
a _By. _ Ky Exa Y
N -7 + + 0
Cy MOy + i+l EX Y-
B =& — My @2 *+ Ity i
N -5 + + 0
Cy IOy + Iy + ko E3 Y
R (5.4
a = B, — kA& Yiy
C G Ao WO, vhETY (- ay) kS
2 -t -
B _E+Bp., _ . h (pi-l-/Z j'-kini 5 B . i=N-1..2
Ci- A WO, +k& ¥ (1= a,) + k. ELy,
y :E +B,f, — W @y + hing o + ki 57V B
1/2 +7 - - 5
G- Aa, KO, +hnid+kEy (1- a,) (5.5

A
—7 —0" L -
yi+1/2 _B ai+1yi-1/2 + i+l _Hi ai+1yi+l/2 +ﬁi+1’ 1 _1"“9N 1.

As we can see from (5.4), (5.5) and (5.4"), (5.5'), the final formulas of the right and left
nonmonotonic sweeps allow us to do not calculate the exponential factors. We can calculate only
their ratios with adjacent indices.

The stability analysis of the above mentioned sweep formulas leads us to the conditions:

C,>0,C.- B.>0,i=2,..,N; or Cy>0,C-A4>0,i=l. N-1. (5.6)
- B + AZ .
0 ==t <I 0 =2 <1, i=l,. N-1.
e i (5.7)
r{x

The conditions (5.3) mean the nonpositivity or nonnegativity of the function on the
whole interval of integration.

As a result, in these simple cases, when conditions (5.6), (5.7) are satisfied, the constructed
linear stationary flux exponential difference schemes are uniquely solvable.

In the general case, the final version of the algorithm of nonmonotonic sweep is determined

n(x)

by the number M of intervals of the sign constancy of the function °

For case M =1 (function FO(X) is constant sign), for realization of schemes, the sweep

formulas (5.4), (5.5) or (5.4"), (5.5") are used. It is depend on the sign o () .

For case M =2 (one change of sign of the function FO(X) , the counter-sweep algorithm is
used, which is easily compiled from formulas (5.4), (5.5) or (5.4"), (5.5"). In this case, there are two
implementations. They depend on the signs on the corresponding grid intervals.

In the case M >2_ it is convenient to use an algorithm combining calculations by the
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formulas of the right and left nonmonotonic sweeps (the algorithm of generalized counter-sweep).
This algorithm in the structure of calculations coincides with the parallel sweep algorithm, which
has been considered in detail in [7].

In the quasilinear case, the introduced decision procedure is used in iterations, when the
coefficients of the scheme are already known. In the case of implementing implicit time schemes, it
is easy to make similar calculations and obtain corresponding modifications of formulas (5.4), (5.5)
or (5.4, (5.5.

We make one more remark about the conditions for the realization of the considered
exponential schemes. It is concerned calculations of exponential factors on a computer. Usually, all
calculations are performed with some fixed precision (single, double, extended, quadruple, etc.).

MinArgExp, MaxA rgExp]

The exponent is within the range [ . For example, in the case of single

-87.31,+88.72

precision, this range is approximately equal to , in the case of double precision, it

increases up to [- 708.36, +709'73}, etc. This means that for the implementation of exponential

schemes there exists a formal restriction on the argument of the exponential, which in our case can
be expressed as follows:

nli<Cp (i=0...N) or hli, .|<C, (i=L..N), =0, (5.8)

where C is the value associated with the accuracy of the representation of numbers in the
computer.
However, the actual accuracy of the calculations is related, as is well known, to the length of

the mantissa of the real numbers. Therefore, the value C must be taken from condition
C, =ln(e;)), &, =27, (5.9)

where ¥ is the machine zero without order, 7 is the number of bits in the mantissa. As a result,

value Cr ~15.94,36.04,43.67,77.63 accordingly, for numbers of single, double, extended and

quadruple precision, having a length of mantissa respectively 23, 52, 63 and 112 bits.

If in the solution of the initial differential problem we need to obtain only an idea of the
solution (portrait), then conditions (5.7), (5.8) will allow us to construct a "rough" grid necessary
for this. If the problem is solved with a given accuracy € , then, at least, it is necessary to construct

a grid in accordance with conditions (5.7), in which the value Cr <1

depends on the desired
accuracy € .

Conclusion. In conclusion, we note that we have constructed and discussed the
implementation of a class of conservative flux difference schemes based on the double integral
transformation of the convection-diffusion operator, which were called exponential. The main
property of these schemes, in the case of a nonmonotonic operator, is the qualitative and
quantitative transfer of the exponential nature of the differential solution to the grid analog, and also

the fulfillment of the weak maximum principle. A full study of the convergence of the proposed
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schemes will be done later, but their use in practical problems has confirmed the effectiveness of
the proposed approach.
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O0 ogHOM KJj1acce MOTOKOBBIX CXeM /IJIsl yPaBHeHHIl TUNIA KOHBeKuusA-I1upy3us*

IO.H. Kapam3un, T.A. Kyapsmosa, C.B. [loaskoB™

WNucTtuTyT mpuxmamaor matematukd uM. M.B. Kenmermma PAH rtexnwdeckuii yamBepcuteT, MOCKBa,

Poccuiickas denepanus

HaumonanpHbI HCcnenoBaTeNbCKuil saepHblii yHuBepcuteT MU®UW yHuBepcuTeT myTeil cooOuieHus,

Mockgsa, Poccuiickas @enepanus

Crarphsl MOCBAILEHA UCCIIEIOBAHUIO PA3HOCTHBIX CXEM ISl YPaBHEHMM THIA KOHBEKLIHS-
mupdys3usa. Takue ypaBHEHHS HAXOIAT IMIMPOKOE TNPUMEHEHHE IIPH ONMCAHWHM HEIMHEHHBIX
npoueccoB. B 1aHHOM cTaThe paccCMaTpUBAETCS MPOCTPAHCTBEHHO OJHOMEPHBIN BapUAHT, XOTS MPHU

ATOM COXPaHEHbI OCHOBHBIE OCOOCHHOCTH yPaBHEHHS: HEMOHOTOHHOCTD U KBAa3WJIMHEHHOCTb.
LlenssMu  paboOTHI SIBISJIMCH pa3palOTKa M PacuyeTHO-dKCIIEPHUMEHTAbHOE O0OOCHOBaHHE
MOTOKOBBIX CXEM C JBOWHBIM OKCIIOHCHIMAIbHBIM TpeoOpazoBaHueM. B manHOl pabote
MIPEJICTABJICHBI PE3YJIBTAThl TOCTPOCHUS M 0000IIEHUSI KOHCEPBATUBHBIX CI1a00-MOHOTOHHBIX CXEM
BTOPOTO MOPSIJIKA TOYHOCTH IO MPOCTPAHCTBY HA PABHOMEPHBIX W KBAa3MPAaBHOMEPHBIX CETKaX.
[TpoBomiiocs 0600IIEHNE TTPEATTOKEHHBIX CXEM Ha CITydail HCIIOIb30BAaHMS TYEHCTBIX CETOK.

KiroueBble cjioBa: ypaBHEHUE KOHBEKIIMH-TU((Y3UH, PA3HOCTHBIE CXEMbI, HHTETPaIbHbIC
npeoOpa3oBaHusl, AITOPUTM HEMOHOTOHHOM TTPOTOHKHU, UTEPAITHHI
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