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The paper describes several approaches to adaptation of Cartesian grids in fluid and gas-

dynamics problems.  It is demonstrated that the filter based on non-uniform B-splines is more 

appropriate for this class of problems. 
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Introduction. Hydro and gas dynamics have critical scientific and technical applications. 

Moreover, along with experimental and rigorous mathematical results, mathematical modeling, based 

on the use of parallel supercomputer systems, plays an increasing role. Often, the problems under 

investigation are characterized by a strong difference in space-time scales, for the solution of which 

not only high-precision numerical methods are required, but also very detailed spatial grids in 

geometrically complex domains whose boundaries can depend on time. For such tasks, up to half the 

time necessary to simulate and perform the calculation is spent on generating the initial grid and then 

modifying it (usually by hand) in order to obtain a solution of adequate quality. Therefore, one of the 

urgent problems is the development of methods for automatic adaptation of grids. 

There is no strict mathematical theory for mathematical models describing these phenomena 

and processes that distinguishes suitable functional compacts in which solutions of the corresponding 

initial-boundary value problems lie. Therefore, the considerations underlying the approximation of 

solutions and the construction of discrete models and algorithms should serve to achieve a 

compromise between physical representations about the nature of the solutions   (first of all, 

smoothness and multi-scale), the optimality in the number of operations, the possibility of massive 

parallelization, and also the specific architecture and element base (CPU, GPU) of the supercomputer 

used for calculations. 

In the numerical solution of hydrodynamic problems, discretization is used when the domain 

of the solution is divided into countable cells by means of an appropriately selected grid, and the 

continuous problem reduces to a discrete approximation approximating the differential operators and 

boundary conditions. Currently, there are several approaches to this task. 

The first is the standard method of connected grids, the second is the method of chimera grids, 

where the main grid is built throughout the calculation area, and the second-level grid is constructed 

separately around each solid object over the main grid. The third approach is the method of Cartesian 

grids, where the design area is chosen in the simplest form, for example, in the form of a cube, in 

which a regular Cartesian grid is constructed [2]-[4]. Surfaces of bodies in the current region cross 
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individual cells. Thus, there are two types of counting cells: normal cells, entirely in the region 

occupied by the gas, and truncated, having the shape of a certain polyhedron, depending on the 

topology of the intersection. The discretization of the equations is performed for cells of both normal 

and truncated type by a finite volume method ([1]). 

Despite the presence of well-known commercial (StarCD, StarCCM +, CFX, FLuent) and 

open (Open FOAM) CFD packages on unstructured grids, algorithms on Cartesian grids based on the  

immersed boundaries method retain a number of competitive advantages. This is primarily due to the 

simplicity of the grid generation and the discretization of the equations of motion, as well as the 

opening possibilities of using parallel supercomputers. 

The following format for describing a two-dimensional grid with the possibility of two-level 

local adaptation was used in [5]. Each source cell can be divided into four equal sub-cells by divisions 

in half in each direction. The analysis was conducted globally across the entire grid. 

The locality of the wavelet transform was used in [6]. The  rectangular grid of size M N×  with 

cells allowing a multilevel partition was taken. Each cell is described by its level (with zero for a 

basic grid of size M N× ). A virtual position at this level is a pair of parameters indicating which row 

and column the cell would occupy in the case of full filling of this level. In addition, it has a flag field 

indicating whether a given cell is final (in the corresponding end leaf of the tree) and the solver is 

applied or subdivided into 4 cells of the next level. For a subdivided (parent) cell, there are pointers 

to the descendants of the given cell (i.e., the 4 cells to which this one is sub-divided). For the final 

cell, these pointers are empty, but there is a pointer to the structure that describes the real physical 

cell. It stores the cell coordinates and gas-dynamic characteristics inside it. In the case of a fictitious 

cell (broken), this pointer is, of course, zero. This data structure allows us to describe adaptive grids 

of completely different configurations without using unnecessary memory. 

For automatic local grinding and coarsening of the grid in accordance with local flow 

properties, a grid analyzer based on wavelet analysis with wavelets constructed from uneven B-

splines is used. 

1. Algorithm for traversing the grid and searching for neighbors.  By passing the square 

array of trees described above is accomplished by a simple procedure: we bypass the double cycle 

for all elements of the basic grid. In the case where the current cell is finite, we apply the objective 

function to it, otherwise we call it for all four descendants of this cell. 

To search for neighbors it is convenient to use one more feature of the meshes of the described 

format: a cell of the 1st level with indices 
( ),i j

 necessarily has its parent ‒ a cell with indices 

[ ] [ ]( )/ 2 , / 2i j
, where [/] is an integer division operation, and the indexing of the both indices starts 

from zero, 0,..., 1; 0,..., 1;i M j N= − = − Then, for example, for the case of two levels neighbors of the 

current cell for each axe can be obtained by a simple search based on half division and multiplication 

of the indices. 

Gas-dynamic calculation scheme on an unstructured grid. If the calculated stack consists 

of cells of different levels simultaneously, it becomes non-conformal and the total flow through the 

cell is computed by a more complex formula: 



COMPUTATIONAL  MATHEMATICS  AND  INFORMATION  

TECHNOLOGIES 
№ 2 / 2017   

  

 

182 

 

1

, , , , , ,

tn n s F s FQ Q
V x yv i j v i j v i j

σ σ σ σσ σ

 ∆+  = − +∑ ∑
  

,                                     (1.1) 

where 
, ,

nQ

v i j
is the value of the vector of conservative variables in the cell of level 

v
 with virtual 

indices 
( ),i j

at this level in the time step with the number n . Flows multiplied by the corresponding 

areas of the parts of the boundary, along each direction, are summed along the entire cell boundary. 

When the grid is milled, all descendants carry the value of the primitive vector of variables 
( , , , )

x y
U U pρ

, when four cells are combined into one, the conservative vector of variables in the cell 

takes the arithmetic mean of the conservative vectors in the descendant cells. 

2. Indicators of the smoothness of the solution given on an uneven grid on the basis of 

wavelet analysis.  When working with multilevel computational grids, there is a need for indicators 

that signal the need to rebuild the mesh. In [5-7] for the analysis the re-interpolation is used on a 

uniform grid. In this paper the approach where the analysis is carried out directly on an nonuniform 

grids, with the use of the de Boor formula for constructing B-splines on an non uniform grid [8]. 

Let us compare results of the two-dimensional modeling of  Sedov's problem on a strong 

explosion with a backpressure. 

 

Fig. 1. The dependence of the density on the 

radius in the two-dimensional problem of a 

strong explosion with backpressure. The 

squares correspond to the data from [9]. The 

red indicates the dependence for the calculation 

with a uniform, and the green with non-uniform 

analyzers. 

Fig. 2. The dependence of the number of cells 

on the step number. 
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Conclusion. The given data demonstrate the practical coincidence of the results of 

calculations with a gain in the calculation time, which can be noticeably an order of magnitude, due 

to a more efficient non-uniform analysis and a multiple reduction in the number of computed cells. 

This is due to the fact that a uniform analyzer does not show adequate results in areas with local mesh 

unevenness. As a result of overestimation of the smoothness indicator of the solution, many extra 

cells are formed, and in addition, in areas where the detailed grid is no longer required, its coarsening 

is inefficient, which is demonstrated by a constant increase in the number of cells in the uniform case. 
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При численном решении задач гидрогазодинамики используется адаптивная 

дискретизация, когда область решения разбивается на счетные ячейки с помощью 

надлежащим образом подобранной сетки, а непрерывная задача сводится к дискретной, 

аппроксимирующей дифференциальные операторы и краевые условия.  
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