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On Cartesian grids in some adaptive algorithms of aerodynamics”
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The paper describes several approaches to adaptation of Cartesian grids in fluid and gas-
dynamics problems. It is demonstrated that the filter based on non-uniform B-splines is more
appropriate for this class of problems.

Keywords: gasdynamics; spatial grids; discretization; algorithm; parallel implementation.

Introduction. Hydro and gas dynamics have critical scientific and technical applications.
Moreover, along with experimental and rigorous mathematical results, mathematical modeling, based
on the use of parallel supercomputer systems, plays an increasing role. Often, the problems under
investigation are characterized by a strong difference in space-time scales, for the solution of which
not only high-precision numerical methods are required, but also very detailed spatial grids in
geometrically complex domains whose boundaries can depend on time. For such tasks, up to half the
time necessary to simulate and perform the calculation is spent on generating the initial grid and then
modifying it (usually by hand) in order to obtain a solution of adequate quality. Therefore, one of the
urgent problems is the development of methods for automatic adaptation of grids.

There is no strict mathematical theory for mathematical models describing these phenomena
and processes that distinguishes suitable functional compacts in which solutions of the corresponding
initial-boundary value problems lie. Therefore, the considerations underlying the approximation of
solutions and the construction of discrete models and algorithms should serve to achieve a
compromise between physical representations about the nature of the solutions  (first of all,
smoothness and multi-scale), the optimality in the number of operations, the possibility of massive
parallelization, and also the specific architecture and element base (CPU, GPU) of the supercomputer
used for calculations.

In the numerical solution of hydrodynamic problems, discretization is used when the domain
of the solution is divided into countable cells by means of an appropriately selected grid, and the
continuous problem reduces to a discrete approximation approximating the differential operators and
boundary conditions. Currently, there are several approaches to this task.

The first is the standard method of connected grids, the second is the method of chimera grids,
where the main grid is built throughout the calculation area, and the second-level grid is constructed
separately around each solid object over the main grid. The third approach is the method of Cartesian
grids, where the design area is chosen in the simplest form, for example, in the form of a cube, in
which a regular Cartesian grid is constructed [2]-[4]. Surfaces of bodies in the current region cross
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individual cells. Thus, there are two types of counting cells: normal cells, entirely in the region
occupied by the gas, and truncated, having the shape of a certain polyhedron, depending on the
topology of the intersection. The discretization of the equations is performed for cells of both normal
and truncated type by a finite volume method ([1]).

Despite the presence of well-known commercial (StarCD, StarCCM +, CFX, FLuent) and
open (Open FOAM) CFD packages on unstructured grids, algorithms on Cartesian grids based on the
immersed boundaries method retain a number of competitive advantages. This is primarily due to the
simplicity of the grid generation and the discretization of the equations of motion, as well as the
opening possibilities of using parallel supercomputers.

The following format for describing a two-dimensional grid with the possibility of two-level
local adaptation was used in [5]. Each source cell can be divided into four equal sub-cells by divisions
in half in each direction. The analysis was conducted globally across the entire grid.

The locality of the wavelet transform was used in [6]. The rectangular grid of size M *N with
cells allowing a multilevel partition was taken. Each cell is described by its level (with zero for a
basic grid of size MXxN ). A virtual position at this level is a pair of parameters indicating which row
and column the cell would occupy in the case of full filling of this level. In addition, it has a flag field
indicating whether a given cell is final (in the corresponding end leaf of the tree) and the solver is
applied or subdivided into 4 cells of the next level. For a subdivided (parent) cell, there are pointers
to the descendants of the given cell (i.e., the 4 cells to which this one is sub-divided). For the final
cell, these pointers are empty, but there is a pointer to the structure that describes the real physical
cell. It stores the cell coordinates and gas-dynamic characteristics inside it. In the case of a fictitious
cell (broken), this pointer is, of course, zero. This data structure allows us to describe adaptive grids
of completely different configurations without using unnecessary memory.

For automatic local grinding and coarsening of the grid in accordance with local flow
properties, a grid analyzer based on wavelet analysis with wavelets constructed from uneven B-
splines is used.

1. Algorithm for traversing the grid and searching for neighbors. By passing the square
array of trees described above is accomplished by a simple procedure: we bypass the double cycle
for all elements of the basic grid. In the case where the current cell is finite, we apply the objective
function to it, otherwise we call it for all four descendants of this cell.

To search for neighbors it is convenien{ to yse one more feature of the meshes of the described
format: a cell of the 1st level with indices ‘"’ necessarily has its parent — a cell with indices

1/2],1j/2 . . o . . . o
([l ] [J ]), where [/] is an integer division operation, and the indexing of the both indices starts

0,s M =1j=0,.. .N =1L Then, for example, for the case of two levels neighbors of the

current cell for each axe can be obtained by a simple search based on half division and multiplication
of the indices.

Gas-dynamic calculation scheme on an unstructured grid. If the calculated stack consists
of cells of different levels simultaneously, it becomes non-conformal and the total flow through the
cell is computed by a more complex formula:
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where | is the value of the vector of conservative variables in the cell of level | | with virtual

indices (l’ J ) at this level in the time step with the number 7 . Flows multiplied by the corresponding

areas of the parts of the boundary, along each direction, are summed along the entire cell boundary.
(o.U g/helg the grid is milled, all descendants carry the value of the primitive vector of variables
P.UY,s , when four cells are combined into one, the conservative vector of variables in the cell

takes the arithmetic mean of the conservative vectors in the descendant cells.

2. Indicators of the smoothness of the solution given on an uneven grid on the basis of
wavelet analysis. When working with multilevel computational grids, there is a need for indicators
that signal the need to rebuild the mesh. In [5-7] for the analysis the re-interpolation is used on a
uniform grid. In this paper the approach where the analysis is carried out directly on an nonuniform

grids, with the use of the de Boor formula for constructing B-splines on an non uniform grid [8].
Let us compare results of the two-dimensional modeling of Sedov's problem on a strong

explosion with a backpressure.
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Fig. 1. The dependence of the density on the Fig. 2. The dependence of the number of cells
radius in the two-dimensional problem of a on the step number.
strong explosion with backpressure. The
squares correspond to the data from [9]. The
red indicates the dependence for the calculation
with a uniform, and the green with non-uniform
analyzers.
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Conclusion. The given data demonstrate the practical coincidence of the results of
calculations with a gain in the calculation time, which can be noticeably an order of magnitude, due
to a more efficient non-uniform analysis and a multiple reduction in the number of computed cells.
This is due to the fact that a uniform analyzer does not show adequate results in areas with local mesh
unevenness. As a result of overestimation of the smoothness indicator of the solution, many extra
cells are formed, and in addition, in areas where the detailed grid is no longer required, its coarsening
is inefficient, which is demonstrated by a constant increase in the number of cells in the uniform case.
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