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Abstract

Introduction. Mathematical modeling of hydrodynamic processes in shallow reservoirs of complex geometry in the
presence of coastal engineering systems requires an integrated approach in the development of algorithms for constructing
computational grids and methods for solving grid equations. The work is devoted to the description of algorithms that
allow to reduce the time for solving SLAE by using an algorithm for processing overlapping geometry segments and
organizing parallel pipeline calculations. The aim of the work is to compare the acceleration of parallel algorithms for
the methods of Seidel, Jacobi, modified alternately triangular method and the method of solving grid equations with
tridiagonal preconditioner depending on the number of computational nodes.

Materials and Methods. The numerical implementation of the modified alternating-triangular iterative method for solving
grid equations (MATM) of high dimension is based on parallel algorithms based on a conveyor computing process. The
decomposition of the computational domain for the organization of the pipeline calculation process has been performed.
A graph model is introduced that allows to fix the connections between neighboring fragments of the computational grid.
To describe the complex geometry of a reservoir, including coastal structures, an algorithm for overlapping geometry
segments is proposed.

Results. 1t was found that the efficiency of implementing one step of the MATM on the GPU depends only on the
number of threads along the O, axis, and the step execution time is inversely proportional to the number of nodes of
the computational grid along the O, axis. Therefore, it is recommended to decompose the computational domain into
parallelepipeds in such a way that the size along the O_ axis is maximum, and the size along the O axis is minimal. Thanks
to the algorithm for combining geometry segments, it was possible to speed up the calculation by 14-27 %.

Discussion and Conclusions. An algorithm has been developed and numerically implemented for solving a system of
large-dimensional grid equations arising during the discretization of the shallow water bodies’ hydrodynamics problem
by MATM, adapted for heterogencous computing systems. The graph model of a parallel-pipeline computing process is
proposed. The connection of water body’s geometry segments allowed to reduce the number of computational operations
and increase the speed of calculations. The efficiency of parallel algorithms for the methods of Seidel, Jacobi, modified
alternately triangular method and the method of solving grid equations for problems of hydrodynamics in flat areas,
depending on the number of computational nodes, is compared.
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AHHOTAN NS

Beeoenue. MaremaTnueckoe MOJETUPOBAHNE TUAPOANHAMUYECKUX IPOLIECCOB B METKOBOIHBIX BOZOEMAX CIOKHOMU reo-
METPHU MPH HAJIMYHUU MPUOPEIKHBIX HHKEHEPHBIX CUCTEM TPeOyeT KOMIIJIEKCHOTO TOIX0/1a MPH pa3paboTKe aJropuTMoB
MIOCTPOCHUS PACUETHBIX CETOK M METOMOB PELICHHs CETOUHBIX ypaBHEHHH. PaboTa mocBsiieHa OnucaHnio arOpuTMOB,
NO3BOJISIFOIIMX YMEHBIIUTH BpeMsi perieHus CJIAY 3a cu4éT MCnonb30BaHus anroputMa o0paboTKy HaJIOKEHHsT CErMEH-
TOB TEOMETPHU M OpraHU3alUH MapaieIbHO-KOHBEHEPHBIX BEIMHUCICHUH. [lenbio paboThl ABISETCS CpaBHEHUE YCKO-
peHuUs apajuieNIbHBIX AJITOPUTMOB JUIsi METO/IOB 3eiiaens, SIkoOu, MoAN(pHIMPOBAaHHOTO MONEPEMEHHO-TPEYTOJIbHOTO
METOJ]a ¥ METOZIa PEUICHHUS CETOUHBIX YPaBHEHHUI C TPEXANaroHaJbHBIM ITPenRo0yClIaBIUBaTEIEM B 3aBUCHMOCTH OT KO-
JINYECTBA BHIYUCIUTENIBHBIX Y37I0B.

Mamepuanst u memoodst. YnucneHHas: peanuzanys MOAN(GHINPOBAHHOTO TONEPEMEHHO-TPEYTOIBHOTO HTEPAMOHHOTO
MeTo/Ia pelIeHus ceTouHbIX ypaBHeHUH (MIITM) BbICOKOI pa3MepHOCTH OCHOBaHA Ha MapayljiebHBIX aJrOpHUTMax, Mo-
CTPOEHHBIX Ha OCHOBE KOHBEHEPHOTO BBHIYHUCIHMTENIHLHOTO Tporecca. [Ipon3BeneHa aekoMmo3unus pacyéTHON obmacti
JUIS OpraHU3aluK Tpolecca KOHBEHEepHOro BhIUUCICHUS. BBeneHa rpadosas Monelsb, NO3BOJSOMAs 3aMKCUPOBATh
CBSI3H MEXKIY COCETHUMH (hparMeHTaMH PacueTHOW CeTKH. [|JIsi OncaHus CII0XKHOW TeOMETPHN BOOEMA, BKITFOUAIOIICH
IpUOpEKHBIE COOPYKEHHUS, IPEIUIOKEH aJTOPUTM HAJIOKEHUS CETMEHTOB I'€OMETPHH.

Peszynomamut uccnedosanusa. B xone vicciaeoBaHuil OBUIO yCTaHOBIICHO, YTO BpeMs pacueTa ofgHoro Imara MIITM Ha
GPU 3aBHCHT OT KOIMYECTBA MOTOKOB 110 ocu O_ 1 006paTHO MPONOPLUHOHAIBHO KOJUYECTBY Y3/10B PACUETHOH CETKHU MO
naHHOH ocH. IToaToMy pekoMeHIyeTcsl AeKOMIIO3MPOBaTh PacdeTHYIO 007IacTh Ha MapajulesienuIe bl TAKHM 00pa3oM,
4TOOBI UX pazMep 1o ock O 6bLT HaUMEHbLINM, a 10 O, — HaubonbmuM. [IpennoxkenHbIi anroput™ 00beIMHEHNUS CeT-
MEHTOB T€OMETPHH TTO3BOJIMJI YMEHBIINTH BPEMSI BEIYUCIICHUH Ha BennuuHy oT 14 1o 27 %.

Oécyscoenue u 3aknrouenus. PazpaboTan v YMCIICHHO PEaIM30BaH allTOPUTM PELICHUS] CUCTEMbI CETOUHBIX YPaBHEHUH
6onbIION Pa3MEPHOCTH, BO3HUKAIOIINX IPH ANCKPETH3AMH 33]a9i THAPOANHAMUKH MEIKOBOIHOTO BOJOEMa METOIOM
MIITM, aganTupOBaHHBIH J1s TETCPOTCHHBIX BRIYMCIUTENBHBIX cucTeM. [Tpeatoxkena rpadosas MO mapauielibHO-
KOHBEHEPHOTO BBIYMCIHMTENBHOTO mponecca. COeMHEHNE CErMEHTOB T€OMETPHH BOAHOTO 0OBEKTa MO3BOJIMIIO COKpa-
THUTb KOJIMYECTBO BHIUMCIUTENBHBIX ONIEPALUi ¥ YBEJIIMINTH CKOPOCTh pacueToB. [IpoBeneHo cpaBHeHHE 3P PEKTUBHOCTH
TapaJUIETbHBIX aJITOPUTMOB JUI METONOB 3eiaens, SIkobu, MoTupHUIMPOBaHHOTO MONIEPEMEHHO-TPEYTOIFHOTO METO/IA
Y METO/1a PELICHUsI CETOUHBIX YPAaBHEHUH JUIS 3a]1a4 TUAPOIUHAMUKH B TNIOCKUX 00JNACTSAX B 3aBUCUMOCTH OT KOJIMYECTBA

BbIYHCIIUTCIBbHBIX Y3JIOB.

KroueBble ci10Ba: MaTeMaTn4eckoe MOJEIHPOBAHNE, TEOMETPHS PACUeTHON 00IaCTH, MapajuieIbHOE IPOrPaMMHpPOBa-
HUE, TpaUUECKUI YCKOPUTEIT.
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Introduction. Mathematical modeling is used to predict the state of shallow reservoirs in emergency situations caused
by human activity or natural and climatic disasters. It is necessary to take into account such features of each specific water

body as the geometry of the reservoir and its coastal zone, climatic conditions and hydrodynamic regimes. Such problems
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actualize the improvement of methods for solving systems of grid equations of high dimension in the case of a non-self-
adjoint operator. It is necessary to use multiprocessor computing systems and video adapters to increase the speed of
obtaining a solution, due to the large amount of data and the complexity of calculations.

Modeling of many hydrophysical and hydrobiological problems reduces to the need to solve the diffusion-convection-
reaction equation with a non-self-adjoint operator. The review of actual numerical methods of solution is carried out
in the work of P. Vabishevich [1], where a number of theorems are formulated that allow determining the numerical
parameters and the limits of applicability of the studied methods for solving grid equations. Iterative methods for solving
such problems are actively developing. In the work of Geiser, Hueso, Martinez [2], various types of splitting methods are
analyzed, modifications of SLIS and SQIS methods are proposed, on the basis of which effective adaptive algorithms are
built that allow increasing the time step without reducing the accuracy of calculations.

There has been a significant increase in the number of studies aimed at developing algorithms that are efficient in
computing speed and designed to solve systems of high-dimensional grid equations over the past few years. Russian
and foreign scientists are developing parallel algorithms for heterogeneous computing environments, studying the
performance of cluster computing systems for various methods of discretization of various differential equations. For
example, Subbaian G. and Reddy Sathi [3, 4] analyzed the performance of several iterative methods for solving the
Navier-Stokes equation with accelerated computing on a graphics processor (GPU) using CUDA technology. Scientists
Lakshmiranganatha S., Muknahallipatna S., Paliwal M., Chilla R., Prasanth N., Goundar S. and Raja S.P. compared
the performance of various parallel algorithms for finding solutions to time-dependent ordinary differential equations
on CPU and GPU using three parallelization technologies: OpenMP, OpenACC and CUDA. It was found that CUDA
technology is the most effective accelerator for solving these equations as a result of the study [5, 6]. Russian and Kazakh
scientists have developed parallel algorithms for finding solutions to systems of linear algebraic equations. The algorithms
were implemented on multicore processors using OpenMP technology [7, 8]. The efficiency of parallel algorithms for
solving the one-dimensional thermal conductivity problem for three finite-difference approximation methods was tested
on central and graphics processors in the programming languages C (CPU) and CUDA C (GPU). GPU computing
acceleration increased up to 60 times [9, 10]. In [11], the construction of parallel algorithms based on the functional
decomposition of the counter-run method for solving tridiagonal grid equations is considered. D. B. Volkov-Bogorodsky,
G. B. Sushko and S. A. Kharchenko in their work [12] describe hybrid parallel algorithms for approximating solutions
of the nonstationary thermal conductivity equation with phase transitions based on the analytical method blocks, namely
MPI+threads technology.

It is necessary to develop a parallel version of the algorithm, which will reduce the time of solving SLAE by using an
algorithm for processing the overlapping of geometry segments and parallelizing the calculation process, in this study,

Materials and Methods

1. Problem statement. Shallow water bodies’ hydrodynamics mathematical model includes [13]:

— Navier-Stokes equations:

u, + uux + vu'v + wu; = —lPr + (uux )X + (uuy ) + (uu ); + ZQ(vsinS — Wcos 8), (1)
3 o g

V. +uv, + vv'y +wy, = —%P} + (FW.; ))C + (},W:v )} + (vv; )z +2Qusin 9, )

W, +uw, + vw:v +ww, = —iPZ + (pw; )x + (HW; )} + (vw; ) +2Qucos3+g; (3)

— continuity equation in the case of variable density:

p, +(pu), +(pv), +(pw). =0, 4)

where V = {u, v, w} are the velocity vector components; P is the total hydrodynamic pressure; p is the aqueous medium

density; y, v are the horizontal and vertical turbulent exchange coefficient components; Q = Q - (cos 3 - j +sin 3 - k) is
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the angular velocity of the Earth>s rotation; 3 is the latitude of the place; g is the acceleration of gravity; f,, f. are the
sources of heat and salt (located on the region border).

The initial hydrodynamics model (1-4) is divided into several subtasks [14, 15]. The first subtask is represented by
the diffusion-convection-reaction equation, which is used to calculate the components of the velocity vector field on the

intermediate layer in time:

uU—u ' !

—+ uu + v + wi! = (uﬁx')X + (wTy’)y' + (vir), +2Q(vsin @ — w cos 0),
VoV s w = (), + (7). + (7). - 2Qusine, (5)
WW v i = (), + () + (), + 2Qu cos 0 + g(p—" - j
T Y - p

The Krank-Nicholson scheme was used to approximate the diffusion-convection-reaction equation (5) in time. Here,
u=ot +(1-o)u, oel0]] is the diagram weight.
2. Methods for solving grid equations. Modified alternately triangular iterative method. Let’s introduce three-

dimensional uniform computational grid [14]:

w, ={t" = nt,x, =ih,, Y :jhy, zp=kh;n=0n-1,i=0,n-1,

J=0n,-Lk=0,n—-1 (n, =)t =T,(n,=D)h =1, (n,=)h,=1,(ny—Dh, =1}

where t is the time step; /2, /1, h_ is the size of the steps along the coordinate directions; 7, is the number of time layers;
T'is the upper bound by time coordinate; n, n,, n, are the number of nodes by spatial coordinates; /, ly, [ are the spatial
dimensions of the calculated area.

Let’s get a system of grid equations when constructing a discrete model. Each equation of the system can be presented

in canonical form, and we will use a seven-point template:
6
¢ (mgy)u(m,)— Z c(my, m;)u(m;) = F(m),
i=l1

where mo(x,.,yj,zk) is the template center; M'(P) = imix, v 20), my(x ., 9,520), my(x, Y020, my(x, v, 20,
Ms(X;, Y55 Zi)y mg(x;, Vi Zia)) is the neighborhood of the center; c,= c(m,) is the coefficient of the template center;
¢; =c(m,,m,;) are the coefficients of the neighborhood of the template center; F is the vector of the right parts; u is the
calculated vector.

The MATM algorithm consists of four stages:

1) calculation of the residual vector 77,

2) calculation of the correction vector w”;

3) calculation of scalar products based on iterative parameters T,,,;,®,,,; ;

4) transition to a new iterative layer.

The condition for the end of the iterative process is that the norm of the residual vector 7" reaches the specified
accuracy. At the same time, the most time-consuming part of the algorithm is the calculation w”, which boils down to
solving SLAE with lower-triangular and upper-triangular matrices.

3. Method for solving grid equations with tridiagonal preconditioner. Ifthe steps along one of the spatial coordinates
are significantly smaller than the steps along the others (for example, when solving problems of heat and mass transfer in
shallow reservoirs), the dimensions of the calculated area in the vertical direction can be hundreds to thousands of times
smaller than the horizontal dimensions. To solve problem (1) on the basis of difference schemes with relatively small
labor costs for the transition between time layers, compared with the explicit scheme (1.5-2 times larger), with large time

steps (about 30 times more), we will use splitting schemes into two-dimensional and one-dimensional problems [16—17]:
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U e ) = (k) )+ (k) ©
T : X y ’
o + W(C'”(““)/z); - (V(cw("“)u);jl  fre, D
. :
where ¢ = g™+ (1- 6)c""'?; & is the weight of the scheme [7].

The spatial grid is introduced for the numerical implementation of a discrete mathematical model of the problem [18]:

Wh :{t" =nt, X, :ihx’yj :jhy;n ZO,}’lt -1, :0,n1—1,

j=0,n, -1 (n, =Dt ="T,(n,—O)h, =1 ,(n,—Dh, =1}
To approximate the homogeneous equation (2), splitting schemes in spatial coordinate directions will be used:

M”wﬂmwﬁ=@wx},

+1/2 +1/4
n — " /

[
T

®)

!

+ v(cn+l/4 )'y _ (H(Cnﬂ/“)’yj .

To solve real problems of hydrophysics of shallow water bodies, three-layer difference schemes based on a linear

C
T

combination of the Upwind Leapfrog and Standart Leapfrog difference schemes with weight coefficients 2/3 and 1/3,
respectively, are used. To increase the accuracy of calculations, a scheme is used that takes into account the fullness of
the calculation cells [19-21]:

— difference scheme for the equation describing the transfer along the direction O :

n+l/4 n n n n n

2q..+q..c.. —c. c' —c" . ct =l
2,i,j 0,i,j i,j i,j i,j i-1,j . i+1,j ij
+ Su. q—+u mln(qq)—+
-1/2,j492.i, 1/2, Li,j>92,i,
3 "[: 13 J 1] 3hx i+ J 1,] 1] 3hx
n n n n n n
2Axci—1,jq2,i,j + Axc[,jqo,i,j —2p q Ciny —Cij 2u q Cij —Ciy
+ - i+1/2,;91,i,5 2 - i-1/2,7492,i,j 2 -
3 h; h;
n
ac +B
JJ x >
- ql,i,j - q2,i,j H,-,_,- ? u’s/ - 0’
hX
n-3/4 _ n—1
where A ¢, = ———;
T
— difference scheme for equation (4) describing the transfer along the direction O :
n+l/2 n+l/4 n+l/4 n+l/4 n+l/4 n+l/4
2q4,i,j + o, i) — G 5 Cij —Cija . ( ) ijel i
3 . + OV, 1294, 3hy TV e, MINNG5 ;o5 Gy 5 5 3hy +
n+l/4 n+l/4 n+l/4 n+l/4 n+l/4 n+l/4
ZAyci,j—l q4,i,j+Ayci,j qo,i,j ) i+l T Yy b ci,j — i
+ = 2H 17293, 2 =2l 1094, 2 -
3 h; h
v y
n+l/4
_ _ u v.. >0
93i; — 9aij|Mi; > i =
hV
n-1/2 _ _n-3/4
n+t/a _ Cij inj .
where A ¢/ = ———

T
Where g, q,, 4, 4,, q, are the degrees of control areas occupancy.
To obtain difference schemes approximating the system of equations (4), with #,; <0 and v,; <0 from the
approximations presented, it is necessary to direct the corresponding coordinate axes O _and O, in opposite directions.

Equation (3) is solved by the run-through method.
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The splitting scheme into two-dimensional and one-dimensional problems has an advantage for solving non-stationary
problems. The two-dimensional problem is solved on the basis of explicit schemes, and the one-dimensional one is
approximated by schemes with weights and solved by the run-through method in this case. Schemes with weights are
used, when solving stationary problems. Using this approach allows to reduce the initial problem to solving grid equations
by iterative methods [22].

4. Geometry Segment overlay algorithm. It is necessary to take into account the complex geometry of the
reservoir formed by a combination of the bottom surface and coastal engineering structures when drawing up SLAE.
Programmatically, an approach is proposed and implemented that allows modeling the geometry of the object under
study as a set of geometric primitives. A feature of the approach is the support for superimposing primitives on each
other. In the class library developed with the software implementation, all geometric primitives are inherited from the
abstract Geometry2DPrimitive class (Fig. 1), which contains data such as the _dSO0 offset coordinates, the primitiveType

primitive type, and a logical property characterizing the “cutout” (_isCavity).

C Geometry 2D

_geometryCoordinate : Coordinate 2D
_primitives : List<Geometry2DPrimitive>

A Geometry2DPrimitive

_dS0 : Coordinate 2D
_primitiveType : PrimitiveTypeEnum

_isCaity : bool
o o C Coordinate 2D
C Geometry2DPrimitiveRectangle E PrimitiveTypeEnum
_x : double
_width : double Object =0 _y : double
_height : double Cavity = 1 X : double
Y : double

Fig. 1. Research object geometry. Class diagram

Object-oriented modeling of a geometry segment is performed using a typed class GeometryPrimitiveSegment<T>, in
which type T is a class used to store data about the coordinates of the beginning and end of the segment.

21° 622'

D= ClZ < 022’ E= CIZ == CZZ’ F= ClZ = 022’

Let’s denote the coordinates of the beginning and end of the first and second segments ¢ |, ¢, ,c

Let’s introduce logical variables: 4 = ¢ <c,,B=c

21° 11==CZI’C=CII>C

21°

G:cll :ZCZZ’H:CIZZZCZI’[:CIZ<C

o J = ¢, > c,,. K, L are the types of the first and second segments; M, N are the
fullness of the space under the first and second segments; V' is the flag indicating that the second segment is a “cutout”.

All possible combinations of overlapping geometry segments are summarized in Table 1.

The basis of the original linear algorithm is to take into account various combinations of geometric primitives. To
increase productivity, a number of modifications based on conditional constructions have been introduced:

1. Initialization: ¢, , ¢, ,c, , C,,-

2. Calculation: 4, B, C,D,E,F, G,H,I,J, K, L, M,N, V.

3. Checking the correctness condition: L A N v K A M # true.

C

4. Definition of the overlay type.

5. Further actions are performed for the found overlay type. For example, option No. 1 is described (Table 1). For
other types, the actions are the same.

6. If the first segment is not a boundary (K = true) , then go to step 12.

7. If the second segment is not a boundary (L = true), then go to step 10.

8. Calculating expressions 1\7/\]7/\;, M AN AV, MANAV, M ANAV, M/\]V/\;, M ANAV
MANAV,MANAV and creating the resulting segments.
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9. Go to step 17. _ _

10. Calculating M AN AV, M ANAV , M AN AV, M AN AV and creating the resulting segments.
11. Go to step 17.

12. If the second segment is boundary (L = false), then transition to step 15, otherwise transition to step 17.
13. Checking the conditions M AN AV, M A N A V, M /\ZV/\IZ M A N/\;.

14. Creating and returning the resulting segments.

15. Go to step 17. _

16. Calculation M AN AV, M AN AV and creation of the resulting segments.

17. The end.
Table 1
Options for overlapping geometry segments
Overlay option Graphical interpretation Logical expression
1 H
2 G
3 BAE
4 AANF
5 CAD
6 BAF
7 BAD
8 ANE
9 CAE
10 CAF
11 AANDAT
12 1
13 J

5. Parallel implementation. The pipeline parallel algorithm has been developed that allows using all available compu-
ting resources for the numerical implementation of the MATM applicable to a high-dimensional SLAE. At the same time,
each computer (CPU core or GPU computing unit) processes only the fragments of the computational domain assigned to it.

The connections between fragments and the organization of the parallel-pipeline computing process are described by
a graph model, where nodes represent fragments of the computational domain. The computational process is organized
according to the values of the counter of the calculation stages s =k -i + j.

The developed graph model is used in the algorithm for solving SLAE with a lower-triangular matrix (Fig. 3). The
input parameters of the algorithm are the coefficients of grid equations ¢, c,, c,, ¢, and the constant ®. The result is the
velocity vector of the water flow ». When starting the software implementation of the algorithm in the CUDA C language,
it is necessary to set the values of the dimensions of the CUDA computing blocks blockDim.x, blockDim.z . The parallel-
pipelined computing process is organized as a cycle (line 6).
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Fig. 2. Graph model of parallel-pipeline computing process

Fig. 3. Algorithm for solving a system of equations with a lower triangular matrix



Computational Mathematics and Information Technologies. 2023;7(2):19-30. eISSN 2587-8999

Two-dimensional array cache, placed in shared GPU memory has been introduced to reduce the number of reads from
global video memory. It stores the intermediate results of calculations on the current layer along the axis 0, which speeds
up the calculation process by 30 %.

The results of the study. Computational experiment comparing the performance of the basic and modified algorithms
was conducted on a computer system with an Intel Core i5 3.3 GHz processor and 32 GB DDR4 RAM (Table 2). The

modified algorithm recorded a decrease in the calculation time by up to 27 %.
Table 2

Results of comparing the performance of the basic and modified algorithms for combining geometry segments

Number of unions, x10° 1 2 3 4 5 6 7 8 9 10
Basic algorithm, s 0.53 0.75 0.13 0.16 0.19 0.23 0.26 0.29 0.35 0.38
Modified algorithm, s 0.41 0.55 0.97 0.12 0.15 0.20 0.22 0.25 0.29 0.31

The numerical experiment was carried out to determine the number of GPU threads along the axes O and O, the
calculated grid (X, Z) with a fixed value of grid nodes along the axis O, equal to 10000, which allows to reduce the
calculation time of one step of the MATM (7, ) on the GPU. The levels of variation of the factors X and Z and the results

of the numerical experiment are shown in Table 3.

PU

Table 4

Results of the experiment

Ne X z T S
1 16 64 0.064
2 32 32 0.065
3. 64 16 0.081
4. 128 8 0.109
5 256 4 0.100
6 512 2 0.103

In the experiment, it was found that the calculation time of one MATM step on the GPU is inversely proportional to
the number of nodes of the calculated grid along the axis O.. The smallest value of the objective function is obtained at

X and Z, equal to 16 and 64, respectively.

Table 5
Comparison of parallel algorithms’ acceleration
P Jacobi Seidel MATM MSGE with a tridiagonal
preconditioner
Speed-up | Efficiency | Speed-up | Efficiency | Speed-up Efficiency Speed-up Efficiency
ratio ratio ratio ratio
1 1.00 100.00 1.00 100.00 1.00 100.00 1.00 100.00
2 1.95 97.50 1.95 97.50 1.94 97.00 1.84 92.00
3 2.96 98.67 2.92 97.33 2.82 94.00 2.97 99.00
4 3.98 99.50 3.75 93.75 3.82 95.50 3.32 83.00
8 7.36 92.00 7.02 87.75 7.31 91.38 8.03 100.38
16 13.29 83.06 12.92 80.75 12.78 79.88 15.80 98.75
24 16.93 70.54 16.49 68.71 17.03 70.96 19.53 81.38

Table 4 presents a comparison of the speed-up ratio of parallel algorithms for the Seidel, Jacobi methods, the
modified alternately triangular method and the method for solving grid equations with a tridiagonal preconditioner on
the number of computational nodes. Calculations were made on a grid of one million calculation cells. The launches
were carried out sequentially, starting from the launch on one computing node and ending with the connection of

all available nodes.
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Discussion and Conclusions. Algorithms for solving SLAE obtained by discretizing the problem of hydrodynamics
of a shallow reservoir, MATM using NVIDIA CUDA technology are proposed. The proposed method of decomposition
of the computational grid and the graph model make it possible to efficiently organize parallel pipeline calculations on
computing systems of various configurations.

Numerical experiments have been carried out to determine the best two-dimensional configuration
of threads in the computing unit, minimizing the time of one step of the MATM on the GPU, — X =16 and Z = 64.

The maximum speed-up ratio was shown by the method of solving grid equations for hydrodynamic problems
in flat areas, which is based on an explicit-implicit scheme. MATM, in comparison with the methods of Jacobi and
Seidel, requires significantly fewer iterations for convergence. With a good optimization of the parallel MATM
algorithm, the speed-up ratio differs by no more than 10 % by the number of computing nodes up to 24 compared to the
acceleration of the parallel algorithm of the Jacobi method.

The developed software tools make it possible to more effectively use the computing resources of the GPU used to
solve computationally time-consuming spatial-three-dimensional problems of hydrophysics.

Combining segments of the geometry of the object under study leads to a reduction in the number of computational

operations, which allows to increase the performance of calculations.

References

1. Vabishchevich P. Iterative Methods for Solving Convection-diffusion Problem. Computational Methods in Applied
Mathematics. 2002;2(4):410-444. https://www.doi.org/10.2478/cmam-2002-0023

2. Geiser J, Hueso J, Martinez E. Adaptive Iterative Splitting Methods for Convection-Diffusion-Reaction Equations.
Mathematics. 2020;8:302. https://www.doi.org/10.3390/math8030302

3. Subbaian G, Reddy S. Performance Analysis of Different Iterative Solvers Parallelized On GPU Architecture.
2023;2:215-220. https://www.doi.org/10.1007/978-981-19-6970-6_39

4. Lakshmiranganatha S, Muknahallipatna S. Performance Analysis of Accelerator Architectures and Programming

Models for Parareal Algorithm Solutions of Ordinary Differential Equations. Journal of Computer and Communications.
2021;9(2):29-56. https://www.doi.org/10.4236/jcc.2021.92003
5. Temirbekov A, Baigereyev D, Temirbekov N, et al. Amantayeva A. Parallel CUDA implementation of a numerical

algorithm for solving the Navier-Stokes equations using the pressure uniqueness condition. AIP Conference Proceedings;
2021;2325:020063. https://www.doi.org/10.4236/jcc.2021.9200310.1063
6. Paliwal M, Chilla R, Prasanth N, et al. Parallel implementation of solving linear equations using OpenMP.
International Journal of Information Technology. 2022;14:1677-1687. https://www.doi.org/10.1007/s41870-022-00899-9
7. Akimova EN, Sultanov MA, Misilov VE, et al. Parallel sweep algorithm for solving direct and inverse problems for

time-fractional diffusion equation. Numerical Methods and Programming (Vychislitel 'nye Metody i Programmirovanie).
2022;23(4):275-287. (In Russ.). https://www.doi.org/10.26089/NumMet.v23r417
8. Sultanov M, Akimova E, Misilov V, et al. Parallel Direct and Iterative Methods for Solving the Time-Fractional
Diffusion Equation on Multicore Processors. Mathematics. 2022;10(3):323. https://www.doi.org/10.3390/math10030323
9. Sechenov P, Rybenko I. Solving the problem of one-dimensional thermal conductivity on graphics processors using

CUDA technology. Applied Mathematics and Control Sciences. 2021;4:23—41. https://www.doi.org/10.15593/2499-
9873/2021.4.02

10. Khimich A, Polyanko V, Chistyakova T. Parallel Algorithms for Solving Linear Systems on Hybrid Computers.
Cybernetics and Computer Technologies. 2020:53—66. https://www.doi.org/10.34229/2707-451X.20.2.6

11. Golovashkin DL. Parallel algorithms for solving tridiagonal grid equations based on the method of counter runs.
Mathematical modeling. 2005;17(11):118-128. (In Russ.).

12. Volkov-Bogorodsky DB, Sushko GB, Kharchenko SA. Combined MPI+threads parallel implementation of
the block method for modeling thermal processes in structurally inhomogeneous media. Computational methods and
programming. 2010;11(1):127-136. (In Russ.).

13. Munk DJ, Kipouros T, Vio GA. Multi-physics bi-directional evolutionary topology optimization on GPU-
architecture. Engineering with Computers. 2019;35(4):1059—-1079. https://www.doi.org/10.1007/s00366-018-0651-1

14. Sukhinov Al, Chistyakov AE, Shishenya AV, et al. Predictive Modeling of Coastal Hydrophysical Processes
in Multiple-Processor Systems Based on Explicit Schemes. Mathematical Models and Computer Simulations.
2018;10(5):648-658. https://www.doi.org/10.1134/S2070048218050125



https://www.doi.org/10.2478/cmam-2002-0023
https://www.doi.org/10.3390/math8030302
https://www.doi.org/10.1007/978-981-19-6970-6_39
https://www.doi.org/10.4236/jcc.2021.92003
https://www.doi.org/10.26089/NumMet.v23r417
https://www.doi.org/10.3390/math10030323
https://www.doi.org/10.15593/2499-9873/2021.4.02
https://www.doi.org/10.15593/2499-9873/2021.4.02
https://www.doi.org/10.34229/2707-451X.20.2.6
https://www.doi.org/10.1007/s00366-018-0651-1
https://www.doi.org/10.1134/S2070048218050125

Comp ional Math tics and Information Technologies. 2023;7(2):19-30. eISSN 2587-8999

15. Konovalov AN. The method of rapid descent with an adaptive alternately triangular preconditioner. Differential
equations. 2004;40(7):953-963. (In Russ.).

16. Samarskiy AA, Vabishevich PN. Numerical methods for solving convection-diffusion problems, Stereotype
Publishing House. Moscow: Book House «LIBROCOM»; 2015. 248 p. (In Russ.).

17. Oyarzun G, Borrell R, Gorobets A, et al. MPI-CUDA sparse matrix—vector multiplication for the conjugate
gradient method with an approximate inverse preconditioner. Computers and Fluids. 2014;92:244-252. https:/www.doi.
org/10.1016/j.compfluid.2013.10.035

18. Khokhlov NI, Petrov IB. Application of the grid-characteristic method for solving the problems of the

propagation of dynamic wave disturbances in high-performance computing systems. Proceedings of ISP RAS.
2019;31:237-252.

19. Sukhinov Al, Belova YuV, Chistyakov AE. Solution of the matter transport problem at high Peclet numbers.
Numerical methods and programming. 2017;18(4):371-380.

20. Sukhinov Al Chistyakov AE, Protsenko EA, et al. Accounting method of filling cells for the hydrodynamics
problems solution with complex geometry of the computational domain. Mathematical Models and Computer Simulations.
2019;31(8):79-100. https://www.doi.org/10.1134/S0234087919080057

21. Sukhinov Al, Chistyakov AE, Protsenko EA. Upwind and Standard Leapfrog Difference Schemes. Numerical
methods and programming. 2019;20(2):170-181. https://www.doi.org/0.26089/NumMet.v20r216; Sukhinov Al,
Chistyakov AE, Kuznetsova IY, et al. Modelling of suspended particles motion in channel. Journal of Physics: Conference
Series. 2020;1479(1). https://www.doi.org/10.1088/1742-6596/1479/1/012082

22. Sukhinov Al, Chistyakov AE. Adaptive analog-SSOR iterative method for solving grid equations with

nonselfadjoint operators. Mathematical Models and Computer Simulations. 2012;4(4):398—409.

About the Authors:
Vladimir N Litvinov, Associate Professor of the Mathematics and Computer Science Department, Don State
Technical University (1, Gagarin Sq., Rostov-on-Don, 344003, RF), PhD. (Tech.), ScopusID, ORCID, LitvinovVN@

rambler.ru

Asya M Atayan, Assistant of the Computer Engineering and Automated Systems Software Department, Don State
Technical University (1, Gagarin Sq., Rostov-on-Don, 344003, RF), ScopusID, ORCID, atayan24@mail.ru

Natalia N Gracheva, PhD. (Tech.), Associate Professor of the Mathematics and Bioinformatics Department, Azov-
Black Sea Engineering Institute of the Donskoy GAU (21, Lenin St., Zernograd, 347740, RF), ScopusID, ORCID,

grann72(@mail.ru

Nelly B Rudenko, Associate Professor of the Mathematics and Bioinformatics Department, Azov-Black Sea
Engineering Institute of the Donskoy GAU (21, Lenin St., Zernograd, 347740, RF), PhD. (Tech.), ScopusID, ORCID,
nelli-rud@yandex.ru

Natalia Yu Bogdanova, Lecturer of the Mathematics and Computer Science Department, Don State Technical
University (1, Gagarin Sq., Rostov-on-Don, 344003, RF), nat_bogdanova07@mail.ru

Claimed contributorship:
VN Litvinov: development of mathematical models and algorithms. AM Atayan: conducting numerical experiments.
NN Gracheva: statistical processing of experimental data. NB Rudenko: software implementation, preparation of

illustrations. NYu Bogdanova: conducting numerical experiments.

Received 04.04.2023.
Revised 16.05.2023.
Accepted 17.05.2023.

Conflict of interest statement
The authors do not have any conflict of interest.

All authors have read and approved the final manuscript.

29


https://www.doi.org/10.1016/j.compfluid.2013.10.035
https://www.doi.org/10.1016/j.compfluid.2013.10.035
https://www.doi.org/10.1134/S0234087919080057
https://www.doi.org/0.26089/NumMet.v20r216
https://www.scopus.com/authid/detail.uri?authorId=57210417831
https://orcid.org/0000-0001-8234-3194
mailto:LitvinovVN%40rambler.ru?subject=
mailto:LitvinovVN%40rambler.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57213156282
https://orcid.org/0000-0003-4629-1002
mailto:atayan24%40mail.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57201921924
https://orcid.org/0000-0003-3699-7255
mailto:grann72%40mail.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57222150363
https://orcid.org/0000-0001-5468-3626
mailto:nelli-rud%40yandex.ru?subject=
mailto:nat_bogdanova07%40mail.ru?subject=

30

VN Litvinov, et al. Numerical realization of shallow water bodies’ hydrody-namics grid equations using tridiagonal preconditioner

06 asmopax.:

JIurBunoB Bnagumup HukosaeBuy, 1oneHT Kadeapsl MaTeMaTuku U HHPOpMATHKH, JJOHCKO# rocyjapcTBeHHBIN
Texanuecknit yausepcutet (344003, PO, . PoctoB-na-/lony, . [arapuna, 1), KaHAHIaT TEXHHIECKUX HAyK, ScopusID,
ORCID, LitvinovVN@rambler.ru

Artasgn Acst MuxaiiioBHa, accucTeHT Kadenpbl MPOrpaMMHOI0 o0ecreueH sl BEIYUCIUTEbHOM TEXHUKH U aBTO-

MaTH3HPOBAaHHBIX cHcTeM, JIOHCKO# rocymapcTBeHHBIH TexHWueckuid yHuBepcuteT (344003, PO, 1. PocroB-Ha-/loHy,
. [arapuna, 1), ScopusID, ORCID, atayan24(@mail.ru

I'paueBa Haranbs HukonaeBna, poueHT kadeapb MaTeMaTuku U OMonHpOpMaThKH, A30Bo-UepHOMOPCKHI HHIKe-
HepHsiid uHCTUTYT @TBOY BO loHCckoit [AY (347740, PO, 1. 3epHorpan, yi. Jlenuna, 21), kaHauaT TEXHHYSCKUX HaYK,
ScopusID, ORCID, grann72(@mail.ru

Pynenxo Hennu BopucoBHna, noreHnT kadeapsl MaTeMaTHKH 1 OnonHpopMaTukn, A30Bo-UepHOMOPCKHA HHKEHep-
Heiid uHCcTHTYT ®I'BOY BO [loHCKoii TAY (347740, PO, r. 3epHorpan, yn. Jlenuna, 21), kaHauaar TeXHUYECKUX HayK,
ScopusID, ORCID, nelli-rud@yandex.ru

BornanoBa Hatanbs FOpbeBHa, cTapmmii mpenogaBaTens kKadeapsl MaTeMaTHKA U WHPOPMATHKH, JJOHCKOH ToCy-
JAPCTBCHHBIN TexHUYeckuii yHuBepcuteT (344003, PO, r. PoctoB-Ha-/lony, . [arapuna, 1), nat_bogdanova07@mail.ru

3anenennvlii 6K1a0 cOABMOPOE:
JlutBunoB B.H. — pa3paboTka MaTeMaTHuecKuX MoAeied u anropuTMoB. AtasH A.M. — mpoBeleHrne YHCICHHBIX
skciepuMeHToB. [padeBa H.H. — cratuctideckas oO6paboTka 3KCIIepUMEHTANBHBIX JaHHBIX. Pymenko H.b. — mpo-

rpaMMHas peanu3alysi, moAroToBka uwunoctpanuii. bormanosa H.FO. — nmpoBeeHre YMCIEHHBIX YKCTIEPUMEHTOB.

Hocrynuaa B pexakumio 04.04.2023.
Moctynuiaa nocie peuensupoBanus 16.05.2023.
HpunsaTa k nydoaukanum 17.05.2023.

Kounnuxm unmepecos

ABTOpBHI 3asIBIISIFOT 00 OTCYTCTBUHM KOH()INKTA HHTEPECOB.

Bce asmopul npouumanu u 0006punu OKOHYAMENbHBIIL BAPUAHII PYKONUCU.


https://www.scopus.com/authid/detail.uri?authorId=57210417831
https://orcid.org/0000-0001-8234-3194
mailto:LitvinovVN%40rambler.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57213156282
https://orcid.org/0000-0003-4629-1002
mailto:atayan24%40mail.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57201921924
https://orcid.org/0000-0003-3699-7255
mailto:grann72%40mail.ru?subject=
https://www.scopus.com/authid/detail.uri?authorId=57222150363
https://orcid.org/0000-0001-5468-3626
mailto:nelli-rud%40yandex.ru?subject=
mailto:nat_bogdanova07%40mail.ru?subject=



