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The Discontinuous Galerkin Method and its Implementation
in the RAMEG3D Software Package

Vladimir F Tishkin &, Marina E Ladonkina
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Abstract

Currently, the Discontinuous Galerkin Method (DGM) is widely used to solve complex multi-scale problems of
mathematical physics that have important applied significance. When implementing it, the question of choosing a discrete
approximation of flows for viscous terms of the Navier-Stokes equation is important.

It is necessary to focus on the construction of limiting functions, on the selection of the best discrete approximations of
diffusion flows, and on the use of implicit and iterative methods for solving the obtained differential-difference equations
for the successful application of DGM on three-dimensional unstructured grids.

First-order numerical schemes and second-order DGM schemes with Godunov, HLLC, Rusanov-Lax-Friedrichs numerical
flows and hybrid flows are investigated. For high-order precision methods, it is necessary to use high-order time schemes.
The Runge-Kutta scheme of the third order is used in the work. The equations are written as a system of first-order
equations, when solving the Navier-Stokes equation by the discontinuous Galerkin method.

Keywords: Discontinuous Galerkin Method (DGM), Navier-Stokes equations, hybrid flows, Runge-Kutta scheme,
scheme template.

For citation. Tishkin VF, Ladonkina ME. The discontinuous Galerkin method and its implementation in the RAMEG3D

software package. Computational Mathematics and Information Technologies. 2023;7(2):7-18. https:/doi.
0rg/10.23947/2587-8999-2023-7-2-7-18
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Pa3pbiBHbIN MeTo ['ajiepkuHa U ero peaju3anus B IPOrpaMMHOM
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B.®. Tumkun &, MLE. JlagonkuHa

HucrutyT npuknagHoi maremaruku umM. M. B. Kennpia Poccuiickoit akanemun Hayk, Poccuiickas @enepanus,

r. MockBa, Muycckas ., 4
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AHHOTaI A

B nacrosmee Bpemst Meroxn ['anepkuna ¢ pa3pbiBHEIMU 0asucHbIMU (yHKIMAMU (PMIY) wmu Discontinuous Galerkin
Method (DGM) nony4yui IIMPOKOE pacnpOCTPaHEHUE [UIsl PEIICHUsT CIOKHBIX pa3HOMACIITAaOHBIX 3a/1a4 MaTeMaTH4e-
CKOM (pr3MKHM, MMEIONMX Ba)KHOE TpHKIagHOEe 3HadeHue. [Ipu ero peann3anyy BaskKHBIM SIBISIETCSI BOIPOC O BBIOOpE
JIMCKPETHOH anmpoKCHMAIIMH MOTOKOB /IS BI3KMX 4IeHOB ypaBHeHUs1 HaBbe-Crokca.

Hns ycnemnoro npumenennss PMIT Ha TpexMepHBIX HECTPYKTYPHMPOBAaHHBIX CETKaX HEOOXOIMMO COCPEIOTOYHMTH

BHUMaHHE Ha MOCTPOCHUM JIMMHUTUPYIOIIMX (YHKIMHA, Ha BBIOOpPE HAWIYyYLIMX AMCKPETHBIX AalMpOKCUMAaLni

© VF Tishkin, ME Ladonkina, 2023
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VF Tishkin, ME Ladonkina. The discontinuous Galerkin method and its implementation in the RAMEG3D software package

I Gy3MOHHBIX TOTOKOB M Ha IPUMEHEHUH HESBHBIX M UTEPAMOHHBIX METONOB PEIICHUS MOMYyYeHHBIX TuddepeH-
LHAJIBHO-Pa3HOCTHBIX YPaBHEHUM.

Hccenenyrores 4uciieHHbIE CXEMBI TEPBOTO MopsiaKa u cxeMbl PMI™ BTOporo nopsiika ¢ YucieHHbIMU OTOKaMu [ o1yHOBa,
HLLC, Pycanosa-Jlakca-®puapuxca u THOPUIHBIMA ITIOTOKaMH. J[J1s1 METOIOB BBICOKOTO ITOPSKA TOYHOCTH HEOOXOTUMO
WCIIONIb30BaTh CXEMbI BBICOKOTO TIOPSIIKA 0 BPEMEHH.

B pabote ucnonssyercst cxema Pynre-KyTtel Tpersero nmopsaka. [lpu pemennn ypaBaenus HaBpe-CTokca pa3pbhIBHBIM

MCTOAOM FanepKI/IHa YpaBHCHUA 3alIMCbIBAIOTCA B BUAC CUCTEMbI ypaBHeHI/II\/’I TMEPBOIo MOpsaKa.

KuroueBble cioBa: pa3peiBHbIN MeTof ['anepkuHa, ypasaenus Hape-Crokca, rubpuaasie noToku, cxema Pynre-KyTTsl,

1mrabI0H CXEMBI.

Jast uutupoBanus. Tumkun B.®., Jlagonkuna M.E. Pa3peiBHbIi MeTon TanepkuHa W ero peanusauus B Ipo-
rpammioM komiuiekce PAMEI3D. Computational Mathematics and Information Technologies. 2023;7(2):7-18.
https://doi.org/10.23947/2587-8999-2023-7-2-7-18

One of the main requirements is the use of high-precision numerical methods to obtain high-quality solutions to
mathematical physics problems of important applied importance, one of the main requirements is the use of high-precision
numerical methods. This is especially relevant for solving complex multi-scale problems in which it is not enough to
obtain a solution only by grinding the grid and using first-order accuracy methods.

The Discontinuous Galerkin Method (DGM) has been developing especially actively over the past few decades, the
first mention of which can be found in [1]. This method refers to numerical methods of an increased order of approximation
of the solution, because it provides a given order of accuracy, and on unstructured grids, can be used for grids with an
arbitrary cell shape, has a compact template consisting of a calculated cell and one layer of neighboring cells. There are
two approaches to improve the accuracy of the resulting solution. One of them is the shredding of the grid in the areas
of the existing features of the solution, the second approach is to increase the order of accuracy of the scheme. The use
of the discontinuous Galerkin method makes it possible to use both approaches at once: increasing the order of accuracy
of the method by increasing the order of the polynomials used, and local grinding of the grid
(the so-called Ap-adaptation) [2, 3].

One of the important issues in the implementation of the method is the choice of the grid on which the solution is being
sought. The undoubted advantage of RMG is the possibility of its application on grids of arbitrary structure. Currently, the
discontinuous Galerkin method is well developed for both structured [4] and unstructured [5] grids. There are successful
DGM software implementations for solving three-dimensional problems on unstructured grids containing elements of
only one type (tetrahedral [5-8] or hexahedral [9]), as well as for grids of arbitrary structure [10].

The obvious disadvantage of the method is its extremely high computational cost, but this is covered by a compact
template and the creation of efficient parallel software systems. DGM has a significant computational complexity, so the
question arises about the most efficient use of all the possibilities of computer technology. In the world research centers
dealing with this problem, work is underway to parallelize the implementations of DGM on a super computer [11-13].
In [6], when solving the Navier-Stokes DGM equations, a new grid-operator approach to programming mathematical
physics problems was used, which allows to compactly record and effectively apply mathematical formulas, uniformly
implement the approach on different types of grids and for various computing architectures, including for CUDA graphics
accelerators [14, 15].

Along with the many advantages of using the discontinuous Galerkin method, there are also some difficulties in
its implementation. Firstly, in order to ensure the monotony of the solution obtained by this method, it is necessary to
introduce slope limiters or limiters, especially if the solution contains strong discontinuities. The most widely used is the
Cockburn limiter [16]. The idea of this limiter is easily implemented in the multidimensional case on grids of arbitrary
structure. However, this limiter, like all TVD limiters, reduces the accuracy of the resulting solution. Recently, various
approaches to solving this problem have been actively developing. One of the approaches to creating a limiter of an
increased order of accuracy is proposed in the works of Krivodanova [17]. But this limiter works well only on structured

grids. Other approaches to creating limiters of a higher order of accuracy are described in [18-25].
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Also important in the implementation of DGM is the question of choosing a discrete approximation of flows for viscous
terms of the Navier-Stokes equation. There are several types of such approximations, most often used in real calculations
[26, 27], which were investigated in [28]. Nevertheless, the question of the optimal choice of such approximations
remains open.

When the order of accuracy of the scheme increases, there is a strict restriction on the time step. Initially,
when calculating DGM, time integration was carried out by explicit multistep Runge-Kutta schemes of high order
[16, 29, 30]. But the most effective approach is to use implicit time integration methods in order to relax the time
step constraint [31-36].

Currently, software implementations of DGM are known by an implicit method for modeling incompressible flows [37]
and for solving the Navier-Stokes equations [35].

Another point that the authors had to face when implementing DGM on grids with an arbitrary cell shape is the
need to carry out the integration procedure [16] on an arbitrary cell shape. To do this, the transformation of the original
irregular-shaped cell into a reference cell for which the position of the quadrature points is known [61]. When constructing
such a transformation for the case of a tetrahedron, hexahedron and triangular prism, it is sufficient to use a multilinear
transformation that translates the vertices of the cell into the vertices of the original cell. However, for a quadrangular
pyramid, this approach does not give the desired result, because when using it, we get curved side faces and edges of
the pyramid, which will not allow it to be properly joined with tetrahedral cells. Below in this paper, a transformation is
constructed that avoids this drawback.

For the successful implementation of DGM on three-dimensional unstructured grids, it is necessary to focus on
several points:

— on the construction of limiting functions;

— on the selection of the best discrete approximations of diffusion flows;

— on the application of implicit and iterative methods for solving the obtained differential-difference equations.

To obtain an accurate numerical solution of mathematical physics problems, it is important to use a high-quality
computational grid and a reliable high-precision numerical method, as well as to be sure that the chosen method fully
corresponds to the problem being solved. For example, it is known that when using Godunov-type difference schemes
in some problems containing shock waves, the development of instability of the “carbuncle” type occurs [38, 39]. The
conditions for the appearance of this type of instability are high Reynolds numbers and a low dissipative numerical flow.
It was noted in [40] that other types of instabilities may occur under such conditions. One of the established causes of this
type of instability is the numerical flows used [41-48]. Flows with low dissipation are most susceptible to the occurrence
of this instability, and the use of highly dissipative flows allows avoiding the occurrence of “carbuncle” instability. For
this reason, several attempts have been made to develop new methods that suppress the development of instabilities,
ensuring low dissipation [49—52]. In [53], a study of the susceptibility to shock-wave instability of specific numerical
flows implemented in the RAMEG3D software package was carried out [54]. This type of instability is tested on test
problems from the Kerk list [40] in the statements given in [55].

In this paper, we study first-order numerical schemes and second-order DGM schemes with numerical Godunov flows [56],
HLLC [57], Rusanov-Lax-Friedrichs flows [58, 59] and hybrid flows [60] used in calculations. The basic formulas of the
hybrid flow developed by the authors are also given.

1. Basic formulas of the discontinuous Galerkin method. Consider the Navier-Stokes equations written as a system

of first-order equations:

o.U+V-FU)-V-G(U,1)=0,

2 A
. [x —gu]E(dlv V)4 208 () 0

S() = %(Vv + (Vv)*),
g(U)=kVT
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U =(p,pu,pv,pw, E),
FU)=(F,(U),F,U),F.(U)), 2

sy z

GWU,v=(G.(U,1),G,(U,1),G6.(U,7).

FX(U): (pu,puz + p, puv, puw, (E+p)u)a

F,(U) = (pu,puvpyv? + p,puw, (E + p)v),

F.(U) = (pu, puwpyw, pw? + p, (E+ p)w), 3)
Gx (U7 T) = (07 Txx’ Txy > sz > ut,wc + Vtxy + Wsz + qx s
G,WU, =07, 1

G U,1)= (0, T Toys T UT HVT, +WT_ 44, ),

zy? Yzz

yy,ryz,uryx +VTyy + W‘Cyz +qy),

where p is the substance density; u, v, w are the velocity components v, ¢ is the specific internal energy and

u2+v2+w2]

E=p [8 + is the total energy per unit volume, p is the substance pressure.

The system of equations (1) is closed by the equation of state, in this case, the equation of state of an ideal gas
p = (y—1)pe with an adiabatic exponent y.

For each specific task, system (1) is supplemented with suitable initial-boundary conditions.

Let’s cover the area Q, where the solution is sought by the discontinuous Galerkin method with a grid 7,. On each
element T we will look for an approximate solution of the system of equations (1) in the form of polynomials P(x) of

degree N with time-dependent coefficients [1]:
Uy(x.0) = 20U (00,(x).
4,(x0) = 4, (00,(x). )
T, (x.1) =é)'cijk(t)(|)k(x), i j=x.p.z,

where st = 0,C,,, —1 is the dimension of the polynomial space, and ¢, (x) is the basis function.

For high-order precision methods, it is necessary to use high-order time schemes. In this paper, the Runge-Kutta
scheme of the third order is used [1].

The equations are written as a system of first-order equations, and the solution occurs in two stages when solving
the Navier-Stokes equation by the discontinuous Galerkin method. At the first stage, the components of the temperature
gradient and the viscous stress tensor are calculated. Their approximation, as well as the approximation of the solution,
within the grid cell when implementing the modal approach is in the form of polynomials of degree p with time-dependent
coefficients. At the boundary of the element, the flow values of the quantities are determined by some rule from the values
inside the element and from the values in the cell adjacent to this element.

At the second stage, the components of the vector of conservative variables are determined. In this case, convective
flows can be calculated using various variants of the exact or approximate solution of the Riemann problem. Diffusion
flows at the element boundary can also be calculated in various ways, a detailed analysis of which was carried out
in [63]. Quadrature formulas of the required order are used to calculate integrals. This two-step approach allows us
to calculate gradients with the same order of accuracy as conservative variables, while maintaining the compactness
of the scheme template.

2. Hybrid flow’s building. In [60], a hybrid numerical flow was constructed, the main idea of which was proposed
in [52]. This flow is a linear combination of one of the flows (HLLC or Godunov flow) and a stable Rusanov-Lax-
Friedrichs flow (RLF).

The direction of the velocity jump determines the normal to the shock wave: when the cell boundary coincides with
the shock wave front, the Godunov flow (F¢d), is used, and when the interface is perpendicular to the shock wave,
the Rusanov-Lax-Friedrichs flow (F®'F) is applied. Thus, dissipation increases in the direction coinciding with the shock

wave, and instability is eliminated:
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F=0F™c¢ (1— 0)FrF. 5)
F — eFGodunov + (1 _ e)FRLI‘: (6)

|Au n| ~ |Aunx +Avn, +Awn,

where 0= |Au| B \/Auz + AV’ + Aw?
1, |Au| <g,

, |Au| > ¢,

@

where ¢ is a small constant to avoid division by zero (for example € = 10°); # is the normal to the cell boundary, and
Au=(u, —u, v, —v, w, —w,)is the jump of the velocity vector across the boundary. The parameter 0 is calculated from
the normal to the cell boundary and the velocity jump through the cell boundary surface.
Another approach to the construction of a hybrid flow is to add a dissipative term in the areas where it is necessary.
To construct it, we will switch to a local coordinate system with an ort (n, T,, T,), where n is the vector of the external
normal to the surface through which the flow is considered; 7, T, any single orthogonal vectors lying on this surface.

Vectors U and F in this coordinate system (indicated by the index *) will have the form:

U = (ps P(", n), P("aﬂ )7 P(”sT1 ): E)Ts (8)
F (U) = (p(u,n), p(u, n)u, + p,p(u,mu,, ,p(u,nu, ,(E + p)u,n)).

In order to obtain a new flow with greater dissipation than the Godunov flow (HLLC) and less dissipation than the
RLF flow, we choose a certain velocity # in the original coordinate system and switch to an inertial frame of reference
moving at this speed.

Let’s denote the maximum velocity W__, the minimum velocity — W __ (taking into account the sign) of the waves
generated during the decay of an arbitrary discontinuity in the case of using the Godunov flow (or using the HLLC flow). Note
that if /7 is greater than W__, then the values of the gas-dynamic quantities will coincide with U+ and after recalculation

to the original coordinate system, this flow will be equal, respectively, to use the Godunov flow and the HLLC flow:
F= Froodmey 7 _ ™
F=F"™ U™ -wu",
Accordingly, if -/ is less than W __ , then the values of the gas-dynamic quantities will coincide with U~ , and after
recalculation to the original coordinate system, this flow will be equal to:
ﬁ — F*Godunov (U*— ) + WU*—,
F=F"U)+wu,

Taking the half-sum of these streams, we get the RLF stream. If W=0, then, respectively, Godunov flows (or HLLC)
are obtained.
Thus, if OSW<W"__, where W, = max(IW

max

w ) get a new flow, the average between the Godunov flow (HLLC)

min

>

and the RLF flow and having greater dissipation than the Godunov flow (HLLC) and less dissipation than the RLF flow.
This type of flow was considered in [62].

The hybrid stream used can be obtained as follows. Consider an inertial coordinate system moving at a speed W - n
relative to the original system, and calculate the Godunov flux or HLLC, which we then recalculate in the original
coordinate system (Fig. 1). The resulting value is denoted by U™. We will carry out a similar procedure with speed —W - n

and denote the corresponding value U™ Taking a half-sum of such flows, we come to the formulas:

ﬁ: F*Godunov (U*Jr);_F*Godunov (U*—) _W U*+ ;U*— ’ (9)
ﬁ _ F*HLLC (U*+) ;_ F*IILLC(U*,) ~ W U*+ ;U*, ’ (10)

11
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w=ew", W*=max(|u+c|,|u—c|), (11
M<M,,, W=W,
0= M_ <M<M,__, W:%W’Z (12)

M=M W =0,

max ’

where W is the maximum of the modules of the eigenvalues of the matrix 6F—(f]) ; 0 is the parameter [52].

oUu
w
Wmax
0 M. M M

Fig. 1. The constructed hybrid flow, the average between the Godunov flow (HLLC) and the RLF flow

3. Numerical integration on arbitrary cells. Consider the transformation of an arbitrary quadrangular pyramid P
with vertices (x, v, z) i = 1.5 in the coordinate system 0XYZ into a regular quadrangular pyramid P with vertices (0,0,0),
(1,0,0), (0,1,0), (1,1,0), (0.5,0.5,1) in the coordinate system Oafy (Fig. 2). The base of the pyramid P will be translated
into the base of the pyramid P" using a bilinear transformation:

X=a,+a,0.+a,p+a,0p,
y = b, +bo+b,p+bap, (13)
z=cy+o+c,p+c0p,

where the coefficients a,,b,,¢,,i = 0_,3 are defined explicitly:

Ay =X,0) =Xy —X|,0y = X3 —X,d3 =Xy — X3 — X, +X.

5

2!

Fig. 2. An arbitrary quadrangular pyramid in space
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Let’s build an arbitrary pyramid P' with a vertex at point 5 (Fig. 3) and a base with vertices at points 1'—4', by
compressing the original pyramid.

1 4’ 4
3/

Fig. 3. A regular quadrangular pyramid

The coordinates x’l_ can be defined as:

x| = xl(l _Y)"'xs“/’

x5 = x,(1=7)+ x5, (14)
X5 = x3(1—y)+ XsY,
Xy = x4(1—y)+x5y,

where ve[0,1] is the compression ratio.

Let’s make a similar transformation in the reference pyramid with the same compression ratio. The resulting base of

the compressed pyramid will be transferred to the base of the reference pyramid. The coordinates of these points in the
coordinate system Oof} are equal to:

B

' Y Y
'>a=—,p==—
2[3 2

: Y g Y
2 sa=1-tp=1
5P

? (15)
¥ sa=1-Lp=1-1,
2 2
4 50=Lp=1-1.
2 2
Using the transformation (13)—(15), the coordinates of the points x’. are:
v, ¥, ¥
x| =a0+a1E+a2§+a37=xl(l—y)+x5y,
/ Y Y Yy
X, =a, +al(l—zj+a2§+a3£1—5j5:x2(1—y)+x5y, (16)

13
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Solving this system of equations (16), the conversion coefficients (13) are:

Xy =X =X+

a,= 1=y
a, =(x, —x])—z(lL_y)(x4 —X, —X; + X)),
az:(x3_xl)_z(ly_y)()%_xz_x3+x1)»
X, +X, +X, +x X, —2x, +Xx 2y -1
0= ! 24 24 (I=7y)+yxs - . 21 : +4J_y)(x4_xz_x3+x1)-

As a result, get the transformation for the coordinate x:

‘o X X, + x5+ x, (1—y)+yx5—x2_2xl+x3 N 2y-1
4 2 41-7v)

(X=X, = X3 +x))+
+|:(x2 _x])_ﬁ()Q —Xy X +x1)i|a+
+|:(x4 _xl)_2(+_y)(x4 XX +x1)}B+

_{x4 =X, —X; t X, }aﬁ
1—y

Similarly, transformation for the y, z coordinates is obtained.
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Abstract

Introduction. Mathematical modeling of hydrodynamic processes in shallow reservoirs of complex geometry in the
presence of coastal engineering systems requires an integrated approach in the development of algorithms for constructing
computational grids and methods for solving grid equations. The work is devoted to the description of algorithms that
allow to reduce the time for solving SLAE by using an algorithm for processing overlapping geometry segments and
organizing parallel pipeline calculations. The aim of the work is to compare the acceleration of parallel algorithms for
the methods of Seidel, Jacobi, modified alternately triangular method and the method of solving grid equations with
tridiagonal preconditioner depending on the number of computational nodes.

Materials and Methods. The numerical implementation of the modified alternating-triangular iterative method for solving
grid equations (MATM) of high dimension is based on parallel algorithms based on a conveyor computing process. The
decomposition of the computational domain for the organization of the pipeline calculation process has been performed.
A graph model is introduced that allows to fix the connections between neighboring fragments of the computational grid.
To describe the complex geometry of a reservoir, including coastal structures, an algorithm for overlapping geometry
segments is proposed.

Results. 1t was found that the efficiency of implementing one step of the MATM on the GPU depends only on the
number of threads along the O, axis, and the step execution time is inversely proportional to the number of nodes of
the computational grid along the O, axis. Therefore, it is recommended to decompose the computational domain into
parallelepipeds in such a way that the size along the O_ axis is maximum, and the size along the O axis is minimal. Thanks
to the algorithm for combining geometry segments, it was possible to speed up the calculation by 14-27 %.

Discussion and Conclusions. An algorithm has been developed and numerically implemented for solving a system of
large-dimensional grid equations arising during the discretization of the shallow water bodies’ hydrodynamics problem
by MATM, adapted for heterogencous computing systems. The graph model of a parallel-pipeline computing process is
proposed. The connection of water body’s geometry segments allowed to reduce the number of computational operations
and increase the speed of calculations. The efficiency of parallel algorithms for the methods of Seidel, Jacobi, modified
alternately triangular method and the method of solving grid equations for problems of hydrodynamics in flat areas,
depending on the number of computational nodes, is compared.

Keywords: mathematical modeling, computational domain geometry, parallel programming, graphics accelerator.
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AHHOTAN NS

Beeoenue. MaremaTnueckoe MOJETUPOBAHNE TUAPOANHAMUYECKUX IPOLIECCOB B METKOBOIHBIX BOZOEMAX CIOKHOMU reo-
METPHU MPH HAJIMYHUU MPUOPEIKHBIX HHKEHEPHBIX CUCTEM TPeOyeT KOMIIJIEKCHOTO TOIX0/1a MPH pa3paboTKe aJropuTMoB
MIOCTPOCHUS PACUETHBIX CETOK M METOMOB PELICHHs CETOUHBIX ypaBHEHHH. PaboTa mocBsiieHa OnucaHnio arOpuTMOB,
NO3BOJISIFOIIMX YMEHBIIUTH BpeMsi perieHus CJIAY 3a cu4éT MCnonb30BaHus anroputMa o0paboTKy HaJIOKEHHsT CErMEH-
TOB TEOMETPHU M OpraHU3alUH MapaieIbHO-KOHBEHEPHBIX BEIMHUCICHUH. [lenbio paboThl ABISETCS CpaBHEHUE YCKO-
peHuUs apajuieNIbHBIX AJITOPUTMOB JUIsi METO/IOB 3eiiaens, SIkoOu, MoAN(pHIMPOBAaHHOTO MONEPEMEHHO-TPEYTOJIbHOTO
METOJ]a ¥ METOZIa PEUICHHUS CETOUHBIX YPaBHEHHUI C TPEXANaroHaJbHBIM ITPenRo0yClIaBIUBaTEIEM B 3aBUCHMOCTH OT KO-
JINYECTBA BHIYUCIUTENIBHBIX Y37I0B.

Mamepuanst u memoodst. YnucneHHas: peanuzanys MOAN(GHINPOBAHHOTO TONEPEMEHHO-TPEYTOIBHOTO HTEPAMOHHOTO
MeTo/Ia pelIeHus ceTouHbIX ypaBHeHUH (MIITM) BbICOKOI pa3MepHOCTH OCHOBaHA Ha MapayljiebHBIX aJrOpHUTMax, Mo-
CTPOEHHBIX Ha OCHOBE KOHBEHEPHOTO BBHIYHUCIHMTENIHLHOTO Tporecca. [Ipon3BeneHa aekoMmo3unus pacyéTHON obmacti
JUIS OpraHU3aluK Tpolecca KOHBEHEepHOro BhIUUCICHUS. BBeneHa rpadosas Monelsb, NO3BOJSOMAs 3aMKCUPOBATh
CBSI3H MEXKIY COCETHUMH (hparMeHTaMH PacueTHOW CeTKH. [|JIsi OncaHus CII0XKHOW TeOMETPHN BOOEMA, BKITFOUAIOIICH
IpUOpEKHBIE COOPYKEHHUS, IPEIUIOKEH aJTOPUTM HAJIOKEHUS CETMEHTOB I'€OMETPHH.

Peszynomamut uccnedosanusa. B xone vicciaeoBaHuil OBUIO yCTaHOBIICHO, YTO BpeMs pacueTa ofgHoro Imara MIITM Ha
GPU 3aBHCHT OT KOIMYECTBA MOTOKOB 110 ocu O_ 1 006paTHO MPONOPLUHOHAIBHO KOJUYECTBY Y3/10B PACUETHOH CETKHU MO
naHHOH ocH. IToaToMy pekoMeHIyeTcsl AeKOMIIO3MPOBaTh PacdeTHYIO 007IacTh Ha MapajulesienuIe bl TAKHM 00pa3oM,
4TOOBI UX pazMep 1o ock O 6bLT HaUMEHbLINM, a 10 O, — HaubonbmuM. [IpennoxkenHbIi anroput™ 00beIMHEHNUS CeT-
MEHTOB T€OMETPHH TTO3BOJIMJI YMEHBIINTH BPEMSI BEIYUCIICHUH Ha BennuuHy oT 14 1o 27 %.

Oécyscoenue u 3aknrouenus. PazpaboTan v YMCIICHHO PEaIM30BaH allTOPUTM PELICHUS] CUCTEMbI CETOUHBIX YPaBHEHUH
6onbIION Pa3MEPHOCTH, BO3HUKAIOIINX IPH ANCKPETH3AMH 33]a9i THAPOANHAMUKH MEIKOBOIHOTO BOJOEMa METOIOM
MIITM, aganTupOBaHHBIH J1s TETCPOTCHHBIX BRIYMCIUTENBHBIX cucTeM. [Tpeatoxkena rpadosas MO mapauielibHO-
KOHBEHEPHOTO BBIYMCIHMTENBHOTO mponecca. COeMHEHNE CErMEHTOB T€OMETPHH BOAHOTO 0OBEKTa MO3BOJIMIIO COKpa-
THUTb KOJIMYECTBO BHIUMCIUTENBHBIX ONIEPALUi ¥ YBEJIIMINTH CKOPOCTh pacueToB. [IpoBeneHo cpaBHeHHE 3P PEKTUBHOCTH
TapaJUIETbHBIX aJITOPUTMOB JUI METONOB 3eiaens, SIkobu, MoTupHUIMPOBaHHOTO MONIEPEMEHHO-TPEYTOIFHOTO METO/IA
Y METO/1a PELICHUsI CETOUHBIX YPAaBHEHUH JUIS 3a]1a4 TUAPOIUHAMUKH B TNIOCKUX 00JNACTSAX B 3aBUCUMOCTH OT KOJIMYECTBA

BbIYHCIIUTCIBbHBIX Y3JIOB.

KroueBble ci10Ba: MaTeMaTn4eckoe MOJEIHPOBAHNE, TEOMETPHS PACUeTHON 00IaCTH, MapajuieIbHOE IPOrPaMMHpPOBa-
HUE, TpaUUECKUI YCKOPUTEIT.
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Jaa uutupoBanus. JluteuaoB B.H., Arasu A.M., I'pasesa H.H. u np. Uncnennas peanuzaiiusi CETOUHBIX ypaBHe-
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Introduction. Mathematical modeling is used to predict the state of shallow reservoirs in emergency situations caused
by human activity or natural and climatic disasters. It is necessary to take into account such features of each specific water

body as the geometry of the reservoir and its coastal zone, climatic conditions and hydrodynamic regimes. Such problems
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actualize the improvement of methods for solving systems of grid equations of high dimension in the case of a non-self-
adjoint operator. It is necessary to use multiprocessor computing systems and video adapters to increase the speed of
obtaining a solution, due to the large amount of data and the complexity of calculations.

Modeling of many hydrophysical and hydrobiological problems reduces to the need to solve the diffusion-convection-
reaction equation with a non-self-adjoint operator. The review of actual numerical methods of solution is carried out
in the work of P. Vabishevich [1], where a number of theorems are formulated that allow determining the numerical
parameters and the limits of applicability of the studied methods for solving grid equations. Iterative methods for solving
such problems are actively developing. In the work of Geiser, Hueso, Martinez [2], various types of splitting methods are
analyzed, modifications of SLIS and SQIS methods are proposed, on the basis of which effective adaptive algorithms are
built that allow increasing the time step without reducing the accuracy of calculations.

There has been a significant increase in the number of studies aimed at developing algorithms that are efficient in
computing speed and designed to solve systems of high-dimensional grid equations over the past few years. Russian
and foreign scientists are developing parallel algorithms for heterogeneous computing environments, studying the
performance of cluster computing systems for various methods of discretization of various differential equations. For
example, Subbaian G. and Reddy Sathi [3, 4] analyzed the performance of several iterative methods for solving the
Navier-Stokes equation with accelerated computing on a graphics processor (GPU) using CUDA technology. Scientists
Lakshmiranganatha S., Muknahallipatna S., Paliwal M., Chilla R., Prasanth N., Goundar S. and Raja S.P. compared
the performance of various parallel algorithms for finding solutions to time-dependent ordinary differential equations
on CPU and GPU using three parallelization technologies: OpenMP, OpenACC and CUDA. It was found that CUDA
technology is the most effective accelerator for solving these equations as a result of the study [5, 6]. Russian and Kazakh
scientists have developed parallel algorithms for finding solutions to systems of linear algebraic equations. The algorithms
were implemented on multicore processors using OpenMP technology [7, 8]. The efficiency of parallel algorithms for
solving the one-dimensional thermal conductivity problem for three finite-difference approximation methods was tested
on central and graphics processors in the programming languages C (CPU) and CUDA C (GPU). GPU computing
acceleration increased up to 60 times [9, 10]. In [11], the construction of parallel algorithms based on the functional
decomposition of the counter-run method for solving tridiagonal grid equations is considered. D. B. Volkov-Bogorodsky,
G. B. Sushko and S. A. Kharchenko in their work [12] describe hybrid parallel algorithms for approximating solutions
of the nonstationary thermal conductivity equation with phase transitions based on the analytical method blocks, namely
MPI+threads technology.

It is necessary to develop a parallel version of the algorithm, which will reduce the time of solving SLAE by using an
algorithm for processing the overlapping of geometry segments and parallelizing the calculation process, in this study,

Materials and Methods

1. Problem statement. Shallow water bodies’ hydrodynamics mathematical model includes [13]:

— Navier-Stokes equations:

u, + uux + vu'v + wu; = —lPr + (uux )X + (uuy ) + (uu ); + ZQ(vsinS — Wcos 8), (1)
3 o g

V. +uv, + vv'y +wy, = —%P} + (FW.; ))C + (},W:v )} + (vv; )z +2Qusin 9, )

W, +uw, + vw:v +ww, = —iPZ + (pw; )x + (HW; )} + (vw; ) +2Qucos3+g; (3)

— continuity equation in the case of variable density:

p, +(pu), +(pv), +(pw). =0, 4)

where V = {u, v, w} are the velocity vector components; P is the total hydrodynamic pressure; p is the aqueous medium

density; y, v are the horizontal and vertical turbulent exchange coefficient components; Q = Q - (cos 3 - j +sin 3 - k) is
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the angular velocity of the Earth>s rotation; 3 is the latitude of the place; g is the acceleration of gravity; f,, f. are the
sources of heat and salt (located on the region border).

The initial hydrodynamics model (1-4) is divided into several subtasks [14, 15]. The first subtask is represented by
the diffusion-convection-reaction equation, which is used to calculate the components of the velocity vector field on the

intermediate layer in time:

uU—u ' !

—+ uu + v + wi! = (uﬁx')X + (wTy’)y' + (vir), +2Q(vsin @ — w cos 0),
VoV s w = (), + (7). + (7). - 2Qusine, (5)
WW v i = (), + () + (), + 2Qu cos 0 + g(p—" - j
T Y - p

The Krank-Nicholson scheme was used to approximate the diffusion-convection-reaction equation (5) in time. Here,
u=ot +(1-o)u, oel0]] is the diagram weight.
2. Methods for solving grid equations. Modified alternately triangular iterative method. Let’s introduce three-

dimensional uniform computational grid [14]:

w, ={t" = nt,x, =ih,, Y :jhy, zp=kh;n=0n-1,i=0,n-1,

J=0n,-Lk=0,n—-1 (n, =)t =T,(n,=D)h =1, (n,=)h,=1,(ny—Dh, =1}

where t is the time step; /2, /1, h_ is the size of the steps along the coordinate directions; 7, is the number of time layers;
T'is the upper bound by time coordinate; n, n,, n, are the number of nodes by spatial coordinates; /, ly, [ are the spatial
dimensions of the calculated area.

Let’s get a system of grid equations when constructing a discrete model. Each equation of the system can be presented

in canonical form, and we will use a seven-point template:
6
¢ (mgy)u(m,)— Z c(my, m;)u(m;) = F(m),
i=l1

where mo(x,.,yj,zk) is the template center; M'(P) = imix, v 20), my(x ., 9,520), my(x, Y020, my(x, v, 20,
Ms(X;, Y55 Zi)y mg(x;, Vi Zia)) is the neighborhood of the center; c,= c(m,) is the coefficient of the template center;
¢; =c(m,,m,;) are the coefficients of the neighborhood of the template center; F is the vector of the right parts; u is the
calculated vector.

The MATM algorithm consists of four stages:

1) calculation of the residual vector 77,

2) calculation of the correction vector w”;

3) calculation of scalar products based on iterative parameters T,,,;,®,,,; ;

4) transition to a new iterative layer.

The condition for the end of the iterative process is that the norm of the residual vector 7" reaches the specified
accuracy. At the same time, the most time-consuming part of the algorithm is the calculation w”, which boils down to
solving SLAE with lower-triangular and upper-triangular matrices.

3. Method for solving grid equations with tridiagonal preconditioner. Ifthe steps along one of the spatial coordinates
are significantly smaller than the steps along the others (for example, when solving problems of heat and mass transfer in
shallow reservoirs), the dimensions of the calculated area in the vertical direction can be hundreds to thousands of times
smaller than the horizontal dimensions. To solve problem (1) on the basis of difference schemes with relatively small
labor costs for the transition between time layers, compared with the explicit scheme (1.5-2 times larger), with large time

steps (about 30 times more), we will use splitting schemes into two-dimensional and one-dimensional problems [16—17]:
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U e ) = (k) )+ (k) ©
T : X y ’
o + W(C'”(““)/z); - (V(cw("“)u);jl  fre, D
. :
where ¢ = g™+ (1- 6)c""'?; & is the weight of the scheme [7].

The spatial grid is introduced for the numerical implementation of a discrete mathematical model of the problem [18]:

Wh :{t" =nt, X, :ihx’yj :jhy;n ZO,}’lt -1, :0,n1—1,

j=0,n, -1 (n, =Dt ="T,(n,—O)h, =1 ,(n,—Dh, =1}
To approximate the homogeneous equation (2), splitting schemes in spatial coordinate directions will be used:

M”wﬂmwﬁ=@wx},

+1/2 +1/4
n — " /

[
T

®)

!

+ v(cn+l/4 )'y _ (H(Cnﬂ/“)’yj .

To solve real problems of hydrophysics of shallow water bodies, three-layer difference schemes based on a linear

C
T

combination of the Upwind Leapfrog and Standart Leapfrog difference schemes with weight coefficients 2/3 and 1/3,
respectively, are used. To increase the accuracy of calculations, a scheme is used that takes into account the fullness of
the calculation cells [19-21]:

— difference scheme for the equation describing the transfer along the direction O :

n+l/4 n n n n n

2q..+q..c.. —c. c' —c" . ct =l
2,i,j 0,i,j i,j i,j i,j i-1,j . i+1,j ij
+ Su. q—+u mln(qq)—+
-1/2,j492.i, 1/2, Li,j>92,i,
3 "[: 13 J 1] 3hx i+ J 1,] 1] 3hx
n n n n n n
2Axci—1,jq2,i,j + Axc[,jqo,i,j —2p q Ciny —Cij 2u q Cij —Ciy
+ - i+1/2,;91,i,5 2 - i-1/2,7492,i,j 2 -
3 h; h;
n
ac +B
JJ x >
- ql,i,j - q2,i,j H,-,_,- ? u’s/ - 0’
hX
n-3/4 _ n—1
where A ¢, = ———;
T
— difference scheme for equation (4) describing the transfer along the direction O :
n+l/2 n+l/4 n+l/4 n+l/4 n+l/4 n+l/4
2q4,i,j + o, i) — G 5 Cij —Cija . ( ) ijel i
3 . + OV, 1294, 3hy TV e, MINNG5 ;o5 Gy 5 5 3hy +
n+l/4 n+l/4 n+l/4 n+l/4 n+l/4 n+l/4
ZAyci,j—l q4,i,j+Ayci,j qo,i,j ) i+l T Yy b ci,j — i
+ = 2H 17293, 2 =2l 1094, 2 -
3 h; h
v y
n+l/4
_ _ u v.. >0
93i; — 9aij|Mi; > i =
hV
n-1/2 _ _n-3/4
n+t/a _ Cij inj .
where A ¢/ = ———

T
Where g, q,, 4, 4,, q, are the degrees of control areas occupancy.
To obtain difference schemes approximating the system of equations (4), with #,; <0 and v,; <0 from the
approximations presented, it is necessary to direct the corresponding coordinate axes O _and O, in opposite directions.

Equation (3) is solved by the run-through method.
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The splitting scheme into two-dimensional and one-dimensional problems has an advantage for solving non-stationary
problems. The two-dimensional problem is solved on the basis of explicit schemes, and the one-dimensional one is
approximated by schemes with weights and solved by the run-through method in this case. Schemes with weights are
used, when solving stationary problems. Using this approach allows to reduce the initial problem to solving grid equations
by iterative methods [22].

4. Geometry Segment overlay algorithm. It is necessary to take into account the complex geometry of the
reservoir formed by a combination of the bottom surface and coastal engineering structures when drawing up SLAE.
Programmatically, an approach is proposed and implemented that allows modeling the geometry of the object under
study as a set of geometric primitives. A feature of the approach is the support for superimposing primitives on each
other. In the class library developed with the software implementation, all geometric primitives are inherited from the
abstract Geometry2DPrimitive class (Fig. 1), which contains data such as the _dSO0 offset coordinates, the primitiveType

primitive type, and a logical property characterizing the “cutout” (_isCavity).

C Geometry 2D

_geometryCoordinate : Coordinate 2D
_primitives : List<Geometry2DPrimitive>

A Geometry2DPrimitive

_dS0 : Coordinate 2D
_primitiveType : PrimitiveTypeEnum

_isCaity : bool
o o C Coordinate 2D
C Geometry2DPrimitiveRectangle E PrimitiveTypeEnum
_x : double
_width : double Object =0 _y : double
_height : double Cavity = 1 X : double
Y : double

Fig. 1. Research object geometry. Class diagram

Object-oriented modeling of a geometry segment is performed using a typed class GeometryPrimitiveSegment<T>, in
which type T is a class used to store data about the coordinates of the beginning and end of the segment.

21° 622'

D= ClZ < 022’ E= CIZ == CZZ’ F= ClZ = 022’

Let’s denote the coordinates of the beginning and end of the first and second segments ¢ |, ¢, ,c

Let’s introduce logical variables: 4 = ¢ <c,,B=c

21° 11==CZI’C=CII>C

21°

G:cll :ZCZZ’H:CIZZZCZI’[:CIZ<C

o J = ¢, > c,,. K, L are the types of the first and second segments; M, N are the
fullness of the space under the first and second segments; V' is the flag indicating that the second segment is a “cutout”.

All possible combinations of overlapping geometry segments are summarized in Table 1.

The basis of the original linear algorithm is to take into account various combinations of geometric primitives. To
increase productivity, a number of modifications based on conditional constructions have been introduced:

1. Initialization: ¢, , ¢, ,c, , C,,-

2. Calculation: 4, B, C,D,E,F, G,H,I,J, K, L, M,N, V.

3. Checking the correctness condition: L A N v K A M # true.

C

4. Definition of the overlay type.

5. Further actions are performed for the found overlay type. For example, option No. 1 is described (Table 1). For
other types, the actions are the same.

6. If the first segment is not a boundary (K = true) , then go to step 12.

7. If the second segment is not a boundary (L = true), then go to step 10.

8. Calculating expressions 1\7/\]7/\;, M AN AV, MANAV, M ANAV, M/\]V/\;, M ANAV
MANAV,MANAV and creating the resulting segments.
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9. Go to step 17. _ _

10. Calculating M AN AV, M ANAV , M AN AV, M AN AV and creating the resulting segments.
11. Go to step 17.

12. If the second segment is boundary (L = false), then transition to step 15, otherwise transition to step 17.
13. Checking the conditions M AN AV, M A N A V, M /\ZV/\IZ M A N/\;.

14. Creating and returning the resulting segments.

15. Go to step 17. _

16. Calculation M AN AV, M AN AV and creation of the resulting segments.

17. The end.
Table 1
Options for overlapping geometry segments
Overlay option Graphical interpretation Logical expression
1 H
2 G
3 BAE
4 AANF
5 CAD
6 BAF
7 BAD
8 ANE
9 CAE
10 CAF
11 AANDAT
12 1
13 J

5. Parallel implementation. The pipeline parallel algorithm has been developed that allows using all available compu-
ting resources for the numerical implementation of the MATM applicable to a high-dimensional SLAE. At the same time,
each computer (CPU core or GPU computing unit) processes only the fragments of the computational domain assigned to it.

The connections between fragments and the organization of the parallel-pipeline computing process are described by
a graph model, where nodes represent fragments of the computational domain. The computational process is organized
according to the values of the counter of the calculation stages s =k -i + j.

The developed graph model is used in the algorithm for solving SLAE with a lower-triangular matrix (Fig. 3). The
input parameters of the algorithm are the coefficients of grid equations ¢, c,, c,, ¢, and the constant ®. The result is the
velocity vector of the water flow ». When starting the software implementation of the algorithm in the CUDA C language,
it is necessary to set the values of the dimensions of the CUDA computing blocks blockDim.x, blockDim.z . The parallel-
pipelined computing process is organized as a cycle (line 6).
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Fig. 2. Graph model of parallel-pipeline computing process

Fig. 3. Algorithm for solving a system of equations with a lower triangular matrix
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Two-dimensional array cache, placed in shared GPU memory has been introduced to reduce the number of reads from
global video memory. It stores the intermediate results of calculations on the current layer along the axis 0, which speeds
up the calculation process by 30 %.

The results of the study. Computational experiment comparing the performance of the basic and modified algorithms
was conducted on a computer system with an Intel Core i5 3.3 GHz processor and 32 GB DDR4 RAM (Table 2). The

modified algorithm recorded a decrease in the calculation time by up to 27 %.
Table 2

Results of comparing the performance of the basic and modified algorithms for combining geometry segments

Number of unions, x10° 1 2 3 4 5 6 7 8 9 10
Basic algorithm, s 0.53 0.75 0.13 0.16 0.19 0.23 0.26 0.29 0.35 0.38
Modified algorithm, s 0.41 0.55 0.97 0.12 0.15 0.20 0.22 0.25 0.29 0.31

The numerical experiment was carried out to determine the number of GPU threads along the axes O and O, the
calculated grid (X, Z) with a fixed value of grid nodes along the axis O, equal to 10000, which allows to reduce the
calculation time of one step of the MATM (7, ) on the GPU. The levels of variation of the factors X and Z and the results

of the numerical experiment are shown in Table 3.

PU

Table 4

Results of the experiment

Ne X z T S
1 16 64 0.064
2 32 32 0.065
3. 64 16 0.081
4. 128 8 0.109
5 256 4 0.100
6 512 2 0.103

In the experiment, it was found that the calculation time of one MATM step on the GPU is inversely proportional to
the number of nodes of the calculated grid along the axis O.. The smallest value of the objective function is obtained at

X and Z, equal to 16 and 64, respectively.

Table 5
Comparison of parallel algorithms’ acceleration
P Jacobi Seidel MATM MSGE with a tridiagonal
preconditioner
Speed-up | Efficiency | Speed-up | Efficiency | Speed-up Efficiency Speed-up Efficiency
ratio ratio ratio ratio
1 1.00 100.00 1.00 100.00 1.00 100.00 1.00 100.00
2 1.95 97.50 1.95 97.50 1.94 97.00 1.84 92.00
3 2.96 98.67 2.92 97.33 2.82 94.00 2.97 99.00
4 3.98 99.50 3.75 93.75 3.82 95.50 3.32 83.00
8 7.36 92.00 7.02 87.75 7.31 91.38 8.03 100.38
16 13.29 83.06 12.92 80.75 12.78 79.88 15.80 98.75
24 16.93 70.54 16.49 68.71 17.03 70.96 19.53 81.38

Table 4 presents a comparison of the speed-up ratio of parallel algorithms for the Seidel, Jacobi methods, the
modified alternately triangular method and the method for solving grid equations with a tridiagonal preconditioner on
the number of computational nodes. Calculations were made on a grid of one million calculation cells. The launches
were carried out sequentially, starting from the launch on one computing node and ending with the connection of

all available nodes.
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Discussion and Conclusions. Algorithms for solving SLAE obtained by discretizing the problem of hydrodynamics
of a shallow reservoir, MATM using NVIDIA CUDA technology are proposed. The proposed method of decomposition
of the computational grid and the graph model make it possible to efficiently organize parallel pipeline calculations on
computing systems of various configurations.

Numerical experiments have been carried out to determine the best two-dimensional configuration
of threads in the computing unit, minimizing the time of one step of the MATM on the GPU, — X =16 and Z = 64.

The maximum speed-up ratio was shown by the method of solving grid equations for hydrodynamic problems
in flat areas, which is based on an explicit-implicit scheme. MATM, in comparison with the methods of Jacobi and
Seidel, requires significantly fewer iterations for convergence. With a good optimization of the parallel MATM
algorithm, the speed-up ratio differs by no more than 10 % by the number of computing nodes up to 24 compared to the
acceleration of the parallel algorithm of the Jacobi method.

The developed software tools make it possible to more effectively use the computing resources of the GPU used to
solve computationally time-consuming spatial-three-dimensional problems of hydrophysics.

Combining segments of the geometry of the object under study leads to a reduction in the number of computational

operations, which allows to increase the performance of calculations.
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Abstract

Introduction. Increasing accuracy in the approximation of fractional integrals, as is known, is one of the urgent
tasks of computational mathematics. The purpose of this study is to create and apply a second-order difference
analog to approximate the fractional Riemann-Liouville integral. Its application is investigated in solving some
classes of fractional differential equations. The difference analog is designed to approximate the fractional integral
with high accuracy.

Materials and Methods. The paper considers a second-order difference analogue for approximating the fractional
Riemann-Liouville integral, as well as a class of fractional differential equations, which contains a fractional Caputo
derivative in time of the order belonging to the interval (1, 2).

Results. To solve the above equations, the original fractional differential equations have been transformed into a new
model that includes the Riemann-Liouville fractional integral. This transformation makes it possible to solve problems
efficiently using appropriate numerical methods. Then the proposed difference analogue of the second order approximation
is applied to solve the transformed model problem.

Discussion and Conclusions. The stability of the proposed difference scheme is proved. An a priori estimate is obtained
for the problem under consideration, which establishes the uniqueness and continuous dependence of the solution on the
input data. To evaluate the accuracy of the scheme and verify the experimental order of convergence, calculations for the
test problem were carried out.

Keywords: Fractional differential equation, Caputo derivative, Riemann-Liouville integral, Difference scheme.
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PasHocTHast cxema BTOPOro mopsiika [ peumieHus kiacca AuddepeHunanbHbIX ypaBHEHUH
APOOHOIO MOpPSiAKA

AX. Xubues ,A.A. Anuxano &, M. Illlax6a3zuacinb, P.A. UepHoOpoBKuH
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AHHOTAIHUSA
Beeoenue. T1oBbieHNe TOYHOCTH TIPU AMMTPOKCUMAITUS TPOOHBIX HHTETPATIOB, KAaK U3BECTHO, SIBIISIETCSI OTHOM M3 aKTy-
aJbHBIX 33/1a4 BHIYMCIUTENIbHON MaTemaTuku. Llenb HacToslero ucciaeoBaHusl — CO34aHUE U MPUMEHEHUE Pa3HOCT-
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HOTO aHajora BTOPOTO MOpsIKa Al allpOKCHMAIMu ApoOHOro mHTerpana Pumana-JInysumins. Ero mpumeHnenue uc-
clietyeTcst IpU pelIeHNH HEKOTOPBIX KilaccoB An(GepeHIINaIbHBIX ypaBHEHHH IpoOHOTO Mopsika. Pa3HOCTHEBIN aHaor
MIpeAHa3Ha4YeH IS AlIPOKCHMAIMU IPOOHOTO MHTETpajia ¢ BHICOKOH TOUHOCTBIO.

Mamepuanwt u memoost. B pabore paccmaTpuBaeTcs pa3HOCTHBIM aHAJIOT BTOPOTO NOPS/Ka JJIsl alPOKCHMAIH Jpo0-
HOTO MHTeTpana Pumana-JInyBmmrs, a Taxoke kiacc auddepeHnnanbHpIX ypaBHEHHN TPOOHOTO TOPSIKa, KOTOPEIi COo-
JIEP>KUT APOOHYI0 Mporu3BoaHYyI0 KamyTo o BpeMeHu nopsiika, mprHauiexariero uarepsay (1, 2).

Pezynomamut uccnedosanus. JIns pelieHus BBIMICYTIOMSHYTHIX ypaBHEHHH IPeoOpa3oBaHbl UCXOAHbIE AU (epeHIH-
aJIbHBIE YPaBHEHMS JPOOHOTO MOPSIIKA B HOBYIO MOJIEITb, KOTOPask BKIIIOUaeT ApoOHbIH nHTerpan Pumana-Jlnysuiist. 31o
npeoOpa3oBaHue MO3BONISAET 3(P(HEKTUBHO pemaTh 3aady C UCTIOIb30BAHUEM COOTBETCTBYIOIIMX YHCIEHHBIX METO/OB.
3areM IpeAIOKeHHBIA Pa3HOCTHBIM aHaAJIOT BTOPOTO MOPS/IKa alllPOKCHMAIIMN MPUMEHSIETCs ISl pelIeHus mpeodpaso-
BaHHOM MOJEJILHOM 3a/1a4H.

Oobcysicoenue u 3axnrouenun. JJokasana ycTOHUNBOCTb NPEUIOKEHHOM pa3HOCTHOM cxeMsl. [loyueHa anpropHas o1eH-
Ka 715l paccMaTpUBAEMOH 3a/1a4d, KOTOpasi yCTaHABINBAET CIUHCTBEHHOCTh U HETIPEPHIBHYIO 3aBUCHMOCTD PEIICHHS OT
BXOJIHBIX TaHHBIX. [JJIs OIIEHKN TOYHOCTH CXEMbI U MPOBEPKH IKCIICPUMEHTAIBHOTO IOPSAKa CXOAMMOCTH MTPOBEACHBI

pacyeTsl U TECTOBOU 3aa4H.

KuaroueBble cioBa: nuddepeHnnansnoe ypaBHeHHE APOOHOTO MopsiaKa, mpousBoaras Kanyro, narerpan Pumana-Jlny-

BWJLIA, pa3HOCTHAasA CxXeMa.

duHancupoBanme. lccienoBaHue BBIMOJHEHO 3a cyeT rpanHTta Poccuiickoro Haydaoro (omma Ne 22-21-00363.
https://rscf.ru/project/22-21-00363/

Jas qurupoBannsa. Xubue A.X., AnmuxanoB A.A., [llax6a3zuacas M. u np. PasHocTHast cxema BTOPOTo MOPSIKA IS
pemreHus kiacca auddepeHInanbHEIX ypaBHeHHH IpobHoro mopsnka. Computational Mathematics and Information
Technologies. 2023;7(2):31-39. https://doi.org/10.23947/2587-8999-2023-7-2-31-39

Introduction. Fractional calculus (FC) is a branch of mathematics that investigates and applies derivatives and
integrals of real and complex order. While the concept originated centuries ago, it gained significant interest in the late
1960s among engineers who realized its potential for accurately modeling real-world systems compared to conventional
integer order calculus [1]. The delay in its adoption can be attributed to various factors such as the lack of a clear
interpretation for fractional derivatives, the perceived adequacy of integer calculus, and the inherent complexity of FC [2].
Nowadays, FC has become a well-established field, finding extensive applications across various fields, including science,
engineering, and mathematics. The extensive literature highlights the broad usage of FC in numerous subject areas such
as control systems, acoustics, medical and biological sciences, optics, waves, finance, economics, signal processing, and
more [3, 4].

Mathematical models based on differential equations with integer order derivatives have proven useful in studying the
dynamics of real-world systems. However, these models have limitations in capturing long-range temporal memory or
long-range spatial interactions that are inherent in many real-world phenomena. This restriction arises due to the omission
of these features in integer order derivatives [5]. In contrast, FDEs offer a significant advantage as they exhibit nonlocal
behavior. This implies that fractional calculus serves as a powerful tool for capturing the memory and evolutionary
properties exhibited by a wide range of physical phenomena and complex systems [6, 7]. Consequently, mathematical
models based on FDE are more realistic and practical compared to classical integer-order models [8].

The need to accurately model and understand various phenomena and processes, coupled with the effectiveness of
FDE models in capturing long-range memory and non-local interactions, has propelled the quest for efficient numerical
or analytical solution techniques. Researchers strive to develop innovative methods that can handle the complexities
and challenges associated with FDEs, enabling a deeper comprehension of the systems under investigation. However,
obtaining analytical solutions for FDEs is generally challenging and exact solutions often involve infinite series
representations such as the Mittag-Leffler function, the Fox H-function, or the hyperbolic geometry function, which can
pose computational difficulties during evaluation [9]. Consequently, there is a growing interest in the development of
computationally efficient numerical algorithms for solving FDEs. These methods include a variety of high-performance

computing techniques such as finite difference methods:
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— predictor-corrector methods;

— finite element methods, spectral methods;

— boundary particle methods;

— implicit meshless methods;

— Galerkin methods, finite volume methods;

— local radial basis function methods (see [10] and the citations provided within).

In the past few years, there has been a significant focus on the development of numerical methods for solving one-
dimensional time FDEs. Numerous studies have been published in order to investigate and advance these numerical
approaches [11, 12, 13]. Yand et al. [14] applied the Lubich’s fractional multistep method for numerical solution of
fractional diffusion-wave equation by transforming the original model into a equivalent integro-differential equation.
They demonstrated that their method achieves a temporal order of accuracy of a for 1 <o < 1.71832. In [15], the authors
presented a method of order 3-a for 0 <a <1 to approximate the Caputo derivative. They then proposed a discrete difference
scheme by introducing two new variables to transform the original equation into a lower-order system of equations. Two
alternating direction implicit schemes for solving two-dimensional time fractional nonlinear super-diffusion equations
is introduced in [16]. These schemes are based on the equivalent partial integro-differential equations of the original
problem. The Riemann-Liouville fractional integral is discretized using the classical first-order approximation. The
authors prove that both schemes exhibit first-order accuracy in time, ensuring convergence of the numerical solutions.
Khibiev et al. [13] developed a second-order difference analog to approximate the generalized Caputo derivative. They
successfully applied this difference analog for numerically solving the generalized time-fractional diffusion equation,
specifically focusing on cases with smooth solutions.

Based on the insights gained from the discussion and the comprehensive review of relevant literature in this Section,
our objective is to develop a second-order difference analog for approximating the Riemann-Liouville fractional integral
and then apply this difference analog to solving a class of FDEs. The paper is organized as follows. In Section 2, we
introduce the class of FDEs that contain a fractional Caputo derivative of order a + 1, where 0 < a < 1. We transform the
FDE model into a form that includes the Riemann-Liouville fractional integral, and present an a priori estimate for the
solution of the differential model in subsection 2.1. In Section 3, we propose a difference analog for approximating the
Riemann-Liouville fractional integral. We also estimate the truncation error of the method and apply it to solve the new
FDE model. Additionally, we investigate the stability of the numerical method in the subsection 3.1. In Section 4, we
perform numerical simulations to validate the accuracy and efficiency of the proposed method for solving the considered
FDE. We also investigate the method’s experimental order of convergence. Finally, in Section 5, we provide a brief
conclusion summarizing the key findings and contributions of our study.

Materials and Methods. In this section, we present a specific class of initial-value FDEs and propose a methodology to
effectively solve these models. In this study, a new effective and precise numerical scheme is being sought to approximate

the solutions of the following initial-value FDEs:

35, v(@) + % y(t) = g(0), ey
¥0) = yy, »,(0) =y, 2
In which % is a positive constant, 0 <a<1land 0 <¢<T.

There exist multiple definitions for derivatives and integral operators in the context of fractional calculus. Some
widely used definitions include the Caputo derivative and the Riemann-Liouville derivative. These definitions differ in the
way they capture the fractional order behavior of a function. In the Caputo derivative, the fractional derivative is defined
by considering the fractional order differentiation of the function while preserving the initial conditions. This makes it
particularly suitable for modeling real-life processes where the initial conditions are crucial in determining the behavior of
the system [17, 1]. For this reason, in our study, we adopt the fractional derivative in equation (1) in the Caputo sense. This
choice is motivated by the compatibility of the Caputo derivative with real-life applications and its ability to accurately
capture the initial conditions of the system. The Caputo derivative is defined as follows:

1 r "
LMYty = —— (- dn, 0 <a <1,
(o) m_q)g( )y (mydn
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where a represents the fractional order, and I'(-) denotes the gamma function. By utilizing the Caputo derivative, we are
able to effectively capture the fractional order behavior of the system and account for the influence of past history on the
current state. This definition allows us to model various real-life phenomena where the initial conditions play a crucial
role in determining the system’s dynamics [18, 2].

Applying the Riemann-Liouville fractional integration operator of order a, denoted by D, y(¢) to the both sides of

!

the model (1), we reach:

j—y+uDg,“y:f(t),0<tST, (3)
t

where f(¢t) = D, g(t) + y, and the Riemann-Liouville fractional integration operator is defined as:
1 t
Dyt y(t) = —— | (£ = &) p(E)dE. “)
Y0 = TS !( & n(&)de

The model (3) is subject to the initial condition y(0)=y,. In Eq. (3), as ¢ approaches 0, we have y, (0)=f{0)=y,. Therefore,
the second initial condition in Eq. (2) can be derived.

A priori estimate for the solution of the differential problem. The following theorem presents an a priori estimate
for the solution of the differential problem (3), which provides valuable insights into the behavior and properties of the
solution, allowing for a better understanding and analysis of the model. Before presenting the main theorem, it is essential
to introduce the following corollary, which is derived from the results presented in [19].

Corollary 1. For any function y(¢) absolutely continuous on [0,7] the following inequality takes place:
t
j Y(s)D;y(s)ds > 0, 0 < o < 1.
0

Theorem 1. The solution y(¢) of the problem (3) satisfies the following a priori estimate:

y2(1) < q[ y2+ j fz(s)ds} C, = max{2, 47},

Proof. Multiplying Eq. (3) by »(¢), then changing the variable ¢ to s and integrating over the time variable s from 0 to ¢,

we get:
[ 2051y ($)ds + [ ()DGev(s)ds = [ y(s) (5)ds. )

From corollary 1 and the fact that % > 0, the second term of left-hand side of (5) is non-negative and can be omitted.

In this way we have:

%(ﬂr) )< l(syz(@ v 4i£ fz(s)]ds,

2 0 2 2 1 0 2
V2(1) < 28! VA($)ds + 3+ - ! £2(s)ds. ©

To complete the proof, we need to estimate the integral L’yz (s)ds. For this purpose, we integrate (6) with respect to

1
the variable ¢ form O to ¢. Set € = m , taking into account the following inequality:

t & t t
jdg j 12 (s)ds = j (t — 5)y*(s)ds < Tj 12 (s)ds,
0 0 0 0

we can reach the following conclusion:

j Y2 (s)ds < 2Ty; + 4T2j f2(s)ds. 7
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o . . . . 1
Now, by substituting equation (7) into equation (6) and setting € = an ,one can complete the proof.

Derivation of the difference scheme for approximation FDE. The objective of this subsection is to introduce

a difference analog that effectively approximates the Riemann-Liouville fractional integral. Subsequently, we employ this

difference analog to devise a robust and accurate second-order difference scheme specifically developed for approximating
the model (3).

To construct a difference method to approximate the Riemann-Liouville fractional integral (4), for an integer number

N and a given time 7, we discretize the interval [0,7] into equally spaced 11, j=0,1,....N, where 1 = N is the temporal

step length. For notational brevity, we denote the numerical solution of y(tj) at the point t/by . To approximate the

Riemann-Liouville fractional integral at /=¢, , where j=1,2,....N, we employ a generalized trapezoidal formula. This

1

formula is utilized in the following manner:

L+l Is+1

1 a—1 L a-1
P 0= | [ .- yEde = —— @ Z j (6.1 =)' (&) =

Q

Sld 0‘1 E:’ t.s+l_§_ 8
F(a)Z j(rm & (00t ) = ) B ®

a J
T
— (cx) s+1 —(a),,0
=— YU+ Uy =AY

I(a+2) ( s A

in which ¢“=1 and
c.ga) — (S + 1)a+l _ 2Sa+l + (S _ 1)0(+l’

¢ = (@ + (s + D" = ((s + D =5,

The truncation error of the operator AO, ., in (8) is characterized by the following lemma.

Lemma 1. Suppose y(t)ecz[O,t J. For any ve(0,1), A,  is defined in (8). Then we have:

041

Dy (0= &, 4] = 06,

Proof. By using the Lagrange interpolation remainder formula, it follows that:

Is+1

Dy 0 -85, =Y [ 6.-9"

=0

—(tm )& —1)|dg <

Is
ts41 ’/+1

& 22 j (t;,—8)"'de = j 0 -8 ds < S v = o),

here C, = &l&)ﬂy (t)|.

The validity of this approximation can be readily confirmed through the application of Taylor’s Theorem.

In the uniform domain Q:{tj: 7=0,1,...,N}, we consider the fractional differential model (3) at the point Liys with
7=1,2,...,N—1. Applying the proposed difference scheme (8) as well as the approximation (9) to the model (3), we propose
the following difference scheme:

Jj+l

3y

4y’ + y/! o
- Y + %A, +1y = f(t_,'q), (10)

27
o=y (11)
"

At the initial time step #,, we estimate the value of y' by employing Taylor’s theorem as follows:
Y=yt 0(T). (12)
Taking into account Lemma 1 and equation (9) and (12), one can conclude that if the solution of the differential

model (3) satisfies the smoothness condition y(f)e C? (€), then the difference scheme (10)—(11) demonstrates an order of
accuracy of O(1?).
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Theoretical analysis of the proposed difference scheme. Consider the error Z=Y—)/, with W:y(tj). Substituting
y=7+Y into the model (3), we obtain the problem for the error as follows:

. . .
320 — 47 4 7/

: +uAy 2= R (13)
T
D=y, 2=,
where
_ 3y —4y7 4y
RijJrl =" 21 N %A;)(:j+lY + f(t./'“) = O(Tz)’

p=—y' +y,+w = 0().

Before presenting the main theorem for the stability of the proposed difference scheme, it is essential to introduce the
following two Lemmas.

Lemma 2 [6]. For any real constants 7, », such that » > max{r, -3r }, and {Vj } j:(’)v the following inequality holds:

vj+l(r0vj+l = (- ’i)vj - "1",'71) 2 Ej+1(r03 n)— Ej(r()s n), j=1.,N-1,

2
1 |r,—n 1 |r+3n )
Ej(ro,n)z{EJoz ! +E\/O 5 1jvj+
2
n ro_rlv,— l\/ro_rl +l\/”o"'?”"l vl
2 7|2 2 2 2 !

Lemma 3 [20]. Assume that the sequence {an }::0 of real numbers is satisfy the following properties:

where

a>0,a—-a+1>0,a —2a _+a+2>0.
n n n n ntl n

a .
Let ¢, :70 uc; =a,forj=1. Then:

D > e B8 20, V(. E,) e R

Theorem 2. The difference scheme (3) is unconditionally stable and the following a priori estimate is valid for its
solution:

(Zj+1)2 SC{X (RSH)ZT 4 HZ}
s=1

where C, is a positive constant independent of T and 4.

Proof. The proof follows a similar approach to that of Theorem 1. By multiplying equation (13) by z*'t and replacing
j with s, we then sum over s from 1 to j and utilize the results from Lemma 2 and Lemma 3. Due to the similarity in
methodology, the detailed proof is omitted here for brevity.

Results. To evaluate the performance of the numerical method and gain insights into its convergence behavior,
a comprehensive set of numerical experiments is conducted in this section. The primary objective is to analyze the
numerical errors by comparing the exact solution with the computed numerical solution. Additionally, the convergence
order of the numerical algorithm with respect to the step size 1 is investigated. The experimental orders of convergence
(EOC) are calculated using the following relations:

E(v)
EOC = log‘rl/rg E(‘Cl) >
2

where the maximum absolute error £(t) is calculated by:
_ )
E(1) = lrgnjgdy(tj) y |

with the step size 1.
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Example 1. Consider the model (3) with an exact analytical solution given by the following expression y(¢)=¢+£".
The corresponding source term and initial conditions for the given problem can be obtained as follows:

2 o+2

% I'(4+a) et
I'G+a)

F) =2+ @+ o) +x a2

» ¥(0) = »,(0) = 0.

We solve this problem with the presented difference scheme (10).

Table 1 presents the results obtained by varying the values of the step length 1, displaying the maximum error and EOC
for different values of a with x =4, at the time 7= 1. The Table demonstrates that the method exhibits excellent accuracy
even for very small grid sizes, and the EOC consistently reaches the expected value of 2 for all cases.

We proceed with an investigation of the long time performance of the proposed scheme method with the aim of further
assessing the precision and reliability of the scheme. Table 2 showcases the maximum error and EOC for different values
of a with x =2, at the time 7= 10. The Table provides further evidence of the method’s high accuracy, even for extended
time intervals and very small mesh sizes. The EOC consistently remains at 2, indicating the method’s reliability and
robustness in accurately solving the problem. These findings confirm the effectiveness and reliability of our numerical
scheme in accurately solving the considered problem across different time ranges.

Discussion and Conclusions. In this study, we have presented a second-order numerical analog for approximating
the Riemann-Liouville fractional integral and demonstrated its effectiveness in solving a class of ordinary FDEs. By
transforming the original FDEs into a model that incorporates the Riemann-Liouville fractional integral, we were able
to extend the applicability of our proposed method to solve the model. Furthermore, we established a priori estimates
for the solution, which demonstrate the uniqueness and continuous dependence of the solution on the input data. The
stability analysis of the proposed difference scheme is also investigated. Numerical simulations are performed to assess
the accuracy, efficiency, and long-term reliability of the proposed method. The simulations demonstrate the method’s
effectiveness in solving FDEs, even for extended time intervals and with small mesh sizes. The experimental order of
convergence (EOC) is also investigated, confirming the expected EOC of 2 for different cases.

Table 1

The maximum error and the experimental orders of convergence (EOC) for example 1 with decreasing time-grid
size = T/N, for 0. = 0.1,0.5,0.9, with % = 4, at the time 7= 1

size = T/N, for o= 0.1,0.5,0.9, with » = 2, at the time 7= 10

t=T/N a=0.1 a=0.5 a=0.9
N E(7) CcO E(t) CcoO E(7) Cco
80 2.1178e-04 2.2420e-04 3.9043e-04
160 5.4976e-05 1.9457 5.7336¢-05 1.9673 9.8674¢-05 1.9843
320 1.4126¢-05 1.9604 1.4501e-05 1.9833 2.4799¢-05 1.9924
640 3.5885¢-06 1.9769 3.6458e-06 1.9918 6.2161e-06 1.9962
1280 9.0518e-07 1.9871 9.1379¢-07 1.9963 1.5560e-06 1.9981
2560 2.2750e-07 1.9923 2.2870e-07 1.9984 3.8926¢-07 1.9991
Table 2

Long time performance of the proposed scheme for solving example 1 with decreasing time-grid

a=0.1 a=0.5 a=0.9

N E(7) CO E(7) CO E(7) CO

80 3.1602e-02 3.1247¢-01 1.1045e+00

160 8.8350e-03 1.8387 7.9023e-02 1.9834 2.7524e-01 2.0046
320 2.4257¢-03 1.8648 1.9915¢-02 1.9884 6.8737¢-02 2.0016
640 6.5691e-04 1.8846 5.0069¢-03 1.9919 1.7177e-02 2.0006
1280 1.7599¢-04 1.9002 1.2567e-03 1.9943 4.2936e-03 2.0002
2560 4.6740e-05 1.9128 3.1505¢e-04 1.9960 1.0733e-03 2.0001
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Abstract

Two neurological models of information warfare are considered. For each of them, the optimal control problem is
considered, assuming that the Campaign Planner is associated with the governing body of one of the belligerent parties
and distributes the volume of propaganda broadcasting in time.

The cost functional reflects the Planner’s desire to maximize the number of their supporters at a given time while
minimizing costs during the campaign.

The problem is studied analytically, using the Pontryagin’s maximum principle.

Optimal control is obtained for various combinations of parameters.

The “increasing” type of campaign is aimed at ensuring that for most individuals information is received immediately
before the finish line, and that the impression of this information does not have time to weaken. In contrast, the strategy
of a “decreasing” campaign implies a high role of interpersonal communication: it is based on convincing a significant

number of individuals of their position at the very beginning, who will then retell it to their interlocutors.
Keywords: mathematical model, information warfare, optimal control, Pontryagin’s maximum principle.
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AHHOTaNHSA

PaccmarpuBatoTcs 1Be Heifpooruueckiue Mojiesii HH(pOPMAIIMOHHOTO POTHBOOOPCTBA. JIJIsl KaXKJI0¥ U3 HUX MpeIoKe-
HO pelIeHUE 33]a4d ONTUMAIIbHOTO ynpasieHus. [Ipu sTom npennonaraercs, yto [I1aHUPOBIIMK KaMIIAHUU ACCOLUUPY-
€TCsl C YIPABIISIOIUM OPraHOM OHOM M3 MPOTHBOOOPCTBYIOIIUX MAPTUIl U paclpe/eNnseT BO BpeMEHH JOCTYIHBIA eMy
00BEM ITPONAraHANCTCKOTO BemaHus. Takum 00pa3oM, HHTEHCHBHOCTD MPONAraHIMUCTCKOTO BEIaHNsI OMHOW U3 CTOPOH
MIPOTUBOOOPCTBA UMEET CMBICI yIIPABICHUSL.
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AP Petrov. Optimal control in neurological models of information warfare

Crparerusi mponaraHguCTCKOM KaMIIaHUM, B 3aBUCHMOCTH OT NapaMETPOB CHCTEMBI, MOXKET OBITh KaK «HapacTaro-
mei» (T. e. mpoxoasAuiel ¢ HeyOBbIBalOIIEH MHTEHCHUBHOCTBIO IPONAraHANMCTCKOrO BEIIaHUs), TaK U «yObIBaIOIIEH»
(mpoxopsieit ¢ HeBo3pacTarolleil HHTEHCUBHOCTBIO). [Ipu «HapacTaromein» kaMrnaHuyd UH(GOpMaIHst peJoCTaBIseTCs
TOJNBKO Ha (PMHMIIE, C TEM, YTOOBI BIEUYATICHUE OT 3TONH MHPOPMALMK HE YCIIENIO TIOTEpATh CHiTy. B ocHOBe cTparernn
«yOBbIBaIOIIEH» KAMITAaHUU — MEXJIMYHOCTHOE oOuienre. CHavyasa Hy)KHO yOeANUTh B CBOEH IMO3UIIMH KaK MOKHO OOJIbIIe
WHIUBHJIOB, KOTOPBIE 3aTeM OyIyT NepecKa3biBaTh ee cobecenHnkaM. [lapaMeTphl CHCTEMBI ONPENENSIOT OanaHe MEXITY

9TUMU TUIIAMH CTpaTeFHﬁ.

KoueBble cjioBa: MaremMaTn4eckasi MoieNb, THGOPMALMOHHOE IPOTHBOOOPCTBO, ONITUMAJIBHOE YIIPABICHUE, IIPHHIIHIT

makcuMyma [loHTpsruHa.

Mo nurupoBanus. [lerpo A.Il. OntumasnbHOe yrpaBieHHe B HEHPOIOTHUECKUX MOJEISX HH(POPMAIIMOHHOTO MIPOTH-
BobopcTBa. Computational Mathematics and Information Technologies. 2023;7(2):40-51. https://doi.org/10.23947/2587-
8999-2023-7-2-40-51

The following problem is considered in the article. Consider the information war between the two sides. By associating
ourselves with one of them, we will try to maximize the number of our supporters at a certain point in time, while
minimizing the costs of broadcasting in the media. This moment in time can be considered as an election date. The
question is to determine the most profitable strategy: for example, whether to start a campaign with a low intensity of
propaganda in the media and strengthen it over time. Or, on the contrary, you need to start a campaign with intensive
propaganda, and then reduce it. Or some more complex, non-monotonic strategy is optimal. For simplicity, letys assume
that the propaganda of the other side has a constant intensity.

This paper uses a neurological model of information warfare in society to study this problem [1]. Therefore, from
an applied point of view, the analysis is aimed not so much at obtaining quantitative results as at identifying qualitative
patterns. For these revealed patterns, the final section presents a transparent sociological interpretation that allows for the
practical application of the results. The conclusions obtained in this case do not contradict intuition, but, according to
the authors, are not obvious and could hardly be obtained on the basis of general considerations, i.e. without the use of
mathematical modeling methods.

Meaningfully, this work relates to such a direction as mathematical modeling of information processes in
society [2—4]. In this field, information processes are studied by methods of text analysis [5, 6], network analysis and opinion
dynamics [7-11], etc. At the same time, the task of management in the formulation of this work has not been
previously considered.

The model of information warfare. The neurological model of information warfare in society [1] (and its application [3])
is based on the traditional neurological scheme [12, 13] and has the form:

wy c ZIn(Q)d@—NO +u—b—ay.
-V

- )
dt

Here the parameters a, b, ¢, u are positive, and their meaningful meaning is defined in Rashevsky’s theory [12, 13].
They depend both on the stimulus that come from the social environment and on the internal parameters of the neurological
system. For the purposes of this work, it is important that a and b are related to the intensity of the mass media supporting
the Right and Left parties, respectively.

In the most general terms, the sociological meaning of the position selection model and equation (1) can be explained
as follows. It is assumed that in a society consisting of individuals, there is an information struggle between two sides
(parties): Left and Right. Each individual makes a decision to support a particular party based on his attitude and incentives
coming from the social environment.

Next, we will consider in turn what these incentives and attitudes are, and then we will describe the decision-
making mechanism.

Stimuli in the authors’ model are understood as informational influence on an individual by the media and other
individuals. Under this influence, an individual can change his party affiliation over time. At the same time, he himself
creates incentives for other individuals by agitating them for his current party. As a result, there is a social dynamics
described by equation (1). If the intensity of media propaganda is constant, then the dynamic process ends with the
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formation of a stationary state. Quite often, several stationary states are possible, in this case, which of them is achieved
depends on the initial condition. Next, the optimal control problem is formulated, in which the Planner is identified with
one of the sides of the warfare (with the Right Party), and the intensity of its propaganda through the media is taken as
a control parameter, and the objective function takes into account this intensity (as an indicator of expenses) and the
number of supporters of this party at a given time (the end of the warfare).

Now let’s look at the model in more detail.

Each of the individuals N, is characterized by an attitude, i. e. their predisposition ¢ to support a particular party,
related to their fundamental belonging to a certain ideology, previous experience, social status, etc. This value is assumed
to be constant for a period of time, during which the information struggle lasts.

Thus, it is assumed that there is a constant in time, exogenously defined distribution of individuals along the axis of
attitudes n(¢), while the negative attitude corresponds to the support of the first batch, the positive one corresponds to the
support of the second batch, and the absolute value reflects the strength of support.

Here the function n(¢) is equal to zero outside the segment at @,;, < ¢® < @, and further we will assume that on this
segment the function n() is positive, except, perhaps, a finite number of isolated points at which it turns to zero.

Obviously:

The rule by which an individual relates himself to a particular party can be expressed as follows: if the sum of the
stimulus and the attitude is negative, then the individual relates himself to the Left party, if positive — to the Right.

The variant of the model considered in this paper assumes that the influence of mass media is evenly distributed
throughout society, in particular, this means that selective use of the media is not taken into account (for example,
“conservatives read only conservative newspapers, liberals read only liberal newspapers”). The incentive to support
a certain party associated with the campaigning carried out by the supporters of this party is assumed to be proportional
to its current number.

The numbers of supporters of the Left (L) and Right (R) parties are equal, respectively:

-v(1)

L) = [nlo)do, @.1)
R(t) = T;(cp)dq)- (2.2)

—(r)
The initial condition y(0), necessary for an unambiguous definition y(#), is found from the distribution of individuals
between parties at the moment /=0 and has the form:

L(0) = |n(p)de A3)

or, equivalently:

Pmin

Here L(O) (and also R(O)) is an observable quantity and each of these equalities can be considered as an equation for
y(0), having a unique solution if the function N ((p) is positive for almost all @.

Obviously, \|I(0) = Qs 1f X(O) =0 and \|/(0) = Qs if Y(O) = 0. The realistic assumption is that 0 < X(O) < N,,
50 that @i < W(0) < @

Note that, the function y(#) can take values in a wider range, up to —oo < y < oo. For example, inequality w(H)>¢__
corresponds to a situation where absolutely all members of society support the first party, i. e. its advantage in the
intensity of propaganda is so great that it outweighs the installation of even the most radical supporter of the second
party. This situation seems unrealistic. Therefore, in this analysis, we will choose the areas of parameter changes so that
Puin < V(1) < Qs forall 0<1 <7,

So, the function y(7) is found as a solution to the initial problem (1), (3).
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Rashevsky [12, 13] analyzed a stationary equation corresponding to (1) in the case #=b=0 (in terms of this model,
this corresponds to a process taking place in the absence of mass media propaganda) and an even function n(p). He
showed that for sufficiently small values of the ratio c¢/a there is a single stationary solution, it is asymptotically stable and
corresponds to an equal distribution of individuals between parties, i. e. R(t) - L(t) — 0,at t — co. This corresponds to
the case when the reaction of (each) individual is significantly more determined by his attitude than the opinion of other
individuals. And, conversely, with sufficiently large values c¢/a an individual’s reaction is more determined by the opinion
of other individuals than by his own attitude. As a result, the balance between the parties is unstable: if one of them
has a numerical superiority at =0, then it allows you to create an advantage in the strength of the incentive (i. e., in the
number of individuals campaigning for it), which increases over time. As a result, stable stationary solutions correspond
to situations in which one of the parties acquires a substantial majority. It is precisely such cases that are of the greatest
interest for analysis and it is to them that the most attention is paid in this work.

Statement of the management problem. We will consider the process of informational warfare in the time interval
(0;7), where an exogenously given moment of time T can be conditionally interpreted as “election day”. At the same
time, the intensity u of the propaganda broadcast of the Right-wing Party is accepted as management and has a limitation:

O<uc<u,. “)

The target functionality reflects the Planner’s desire to maximize the number of his supporters at time 7 while
minimizing costs during the campaign:
k T
J= —Ejuzdt + R(T) — max,
0

)
k T Pmax
J= ——qudt+ jn((p)d(p—) max. (5)
2% —w(7)

In this case, we limit ourselves to the case of a uniform symmetric distribution: @, =0, =¢, and
N((p) =const > 0,at —¢,, <P < @,,.

Methods of solving the management problem

A. Basic equations. The Hamiltonian of the optimal control problem (1)—(5) has the form:

Pm 2
H(‘V:P,M)= 0(2 Jn((P)d(P—NOJJFU—b—a\V p—kL

-0 2
Therefore,
d\V Pm
— =c 2jn(@)d(p—N0 +u—>b-ay, (6)
dt it
P _ 1 2en(-y) + dlp, (1.1)
dt
p(T)=n(- (7). (72)
The immediate goal is to maximize the control Hamiltonian. We have:
OH
—=p—ku
Ou P
This derivative turns to zero at:
_P
u=-=—.
k

Taking into account the constraint (4), we obtain that the optimal control has the form:

0, p <0,
u*=<plk,0<p<tu,, ®)
u,, p > ku,.

Taking into account the fact that the authors limited themselves to the case of a uniform symmetric distribution:
N((P) = const > 0, at —¢,, < ¢ < @,,, hence:
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0, YV <=9,,
Pm
[nlo)dp=1 o)1+ Y| o, <y<q,
i 2 P,
N, y>0,.
Stationary solutions of the differential equation (6) are found from the equation:
f(w)=ay.
where
—cNy+u-b, Y <—0,,
f(W): CNO(pi-'—u_b’ _(PmSWS(Pm’
c¢N, +u—b, Y > 0,.

)

Itisnotdifficultto see thatif @ > cN; /@,,, then equation (9) has one solution forany constantu. If a < ¢cN, /¢,,, thenit

has three roots at a¢,, — cN, <u —b < —a@,, + cN, and only onerootatoru —b < ap,, —cN, or —a¢p, +cN, <u —b

(this paper does not consider a special case @ = cN,/9,)).
For the brevity of the record , we introduce the notation:

k=a—ﬂ.
P
Tasks (6), (7) take the form:
—cNy+u—-b-ay, Y <—0,,
dy
i — Ay +u-b, ~ 0, SV <09,
c¢Ny +u—>b-ay, v >0,
ap, Y <=0,
@ _ Ap —0,SY<0o
dt > m — - m?>
Clp, \V>(Pm'

Taking into account the case under consideration — ¢, < \V(t) < ¢,, forall z, we have:

Wy ru-b, w(0)=y,
dr

d_p = }\‘pi p(T): NO /2(Pm'
dt
The solution of problem (14) for the conjugate equation has the form:

plr)= ;f; expln(t 7).

m

(10)

(11)

(12)

(13)

(14)

(15)

Thus, the function p(t ) either increases strictly (if A > 0), or decreases strictly (if A < 0), or is constant (if A =0).

Let’s consider the first two options sequentially.
B. Strictly increasing function p(t)
We will assume that:
a—-cN,/o, >0.
Then there can be three cases (Fig. 1).
Case 1 (Fig. 1 a): ku, > p(T), i.e.:
Ny /29, <ku,.

Case 2 (Fig. 1 b): p(O) < ku,, < p(T), ie.:

2]:;1 exp[- AT] < ku,, < 2]:;‘; :

(16)
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Case 3 (Fig.1 ¢): ku,, < p(O), ie.:

ku,, < Ny exp[- AT].
29,

p(t)
ku ku ku

m

p(t) p(t)

a) b) ¢
Fig. 1. Three options for the location of the function y=p(f) relative to a straight line y=ku : cases 1-3
Let’s consider each of these cases.
Casel. >0, ku, > p(T).
Then p(t) <ku, at te [0; T 1 Then it follows from equation (8) that:

(1) = N _expla(e - 7). (17)
2ko,,
Substituting this into (13), we get:
Lil—\;l:—k\y+ 0 exp[k(t—T)]—b, (18)
The solution to this Cauchy problem has the form:
(t) _ N, exp[k(t - T)] 3 2 N {\VO 3 N, exp[— XT] . 2} exp[— M], (19)
Ahko, A 40ko,, A

at 0<¢r<T.
Case 2. A > 0, p(O) < ku, < p(T).
Then there is a point £, € (0; T ), such that p(tl) = ku,, (Fig. 1 b). In other words, 7, is determined by equating the

function p(7), given by expression (15) to the value ku_ . We have an equation for this value N,/ (2(pm ) exp[k(tl -T )] =ku,,
1.e.:

f=T—Ln_ Mo (20)
7\’ 2(pmkum
Calculated in this way ¢, is positive due to the condition p(O) <ku, < p(T ) , defining Case 2 (non-positivity would
mean that p(O) > ku,,, i. e., Case 3 takes place). For optimal control, we obtain:

. {p(z)/k, 0<r<1,
u*t =

u

m?

Substituting u=u" into equation (13), we obtain for the function y(¢) the Cauchy problem with the right part given

separately on the segments 0 <¢ <¢ and t, <t <1:

d N,
d_\f:—k\y +ﬁexp[?»(t—T)]—b, 0<r<y, \|/(O)= v, ey
il_\ltj =My +u, —b, t <t <1, yly +0)=yl —0) (22)

Sequentially solving problems (21), (22), we obtain:
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_ Noexp[k(t—T)]_é O_Noexp[—kT] 2 _ 23
()= Dk, k+ ] —47»/€(Pm +k exp[- A, 0<t<t; (23)

A A

()= fo = {w(zl)_ ‘b}xp[_ Me—t)], 1 <c<1.

Case3. L >0, ku, < p(O)
In this case p(t) > ku,, for t € [0; T ], in particular p(T) =N, /2¢,, > ku,. It follows from (8) that the optimal control
then has the form:

u*(t)zum, te[O;T1 (25)

Substituting u=u" into equation (13), we obtain for the function y(#) 3amaay the Cauchy problem:

d
v _ My +u, —b, y(0)=y’,
dt
the solution of which has the form:
y(t) = 2= b, [\VO L b}exp[— at]. (26)
a a
C. Strictly decreasing function p(¢)
We will assume that:
A=a—-cN,/9, <0. 27

For convenience, we will rewrite the formula (15):

p(e) = ;(ijn exp[re 7).

There may be three cases (Fig. 2).
Case 4 (Fig. 2 a): ku,, 2 p(O), ie.:

m

ku, > ZNO exp[- AT].

Case 5 (Fig. 2 b): p(T) < ku,, < p(0), i. e.:

Mo ku, < Ny exp[- AT].
29, 29,
Case 6 (Fig. 2 ¢): ku,, < p(T), ie.:
ku, < N
2¢,,
p(t)
ku ku ku
p(t)
p(t)
T t t, T t T t
a) b) ¢)

Fig. 2. Three options for the location of the function y=p(¢) relative to a straight line y=ku, : cases 4-6

Let’s consider these cases sequentially.
Cased. L <0, p(O) <ku,.

Thus, No exp[— XT] < ku,,. In this case p(t) < ku, forte [O;T]. Then it follows from (8) that:
2

m

u*(ﬁ=:22% exp[A(r - T)]. (28)

m
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Substituting u=u" into equation (13), we obtain the Cauchy problem for the function y(z):

d\'/ __ NO _ _ 0 — 0 29
o AV + —Zk(P,,, exp[?»(t T)] b, \II( ) v (29)
Its solution at has the form:
NyexpMe=T)] b | o Nyexp[-AT] b
= A - S+ — At 30
wle) kg, x|y ke, expl- 4] (30)

Case 5. A <0, p(T) <ku, < p(O).
Thus, N, / (2(pm) < ku, <N, /(2(pm)exp[— AT 1 Then there is a point £, € (0; T), such that p(tl) = ku,,, t, is determined
by equating the function p(¢), given by formula (15) to the value ku . We will get:

4 =T -t (31)
20, ku,
Then the optimal control has the form:
. e 0<1<, -
utT =
ple)/k, 1 <t<1, )
Substitute this in (13). We will get:
d
L=, b o<y, w(0)=y" (33)
dy N, - 34
——=-Ay + exp[k(t—T)]—b, t<t<l, \V(tl +O)_\V<t1 _0)' (34
dt 2ko,,
Having solved these problems at the appropriate time intervals, we get:
y(t) = 22— b, g s b exp[- 1], (35)
Y A
ziv" explal-7)]
y = {2 ~ 2 s Cexp[-alr - 7)), (36)

2a a

where

C =t =b ool ~ )]+ {\,,0 e ”}exp L o]

(04

(37)
-T
—explay, ~7) Noexpla(t, -T)] & '
4oke,, o}
Case 6. L <0, ku, < p(T).
In this case p(l )/ k>u, for t e [0; T} It follows from (8) that the optimal control has the form:
u*(t)=u, forall 1 €[0;T] (38)
Substituting this into (13), we get the Cauchy problem:
N gy +uy — b, w(0)=y" (39)
dt
the solution of which is the function:
\|I(l‘) _ u, — b n |:\|IO _ u, — bi|eXp[— (Xt]. (40)
o o

The main conclusions of this section are:
—at sufficiently high values of the relaxation parameter a and/or sufficiently small values of the intensity of information
transmission in interpersonal communication (parameter c), the optimal strategy is non-decreasing (Fig. 1);

— in the opposite case, the optimal strategy is non-increasing (Fig. 2).
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Extended model: a society consisting of two groups. This section is devoted to the analysis of a model that considers
society in more detail compared to the model from the previous section. The main goal is to determine whether the
conclusion of the previous section on the influence of parameters a, ¢ on the nature of the optimal campaign is preserved
for this more complex model.

The model has the form:

d
%=f1(\v1,wz»u)—awp 1)
t
d
2= e va) -y, (“2)
t
T Pm Pm
J(n,u):—ﬁjuzdt+ J.nl((p ¢+ jnz((p ¢ — max, (43)
29 ~wi(7) ~w2(T)

where

)= {zTnl«p)dm-Nl}(l-ﬂ[zq’fnz((p)d(p—zvz} )

-V -v2

o) —c (1—y{z‘°j”nl<<p>d<p—Nl}y[z‘?"’nz((p)d@—mj )

-V —v2

and there is still a limitation:
O0<u<u,. (44)

Here it is assumed that the system consists of two groups of individuals. Each of them is characterized by its own
distribution 7 (), n,(¢). At the same time, each individual communicates more with members of his group than a
stranger, which is described by the parameter y (at the same time y=1 corresponds to the fact that there is no intergroup
communication, but y=0.5 corresponds to homogeneous communication when groups are actually absent. Next, we will
assume that 0.5< y < 1). Let’s denote the number of the first group by N, the number of the second group by N,. Let’s
assume that the distribution of individuals by installation within each of the groups is similar to the distribution from
the model discussed in the previous section. In other words, the distributions are uniform over some exogenously given

interval (— 0,0, ), so that:

03 \Jrl < _(pm9
Om
N,
j‘nl((p)d(P: - 1+l > _(PmS\VS(Pms
i 2 P,
Ni’ \Jrl > (pm’
(here and in formulas (45) i=1,2). We have for the numbers of supporters of the Right and Left parties in the first and
groups:
Pm
R(t)="[n(o)do, @5.1)
~vi(1)
~wi(r)
L= [nlo)do. (45.2)

—Pm

In addition, it is assumed here that the groups are equally exposed to the media propaganda of each of the parties.
Taking into account the selected type of functions fl.(\|/1 Vs, u), n, ((p) formulas (41)—(43) take the form:

%%{YN]&%I—Y)M&}( ~b)-ay,, -9,<v, <09, (46)

(plﬂ m

%:c{(l—y)]\@&—w]\@h}-ir( -b)-ay,, -0,<y,<0,, “7)
(Pm m



AP Petrov. Optimal control in neurological models of information warfare

J(l’l u):—ﬁjfbﬂdt_;’_ﬂq)m +W1(T)+£(PM+W2(T)

— max. (48)
25 2 9, 2 9,

The Hamiltonian has the form:

H(WlaWQaPnPQau): { |:le %"'(l - y)]\/2 £:| + (” _b)_ a\Vl}pl +

2
+{C|:(1_V)N1&+YN2&:|+( _b)_a‘l/z}pz_ki'
?, P, 2

The immediate goal is to maximize the control Hamiltonian. Here:
OH
—=p +p, —ku
ou

This function has a maximum when:
_b + P
k

Taking into account the constraint (44), we obtain optimal control, which has the form:

u

0, P+ p, <0,
w*=1(p, + p,)k, 0<p +p, <hu,, (49)
u,, P+ p, > ku,.

The conjugate system has the form:

ﬂ:_(yCNl _aJp] _ (I_Y)CNI 'R Pl(T)_ N,

dt P, 29,

m

@__Mpl_[ﬂ_a]pb p(T)= =

dt o, P, 20,

It is not difficult to see that due to the positivity of the values p (T), p,(7) the functions p (¥), p,(?) are positive for
0<t<T . 1tis also obvious that each of the derivatives dp, /dt, dp,/dtis positive for sufficiently large values of
parameter a and/or small values of parameter ¢ and negative in the opposite case. Consequently, the optimal control
given by formula (49) is non-decreasing at sufficiently high values of the relaxation parameter a and non-increasing at
sufficiently small values. Thus, the model of this section retains the basic property of the simpler model discussed in the
previous section.

Let’s give a meaningful interpretation of the results obtained. It follows from the formulas obtained for both models
considered that the parameters affect the optimal strategy as follows:

— relaxation parameter a: large values contribute to an increasing campaign, small values to a decreasing one;

— the duration of the confrontation T and the intensity b of the broadcast of the opposing party does not affect the
choice of strategy (provided that this intensity is constant);

— the intensity of information transmission through interpersonal communication (parameter c), the size of the society,
as well as the consolidation of the group parameter ¢__ : large values contribute to a decreasing campaign, small values
contribute to an increasing one.

Information is distributed through the media and through interpersonal communication (rumors): from individual
to individual. At the same time, the influence of information on a particular individual after he receives it gradually
decreases, so he can be “turned over” by more recent enemy information.

Accordingly, the “growing” campaign is focused on ensuring that for most individuals, information is received
immediately before the finish line, and the impression of it does not have time to weaken. The flip side of such a strategy
is that individuals will not have time to widely disseminate the information received “by word of mouth”, because each
act of interpersonal communication requires a certain amount of time. In contrast, the strategy of a “decreasing” campaign
implies an effective role of interpersonal interaction and is based on convincing a significant number of individuals of

their position at the very beginning, who will then retell it to others. This strategy also has a downside: over time, the
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interest of individuals in this position will fade, so that by the end of the campaign, the enemy can “turn over” them due
to more intensive broadcasting. Thus, the conclusions obtained in the work are not obvious, but they do not contradict

intuitio.
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Abstract

Introduction. The work is devoted to the study of the generation and development of turbulent structures in shallow-water
flows. For optimal water resource management, it is necessary to know what the consequences will be if the flow system
changes as a result of human intervention. Basically, all fluid flows that relate to the practice of civil engineering are
turbulent in nature. These are, for example, river and channel flows, tidal currents in the oceans and coastal seas. Shallow
currents in the environment often include a wide range of vortex scales, ranging from micro-scale vortices to large-scale
coherent structures with horizontal length scales that far exceed the depth of water (L >> H). The existence of such large
structures is a typical characteristic of turbulence in shallow flow. This indicates the need for a systematic analysis of the
problem, as well as modeling of such complex formalized systems. The purpose of this work is to model and analyze the
dynamics of quasi-2D turbulence structures.

Materials and Methods. Large-scale quasi-2D coherent structures (2 DCS) are investigated depending on the source and
localization in the liquid column. Turbulent flows in the channel satisfying incompressible Navier-Stokes equations are
considered. The numerical experiment was carried out on the basis of the “large eddy simulation” (LES) approach.

The Results of the Study. Scenario of the dynamics of quasi-2D turbulence structures of the coastal zone is constructed,
the formation of vortex structures is predicted.

Discussion and Conclusions. The development of two-dimensional turbulence in shallow flows illustrates the processes
that control quasi-two-dimensional turbulence, including the merging of individual vortices. The main mechanism
controlling the decay of 2DCS is the loss of energy due to friction on the bottom, while the larger the size of the vortex

relative to the depth, the faster the direct dissipation of its kinetic energy occurs.

Keywords: turbulent structures, shallow water channels, large-scale quasi-2D coherent structures (2PCS), quasi-2D

turbulence, vortex scale.

Founded information. The study was supported by the Russian Science Foundation grant No. 22-11-00295. https://rscf.
ru/project/22-11-00295/

For citation. Protsenko SV, Protsenko EA. Modeling and analysis of quasi-2D turbulence dynamics in shallow waters.
Computational Mathematics and Information Technologies. 2023;7(2):52—59. https://doi.org/10.23947/2587-8999-
2023-7-2-52-59

© SV Protsenko, EA Protsenko, 2023


https://doi.org/10.23947/2587-8999-2023-7-2-52-59
mailto:eapros%40rambler.ru?subject=
https://rscf.ru/project/22-11-00295/
https://rscf.ru/project/22-11-00295/
https://doi.org/10.23947/2587-8999-2023-7-2-52-59
https://doi.org/10.23947/2587-8999-2023-7-2-52-59
https://crossmark.crossref.org/dialog/?doi=10.23947/2587-8999-2023-7-2-52-59&domain=pdf&date_stamp=25.06.2023
https://orcid.org/0000-0001-9656-8466
https://orcid.org/0000-0001-7911-3558

SV Protsenko, EA Protsenko. Modeling and analysis of quasi-2D turbulence dynamics in shallow waters

Hayunas cmamos

MonesnpoBanue M aHAJM3 AUHAMUKHA KBa3u-2D-TypOyieHTHOCTH
B MeJIKOBOJHBIX BOJ0eMax
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AHHOTAN NS

Beeoenue. Pabota nocpseHa H3y4eHNIO TEHEPALNH U Pa3BUTHS TypOYJICHTHBIX CTPYKTYP B MEITKOBOIHBIX MTOTOKaX. J{71st
OIITHMAJILHOTO YIIPABJIEHHS BOAHBIM PECYPCOM HEOOXOANMO 3HATh, KaKHe OYyIyT ITOCIEICTBUS IPH U3MEHEHUH CUCTEMBI
TEUCHHUS B PE3yJbTaTe BMELIATENbCTBA YEIOBEKA. B OCHOBHOM BCE NMOTOKHU JKHIKOCTH, KOTOPBIE OTHOCSATCS K MPAKTHKE
TPa’KAAHCKOTO CTPOMTENBCTBA, UMEIOT TYpOYyJIEHTHBIN XapakTep. JTo, HallpuMep, PEYHbIE U PYCIIOBBIC IIOTOKH, IIPHIIHB-
Hble TEYCHUs B OKeaHaxX M NPUOpexHbIX Mopsix. HertyOokue TeueHus: B OKpY)Kalolleil cpelie 4acTo BKIIOYAIOT B ce0s
IIMPOKUH THana3oH MaciTaboB BUXpeH, HaYnHast OT MUKPOMAcCIITa0HBIX BUXPEil M 3aKaHUMBas KPYIMHOMACIITaOHBIMA
KOT€PEHTHBIMU CTPYKTYPaMH C TOPH30HTAJIBHBIMU MaciuTabamMy JUTHHBL, KOTOPhIE HAMHOTO TPEBBIMIAIOT TITyOHHY BOJIBI
(L >> H). CymiecTBOBaHHE TaKUX KPYITHBIX CTPYKTYp — THIIMYHAS XapaKTEPUCTHKA TypOyJICHTHOCTH IPH MEITKOM Tede-
HUH. DTO yKa3bIBaeT Ha HEOOXOMMMOCTb NPOBEACHHS CHCTEMHOTO aHaJIN3a MPOOIEMBI, a TaKKe MOIEIMPOBAHUS 11000~
HBIX CJIOKHO (hopManu3yeMbIX cucTeM. Llenbio JanHOH paboThI SBISETCS MOIEIUPOBAHIE U aHAIN3 TUHAMUKH CTPYKTYP
KkBa3u-2D-TypOylIeHTHOCTH.

Mamepuanvt u memoost. Viccnenyrorcs kpynHomaciuTaOHble kBa3u-2D korepeHTHble cTpyKTyphl (2DCS) B 3aBHCHMO-
CTH OT UCTOYHHKA U JIOKAJIU3aINH B CTOJI0€ *KHUAKOCTH. PaccmarprBaroTcst TypOyJIeHTHbBIE TEUEHHS B KaHAJIE, YIOBIETBO-
psifolie HeC)KMMaeMbIM ypaBHeHUsIM HaBbe-Ctokca. UncIeHHBIH 3KCIIEPUMEHT BBIITOJIHEH Ha OCHOBE MTOAXO0a «MOJie-
JTUpOBaHKe KpymHbIX Buxpei» (LES).

Pezynoemamut uccnedosanus. IloctpoeH cueHapuil TMHAMUKH CTPYKTYp KBazu-2D-TypOyneHTHOCTH OeperoBoOii 30HBI.
[penckazano GopmMupoBaHUE BUXPEBBIX CTPYKTYP.

O6cyxnenue u 3akiarodeHus. Pa3zBuTre AByMepHO# TypOyIEeHTHOCTH B HENTyOOKHX ITOTOKAaX CITYKHUT WILTIOCTpPAIMEH po-
LIECCOB, KOTOPBIE YIPABISIOT KBa3U-IByMEPHON TYpOYJICHTHOCTBIO, BKIIFOYasl CIMSHUE OTJEIbHBIX BUXpeld. OCHOBHBIM
MEXaHN3MOM, YIPaBILTIoIIM pactiagoM 2DCS, SBISIOTCS MOTepH SYHEPTUU U3-3a TPEHHS 0 IHO. IIpu 3ToM, uem Oombire

pasMep BUXpA OTHOCUTCIIBHO FJ'Iy6I/IHLI, TEM 6I)ICTp€e MMPOUCXOAUT MPAMOEC paCCCUBAHUEC €TO KUHETHYECKOI OHEPIruu.

KoueBble cioBa: TypOyJleHTHbIE CTPYKTYpbl, MEJIKOBOAHBIC TOTOKH, KpyIHOMAacIiTaOHble KBa3u-2D KorepeHTHbIe
ctpykrypsl (2DCS), kBa3u-2D-TypOyneHTHOCTh, MacmTad BUXPEH.

dunaHcupoBaHue. VccienoBanue BHITOIHEHO 3a cueT rpanta Poccuiickoro Hayunoro ¢gonzma Ne 22-11-00295. https://
rscf.ru/project/22-11-00295/

Jas nuruposanus. [Iporenko C.B., [Iponieaxo E.A. MonennpoBaHue 1 aHaIN3 IWHAMHKH KBa3H-2D-TypOyleHTHOCTH
B MEIKOBOIHBIX BojoeMmax. Computational Mathematics and Information Technologies. 2023;7(2):52—59. https://doi.
org/10.23947/2587-8999-2023-7-2-52-59

Introduction. In the context of fluid mechanics in the environment, it can be stated that almost all fluid flows have
a turbulent character. Typically, a turbulent flow contains vortices, also called “coherent structures” or
“turbulence structures”. These are dynamic recirculation structures resulting from the instability of the internal flow.
Despite the fact that the size and boundaries of individual vortices cannot usually be identified unambiguously, it is often
possible to determine the length and velocity scales to characterize the behavior of various types of vortices in the flow,
especially dominant energy-containing large vortices. Shallow flows include a wide range of vortex scales, including
large-scale coherent structures. Such vortices are often observed in areas with large horizontal velocity differences or near
obstacles where the flow separates from the wall.

The turbulence of a shallow current, like any other, in the environment cannot be directly predicted in detail due to
its chaotic nature. Careful experimental work (field or laboratory data) and detailed numerical modeling are required to
predict the behavior of turbulence in real situations with some accuracy. This is of practical importance for improving

the understanding and modeling of large-scale turbulence in shallow water. For optimal management of a water resource,
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it is necessary to know with a high degree of probability what consequences will occur when the flow system changes
(including turbulence) as a result of human intervention.

Turbulent flows are present everywhere in nature, shallow turbulent flows among them form an important subgroup. In
fact, turbulence is a chaotic phenomenon. However, turbulence in shallow currents can be described as “organized chaos”.
The organization in such flows is visible due to turbulent structures with length scales, usually exceeding the depth of
water, which can have a relatively long lifetime.

A shallow flow is defined as three-dimensional, one dimension of which is significantly smaller than the other two
dimensions. In the context of environmental hydromechanics, this smaller dimension is usually the depth of the water.
G. H. Jirka [1] describes several mechanisms that cause large-scale turbulence structures, which are typical for shallow
flows. Such large vortices are predominantly two-dimensional in nature. Their dynamics differ significantly from smaller-
scale vortices (L < H), which have a completely three-dimensional character, i. e. relatively short lifetime (7 = L/U),
weaker cross-correlation and a continuous tendency to break up into smaller vortices. Although all turbulence in nature
is essentially three-dimensional, shallow flow turbulence is often referred to as “quasi-2D” [2]. G. H. Jirka [1] introduced
the abbreviation 2DCS to denote large-scale quasi-2D coherent structures. It is obvious that 2D objects in the stream are
always accompanied by three-dimensional structures of a smaller scale. Figure 1 shows a color-synthesized image of the
Taganrog Bay of the Azov Sea, obtained in March 2020 from the Landsat 8 remote sensing satellite, the figure shows the
structures of turbulent currents in the Taganrog Bay, which have a quasi-two-dimensional character.

Turbulence is usually caused by a shift in the direction perpendicular to the local flow velocity, as a result of which the
flow becomes unstable. The origin of such a lateral shift can always be traced either to wall friction (wall turbulence) or to
a transverse velocity gradient within the region (free turbulence). An important mechanism responsible for the occurrence
of internal velocity gradients is flow separation. Separation occurs when the boundary layer of the flow loses contact
with the corresponding solid wall and breaks away from it. This may be due to geometric reasons (for example, the flow
is not able to follow the complex shape of the boundary or smoothly bend around the corner) or for dynamic reasons
(the pressure gradient in the flow disrupts the equilibrium of the local boundary layer). Separating flows include an area
of strong transverse shear downstream from the separation site, which leads to a high intensity of turbulence and is often
an area of flow recirculation [3—5].

Fig. 1. Color-synthesized image of the Taganrog Bay of the Azov Sea from the Landsat 8 remote sensing satellite, resolution 30 m

Shallow flows, jets and mixing layers are three common types of free, shallow, shear flows. In other cases, the presence
of side walls leads to the fact that the separating flow creates a recirculation area.
Materials and methods
1. Shallow water and its effect on turbulence. Turbulent flows in the channel satisfy incompressible Navier-Stokes
equations in a conservative form [6]:
ou (1)
ox,
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Ou, | Oui; | oPlp_ & | 2, O =/ @)
ot Ox, ox, Ox; | Ox; Ox,

where u is the velocity vector of the liquid (m/s); P is the hydrodynamic pressure (kg/ms?); p is the constant density
(fresh water, 1000 kg/m?); v is the constant kinematic molecular viscosity (10°m?s) and f'is the vector of body force
per unit mass (m/s?), which usually constitutes gravity, i, j € {1, 2, 3}. The velocity field u is called divergence-free or
solenoidal. The gravity of the body can be eliminated by including it in the pressure gradient. If we set f, = —a(g X3 )/ x;
(with acceleration of gravity g = 9.81 m/s?) and determine the so-called non-hydrostatic normalized pressure through
p=Plp+gx , equation (2) can be rewritten as:

ou Pun, dp 0 {%+%J:Q ©)

o ox, ox, ox, |ox, o,

Equations (1) and (3) must be supplemented with appropriate initial and boundary conditions. On impermeable solid
walls, the boundary condition of non-slip is physically fulfilled, whereas on the surface (considered either as a movable
free surface or as a rigid cover), the condition of free slip applies (wind and atmospheric influences are neglected in this
study) [7-9].

Fluid motion is induced by hydrodynamic pressure gradients, while the velocity field is constantly deformed under
the action of nonlinear momentum advection and viscosity. When equation (3) is written in dimensionless form, using the
velocity scale (J and the length scale L, the ratio of advective and viscous forces can be expressed by one dimensionless
parameter — the Reynolds number (Re):

Re =YL @
v

Two features in the Navier-Stokes equations are a significant cause of turbulence. At large values of Re, the flow
problem can become hydrodynamically unstable and eventually exhibit chaotic behavior. The action of viscous forces
(in combination with the boundary conditions of non-slip) introduces rotation (or vorticity) into the velocity field, even
if the initial flow field did not contain rotation. Due to the presence of vorticity, the chaotic flow field will always contain
vortices or “vortices” [10].

Because of the important role of vorticity, turbulence is, in fact, a three-dimensional phenomenon. From a physical
point of view, the growing chaos in turbulent flows is illustrated by the fact that vortices are unstable and tend to break
up into smaller vortices. This basically means that turbulent kinetic energy is transferred towards smaller scales until
the smallest vortices reach length scales at which their energy is converted into heat under the action of viscosity
(the so-called Kolmogorov scales). This ongoing release of turbulent kinetic energy is often referred to as
a “3D energy cascade” [11]. The energy flow towards smaller length scales often leaves its mark in the energy density
spectrum of turbulent motion. As for the three-dimensional energy cascade, the spectrum of spatial energy density
E (m*/s?) at small scales of isotropic turbulence (inertial range) should have the following form:

E(k) ~ T2/3k75/3’ (5)
where T (m?/s%) is the rate of energy dissipation per unit mass; and k (m — 1) is the “wave number” associated with a certain

scale of turbulence length. Vorticity plays a vital role in the mechanism of the energy cascade. This can be seen by taking
the curvature of equation (3), which gives the vorticity equation:
Do. Oo. 0o, ou. ',

—Y=—tquy —t=0 —+v s (6)
Dt Ot ! ox, ! ox, ox2
J J i

where ® (s — 1) — is the vorticity vector. This equation shows that the material derivative of the vorticity of a moving
fluid particle is determined by the right side of the equation. The first term describes the interaction between the
vorticity field and the velocity deformation field; the second one describes the diffusion of vorticity through molecular
viscosity [12—-14].

The first term is responsible for the vortex stretching and can be rewritten as:

o. 6141. :l(’) aui + 6Mj :lo\).si,_ (7)
Tox, 2 \ox; ox, ) 277
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If the velocity field is stretched in the direction of the vector of local vorticity (i. e., normal to the corresponding
plane of the vortex, (Fig. 2 a)), the local vorticity in this direction will increase; the kinetic energy of rotation will be
transmitted to higher frequencies and, consequently, to smaller scales, both in space and in time. This vortex stretching

mechanism is responsible for the spectral energy flow in the 3D energy cascade.

Sl.jmj #0 Sijoaj =0

.
J

a) b)
Fig. 2. 2D and 3D vortex dynamics: ¢ — in three-dimensional space, vortices can be stretched in the direction of the local vorticity

vector perpendicular to the plane of the vortex; » — a vortex in a two-dimensional plane cannot be stretched

in the direction perpendicular to this plane

2. Theoretical study of the quasi-2D turbulence structures dynamics. Despite the inherent three-dimensionality of
turbulence, many areas of turbulent flow in nature are limited to the vertical direction. Such a flow is called shallow; its
large-scale turbulence is often regarded as quasi-two-dimensional. Although 2D turbulence is contradictio in terminis, this
classification still makes sense, since in practice the dynamics of quasi-2D turbulence structures can differ significantly
from “normal” 3D turbulence. This can be shown by referring to the vorticity equation (6). In two dimensions, the velocity
vector consists of only one component and is perpendicular to the two-dimensional velocity field everywhere (Fig. 2 b).
However, stretching of the two-dimensional velocity field is impossible in this perpendicular direction. Consequently, the
vortex stretching term vanishes, which leads to:

Do, ‘o,
o, _ 0w @®)

Dt ox f

The remaining terms show that, theoretically, vorticity is a conserved quantity in 2D. Moreover, it follows from (8)
that the total entropy (a measure of the amount of kinetic energy of rotation) is also approximately conserved, with the

exception of a small quadratic dissipation term due to viscosity:

2
DQ 00 00  o’Q | oo,
—=—+4U, =y —y L , (9)
Dt Ot / ij Ox? 6xj

J

1 2) . o S e
where Q = 50)12 (s 2) is the general enstrophy. The principle of enstrophy conservation is similar to the principle of
energy conservation: kinetic energy is also conserved, except for the quadratic dissipation term. This result follows from

multiplying equation (3) by u:

2
DEk + auip — 0 v, aui + au./‘ v 6“1‘ + au.i , (1())
Dt ox,  ox ox; 0x,) 2| ox; ox

where E, ZEM,Z (mz/ sz) is the total kinetic energy. Consequently, in the viscosity limit, the energy balance of a two-

dimensional flow in time and space is limited by two conservation laws (9) and (10) (instead of only (10) for the 3D case).

The stored values £, and Q can be written in spectral form:

1 2 <
E =, ! E, (k) dk, (11)

Q:%mf = [KE (k) d. (12)
0
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Consequently, Q can be expressed as the second moment of the spectral distribution of kinetic energy. This means that
in a two-dimensional flow, not only the total amount of kinetic energy is preserved, but also its dispersion over all length
scales. This fact implies two simultaneous energy cascades. Suppose that the situation with a two-dimensional flow is
violated by some forced mechanism with a characteristic length scale, then it is possible to determine the wave number
of the impact k, ~L', at which kinetic energy is added to the system. The combination of conservation laws (9) and
(10) will cause a redistribution of energy: if kinetic energy is transferred from the k, scale to higher wave numbers (small
scales) k > k, there must be a compensating energy flow in the direction of lower wavenumbers (large scales) k < k, in
order to maintain dispersion. This energy transfer towards a longer length and time scales is often called backscattering or

reverse energy cascade. Consider spectral forms to account for these two simultaneous processes:

2/373,-5/3
£k ={t k80 k<k,, 13

k7 k >k,

where T (m%/s°) is the rate of energy dissipation; and 1 (s — 3) is the rate of energy dissipation per unit mass. The existence
of an inverse energy cascade in the region implies that after some initial stage, kinetic energy tends to concentrate in large-
scale vortices that are stable and do not decay. This principle is often called “self-organization”.

Asaresult of experiments and simulations, specific types of vortices are identified, monopolar, dipole and tripolar vortex
formations can be distinguished. These configurations are characterized by the fact that neighboring two-dimensional
vortices are able to coexist when they have opposite signs of vorticity. On the other hand, two monopolar two-dimensional
vortices with the same sign of vorticity are able to combine and form a new, larger vortex. This phenomenon is known
as vortex fusion, which is very noticeable and impressive due to the existence of a reverse energy cascade and a natural
analogue of the vortex stretching mechanism, which is responsible for their destruction (Fig. 3).

Research results

Numerical simulation of the quasi-2D turbulence structures dynamics. Shallow turbulent flows exhibit many
two-dimensional characteristics, which is called quasi-two-dimensional flow behavior. Although the vortex stretching
mechanism is not completely excluded in a shallow flow, it is at least very difficult in vertical measurement. If large-scale
quasi-two-dimensional coherent structures are present in a shallow flow, it is often observed that they are quite stable and
only weakly dissipative.

A typical quasi-2D problem, characterized by both small 3D turbulence and 2DCS. The latter are clearly distinguishable
large-scale structures that remain intact for a relatively long time during passage through the flow region.

Figure 3 shows an example of vortex fusion in 2D modeling of large vortices (LES), it demonstrates graphs of

vorticity contours at four stages of the fusion process.

ym »m ym ym
5 5 5 5
4 4 4 4
3 3 3 3
2 2 2 2
1 1 I 1
"1 2 3 4 5 xm % 1 2 3 4 5 xm® 1 2 3 4 5 xm® 1 2 3 4 5 xm

Fig. 3. Results of 2D modeling of the LES vortex fusion due to the existence of an inverse energy cascade: vorticity contours graphs

The term “coherent structures” is used to consider related large-scale turbulent fluid masses that spread
uniformly throughout the water depth and contain phase-correlated vorticity, with the exception of a thin bottom
boundary layer. In the case of internal instability with transverse shear, separation does not occur: due to the
difference in lateral velocities, hydrodynamic instabilities will arise, which will gradually develop into 2DCS.
Differences in lateral velocity can be caused, for example, by river mergers or differences in depth and irregularities
(complex channels).
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Discussion and conclusions. In all cases, the generation and development of 2DCS sequences requires a certain
transit time and a certain spatial distance from their source. There are three different regions of 2DCS development,
based on the ratio of the distance of the vortex propagation x and the depth of the water H. In the “near field” region
(x/H<1) three-dimensional small-scale turbulence prevails, but the average transverse shift present is usually
two-dimensional, mainly due to the shape of the geometry. In the “far field” (x/ H>10) 2DCS are well developed
in the horizontal direction and eventually dissipate due to friction on the bottom. Both medium flow and large-scale
turbulence have a pronounced 2D character. The “middle field” (I<x/H <10) is characterized by the interaction
between the growing 2DCS, the average flow and 3D turbulence of the bottom, which leads to the effects of the
average secondary flow and 3D effects inside the 2DCS, for example, areas of ascending and descending fluid flows.

The development of two-dimensional turbulence in shallow channels often serves as a good illustration of the processes
that control quasi-two-dimensional turbulence, including the merging of individual vortices. 2DCS usually grow when
moving in a downstream direction. Eventually the 2DCS will decay in the far field area. The main mechanism controlling
this decay is the loss of energy due to friction on the bottom. The larger the size of the vortex relative to the depth, the faster
the direct dispersion of its kinetic energy occurs. This fact limits the maximum size of the vortex A that can be detected in
real shallow flows. In cases of very shallow flow, even the formation of 2DCS can already be suppressed by friction
against the bottom.

Among the many shallow flow configurations that can contain 2DCS, there are several main types: traces,
mesh turbulence, jets and mixing layers. These basic configurations, based on general studies of 3D turbulence,
have their analogues in the theory of shallow flow. In three-dimensional cases, the turbulence regime of these
types of flows is determined by the ratio between advective and viscous forces, which is expressed by the
Reynolds number (Re). In the corresponding quasi-two-dimensional cases, this friction is more important
than the molecular viscosity, therefore, the behavior of these shallow flows is determined by the ratio between
horizontal transverse shear and bottom friction. These two values, respectively, determine the production and dissipation
of kinetic energy of 2DCS.
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Abstract

To effectively regulate traffic on highways and networks of modern megacities, it is necessary to introduce Intelligent
Transport Systems, which include many innovative solutions, in particular, mathematical models for describing the
dynamics of traffic flows.

The article is devoted to a brief description of the current state in this area in its development — from the simplest
macroscopic and microscopic models that have become classic to modern developments.

Special attention is paid to the original multilane models developed by the authors of the article within both approaches.
The macroscopic model is based on the quasigasdynamic approach, while the microscopic one uses the ideology of
cellular automata and constitutes a generalization of the Nagel-Schreckenberg model for the multilane case.

The difference in the representation method and the mathematical apparatus for the mac-roscopic and microscopic
description of traffic flows is briefly described, followed by the review of the main models at different stages of their
development, presented by foreign and Russian authors.

Special attention is paid to the three-phase theory of Boris Kerner and models built in the framework of this theory.
Examples of modern software for traffic modeling are given.

The original quasigasdynamic model of traffic flows, which uses the continuum approximation and is constructed by
analogy with the well-known model of gas dynamics, is briefly described. Due to the introduction of the lateral speed, the
model is generalized to the multilane case.

An original microscopic model based on the cellular automata theory and representing a generalization of Nagel-
Schreckenberg model for the multilane case is described. The model has been further developed by taking into account
various driving strategies and behavioral aspects.

The article presents a brief overview of the state of the art in the field of mathematical modeling of traffic flows, as well

as original macroscopic and microscopic models developed by the authors for the case of multilane traffic.

Keywords: mathematical modeling, traffic flows, microscopic and macroscopic models, cellular automata,

multilane traffic.
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Ob630pHas cmamos

MoneaupoBaHue IBHKEHHsSI ABTOMOOWJIBHOT0 TPAHCIIOPTA € MCMOJIb30BaHHEM
MAaKpPO- H MHKPOCKONMYEeCKHX Mofeeit

M.A. Tpane3nukoBa , A.A.Yeunna , H.I. Uypbdanosa &

WuctutyT npuknagHoit maremaruku uM. M. B. Kengsima PAH, Poccuiickas @enepanus, r. Mocksa, Muycckas mi., 4
™ nataimamod@mail.ru

AHHOTaLUA

Jnst 3¢ deKTHBHOrO peryaupoBaHus JOPOKHOTO JBM)KEHHSI Ha MarucTpajsix M CETIX COBPEMEHHBIX MErarojicoB He-
ob0xonnMo BHenpeHne MHTeIIeKTyaabHBIX TPAHCIIOPTHBIX CHCTEM, BKITIOUAIOMIUX B €0 MHOKECTBO MHHOBAIIMOHHBIX
pelIeHHid, B YaCTHOCTH, MaTEMATUYECKHUE MOJIENIN OMUCAHUSI TUHAMUKU TPAHCIIOPTHBIX TOTOKOB.

CraThsl KPaTKO OMHCHIBAET COBPEMEHHOE COCTOSIHUE TPAHCIIOPTHBIX CUCTEM W UX Pa3BUTHE: OT MPOCTEHIIINX MaKPOCKO-
MMUTYECKUX ¥ MUKPOCKOITMIECKUX MOJICNICH, CTABIINX KIIACCHYSCKUMH, 0 COBPEMEHHBIX Pa3paboToK.

OC06OC BHHUMAHUC yI[eJ'IfICTCSI pa3pa6OTaHHBIM aBTOpaMI/I cTarbn OpI/IFI/IHaJ'ILHBIM MHOTOIIOJIOCHBIM MOJICJISAM B paMKax
obonx momxonoB. Makpockonmueckass MOAETh OCHOBaHA Ha KBa3WUTA30JUHAMUYECKOM ITOIXOMC, a MHUKPOCKOIIHMYECKAs
HCIIONB3YET UACOIOTHIO KJIETOYHBIX aBTOMATOB M sIBJsIeTCs 00oOmmenuem mozenu Harens-1llpekenOepra Ha MHOTOIO-
JIOCHBIH Cityyail.

Kparko onmceiBaeTCsl pa3nnyue B Cioco0e MPeACTaBICHUS H MATEMAaTHIESCKOM arapaTe I MAKPOCKOITHYECKOTO U MH-
KpOCKOl'II/I‘IeCKOFO OIIUCAaHUuA TpaHCHOpTHBIX IIOTOKOB. llam)me cneayeT O630p OCHOBHBIX MO}leHeﬁ Ha pa3HBIX JTamnax ux
Pa3BUTHS, TPUHAICKAIINAX 3apYOCIKHBIM H POCCHUICKIM aBTOPaM.

PaccmarpuBaetcs Tpexdasnas Teopus bopuca Kepraepa u Momenu, moCTPOCHHBIC B PAMKaX 3TOH TCOPHH.

[IpuBonsATCS IPIMEPHI COBPEMEHHOTO IPOTPAMMHOTO 00eCTIeUeHHS AJIsl TPAHCTIOPTHOTO MOJECITNPOBAHHS.

Kpartko omuceIBaeTcs OpurnHaIbHAsE KBA3UTa30JHHAMUYECKAsl MOJIENIb TPAHCIIOPTHBIX ITOTOKOB, HCITOIb3YIOMIast TPUOIH-
>K€HHE CIUJIOIIHON Cpe/ibl M MOCTPOCHHAS 0 aHAJIOTUH C U3BECTHOM MOJIEIbIO Ta30BOM JUHAMUKH. braronapsi BBeIeHUIO
CKOPOCTH IIEPEeCTPOCHU MOJIENTb 0000IIIeHa HA MHOTOIIOJIOCHBIH CITydJai.

OHI/ICI)IBaCTCSI OpI/IFI/IHaJ'[I)HaH MI/IKpOCKOHI/I‘IeCKaSI MOJCJIb, OCHOBAaHHasA Ha TeOpI/II/I KJICTOYHBIX aBTOMAaToOB, KOTOpaSI SAB-
nsetTcst 00o6mennem monenu Haremns-1lpexenOepra Ha MHOTOIIOJIOCHBIN cy4ail. Mozenp moydnia nanbHeiIee pas-
BUTHE MTyTEM y4eTa Pa3IMYHBIX BOAUTEIHCKUX CTPATETUH U MOBEJACHUECKIX aCIIEKTOB.

B crarpe mpeacTaBieH KpaTKuii 0030p COCTOSHUS B 00JIACTH MAaTEMaTHYECKOTO MOJIEITUPOBAHIS TPAHCIIOPTHBIX TIOTOKOB,
a TaKKe MPEICTaBICHBI OPUTHHAIBHBIC MaKPOCKOMMYECCKAsi 1 MUKPOCKOIMMYCCKAss MOMICNH, Pa3pab0TaHHBIC aBTOPaMHU

JUIA Ciiydasd MHOTOITOJIOCHOT'O JIBHXKCHUS.

KiroueBble ci10oBa: MaTeMaTHYeCKOE MOACIUPOBAHUE, TPAHCIIOPTHLIC MOTOKU, MUKPOCKOIMMYECKNUE U MAaKpPOCKOINYC-

CKHEC MOJCIIN, KJICTOYHBIC aBTOMAThl, MHOI'OIIOJIOCHOC ABHUXCHUC.

[ mutupoBanus. Tpane3nukoBa M.A., YUeunna A.A., Uypbanosa H.I. MonenupoBaHue ABHKEHHS aBTOMOOHILHOTO
TPAHCIIOPTA C UCIIOIb30BAaHUEM MAaKpO- W MUKpOcKomnieckux moneneit. Computational Mathematics and Information
Technologies. 2023;7(2):60—72. https://doi.org/10.23947/2587-8999-2023-7-2-60-72

Introduction. World experience shows that in large cities it is necessary to introduce an Intelligent Transport System
(ITS) for the effective construction of new transport networks with a complex multi-level structure, as well as for the
operational regulation of traffic on them. ITS is a set of systems based on information, communication and management
technologies embedded in vehicles and road infrastructure. It combines many innovative solutions: from mathematical
models and methods of traffic description to decision support systems for traffic management, not to mention technical
and engineering aspects.

The proposed article is devoted to a brief description of classical and modern trends in the field of mathematical

modeling of motor traffic flows. Two main directions in this field are considered: macroscopic and microscopic models.
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An overview of ready-made software tools for modeling the flows of road transport is also provided.

Special attention is paid to the original multiband models developed by the authors of the article within the framework
of both approaches. The macroscopic model considers the transport flow as the movement of a weakly compressible
gas and uses the ideology of kinetically consistent difference schemes and a quasi-gas dynamic (QGD) system of
equations [1]. Recently, modern ultra-high-performance computing technology has appeared and the popularity of
microscopic models has increased significantly. However, due to their cost-effectiveness, macroscopic models do not lose
relevance in determining the main characteristics of road traffic necessary for transport planning.

The original microscopic model is based on the theory of cellular Automata (CA), adapted to modeling traffic flows on
multi-lane highways and the main elements of the road network (RN) [2]. This approach allows you to take into account
many technical parameters of cars and features of driver behavior. Such models can include a detailed description of the
movement of cars at intersections and in places of narrowing of roads, overtaking and rebuilding, providing a high degree
of compliance with the model of the real situation.

Both proposed approaches have internal parallelism and are suitable for fast and efficient calculations on supercomputers,
even for modeling large-scale road networks with several million vehicles.

1. State of the research area. Currently, the theory of traffic flows is an independent scientific direction, which is
based on the so-called physics of traffic flows — mathematical and simulation modeling. Mathematical traffic models
are used both in research and in practice to justify planning and management decision-making in the transport industry.

Modeling of motor traffic flows began to develop in the USA since the 30s of the 20™ century. But due to the increasing
volume of transportation everywhere, as well as increasingly accessible computerization, in the 1990s this area began
to attract more and more attention. Two main directions of this development have emerged: macroscopic modeling and
microscopic modeling, which differ in the way they represent real reality, and in their mathematical description.

In the first case, traffic uses the approximation of a continuous medium and considers the flow of cars similarly to the
flow of a weakly compressible gas. The main studied values are the density field (the number of cars per unit length of
the road and per lane) and the average speed field, as well as the flow (the number of cars that have passed a given point
on the road per unit time). The model consists of a system of partial differential equations and is solved by well-known
finite difference methods.

In the case of microscopic modeling, the subject of the study is the movement of one individual car and its interaction
with other participants in the movement, the reaction to the environment and its possible changes in this situation.

Such models are described, as a rule, by ordinary differential equations, for the solution of which there are also known
numerical methods, for example, the Runge-Kutta method of the second or fourth orders.

Using macroscopic models, it is convenient to describe a fairly dense flow of vehicles when all drivers are forced to
adhere to the same strategies and drive at approximately the same speed. With the help of such models, general patterns of
traffic are usually investigated. Microscopic models allow us to consider in more detail the movement of the transport unit
“driver-car”. This takes into account not only the characteristics of the car itself, but also the behavioral characteristics
of the driver, and perhaps even his psychological type. With the help of such models, it is possible to describe not only
a sparse flow, but also a dense flow of vehicles thanks to today’s computing capabilities.

One of the first simplest macroscopic models is the Lighthill-Witham-Richards (LWR) model [3]. It is characterized
by a single dynamic equation, which is a consequence of the law of conservation of the number of cars:

op dQ,(p) op
—+

—__0,

ot dp Ox

where p is the automobile flow density; Q, is the equilibrium flow.

In this model, it is assumed that the flow or average velocity is always in local equilibrium relative to the actual density
and instantly changes with it, that is, unreasonably high accelerations occur: V=V (p), O = @, (p). Models of this type,
due to the lack of finite acceleration, cannot describe the growth of traffic waves and the instability of the traffic flow.

At the next stage, models appeared that include, in addition to the continuity equation, a second dynamic equation —
the acceleration equation, which describes local acceleration as a function of density, velocity, their gradients and other
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possible external factors. Such a class of models is known as a class of second-order models, in contrast to the LWR
models, which are called first-order models.
The book [4] presents the Payne model [5], for which the acceleration equation has the form:

oV ov V.(p) -V V'ip) op

e

+V = +
ot ox T 2pt  Ox

with constant relaxation time and the Kerner-Conheuser model [6]:

0
e i

ot ox T p Ox p Ox

v av  V.(p) -V ¢ 8 oV

Here an analogue of sound velocity +c, and dynamic viscosity n are introduced. This model is purely phenomenological.

The Payne model and many subsequently proposed second-order models, including those with diffusion corrections,
have some disadvantages. In particular, with strong spatial inhomogeneities of the initial conditions, negative values of
speeds and densities exceeding the maximum permissible may occur, and also, according to these models, cars behind
have a noticeable effect on the movement of the car, which is unrealistic in the case of one lane. In the future, a lot of
effort was spent on making macro models anisotropic, that is, according to these models, cars should respond only
to the situation in front of them. The most well-known models that solve these problems are the Aba-Raskla [7] and
Zang [8] models.

Within the framework of the microscopic approach, the simplest model was the model of following the leader [9],
which could reproduce only the basic details and features of traffic flows. The simplest representative of this class of

models is a continuous-time model of optimal speed:

which describes the adaptation of the actual speed of the car v to the optimal speed Vo) for the time scale set by the

adaptation time t. Its analogue is the discrete-time Newell model [10]:

Vo (t"l‘ At): vopl (S(t)): min(vo’ij,
At
x (64 Af) = 3, (1) 4 eV EHAD
2

Another interesting example of the simplest model of following the leader is the Pipes model [11], based on the safe
driving rule developed in California: “the rule for following the vehicle in front at a safe distance is to keep the distance
between your car and the car in front of you no less than the shortest length of the car on the every ten miles an hour of

the speed at which you are traveling”. Translated into mathematical language, this model can be formulated as follows:

50 min = x (t) +1
0.44
where s (7) is the gap between the current and the cars in front, / is the length of the i-th car.

The Intelligent Driver Model (IDM) was a further development of the models of following the leader. Continuous-
time IDM is the simplest complete and trouble-free model, giving realistic acceleration profiles and plausible behavior in
all single-lane traffic situations. The most well-known model of this class is the Driver model [12], which demonstrates
realistic behavior during acceleration and braking.

Separately, it should be noted the microscopic Prigogine models based on the kinetic Boltzmann theory [13, 14]. The

model introduces a distribution function type function in kinetic theory f{x,u,f), which denotes the number of cars located
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at time ¢ at a point in space between x and x+dx and having a speed between u and u+du. The concept of the desired
distribution is also introduced, which is an idealization of the goal to which this traffic flow aspires. The real and desired
distributions may differ for many different reasons: road conditions, weather conditions, interaction with other cars,
etc. By themselves, these reasons may also change over time and, consequently, the real distribution will approach the
desired for some relaxation time. Based on these assumptions , an equation of the Boltzmann equation type is written for

the real distribution:

of of of of
—— _— = —_— —+ —_— >
ot Ox ot } ol ot )it
of ) . o . . . . of
where | — is the transition of the real distribution to the desired one in the absence of interaction of cars, | —

ot ot

rel int
is the change in the real distribution arising from interactions between cars.

The members on the right side can be set in various ways, the distribution function can also have a more complex
form. Due to this, there are a sufficient number of varieties of this model: for example, in the Paveri-Fontana model [15],
in addition to the real one, the “desired” speed of this car is introduced. Prigozhin’s approach was subsequently developed
in the works of Helbing et al. [16, 17].

In the future, models of both macro- and microscopic types developed in the direction of taking into account the
human factor. There were models with a safe speed of movement [18], non-equilibrium models with realistic acceleration
[19], models describing traffic at complex road junctions [20, 21], describing mixed flows consisting of heterogeneous
vehicles [22, 23], etc.

Modern studies of the dynamics of traffic flows are mainly on the path of complicating existing models. One can cite,
for example, publications [24—26] devoted to macroscopic models of hydrodynamic type.

In the field of microscopic modeling, a separate specific direction has been rapidly developing recently, using the
theory of cellular automata. These models can be divided into two groups: deterministic and stochastic. An example of
a deterministic model is the 184 Wolfram Rule. This model belongs to the class of elementary cellular automata. This is
a group of 256 (223) one-dimensional models with the number of neighbors 3, they can be found in the Wolfram Atlas
on the website [27].

One of the first realistic stochastic models of traffic flows is the well—known Nagel-Schreckenberg model [28].
This model requires detailed consideration, since many modern models developed by researchers around the world
are based on it.

The route in the Nagel-Schreckenberg model is represented as a one-dimensional lattice, each cell of which can be
either empty or contain a particle denoting a vehicle. The particles move from one cell to another (free) in one direction.
In the case of single-lane traffic, they cannot overtake each other. The whole system is the space, time, speed are discrete.
The speed shows how many cells the car moves in one time step. Acceleration occurs instantly between steps. At each
time step, the system status is updated according to certain rules:

1. Acceleration. The speed of i-th car is increased by one if the maximum allowed speed is not reached:
Y, min (41, 7,,,).

2. Deceleration. The speed of the car is reduced by one if there is a threat of collision with the car in front:
V.— min (V, D,— 1), where D, is the distance to the car in front.

3. Random disturbances. If the speed of the car is positive, then it can be reduced by one with some probability:
V. — max (V- 1, 0) with probability p.

4. Motion. Each car moves forward by the number of cells corresponding to its new speed after completing the
previous steps: X, — X + V.

To simplify the recording, we assume that speed and distance are measured in cells, and time is dimensionless. For this

reason, the values can be added, subtracted and compared with each other.
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To date, there are more complex and detailed CA models. The article [29] presents an interesting generalization of
the theory of cellular automata for the case of maritime transport in application to maritime transport. In this case, the
space discretization rules are supplemented by mapping rules. The authors of the article [30] investigate the capacity of
a motorway with two entrances and one intermediate exit between them also using a model of cellular automata. The
aim of the research is to maximize the throughput of the system by establishing the optimal flow for two entrances.
The paper [31] presents a numerically reliable model of cellular automata aimed at accurately reproducing deceleration
and acceleration in accordance with realistic reactions of drivers when considering vehicles with different decele-
ration capabilities.

It is possible to model large road networks using cellular automata. As an example, we will give a model created by
A. P. Buslaev [32] and colleagues at MADI. Their approach is based on ring structures of cellular automata with common
cells, for which there is competition. Similar ring structures may have different topologies, the movement along them
simulates the movement along the UDS with intersections.

In the early 2000s, an alternative theory of traffic flows appeared, namely, Boris Kerner’s three-phase theory was
proposed. The first works date back to 2002, however, the main provisions of the theory were formulated later in
books [33] and [34]. Unlike previous theories, where two main phases of traffic flows (free movement and dense flow)
were considered, here the author considers the existence of three phases: free flow, synchronized movement and a wide
moving cluster, that is, two phases are distinguished in a dense flow. This makes it possible to predict and explain the
empirical properties of the transition from free to dense traffic, as well as the features of the resulting spatial-temporal
traffic structures. The author himself calls his theory empirical, qualitative, based on observational data, which allows the
creation of various mathematical models within the framework of this theory. The author and other researchers have created
models based on cellular automata [35, 36]. In particular, the Kerner-Klenov model [37, 38] introduces the concepts of
acceleration and synchronization distance to correspond to the theory of three phases. Due to the mathematical description
of stochastic acceleration with delay and the adaptation effect inside the synchronized flow, in the developed model, the
transition from free to dense flow is an ' — § transition (according to Kerner’s theory of three phases) in a metastable
free flow, which is observed in all empirical data. Kerner and Klenov also proposed a deterministic model [39]. In [40, 41],
variants of macroscopic models implementing the three-phase theory are proposed.

In general, models corresponding to Kerner’s three-phase theory are characterized by the ability to describe
instabilities that inevitably arise in real traffic. Such models demonstrate one of the main theses of the theory of three
phases: transitions between phases from free flow to synchronized and from synchronized to wide moving clusters can
occur under the influence of random processes and at different values of the flow, and not be tied clearly to its specific
value of the flow. Most of the models that exist today do not have this property.

Currently, the theory of three phases is gaining more and more followers, as evidenced by many publications,
for example, [42,43]. The article [44] presents a recently modified KKW (Kerner-Klenov-Wolf) model, which
includes various types of vehicles. Variable sensitivity of the driver to speed fluctuations is introduced. Conclusions
are drawn about the effect of changes in the speed of one or more vehicles on the overall flow rate at different
intensity of the initial flow.

Domestic developments in the field of transport modeling correspond to the main global trends. The work on Buslaev
networks carried out at MADI was mentioned above, stochastic models are also studied there, as well as the application
of queuing theory to solve transport problems. MIPT, together with foreign colleagues, actively conducts research based
on the theory of three Kerner phases, develops models of cellular automata [35, 37-39], hydrodynamic models [45, 46],
simulation models, develops numerical methods for finding equilibria in large transport networks [47]. It should be noted
the work of a team of authors from Lomonosov Moscow State University [48, 49], dedicated to the organization of traffic
and the study of flow instability based on hydrodynamic models. Solving problems of optimal control of traffic flows at
the RN [50], including using genetic algorithms, is actively engaged in the FRS “Informatics and Managemen” of the
Russian Academy of Sciences. A two-dimensional quasi-gas dynamic model of transport flows and a multi-band CA

model developed at the Keldysh IAM of the Russian Academy of Sciences will be presented below.
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2. Software for modeling traffic flows. There are a huge number of software solutions for transport modeling. The
packages reviewed in the collection [51] continue to evolve. The most well-known among commercial packages are:

— PTV Vision Traffic Suite [52];

— Aimsun (TSS-Transport Simulation Systems) [53].

There is also free and open source software, for example:

— MATSim [54, 55];

— Eclipse SUMO [56, 57].

PTV Vision Traffic Suite includes products:

— PTV Visum (strategic planning, calculation of transport demand, analysis of the transport network of cities,
megacities, countries and regions based on macro modeling);

— PTV Vissim (traffic simulation, hypothesis testing on traffic management);

— PTV Viswalk (simulation of pedestrian flows, planning of mass events, development of evacuation plans);

— PTV Vistro (work at the network level, taking into account several types of intersections at once — regulated and
unregulated, optimization of regulation modes).

Aimsun has now evolved from a myostimulator into a fully integrated traffic simulation application that combines ride
demand forecasting, macroscopic functions and a mesoscopic-microscopic hybrid simulator.

PTV and Aimsun products are implemented for the Windows operating system.

MATSim is based on a multi-agent approach for large-scale transport modeling, consists of several modules that can
be combined or used separately. Modules can be replaced with custom implementations.

SUMO is an academic development for modeling transport systems involving cars, public transport and pedestrians.
The programs are based on a microscopic approach. SUMO includes many auxiliary tools that automate the main tasks
and allow you to import a network, calculate a route, visualize, as well as calculate emissions of pollutants and calculate
noise. SUMO can be supplemented with customizable models and provide interfaces for remote control of modeling. The
distinctive features of SUMO are portability and extensibility. Versions of the package have been developed for a number
of popular operating systems, in particular, for Linux.

It should be noted that there are also software packages for implementing the concept of BIM, 3D modeling and
creating digital counterparts in the field of integrated design of roads and transport infrastructure, in particular, products
of Bentley Systems [58], including OpenRoads and OpenCities Planner.

Thus, the world has already accumulated quite a lot of experience in modeling traffic flows, effective software tools
have been developed that become an integral part of both short-term and long-term transport planning, and lay the
foundation for intelligent transport systems.

3. Quasi-gas dynamic model of transport flows. As mentioned above, many macroscopic models describe the
movement of vehicles by analogy with the gas dynamic flow. Consequently, the basis of the models is a system of
equations of gas dynamics. The authors of this article some time ago developed a two-dimensional multiband macroscopic
model for describing traffic flows, constructed by analogy with the QGD system of equations [59]. The QGD system was
created to describe gas-dynamic flows in a wide range of Mach numbers, including well-proven in modeling substantially
subsonic flows. Therefore, it was natural to use it when constructing a model of traffic flows in the approximation of
a continuous medium. The equations of the QGD system, unlike traditional gas-dynamic equations, contain additional
diffusion terms in the right part. In the case of transport flows, they can be considered as a natural viscosity, which
allows smoothing solutions at large gradients and implementing numerical algorithms by end-to-end counting, without
distinguishing features.

A distinctive feature of the multiband model is the presence in the system of an equation for the “transverse” component
of the velocity, which makes sense of the speed of lane-to-lane rearrangement. Therefore, the model can be used to
simulate traffic on the highway, taking into account its real geometry. Multibandness and the change in the number of
bands is taken into account by specifying a specific computational domain, and not using sources in the right-hand sides
of the equations. A detailed description of the QGD model of transport flows is contained in [1, 60, 61]. The system of

equations of the proposed model looks like this:
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The following designations are used here: p is the traffic flow density; U is the longitudinal, along the road, speed
component; ¥ is the transverse speed component (speed of rebuilding); P = Ap” /B is the pressure analog; 1= a-p is the
force of acceleration or deceleration, where a = (Ueq — U) / T'is the acceleration.

The equilibrium longitudinal velocity is calculated according to the parabolic fundamental diagram:

Ueq = Ufree(l - p/pjam)/T (4)

T =11+ rp/(Pun —P)) can be considered as a relaxation time. The equations are also supplemented by a number of
phenomenological constants.

The above system contains an equation for the transverse velocity, similar to the equation of the longitudinal velocity.
However, the test calculations have shown that it is more convenient to use an algebraic equation instead of the differential
equation (3):

Vi=kp a—U—k v +kdesU—22(ydes - )
" oy (X ey — X)
where the first term corresponds to the driver’s desire to drive at a higher speed, the second — the desire to drive in a
lane with a lower density and the third — to achieve a certain goal. Here & , kp, k,, are the constants; (x,, v, ) are the
coordinates of the driver’s target. The use of equation (4) simplifies the solution process and increases the stability of the
difference scheme.
It should be noted that in some cases of an inhomogeneous, but not very complex route, qualitatively correct results

can be obtained using a one-dimensional CGD model [60, 62]:
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In these equations, written in conservative form, the traffic flow is: Q = p-U. The source terms are on the right side F R
and F, are equal to zero on a homogeneous road and are not equal to zero if there are entrances or exits from the main
road or there is a change in the number of lanes.

The proposed models are numerically implemented using finite-difference schemes. The system is approximated by
explicit second-order difference schemes in space. Note that the structure of an explicit computational algorithm fits well
on the architecture of multiprocessor computing systems with distributed memory and, if necessary, a large amount of
calculations can be parallelized with sufficiently high efficiency [62, 63].

4. Multiband model based on the theory of cellular automata. The second model proposed by the authors earlier
and which is promising for implementation in an interactive program is a multiband model using the ideology of cellular
automata. A detailed description of this model is given in [2, 60, 64]. Here we will describe it briefly.

The calculated area is a two-dimensional lattice. The number of cells in the transverse direction corresponds to
the number of lanes on the considered section of the highway, and the width of the cell is equal to the width of the

real road lane (Fig. 1).

Fig. 1. Calculation area in the CA model

The number of cells along the road depends on the specific task, taking into account that the longitudinal size of the
cell is equal to the average length of the car plus the width of the gap between the cars at maximum flow density, that is,
in a “traffic jam”. In the literature, a length of 7.5 m is given as the standard cell size for passenger cars. The time in such
models is discrete, the system is updated at each time step. With standard calculations, this step is equal to 1 s, although
in more developed and realistic models this value may vary. At any given time, the grid cells can be in one of two states:
the cell is either occupied (which corresponds to the presence of a car in it), or empty. Figure 1 shows the state of the
computational domain at some point in time. The different color of the movement elements corresponds to different
selected goals. At the next moment in time, the state of the cells is updated in two stages according to certain rules.

At the first stage, each driver checks whether he wants to change lanes and has the opportunity to do so. It is rebuilt if:

— it is necessary to achieve his goal (for example, to drive up to the exit from the road) or it is necessary to go around
an obstacle;

— he gets an advantage after rebuilding — goes at a higher speed or with a lower density;

— there is a possibility for rebuilding — rebuilding is allowed and the neighboring cell is empty;

— the security conditions have been met.

After the chosen decision regarding the realignment and the action performed in accordance with it, forward movement
takes place along the selected lane according to the Nagel-Schreckenberg single-lane traffic rules [28] given in section 1
of this article.

It should be noted that the initial, simplest version of the rebuilding strategy is described here. In more complex
modifications of the model [65], the rules for rebuilding depend on the type of road element (X-shaped intersection,
T-shaped intersection, U-turn, narrowing/widening section, etc.), road signs and markings. Various driving strategies and
behavioral aspects are also taken into account. The concepts of “aggressive”, “cautious”, “polite” driver are introduced
into the model. The percentages of a particular type of driver may change during the calculation process. A “slow start”

algorithm has also been developed.
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To implement the model, a CAM-2D software package has been developed [66], which has an integrated web interface
and a visualization module in addition to computing modules. The parallel version is designed for calculations of road
networks on the CPU of multiprocessor systems using MPI technology [62, 63].

Conclusion. The article presents an overview of works in the field of traffic flow modeling, covering a wide range
of approaches — macro- and microscopic models, as well as models of cellular automata. Special attention is paid to
the original developments of the authors of the article both in the field of macroscopic and microscopic (namely, cellular
automata) modeling. Both developments have their advantages, such as, for example, the ability to simulate the movement
of motor transport taking into account the actual geometry of the road, even in the case of macro modeling. The models
have been repeatedly tested in calculations and, in addition, allow for effective implementation on supercomputers, since
they have internal parallelism. The latter property is a special advantage in the conditions of traffic simulation on transport

networks of multimillion megacities.

References

1. Sukhinova AB, Trapeznikova MA, Chetverushkin BN, et al. Two-dimensional macroscopic model of traffic flows.
Mathematical modeling. 2009;21(2):118-126. (In Russ.).

2. Trapeznikova MA, Furmanov IR, Churbanova NG, etc. Modeling of multi-lane vehicle traffic based on the theory
of cellular automata. Mathematical modeling. 2011;23(6):133—146. (In Russ.).

3. Lighthill MJ, Witham GB. On kinematic waves (Part II): A theory of traffic flow on long crowded roads. In
Proceedings of Royal Society. Ser. A. 1955;229:317-345.

4. Treiber M, Kesting A. Traffic flow dynamics. Data, models and simulation. Berlin-Heidelberg: Springer; 2013. 503 p.

5. Payne H. Models of freeway traffic and control. In: Bekey, G.A. (ed.) Mathematical Models of Public Systems.
Simulation Council, La Jolla, CA. 1971;1:51-61.

6. Kerner B, Konhéuser P. Structure and parameters of clusters in traffic flow. Physical Review E. 1994;50:54—83.

7. Aw A, Rascle M. Resurrection of “second order models™ of traffic flow. SIAM Journal on Applied Mathematics.
2000;60:916-938.

8.Zhang HM. A non-equilibrium traffic model devoid of gas-like behavior. Transportation Research.
B. 2002;36(3):275-290.

9. Gazis DC, Herman R, Rothery RW. Nonlinear follow-the-leader models of traffic flow. Operations Research.
1961;9(4):545-567.

10. Newell GF. A simplified car-following theory: a lower order model. Transportation Research. Part B: Methodological.
2002;36:195-205.

11. Pipes LA. An operational analysis of traffic dynamics. Journal of Applied Physics. 1954;24(3):274-281.

12. Treiber M, Hennecke A, Helbing D. Congested traffic states in empirical observations and microscopic simulations.
Physical Review E. 2000;62(2):1805—1824.

13. Progogine I, Andrews FC. A Boltzmann like approach for traffic flow. Operations Research. 1960;8(6):789-797.

14. Prigogine I, Herman R. Kinetic Theory of Vehicular Traffic. Amsterdam, Elsevier; 1971.

15. Paveri-Fontana S.L. On Boltzmann like treatments for traffic flow. Transportation Research. 1975;9:225-235.

16. Helbing D., Treiber M. Enskog equations for traffic flow evaluated up to Navier-Stokes order. Granular Matter.
1998;1:21-31.

17. Treiber M, Hennecke A, Helbing D. Derivation, properties, and simulation of a gas-kinetic-based, non-local traffic
model. Physical Review E. 1999;59(1):239-253.

18. Gipps PG. A behavioural car-following model for computer simulation. Transportation Research Part B:
Methodological. 1981;15(2):105-111.

19. Kesting A, Treiber M, Helbing D. Enhanced Intelligent Driver Model to access the impact of driving strategies on
traffic capacity simulations. Philosophical Transactions of the Royal Society A. 2010;368:4585-4605.

69



70

Comp ional Math tics and Information Technologies. 2023;7(2):60—72. eISSN 2587-8999

20. Su Z, Liu S, Deng W, et al. Transportation dynamics on networks of heterogeneous mobile agents. Physics Letters A.
2019;523:1379-1386.

21.Yao W, Jia N, Zhong S, et al. Best response game of traffic on road network of non-signalized intersections.
Physica A: Statistical mechanics and its applications. 2018;490:P.386—401.

22. Dong P, Wang X, Yun L, et al. Research on the characteristics of mixed traffic flow based on an improved bicycle
model simulation. Simulation, SAGE Publications. 2018;94(5):451—462.

23. Zeng JW, Qian YS, Wang H, et al. Modeling and simulation of traffic flow under different combination setting of
taxi stop and bus stop. Modern Physics Letters B. 2018;32(25):1850301.

24. Zhou J, Zhang HL, Wang CP, et al. A new lattice model for single-lane traffic flow with the consideration of
driver’s memory during a period of time. International Journal of Modern Physics C. 2017;28(7):1750086.

25.Jin D, ZhouJ, Zhang HL, et al. Lattice hydrodynamic model for traffic flow on curved road with passing. Nonliear
Dynamics. 2017;89(1):107—-124.

26. Kaur R, Sharma S. Analysis of driver’s characteristics on a curved road in lattice model. Physica A: Statstical
Mechanics and its Applications. 2017;471:59-67.

27. The Wolfram atlas of simple programs [Electronic resource]. URL: http://atlas.wolfram.com/ (date of application:
18.05.2023).

28. Nagel K, Schreckenberg M. A cellular automaton model for freeway traffic. Journal de Physique I France.
1992:2221-2229.

29. Qi L, Zheng Z, Gang L. A cellular automation model for ship traffic flow in waterways. Physica A: Statistical
Mechanics And Its Applications. 2017;471:705-717.

30. Chen J, Jiang R, Lin L. Assigning on ramp flows to maximize capacity of highway with two on-ramps and one
off-ramp in between. Physica A: Statistical Mechanics And Its Applications. 2017;465:347-357.

31. Guzman H.A., Larraga M.E., Alvarez-Icaza L., et al. A cellular automata model for traffic flow based on kinetics
theory, vehicles capabilities and driver reactions. Physica A: Statistical Mechanics And Its Applications. 2018;491:528-548.

32. Bugaev A.S., Buslaev A.P., Kozlov V.V. et al. Generalized transport and logistics model as a class of dynamic
systems. Mathematical modeling. 2015;27(12):65-87. (In Russ.).

33. Kerner BS. The Physics of Traffic. Berlin: Springer; 2004.

34. Kerner BS. Introduction to Modern Traffic Flow Theory and Control. Berlin: Springer; 2009.

35. Kerner BS, Klenov SL, Wolf DE. Cellular automata approach to three-phase traffic theory. Journal Physics A:
Mathematical and General. 2002;35:9971-10013.

36. Jiang R, Wu QS. Spatial-temporal patterns at an isolated on-ramp in a new cellular automata model based on three-
phase traffic theory. Journal Physics A: Mathematical and General. 2004;37:8197-8213.

37. Kerner B, Klenov S, Schreckenberg M. Simple cellular automaton model for traffic breakdown, highway capacity,
and synchronized flow. Physical Review E. 2011;84:046110.

38. Kerner B, Klenov S, Hermanns G, et al. Effect of driver over-acceleration on traffic breakdown in three-phase
cellular automaton traffic flow models. Physica A: Statistical Mechanics and its Applications. 2013;392(18):4083-4105.

39. Kerner B.S., Klenov S.L. Deterministic microscopic three-phase traffic flow models. Journal Physics A:
Mathematical and General. 2006;39:1775.

40. Hoogendoorn S, Van Lint JWC, Knoop VL. Macroscopic modeling framework unifying kinematic wave modeling
and three-phase traffic theory. Transportation Research Record. 2008;2088(1):102—108.

41. Laval JA. Lane-changing in traffic streams. In: Traffic and Granular Flow’ 05. Proceedings of the International
Workshop, ed. by A. Schadschneider, et al. Berlin: Springer; 2007. pp. 521-526.

42. Tian J, et al. Improved 2D intelligent driver model in the framework of three-phase traffic theory simulating
synchronized flow and concave growth pattern of traffic oscillations. Transportation Research. 2016;41(F):55-65.

43. Xue Y, et al. Long-range correlations in vehicular traffic flow studied in the framework of Kerner’s three-phase theory

based on rescaled range analysis. Communications in Nonlinear Sciences and Numerical Simulation. 2015;22:285-296.


http://atlas.wolfram.com/

MA Trapeznikova, et al. Simulation of vehicular traffic using macro- and microscopic models

44. Qian YS, Feng X, Zeng JW. A cellular automata traffic flow model for three phase theory. Physica A: Statistical
Mechanics And Its Applications. 2017;479:509-52.

45. Morozov II, Gasnikov AV, Tarasov VN, et al. Numerical study of transport flows based on hydrodynamic models.
Computer research and modeling. 2011;3(4): 389—412. (In Russ.).

46. Kholodov Y., Alekseenko A., Kazorin V., et al. Generalization second order macroscopic traffic models via relative
velocity of the congestion propagation. Mathematics. 2021;9(16):2001.

47. Kubentayeva M, Gasnikov A. Finding equilibria in the traffic assignment problem with primal-dual gradient
methods for stable dynamics model and Beckmann model. Mathematics. 2021;9(11):1217.

48. Kiselev AB, Kokoreva AV, Nikitin VF, etc. Mathematical modeling of traffic flows by methods of continuum
mechanics. Investigation of the influence of artificial road irregularities on the capacity of a road section. Modern problems
of mathematics and mechanics. Applied Research, edited by VV Alexandrov and VB Kudryavtsev. Moscow: Publishing
House of Moscow State University; 2009;1:311-322.(In Russ.).

49. Smirnov N, Kiselev A, Nikitin V, et al. Hydrodynamic traffic flow models and its application to studying traffic
control effectiveness. WSEAS Transactions on Fluid Mechanics. 2014;9:178-186.

50. Diveev Al, Sofronova EA. The problem of optimal control of traffic flows in the urban road network. Questions of
the theory of security and stability. 2018;20:89-99. (In Russ.).

51. Fundamentals of Traffic Simulation. In: International Series in Operations Research & Management Science. J.
Barcelo (Ed.). Springer. 2010;145. 452 p.

52. PTV Vision Traffic Suite [Electronic resource]. URL: https://ptv-vision.ru/ (date of application: 18.05.2023).

53. Aimsun: Simulation and Al for future mobility [Electronic resource]. URL: https:/www.aimsun.com/ (date of
application: 18.05.2023).

54. MATSim: Multi-Agent Transport Simulation [Electronic resource]. URL: https://www.matsim.org/ (date of
application: 18.05.2023).

55.Horni A, Nagel K, Axhausen KW (Eds.) The Multi-Agent Transport Simulation MATSim. London: Ubiquity Press; 2016.

56. SUMO: Simulation of Urban MObility [Electronic resource]. URL: https://www.eclipse.org/sumo/ (date of
application: 18.05.2023).

57. Lopez PA, et al. Microscopic Traffic Simulation using SUMO. 2Ist international conference on Intelligent
Transportation Systems (ITSC). 2018:2575-2582.

58. Bentley Systems [Electronic resource]. URL: https://www.bentley.com (date of application: 18.05.2023).

59. Chetverushkin BN. Kinetic schemes and quasi-gas-dynamic system of equations. Moscow: MAKS Press; 2004. 332 p.
(In Russ.).

60. Churbanova NG, Chechina AA, Trapeznikova MA. Simulation of traffic flows on road segments using cellular
automata theory and quasigasdynamic approach. Mathematica Montisnigri. 2019;XLVI1:72-90.

61. Trapeznikova MA, Chechina AA, Churbanova NG, et al. Mathematical modeling of traffic flows based on macro-
and microscopic approaches. Bulletin of ASTU, Ser.: Management, Computer engineering and Computer Science.
2014;1:130-139. (In Russ.).

62. Sokolov PA, Shkolina IV, Trapeznikova MA, et al. Simulation of vehicle traffic on supercomputers based on the
SRG system of equations. News of the SFU. Technical sciences. 2019;7:159-169. (In Russ.).

63. Chetverushkin B, Chechina A, Churbanova N, et al. Development of parallel algorithms for intelligent transportation
systems. Mathematics. 2022;10(4):643.

64. Trapeznikova MA, Chechina AA, Churbanova NG. Two-dimensional model of cellular automata for describing the
dynamics of traffic flows on the elements of the road network. Mathematical modeling. 2017;29(9):110-120. (In Russ.).

65. Chechina A, Churbanova N, Trapeznikova M. Driver behaviour algorithms for the cellular automata-based
mathematical model of traffic flows. EPJ Web of Conferences. 2021;248:02002.

66. Chechina AA, Herman MS, Ermakov AV, et al. Modeling and visualization of traffic flows on the elements of the

road network using the SAM-2D software package. Preprints of the IAM named after M. V. Keldysh. 2016;124. 17 p. (In
Russ.).

71


https://ptv-vision.ru/ 
https://www.aimsun.com/
https://www.matsim.org/
https://www.eclipse.org/sumo/
https://www.bentley.com 

72

Comp ional Math tics and Information Technologies. 2023;7(2):60—72. eISSN 2587-8999

About the Authors:
Marina A Trapeznikova, Senior Researcher, Keldysh Institute of Applied Mathematics RAS (4, Miusskaya Sq.,
Moscow, 125047, RF), Cand.Sci. (Phys.-Math.), ORCID, mtrapez@yandex.ru

Antonina A Chechina, Junior Researcher, Keldysh Institute of Applied Mathematics RAS (4, Miusskaya Sq.,
Moscow, 125047, RF), Cand.Sci. (Phys.-Math.), ORCID, chechina.antonina@yandex.ru

Natalia G Churbanova, Senior Researcher, Keldysh Institute of Applied Mathematics RAS (4, Miusskaya Sq.,
Moscow, 125047, RF), Cand.Sci. (Phys.-Math.), ORCID, nataimamod@mail.ru

Received 11.04.2023.
Revised 16.05.2023.
Accepted 17.05.2023.

Conflict of interest statement
The authors does not have any conflict of interest.

All authors have read and approved the final manuscript.

06 asmopax.

Tpane3nukopa MapuHa AJjleKCaHAPOBHA, CTapLIMil HAYYHBIM COTPYAHMK, MIHCTUTYT NPUKIAIHON MareMaTHKH
mM. M. B. Kengsimma PAH (P®, 125047, MockBa, Muycckas ., 4), Kaaauaar Gusnko-mMaremMarnaeckux Hayk, ORCID,
mtrapez@yandex.ru

YeunHa AHTOHHHA AJIeKCAaHAPOBHA, MJIAAIIMNA HAYYHBIM COTPYIHUK, MHCTUTYT NpUKIaJHOW MaTreMaTUKU
mM. M. B. Kengsima PAH (P®, 125047, MockBa, Muycckas 1., 4), KaHaunar Gusnko-mMaremMarndaeckux Hayk, ORCID,

chechina.antonina@yandex.ru

YypobanoBa Haranbs I'eHHaabeBHa, crapluvii HayyHbBId COTPYOHHMK, WHCTUTYT NpHUKIaIHON MareMaTHKu
mM. M. B. Kengeima PAH (P®, 125047, Mocksa, Muycckas 1., 4), KaHaunar Gusnko-mMareMaruaeckux Hayk, ORCID,

nataimamod@mail.ru

IocTtynuaa B penaxkumio 11.04.2023.
MMocTtynuia nocie peuensupoBanus 16.05.2023.
Mpunsara k nydankamuu 17.05.2023.

Kongnuxm unmepecos
ABTOPEI 3asBIISIIOT 00 OTCYTCTBHUHU KOH(IMKTAa HHTEPECOB.

Bce asmopur npouumanu u 0006punu okonyamenvuwlil 6APUAHM PYKORUCU.


https://orcid.org/0000-0001-6008-9535
mailto:mtrapez%40yandex.ru?subject=
https://orcid.org/0000-0003-0218-9188
mailto:chechina.antonina%40yandex.ru?subject=
https://orcid.org/0000-0002-6088-9687
mailto:nataimamod%40mail.ru?subject=
https://orcid.org/0000-0001-6008-9535
mailto:mtrapez%40yandex.ru?subject=
https://orcid.org/0000-0003-0218-9188
mailto:chechina.antonina%40yandex.ru?subject=
https://orcid.org/0000-0002-6088-9687
mailto:nataimamod%40mail.ru?subject=

Comp ional Math tics and Information Technologies. 2023;7(2):73—80. eISSN 2587-8999

MATHEMATICAL MODELING
MATEMATUYECKOE MOJAEJTUPOBAHUE

UDC 519.6 Original article
https://doi.org/10.23947/2587-8999-2023-7-2-73-80

Existence and Uniqueness of the Initial-Boundary Value Problem Solution

of Multicomponent Sediments Transport in Coastal Marine Systems

Valentina V Sidoryakina

Taganrog Institute named after A. P. Chekhov (branch) of RSUE, 48, Initiative St., Taganrog, Russian Federation

™ cvv9@mail.ru

Abstract

Introduction. This work is devoted to the study of a non-stationary two-dimensional model of sediment transport in
coastal marine systems. The model takes into account the complex multi-fractional composition of sediments, the
gravity effect and tangential stress caused by the impact of waves, turbulent exchange, dynamically changing bottom
topography, and other factors. The aim of the work was to carry out an analytical study of the conditions for the initial-
boundary value problem existence and uniqueness corresponding to the specified model.

Materials and Methods. Linearization of the initial-boundary value problem is performed on a temporary uniform grid.
The nonlinear coefficients of a quasilinear parabolic equation are taken with a “delay” by one grid step. Thus, a chain of
correlated by initial conditions is the final solutions of problems is built. The study of the existence and uniqueness of
the problems included in this chain, and therefore the original problem as a whole, is carried out involving the methods
of mathematical and functional analysis, as well as methods for solving differential equations.

Results. Earlier, the authors investigated the existence and uniqueness of the initial-boundary value problem of the
transport of sediments of a single-component composition. In the present work, the result obtained is extended to the
case of multi-fractional sediments.

Discussion and Conclusions. Based on the analysis of the existing results of mathematical modeling of hydrodynamic
processes, a non-linear spatial two-dimensional model of sediment transport was previously investigated by the team
of authors in the case of bottom sediments consisting of particles having the same characteristic dimensions and
density (single-component composition). In this paper, the previous results of the study are extended to the case of
sediments of a multicomponent composition, namely, the conditions for the existence and uniqueness of the solution

of the initial-boundary value problem corresponding to the considered model are determined.

Keywords: multicomponent sediments’ transport, coastal marine system, initial-boundary value problem, solution

existence, solution uniqueness.
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Hayunas cmamos

CymecTBoBaHHE M €IUHCTBEHHOCTD pellleHHs] HAaYaIbHO-KPaeBoii 3a1a4un
TPAHCHOPTA MHOTOKOMIIOHEHTHBIX HAHOCOB MPUOPEKHBIX MOPCKUX CHCTEM

B.B. Cugopsikuna

Taranporckuit uHCTUTYT UM. A. [1. Yexosa (pumman) PT'OY (PUHX), Poccuiickast ®enepanus, r. Taranpor, yn. MannuatusHas, 48

™ cvv9@mail.ru

AHHOTAN A

Beeoenue. Hacrosmiast paboTa MOCBAIICHA HCCIIEIOBAHUIO HECTAIIMOHAPHON NBYMEPHOW MOJIENH TPAHCIIOPTa HAHOCOB
B NPUOPEKHBIX MOPCKHUX CHUCTeMaX. Mojenb YYUTHIBAeT CIOKHBI MHOTOKOMIIOHEHTHBIH COCTaB HAaHOCOB; JieiicTBHE
CHITBI TSDKECTH U TAHTCHIIMATHHOTO HAMIPSHKCHHUS, BEI3BAHHOTO BO3JICHCTBUEM BOJIH; TypOYIICHTHBIN 0OMEH; THHAMHYICCKU
U3MeHsieMbIil penbed nHa U Apyrue (akrtopsl. 1lensio paboThl ABISLIOCH MPOBEACHUE aHATMTHYSCKOTO MCCIICIOBAHUS
YCIIOBUM CYLIECTBOBAHUS U €IMHCTBEHHOCTH HaYaJIbHO-KPaeBOH 3a7a4k, COOTBETCTBYIOIIEH YKa3aHHOW MOJEINH.
Mamepuanst u memoost. B pabore Ha BPEMEHHON paBHOMEPHOW CETKE BBHITIOJIHEHA JIMHEApU3allis HadallbHO-Kpae-
BOHM 3amauyd, TpH KOTOPOW HEIMHEHHBIC KOA(PQPUIMECHTH KBA3WIMHEHHOTO NapabONMYecKOro YpaBHEHUS OepyTcs
C «3amna3gbIBaHUEM) HA OJWH LIar CETKH. Tem cambpIM CTPOUTCA IICIIOYKA 3a/1a4, CBA3AHHBIX MO HaYaJbHBIM YCJIIOBUAM
1 PUHATHHBIM peteHusM. [[puBITekas MeTOIbI MATEMAaTHYESCKOTO U (PYHKIIMOHAIEHOTO aHAJIH34, & TAKXKE METOJIBI PEIIICHUS
muddepeHInaIbHbIX YpaBHEHUH, MPOBOAUTCSA HCCIICAOBAaHME CYIIECTBOBAHHMS M EIMHCTBEHHOCTH 3ajad, BXOMSIIHX
B JIAHHYIO LIETIOUKY, a TOTOMY U B LIEJIOM UCXOJHOW 3aJauu.

Pe3ynomamot uccnedosanua. Ha ocHOBe aHanm3a CYIIECTBYIOIIMX pPE3yJIbTaTOB MaTeMaTH4eCKOTO MOICTHUPOBAHUSA
THIPONMHAMHYECKUX TIPOIIECCOB paHee ObUIa FHccieqoBaHA HENWHEHHAs IPOCTPAHCTBEHHO-IBYMEpHAs MOJEIh
TpaHCIIOPpTa HAHOCOB B CJIy4a€ JTOHHBIX OTHOXGHHﬁ, COCTOAIMMNX M3 YaCTUIl, UMCIOIHNX OJUHAKOBBLIC XapaKTCPHBLIC
pa3Mepsl U IUIOTHOCTH (OHOKOMITOHEHTHBIH cocTaB). B Hacrosmieit paboTe mpeasiayInue pe3ylbTaThl HCCICIOBAHUS
pacIpoCTpaHEHbI Ha CIIy9ail HAHOCOB MHOTOKOMIIOHEHTHOTO COCTaBa, a UMEHHO OIPE/IEIICHBI YCIOBUS CYIIECTBOBAHMS
U €AMHCTBEHHOCTH PEIICHUs HauaJlbHO-KPaeBOi 3a/1auM, COOTBETCTBYIOLIEH paccMaTpuBaeMoi MOsIeIH.

Oobcyscoenue u 3akarouenus. Mojaens TpaHCIIOPTa MHOTOKOMITOHEHTHBIX HAHOCOB MOXKET OBITh IOJI€3HA IS TPOrHO3a
pacmpocTpaHeHHs 3arpsi3HIIOIINX BEIIESCTB, a TAKXKE NP UCCIICAOBAHUN TWHAMHUKH W3MEHEHUS penbeda JTHA KaK MpH

AHTPONIOI¢HHOM BOB}IBI\/’ICTBI/II/I, TaK U B CUJTY €CTECTBCHHO MPOTCKAIOIINX MMPUPOJIHBIX IMMPOIECCOB B MOPCKHUX CUCTEMAX.

KiaroueBbie ciioBa: TPAHCTIOPT MHOT'OKOMIIOHCHTHBIX HAaHOCOB, an/I6pe>i<Ha$[ MOpCKad CHUCTEMA, Ha4YaJIbHO-KpacBas

3aja4a, CymeCTBOBAHUE PCUHICHUA, CAUHCTBCHHOCTb PCHICHMS.

duHancupoBanme. VccienoBanne BBIIONHEHO 3a cdeT rpaHTa Poccumiickoro nHaydroro ¢orma Ne 23-21-00509,
https://rscf.ru/project/23-21-00509

Jast uurupoBanus. CunopskuHa B.B. CymiecTBoBaHNe U €TMHCTBEHHOCTH PENICHUS HauyalbHO-KPaeBOM 3a/1aur TPpaHC-
MOpTa MHOTOKOMIIOHCHTHBIX HAHOCOB IPUOPESKHBIX MOpckux cucteM. Computational Mathematics and Information
Technologies. 2023;7(2):73—80. https://doi.org/10.23947/2587-8999-2023-7-2-73-80

Introduction. It is necessary to use a set of models of different spatial and temporal scales in solving practical tasks
related to the environmental assessment of the water body’s state [1-6]. The research of mathematical hydrophysical
models, which are characterized by a variety of parameters, has been actively developed in recent decades [7—14].
The paper considers 2D mathematical model for calculating the transport of multicomponent sediments in relation to
coastal marine systems. The set of convection-diffusion equations for each sediment component (or fraction) forms this
mathematical model taking into account turbulent exchange, gravity, tangential stress, dynamically changing bottom
relief and other factors [15-17].

The article presents the results of theoretical study of the initial boundary value problem existence and uniqueness
based on the constructed model. In accordance with this goal, the initial boundary value problem for quasi-linear
equation of parabolic type is considered, for which sufficient conditions for the existence and uniqueness of the
solution are determined by methods of mathematical and functional analysis, as well as by methods of solving
differential equations.
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Materials and methods
1. Initial boundary value problem of multicomponent sediment transport. Let’s write down the equation of
multicomponent sediments transport [16, 17]:

(1-¢ a—H+diV Vkxz )=div|Vk Ther gradH +Wg’rc‘, r=1R. (D
r 8t r’r'b rvr

. r
sin @, P,

Where H = H (x, v, t) is the reservoir depth; ¢ _is the porosity 7-th component in the sediments composition; V' is the 7-th
component’s volume fraction; T, is the tangential tangential stress vector at the reservoir bottom; T, is the critical value
of the tangential stress for r-th sediment component, T,., = @, sin Q> a is the coefficient for r-th sediment component,
@, is the angle of the natural slope of the soil in the reservoir; w_is the hydraulic size or deposition rate of 7-th component;
p, is the density of r-th bottom material component; &, = k, (H , X, Y, t) is nonlinear coefficient determined by the ratio:
B-1

T
be,r

T, —— grad H

sin @,

Add,
((pl - pO)gdr)B

where @ is the average wave frequency; d, is the characteristic size of -th component; g is the acceleration of gravity;
p, is the aquatic environment density; 4 and B are the dimensionless constants.

Let the sediment transport process take place in an area D, D(x,y)={0<x<L,0<y<L /| with boundary
S, representing a piecewise smooth line. We assume that a three-dimensional cylinder 11, = D x (0, T) of height T
with a base D is the domain of equation (1). The boundary of this cylinder consists of a side surface S x [0, T ] and two
bases — D x {0} and D x ir}.

Equation (1) is considered with the initial condition:

k, =

5

H(x, »,0) = Hy(x, ), @.1)
Hy(x.y) € C*(D)~C(D). (2.2)
grad , H, € C(l_)), (23)
(x.y)eD (2.4)
and conditions on the region border D :
u| =0 3)
H(L,y,0)=H,(»,1), 0<y<L, )
H(0,y,6)= H,(v,1), 0 y< L, ®)
H(x,0,1)= H,(x), 0<x< L. (©)
H(x,L,,t)=0, 0<x<L. (7)

Let assume: o
erad,, 1 e C (I, )n C'(11,),

Tpx = T (x, J’st)’
k, > k,, = const >0, V(x,y)eﬁ, 0<t<T,
2. The initial boundary value problem linearization of multicomponent sediment transport. Let’s build a time
grid ., withstept: ©, = {tn =nt,n=01...,N, Nt= T}.
If n=1, then the reservoir depth H (')(x, v, to) is known and is determined from the initial condition, i.e.
H m(x, y, to) =H, (x, y). If n=2,..,N, then the reservoir depth H (")(x, v, tH) will also be known, since problem

(1)—(7) is solved for the time interval, ¢, , <t <t ,,i.e. H(")(x, v, tn_]) = H("")(x, ¥, tﬂ_,).

Denote:
B-1
F = =

r

, n=12,.,N. (3)

A (Ddr ; %b _ jtbﬂ’r gradH(nil)(x’ Y, tnfl)
(b, =po)ed )" sine,

After linearization, equation (1) and the initial condition will take the form:

, r=LR, )

r

)
(1-g )20 _ div(mk,ﬁ"‘) ber gradH(")J —div( k%, )+ D2
ot sin @, p

r
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., <t<t,n=12,.,N,

n-1
H(l)(x, v, to) = Ho(x,y), H(")(x, v, tn_,): H(”'l)(x, Vot ), (x, y) € 5, n=2,..,N. (10)

Boundary conditions (3)—(7) are assumed to be fulfilled for all time intervals ¢,_, <t <¢ ,n=12,.,N.

Research results

1. Investigation of the linearized initial boundary value problem of multicomponent sediments transport
solution existence. Let ‘sput n =i, i =1,2,..., N in the equation (9).

We have:
(@) _ , , w —
(1) _ div(Vrkr("') P’Lgradf[@] —div[y k%, )+ —£e,, r =T R. (11)
ot sin @, P,
Equation (11) is supplemented by conditions (10) and (3)—(7).
If i = 1, then based on the assumptions made earlier, we can write:
v e c'(u,), VA%, e C'(,). (12)

sin @,

From [18] it can be concluded that if condition (12) is met, the solution of the initial boundary value problem (11),
(10), @)= (7), t, <t <t, i=1, exists and belongs to the class:

H(l)(x, y,t)e CZ(L[”)K\C(ﬂ,Il grad(x’y)H(l) € C(f[,l).

If i =2, then the initial-boundary value problem will have an initial condition H (2)(x, v, tl) =H (1)(x, »,t ) Its

smoothness coincides with the smoothness of the initial condition for equation (11) of the number ; = 1:
HO(x, 1) e *(11,)nc(,, ), grad, 1 ec(m,, ).

It is obvious that the conditions from [18] and the solution of the problem are again applicable (11), (10), (2) — (7) for
the number i = 2 exists.

Further,ifi, i = 3,..., N, thenforeachcasewewillhaveamixedproblemforalinearequationofparabolictype. Theinitialand
boundary conditions have a smoothness sufficient for the functions existence H (i)(x, ¥, t), t, <t<t, i=12,..,N kiac-
caC? (I_[,l_ ) NC (Ez,- ), grad(, \H Wec (ﬁz,- ), which are solutions to initial boundary value problems (11), (10), (2)—(7) [19].

2. Thelinearized initial boundary value problem solution uniqueness investigation of multicomponent sediments

transport. Let’s write equation (11) for n =1:
(1) T w —
o div(V,k,(o) her gradH(l)] —div[yk9%,)+ 252 e, r =1 R. (13)

. re
sin @, P,

(1-2)

r

Let us assume the existence of two different solutions to it:

H' = H’(x,y,t), H" = H”(x,y,t), (x,y)e B, t, <t<t.
Denote:
w(l)(x, y,t) = H'(x, y,t) - H"(x, y,t), t, <t <t w(l)(x, y,t) £0, w(l)(x, v, to) =0.

The initial boundary value problem for the function w(x, y,7) = w(])(x, ,t) will have the form:

(1- 8,,)a—w =diV(Vrkr(°)jcz’4gradWJ, r=1R, (14)
ot sin @,
w(x, y,O) =0, (x,y) € 5, (15)
o] =0 (16)
y=0

wlx, L,,1)=0, 0<x<L, (17)
w(0,,£)=0, 0<y<L, (18)
WLoyt)=0, 0 y<L,, (19)

w(x,0,£)=0, 0<x< L. (20)
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We multiply both parts of equation (14) by the function w(x, y,t) #£0, t,<t<4¢, (x, y) € B, and then perform
integration over variables ¢, f, <t <t and (x, y) in the domain D. We will get:

1

I[(l - sr)‘[) w% dxdy}dt = IU wdzv[V k IiLq: gradw]dxdy}dt r=1,R. 21

0 10

After a series of transformations of equality (21), we obtain:

%(1 - sr{[)jwz(x,y, t )dxdy - _[)Iwz(x,y, to)dxdy}

Equality (22) under condition (15) is written as:

J.( I jwdlv ( V. k(o) Chor grad w) dxdy]d (22)
sin @,

to\. D

;1—8 j ij v, 1, Vdxdy = j [”wdzv(Vk()SH';”(; gradwjdxdde (23)
Let:
1
= j{ I} wdiv(Vrko Crer gradwjdxdyjdt 24)
sin @,
to\ D
There is equality:
f[w i[V,kf") Tb—J@ ;9 (V,,kf‘“LJ W ety =
S Ox sing, ) Ox oy sing, ) Oy
- O |l gl Ter 0w O W(V,kf‘))ﬂ M ey — (25)
5| Ox sing, ) Ox Oy sing, ) Oy

T, (WY T ow)’
sin (po Ox sin @, \ Oy

On the other hand, taking into account the boundary conditions (16)—(20) and the Ostrogradsky-Gauss theorem [19],

we have:
J'J‘ K V,kf")ﬂ w00, V,k,(‘))Tb—” ow dxdy = 0. (26)
5| Ox sin @, ) Ox Oy sing, ) Oy

From the equalities (25) and (26) we find:
1 2 2
R(w) = —I ” Vi Tb—” (a—w) + w dxdy |dt. (27)
ol sin @, [\ Ox oy
Taking into account (27), equality (22) will be written as:
2
1 T, |(ow) (oW
1—8 w’ x Lt )dxdy =— Vk —— | —| +|—| |dxdy]|dt. 28
2 I ot sy = tj;{-[ sm(p([(éxj (6)})] y} 28)

Next, we transform the right side of equality (28). By involving the Poincare inequality [20], we obtain:

(2 (] e v () o5 o

From the inequality (29) follows the assessment:

2
—j ”V Thor (Wj + o) dxdy|dt < 2 @ er | L 1 j jjw2dxdyd (30)
sin@, | \ Ox ay sing, L, L, o
From the equalities (33) and (35) the inequality is obtained:

1 17
1-¢ )||w x Lt )dxdy < —m Vk( ) Sber +— wdxdy |dt. GD
J .t ) = sin @, Li Li o 'LI Y
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Since w(x, ¥, t) # 0, then w’ (x, V, t*) > 0 is done. Due to the function continuity w’ (x, ¥, t) in some neighborhood of

the point ¢* at ¢, < ¢* <¢,, we have “ w? (x, ¥, t)dxdy > 0, and therefore:
D

Thc,r 1 1 1
- TCerk(O) —[E + L—Z) f l:” wzdxdy}dt <0. (32)

sin @, v )i L
From the resulting inequalities (31) and (32), a contradictory inequality will follow:

%(l - 8’).[).[ w’ (x, V., )dxdy< 0. (33)

Therefore, the identity w(x, Vv, tl) = (. is valid. Due to the arbitrariness of the time step t, T > 0, we have:

w(x,y,t): 0, t,<t<t.

Obviously, when w(x, y,t) = 0 in case of (x,y) € B, t,, <t<t, n=2,.,N.
Thus, the first step of induction at ”* = L. Similarly , arguments are constructed for n = s, s = 2,.., N, which leads
to equality:
w(x, Y, tx) =0.

The result of the reasoning is the following theorem.
Theorem. Let the equations (11) be given:

(n)
(1-e) 2

= div| k0t grad ) |~ div(y k7, )+ 22 r = 1LR,
rvr sin (po rvr b

t,,<t<t,n=12,..,N,

in a rectangular area:
D(x,y)={0<x<L,0<y<L,},

-1
with initial and boundary conditions (11), (3)—(7).

T
T, — L gradH(”’l)(x,y,tnfl)
sin @,

(n-1) A(T)d,,
" —po)ed, )

Then, if the conditions are met kf""l) >k, >0, kr("'l) eC' Bl then Vn, n=1,2,.,N the function
H(")(x,y,t), t,,<t<t, n=12,..,N of the class grad, )H(”) eclio

x,y

where k&

I_[T) will be the solution of the equation of the
number # in the cylinder I]; = D x (0, T ) and this solution is the only one.

Discussion and conclusions. The novelty of this work is determined by the formulation of a non-stationary spatial-two-
dimensional mathematical problem of sediment transport, taking into account their complex multicomponent composition.
The linearization of the corresponding initial-boundary value problem is performed on a grid in time and for an arbitrary time

step ¢, , <t <t,, n=1,2,..,N,the conditions for the initial-boundary value problem solution existence and uniqueness

n’

are obtained.
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