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Semiinvariants, Senatov Moments and Density Decomposition
Alexander E Condratenko, Vitaly N Sobolev
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Abstract

It is proposed to introduce into Probability Theory courses such a new moment characteristic of random variable as
Senatov moment. Naturalness of this proposal is confirmed by three views of appearance of Senatov moments. Introducing
of them will answer the question about what is analogue of Taylor series of function for density.

Keywords: moments, semiinvariants, Senatov moments, Fourier transform, Fourier series, density decomposition
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Kpamxkoe coobwenue
CCMI/II/IHBapI/IaHTbI, MoMeHTBI CeHaToBa 1 PA3J0KCHHUE IIVIOTHOCTH

A.E. Konapatenko &, B.H. Co6o.ie

MockoBckwii rocynapctBeHHblid yHuBepeureT M. M.B. Jlomonocosa, Poccuiickas ®enepanus, r. Mocksa, Jlenunckue ropsi, 1

™ ae_cond@mech.math.msu.su

AHHOTALUA

IIpennaraercs BBECTH B IMPOTrPaMMBbl KYpCOB TEOPUU BEPOSATHOCTEH pacCMOTPEHHE OTHOCHUTEIBHO HOBOW MOMEHTHOM
XapaKTEePUCTUKHU CITydalHBIX BEINYNH — MOMEHTOB CeHaToBa. ECTECTBEHHOCTB 3TOr0 MPEATIOKEHHS TOATBEPKAACTCS
TpeMs B3MJIJaMU Ha BOZHUKHOBEHHE MOMEHTOB CeHaToBa, a X BBEICHHUE MO3BOJIUT OTBETUTH HAa BOIIPOC, UTO ABISAETCA
aHanoroM psga Teitnopa QyHKIINH [T TUIOTHOCTH.

KioueBble ci1oBa: MOMCHTbBI, CCMUHUHBApUAaHTbl, MOMCHTbBI CeHaTOBa, npe06pa3OBaHI/Ie CDpre, pan CDpre, Pa3JI0KCHUEC
TIJIOTHOCTH

BaaronapuocT: aBTOpHI BhIpakaroT OnarogapHocts npodeccopam A.B. Bymunckomy, E.B. SIpoBoit u akamemuky
A.H. llupseBy 3a BHUMaHHE K paboTe.

Jas muruposanus: Konaparenko A.E., Cobones B.H. CemunuBapuantbl, MOMeHTHI CEHAaTOBa W Pa3lIOKCHHE
mwiotHoctH. Computational Mathematics and Information Technologies. 2023;7(3):7—11. https://doi.org/10.23947/2587-
8999-2023-7-3-7-11

Introduction. In probability theory courses, in addition to the usual moments of a random variable &:
o, = ME"* :j x*dF(x)keZ,,

© AE Condratenko, VN Sobolev, 2023
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where F(x) is the distribution function of the random variable under consideration, other moment characteristics are also
described, for example,
absolute moments:
Mg,

central moments:

ME-Me'
and factorial
ME™ = MEE -1)...(E—k+1)
moments.

The central problem of probability theory — the central limit theorem — has led in its development to the appearance
of two more moment characteristics, called semiinvariants, which are told to mathematics students, and Senatov moments,
which are just beginning to enter the course programs.

The apparatus for determining moments proposed by V. V. Senatov can also be used in applied problems, for example,
when calculating the coefficients of turbulent exchange for the equations of hydrodynamics of systems with a free surface,
including marine and coastal [1].

Aim of work. Senatov’s moments deserve to be included in the programs of probability theory courses. In the paper,
this will be justified with the help of three questions, at first glance, unrelated to each other.

For the sake of simplicity, we will consider the random variables considered in this paper to be centered, normalized
and absolutely continuous, which have moments of all natural orders, and the characteristic function:

Sy =Me"*

is represented by Taylor series and is absolutely integrable.

The first question. The even moments of a standard normal random variable increase and increase rapidly — the
standard normal moment of the order of 2k is (2k—1)!!, ke N (in the future we will consider k£ a non-negative integer, unless
otherwise specified). But investigating the convergence of centered and normalized convolutions to a standard normal
random variable by investigating the convergence of a numerical sequence to a non-zero number is usually technically
more difficult than investigating convergence to zero. Accordingly, it becomes necessary to introduce new natural moment
characteristics, which for a standard normal random variable will be zero, with the exception, perhaps, of the most initial
orders. Since the moments are related to the derivatives of the characteristic function by equality:

i*o = (f(0) "0,

and the standard normal characteristic function is exp(-t2/2), then it is necessary to propose such a transformation of the
latter so that the derivatives of the resulting composition at zero guickly become zero.

The use of logarithm as the first such transformation was proposed in 1889 by the Danish astronomer and mathematician
Thorvald Nicolai Thiele, calling the obtained characteristics semiinvariants:

i'i= (In (A1) "o

Indeed, In(exp(~t*/2)) = —t*/2, Torna x,= 0, k= 0, x,= 1 n = 0 mpu k > 3.

An important exceptional property of semiinvariants: since the characteristic function of the convolution is equal to
the product of the characteristic functions of the summands, the semiinvariants of the convolution are equal to the sum of
the semiinvariants of the summands. But working with a complex logarithm requires special care and is often associated
with significant technical difficulties.

Another transformation is no less natural — in 2001, Vladimir Vasilyevich Senatov, Professor of the Department of
Probability Theory of the Faculty of Mechanics and Mathematics of the Lomonosov Moscow State University, finally
determined the characteristics called Senatov moments from 2021 (after his death):

i*0,=(exp(t*/2)/10) 0.

All the Senatov moments of a standard normal random variable are zero, except 0 =1.

All the mentioned moment characteristics of an arbitrary random variable exist or do not exist simultaneously, always
K= 0, 0,= 1, for centered and normalized random variables k= 0,= 0,= 0, k= 1.

The second question is related to the fact that the representation of a characteristic function by its Taylor series:
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does not allow us to find the density p(x) through the inversion formula:

|
plx)=——| e f(n)t,
27 J-=0
since the Fourier transform of the power function does not exist.
It is possible to get out of the impasse with the help of semiinvariants and Senatov moments. To do this, recall that the
Chebyshev-Hermite polynomials, which are eigenfunctions of the Schrodinger equation [2 3] and form an orthogonal

system on the set of real numbers with the weight of the standard normal density ¢(x)=e 2y o

2 2 (k)
Hk(.x):(_l)kek /2(8 5 /2)

have the property (1):

L ey e i = H, o).
27 -

For a characteristic function , the representation is valid:

f(t) = exp(In(f(t))) = exp(z%(ﬁ)"] =t exp{z%(it)q ,

k=3
and therefore property (1) allows, by presenting its second exponent with a Taylor series, to apply the inversion formula.
Similar arguments using the Senatov moments allow us to answer the third question — which analogue of the Taylor
series of the function can be proposed for a random variable in the face of its density. Since:

f<t>=e’Z/Z(e””f(r))ﬂ’m[zi, ) J : [ O3l J
k= k=3

that property (1) allows you to immediately apply the inversion formula and obtain the expansion for the density in the
form of the corresponding Fourier series:

For centered and normalized sums of n independent random variables, such expansions are called asymptotic [4],
since all summands under the sign of the sum will tend to zero with the growth of n, which follows from the expression
of the moments of convolutions through the moments of the initial distribution:

J3 Jk
0, (Ez) _ Z n! 0, 0,

k! NEARA
Jo J3t e dn 31

k >

k'n?

3
2
where summation is performed over whole non-negative sets:
Jotistjat..Jien, 354t kj=k.
The speed of striving for zero “triples” is interesting (Table 1):

0,(F

n

> 00,

Table 1
The rate of striving for zero of the “triples” of terms
k 3 4 5 6 7 8 9 10 11
E +3 E
3 3 0.5 1 1.5 1 1.5 2 1.5 2 2.5
2
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For example:

0 0 0 6 (n-10> 0
63(F;1):T:1’ 94(Fn):74’ 65(E1):Tf59 66(Fn):7[n73%+?6'J

The magical connection of the Senatov moments with Chebyshev-Hermite polynomials is the following equality:
0, = J' " H,(x) dF(x)

V. V. Senatov defined them this way in 2001 [5], calling them Chebyshev-Hermite moments because of this connection,
therefore, in literature and research until last year they are found and used under this name. Now, as a sign of memory of
an outstanding scientist who worked at Moscow University and proposed, in particular, asymptotic expansions with an
explicit accuracy estimate that can be brought to numerical values, we will call them Senatov moments [6].

Conclusion. The use of Senatov moments made it possible to advance the task of studying the convergence rate
in the central limit theorem so qualitatively that these moment characteristics began to be perceived very naturally.
This allows, according to the authors, to raise the question of their inclusion in the program of those courses in
probability theory, where the central limit theorem is proved by the method of characteristic functions. And for students
of mathematics, it is simply necessary to do this in order to prepare for the study of a special course “Additional
chapters of probability theory”.
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Symmetrized Versions of the Seidel and Successive OverRelaxation
Methods for Solving Two-Dimensional Difference Problems of Elliptic Type
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™ cvv9@mail.ru

Abstract

Introduction. This article is devoted to the consideration of options for symmetrization of two-layer implicit iterative
methods for solving grid equations that arise when approximating boundary value problems for two-dimensional
elliptic equations. These equations are included in the formulation of many problems of hydrodynamics, hydrobiology
of aquatic systems, etc. Grid equations for these problems are characterized by a large number of unknowns — from
10%to 10'°, which leads to poor conditionality of the corresponding system of algebraic equations and, as a consequence,
to a significant increase in the number of iterations, necessary to achieve the specified accuracy. The article discusses
a method for reducing the number of iterations for relatively simple methods for solving grid equations, based on the
procedure of symmetrized traversal of the grid region.

Materials and Methods. The methods for solving grid equations discussed in the article are based on the procedure of
symmetrized traversal along the rows (or columns) of the grid area.

Results. Numerical experiments have been performed for a model problem — the Dirichlet difference problem for the
Poisson equation, which demonstrate a reduction in the number of iterations compared to the basic algorithms of these
methods.

Discussion and Conclusions. This work has practical significance. The developed software allows it to be used to solve
specific physical problems, including as an element of a software package.

Keywords: two-dimensional problem of elliptic type, iterative methods, relaxation methods, complete relaxation method,
Seidel method, upper relaxation method
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Hayunas cmamos

CuMMeTpH30BaHHBIC BADHAHTHI METO0B 3eiiiesisl M BepXHell pejlakcanun
pelieHusi AByMEePHBIX PA3HOCTHBIX 32124 JUIMNITHYECKOT0 THIIA

B.B. Cupopsixuna 3, JI.A. Contomaxa

JIoHCKOM rocyAapCTBeHHBIN TeXHUYECKUI yHUBepcuTeT, Poccuiickas ®enepanus, r. Poctos-Ha-/lony, . ['arapuna, 1
™ cvv9@mail.ru

AHHOTALUA

Beeoenue. Jlannasi craTbs NOCBSIIEHA PACCMOTPEHHIO BApHAHTOB CHMMETPH3AINH ABYXCIIOWHBIX HESBHBIX HTEPALMOH-
HBIX METOJIOB JUIS PEIICHHsI CETOYHBIX ypaBHEHHH, BO3HUKAIOIIMX IIPH alllIPOKCHMAIIMU KPaeBbIX 3aj1a4 JJIsl JBYMEPHBIX
ypaBHeHI/Iﬁ JJUIMIITUYCCKOI'O THIIA. ]IaHHI)Ie YpaBHCHUA BXOAAT B IMOCTAHOBKM MHOIUX 3aJdad TUAPOAWHAMUKH,
FI/I}Ip06I/IOJ'lOFI/II/I BOJHBIX CUCTEM U P. CeTounble YpPaBHCHUA JI4 JaHHBIX 3a/1a4 XapaKTECPUSYIOTCA OOJIBIINM KOJIMYECTBOM
Hen3BecTHBIX — OT 106 10 10'°, 4TO MPUBOAMT K TIIOX O 0OYCIIOBIEHHOCTH COOTBETCTBYIOIIEH CHCTEMBI alreOpanIecKux
YPaBHEHHH W, KaK CIEJICTBHE, K CYIIECTBCHHOMY POCTY 4YMCIIa MTEpaluii, HEOOXOAUMBIX IS JOCTHXCHUS 3aJlaHHON
TOYHOCTH. B cTaThe paccMOTpEeH METO/ CHIDKEHHUS YMCIla UTEPalid Ui OTHOCHTENFHO MPOCTBIX METOAOB PEIICHHMS
CETOYHBIX YpaBHEHUH (MeToaa 3eiisenst U BepXHEH penakcalun).

Mamepuansl u memoost. PaccMaTprBaeMble B CTAThe METO/IbI PEIICHHSI CETOUYHBIX ypaBHEHUN 0a3uPYIOTCS Ha TIPOIEAYPe
CUMMETPH30BaHHOTO 00X0/1a TI0 CTPOKaMH (MK CTOJIOIAMH) CETOYHOM 00J1acTH.

Pesynomamul uccnedosanus. BIIIOIHEHB! YUCIEHHBIE SKCTIEPUMEHTBI IJIs1 MOJENIBHON 3a/1a4d — PAa3HOCTHOM 3amadu
Hupuxne g ypasaeHus [Iyaccona, KOTOpbIe IEeMOHCTPUPYIOT COKpAIICHUE YK CIa HTEPALIU 110 CPABHEHHUIO ¢ 0a30BBIMHU
ITOPUTMAaMH JTaHHBIX METOJIOB.

Oécyscoenue u 3axniouenusn. JlanHas padoTa MMeET NPAKTHYECKYIO 3HAYMMOCTb. Pa3zpaboTaHHOE mporpamMMHOe
CPE/ICTBO TMO3BOJIET €ro MCIIOJIL30BaTh ISl PELICHUS KOHKPETHBIX (DM3MUYECKHX 337ady, B TOM YHUCIE KakK 3JIEMEHTa
MIPOrPaMMHOTO KOMILIEKCA.

KiroueBble cjioBa: IBYMEpHas 3a/1ada JJUIMITHYECKOTO THIA, UTEPAIIMOHHBIE METOMBI, PETaKCAllMOHHBIE METOJIBI,
METOJI TIOJTHOW peJaKCcalii, METO 3eHIeNs, METOI BEpXHEH pelaKcaluu

dunancupoBaHue. VccrienoBanue BHITOIHEHO 32 cyeT rpanTa Poccuiickoro Hayunoro gonma Ne 22-11-00295. https://
rscf.ru/project/22-11-00295

BaaropapHocTi. ABTOpPHI BBIpaXalOT Ty OOKYIO TPU3HATENEHOCTD U HCKPEHHIOO 0J1aroAapHOCTh YWICH-KOPPECTIOHICHTY
PAH, nokrtopy ¢u3nko-maremMaTHueckux Hayk, npodeccopy Anekcannpy MBanoBuuy CyxXHHOBY 3a 00CYyKAeHHE
AITOPUTMOB U PE3YJIbTAaTOB MUCCIIEIOBAHNS.

Jas uutupoBanus. Cunopskuaa B.B., Comomaxa J[.A. CHMMETpH30BaHHBIC BApHAHTHI METONOB 3€HIeNs 1 BepXHEH
penaKcaly penieHus] JBYMEPHBIX pa3sHOCTHBIX 3afad sumnrudeckoro tuma. Computational Mathematics and
Information Technologies. 2023;7(3):12—19. https://doi.org/10.23947/2587-8999-2023-7-3-12-19

Introduction. In numerical modeling of technical systems, physical phenomena and technological processes, as
a rule, a significant proportion of the total amount of computational work is the solution of systems of linear algebraic
equations (SLAE) that arise when the corresponding differential or integro-differential equations are discretized.
A special class is represented by systems of linear algebraic equations with symmetric positive definite matrices. Depending
on the proposed approach to constructing the next iterative approximation, several iterative methods for solving these
SLAE are distinguished [1-3]. Among them are the methods of Seidel and Successive OverRelaxation. The popularity
of these methods can be explained by their simplicity and wide popularity among researchers [4]. In this regard, there is
anatural interest in studying various variants of the methods under consideration and the desire to obtain the advantages of
using them.

Inthisarticle, variants of symmetrization of Seidel and Successive OverRelaxation methods for solving two-dimensional
difference problems of elliptic type are considered. Based on the results of numerical calculations of the solution of the
Dirichlet problem for the Poisson equation in a rectangular area, a reduction in the number of iterations compared to the
basic algorithms of these methods is demonstrated. The table, which shows the dependences of the number of iterations
on the number of grid nodes of the computational domain when using the methods under consideration, makes it possible
to visually verify that the symmetrized version of the Successive OverRelaxation method can significantly reduce the
required number of iterations to achieve a given accuracy and, as a result, reduce the calculation time.

13


mailto:cvv9%40mail.ru?subject=
https://rscf.ru/project/22-11-00295
https://rscf.ru/project/22-11-00295
https://doi.org/10.23947/2587-8999-2023-7-3-12-19
https://orcid.org/0000-0001-7744-015X

14

Comp ional Math tics and Information Technologies. 2023;7(3):12—19. eISSN 2587-8999

Materials and methods
1. Seidel and Successive OverRelaxation methods. In a finite-dimensional Hilbert space , the problem of finding
a solution to an operator equation is considered:

Ax=f, A: H—> H, ()

where 4 is the linear operator, x is the desired function, f is the known function of the right part.
To find a solution to problem (1), we will use an implicit two-layer iterative scheme:

k+1 k
B 4 =f B:H>H k=0,12,., )
Thst
with an arbitrary approximation y°e H.
Equation (2) uses the notation: B is some invertible operator; & is iteration number; y* is the vector of the &-th iterative
.+, 1s the iterative parameter, 7,,, > 0.
To represent the Seidel iterative method in matrix form, we write the matrix as a sum of diagonal, lower triangular and

approximation; t

upper triangular matrices:

A=D+L+U, 3)
where:
a, 0 0 0 0 0 0
0 a,, 0 a,, 0 0 0
D= , L= .. ,

0 0 An_iN-1 0 Ay Ay 0 0
0 0 0 Ay ay, Ay, e Ay 0

0 a AN a\y

0 0 Ay oy

0 0 0 Ay n

0 0 0 0

Denote by y* = ( yl(") ygk),..., y%‘)) the vector of the k-th iterative approximation.

Using expression (3), we write the Seidel method in the form:
(D+L)y" +y* = f,k=0,1,2,.... 4)
Bringing the iterative scheme (4) to the canonical form of two-layer iterative schemes (2), we find:
(D+L) " =y )+ = £,k =0,12,..., y'e H. ©)

When comparing schemes (2) and (5), it can be seen that they will be identical at B=D+ L, 1,,; =1. Scheme (5), as
well as scheme (2), will be implicit, and the operator is not self-adjoint in space H (here the operator B corresponds to the
lower triangular matrix).

To accelerate the convergence of the Seidel method, it is modified by introducing a numerical parameter ®, into the
iterative scheme (5), so that:

k+1

_ k
(D+oL)X——2 1 4" = £, k=012,.., y'c H. (6)
(0]

For scheme (6), the iterative method is the Successive OverRelaxation, (SOR).

The identity of schemes (6) and (2) can be observed at B=D + oL, 1, = 0. As in the case of using the Seidel method,
the matrix corresponds to the lower triangular matrix. Therefore, the introduction of the parameter @ does not take us out
of the class of triangular iterative methods. The implementation of one iterative step of the scheme (6) is carried out with
approximately the same cost of arithmetic operations as in the scheme (5).

Sufficient conditions for convergence of the considered schemes (5), (6) are self-conjugacy and positive definiteness
of the operator A4 in space H [5]. In the following statement, we assume these conditions for the operator 4 to be fulfilled.

2. Symmetrization of Seidel and Successive OverRelaxation methods. Consider the Dirichlet difference problem
for an elliptic equation. For simplicity, let’s take the Dirichlet problem for the Poisson equation.
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Let on a rectangular grid:

i
o, ={x,.j =(ih, jhy), i=1,.,N,, j=1...N,, h, = N , a:1,2},

o

entered in a rectangle G = {0 <x, <, a=], 2}, is required to find a solution to the difference problem:

nyuxa = f(x), XEW,, (7

Wx)=glx). xev,

where f{x) and g(x) are the given functions, vy is the boundary of the grid ®,, ®, =®,\ y.
When solving system (7) by the Seidel method or the Successive OverRelaxation method, calculations begin at
a point Xy, =X; (i =N,,j= Nz)and are carried out along the rows or columns of the calculated grid ®, to a point

Xyn, =X (i =N,,j= N2) (the image of the grid layout is not given due to the evidence of its representation). Then

.
the calculations start from the starting point and repeat until a solution is reached. The main idea of symmetrization of

iterative methods is to add a new solution vector. Here, after the calculation is made from point x| to point x,, ., it will

continue further from point x,, - to point x,, in reverse order along the columns or rows of the grid and then repeat from

NIN2
the starting point.

We construct symmetrized variants of the Seidel and Successive OverRelaxation methods under the assumption
that a rectangular grid with equal numbers of nodes in each of the coordinate directions is used. Let C be a matrix of

permutations of size N x N (N =N, = N,), of the form:

0 0 0 a,
0 0 ayy 0
0 ay, - 0 0
ay, 0 0 0
The iterative scheme (5) as a result of the symmetrization of the Seidel method takes the form:
(D+ L)y =y )+ Ayt = £,y eH, k=012, k, ®)
(D+L)C (" =y )C+ AT C= £, Y =yh, =k +1k +2... . )

Sufficient convergence conditions of schemes (8)—(9) for the symmetrized Seidel method are determined from the
constraints imposed on the operator (as mentioned earlier, this is a self-adjoint and positive definite operator).

Let’s proceed to the construction of Symmetric Successive OverRelaxation (SSOR).

The iterative scheme (6) as a result of symmetrization takes the form:

k+1

_ k
(D+ol)X——2 4" =, y'eH, k=0,1,2,.., k. (10)
(O]

k+1 k

(D+mL)C%C+ACy’“C =f, V=, k=k +Lk +2,.. . (11)
Sufficient convergence conditions of schemes (10)—(11) for the symmetrized Successive OverRelaxation method at
any initial approximation are inherited by sufficient convergence conditions of schemes (8)—(9). However, in addition to

these restrictions, an additional condition imposed on the iterative parameter is required: ®: 0<w < 2 [5].
3. Complete symmetrization of the Seidel method and the Successive OverRelaxation method. The idea of
complete symmetrization methods is close to the methods of ordinary symmetrization. However, when solving problem
(7) by the method of complete symmetrization, iterations can start from any corner of a rectangular grid ®, and calculations

are performed in rows or columns (i.e., either from point x|, to point Xy _;y,; > or from point Xy _y,_; to pointx,,, or from
point x,y, ; to point Xy, ;> or from point x, ;, to point Xy, ).
The difference scheme corresponding to the complete symmetrized Seidel method can be represented as:
(D+ L)y =4 )+ Ay = £, Y e H, k=0,1,2,.... k, (12)

15
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(D+ L) =" )+ ay* = £, YO e H, k=0,1,2,..., k, (13)
(D+L)C (M =y )+ A =, Y= b, k= + Lk + 2, ky. (14)
(D+L)C(y = y*)C+ AT C= 1, yO=y", k=ky+1k +2.... . (15)

Sufficient conditions for convergence of schemes (12)—(15) for a complete symmetrized Seidel method are determined
from the constraints imposed on the operator 4.

The difference scheme corresponding to the Complete Symmetric Successive OverRelaxation method can be
represented as:

k+l _ Lk
(D+ol)X——2 1 4" = f, y'eH, k=0,1,2,.., k. (16)
w
k+l _ _k
(D+®L)Cu+ACyk =f, Y=y", k=k+Lk+2,..k,. 17
()
1k
(D+ol)l——L Ccrm*C=f, Y=y, k=k,+1Lk, +2... k;. (18)
(O]
Kk
(D+oL) X2 CcraAcy'C=F, =", k=k,+Lk +2... . (19)
w

Sufficient convergence conditions of the Complete Symmetric Successive OverRelaxation method coincide with
sufficient convergence conditions of the complete symmetrized Seidel method, and a restriction on the iterative parameter
isadded: ®: 0 < ® < 2.

Results. We illustrate the calculation results using the described methods on a grid w, at N=N, = N,.

10000
8000
6000

4000

Number of iterations

2000

0 20 40 60 80 100 120

Number of grid nodes

Fig. 1. Graph of the dependence of the number of iterations on the number of grid nodes when solving the problem
using: 1 — the Seidel method and the symmetrized Seidel method (the lines coincide);
2 — the complete symmetrized Seidel method

The problem is solved:
2
Zy;uxu zf(x)’ xe(oh’
a=1

y(x) =0, xevy.
The function of the right part f{x) was chosen in such a way that y(x) = x (x—x )x,(x—x,) is an exact solution to the

problem (20).
For the Symmetric Successive OverRelaxation method and the Symmetric Successive OverRelaxation method, the

(20)

iterative parameter @ was chosen according to the formula [5]:

o2
1+sin(n/n)
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P

0
Il
C

norm C of the discrepancy at the final iteration, at which the specified accuracy is achieved, "rO"C is the norm from the

The calculations are performed until the accuracy € = 10 is reached, where ¢= <, "VN(X)"C is the grid

initial discrepancy.

Figures 1 and 2 show the results of calculations related to the solution of problem (20) using the considered iterative
methods. The dependence of the number of grid nodes on the number of iterations required to achieve the required
accuracy is demonstrated e.

In accordance with the graphs (Fig. 1), a slight decrease in the required number of iterations for the symmetrized
Seidel method should be noted. The complete Symmetric Successive OverRelaxation method requires significantly fewer
iterations compared to its unsymmetrized counterpart. In terms of the costs of arithmetic operations per iteration, the basic
methods and their symmetrized analogues differ slightly.

4000
1
2
-% 3000
E 2
.%
5 2000
e
g
z
1000
0
0 20 40 60 80 100 120

Number of grid nodes

Fig. 2. Graph of the dependence of the number of iterations on the number of grid nodes when solving the problem
using: 1 — the Successive OverRelaxation and the Symmetric Successive OverRelaxation method (the lines coincide);
2 — the complete Symmetric Successive OverRelaxation method

This is confirmed by a comparative analysis of the data obtained, shown in Table 1.

Table 1
Calculation results using various iterative methods
Iterative method N=32 N=64 N=128

Seidel method 757 2947 10420

Symmetrized Seidel method 714 2914 10400

Complete symmetrization of the Seidel 538 2550 9914
method

Successive OverRelaxation method 281 1131 4335

Symmetric Successive OverRelaxation 253 1111 4293
method

Complete Symmetric Successive 101 521 2637

OverRelaxation method

Discussion and Conclusions. The article proposes methods of symmetrization for the Seidel and the Successive
OverRelaxation methods. The use of a complete Symmetric Successive OverRelaxation method can significantly reduce
the number of iterations required to achieve a given accuracy. It helps to halve the required number of iterations without
additional computational costs. This work has practical significance. The developed software tool makes it possible to use
it to solve specific physical problems, including as an element of a software package [6-9].
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Abstract

Introduction. The problem of modelling the propagation of elastic waves is of great practical importance when
conducting seismic exploration. Based on it, a model of the environment under study is being built. At the same
time, the quality of the constructed model is determined by the accuracy of solving the modelling problem, which
ensures constantly increasing requirements for modelling accuracy. For accurate modelling, it is important to correctly
describe and take into account the boundaries of the media. At the same time, the quality of the constructed model is
determined by the accuracy of solving the modelling problem, which ensures constantly increasing requirements for
modelling accuracy.

Materials and Methods. We have studied a modification of the grid-characteristic method on rectangular grids using
overset grids to describe the interface of media of complex shape. This approach has previously been used to describe the
earth’s surface when conducting simulations on land. This paper describes its application in modelling the relief of the
ocean shelf.

Results. The use of the overset grid reduces the modelling error, the number of parasitic waves and artifacts and makes it
possible to get a more visual picture.

Discussion and Conclusions. Overset grids can be used to describe the interface of media in modelling seismic exploration
of the ocean shelf. Their use makes it possible to increase the accuracy of modelling and reduce the number of artifacts
compared to using only one grid.
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IIpumeHnenne MOAMPHUKAIHU CETOYHO-XaPAKTEPUCTHYECKOI0 METO/AA C HCNOJIb30BaHUEM
HAJIO’KEHHBIX CETOK /ISl SIBHOTO BbIJAeJIEHHS TPAHMIbI pa3jiesa cpeld NPU MOJEJUPOBAHUH
peibeda okeaHHYeCKOro menabda
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MockoBckuii pU3NKO-TEeXHUUECKUH MHCTUTYT (HALIMOHAIBHBIN UCClIeNOBaTeNbCKUil yHUBepeuTeT), Poccniickas ®enepanus,
r. Mockga, yn. Kepuenckas, 1A, xopm. 1

Mstetsyuk@phystech.edu

AHHOTALUA

Beedenue. 3amaua MOAEIMPOBAHUS PACTIPOCTPAHEHHS YIPYTHUX BOIH MMEET OONBIIOE MPAKTHYECKOe 3HAUYEHHE IPH
MIPOBEACHUH CeiicCMOpa3BeIKH, MOCKOJIBKY Ha €€ OCHOBE BBITIONHACTCS MMOCTPOCHHE MOJETH HcciexyeMoi cpeasl. [lpn
9TOM KayeCTBO MOCTPOSCHHON MOJEIH ONPEICIACTCS TOYHOCTRIO PEIICHUS 33/[a4i MOJCIMPOBAHUS, YTO 00CCIICYHMBACT
MMOCTOSIHHO BO3PACTAOIIUE TPECOOBAHUS K TOYHOCTH MOJCIHPOBAHUS. J[JIs1 TOYHOTO MOJICTUPOBAHUS BAXXKHO KOPPEKTHO
OIKCHIBATH U YIUTHIBATH IPAHUIIBI pa3zeiia cpel. [Ipu 3ToM BaKHBIM (JaKTOPOM OCTACTCSI PECYPCOEMKOCTh HCITOTB3YEMOTO
METOJ]a MOJCIUPOBAHUS, TOCKOJIBKY HCIIONE30BAaHIE MEHEE PECYPCOSMKHX METOOB IMO3BOJISIET BBHIIOJHHUTEH OOJBINE
WTEepaIii pacyera sl HHBEPCHUH FITH HCIIOIB30BATh CETKH C MEHBIIIMM IIIarOM JUISI ITOBBIIICHUS TOYHOCTH.
Mamepuanst u memoowvt. B nannoit pabote paccMaTpuBaeTcs MOIU(DUKAINS CETOUHO-XapPaKTEPUCTHIESCKOT0 METO/IA HA
NPSMOYTOJIBHBIX CETKaX, UCIOJIb3YIOIIasi HAJIOKEHHBIC CETKH /ISl OMMCAHUS TPAHMIIBI pa3iesia Cpell CA0KHON (HOpPMBL.
JlaHHBIN MOAXOJ paHee UCIONIb30BAJICS JUIsl ONMCAHUS TOBEPXHOCTH 3€MJTH MIPU MPOBEACHUN MOJICTUPOBAHNUS Ha CYIIIE.
B nmanHO#1 paboTe OMUCHIBACTCS €ro MPUMEHEHHE P MOJICITUPOBAHHUH pebeda OKCaHHIeCKOTO melbda.

Pesynomamut uccnedosanus. Vicnonp30BaHUE HATOKEHHOM CETKH MTO3BOJIACT YMEHBITUTH OTPEITHOCTH MOICTIHPOBAHUS,
KOJIMYECTBO MAPa3UTHBIX BOJH U apTe(PaKkTOB M MOIYIHUTH OOJIee HATIIAIHYIO KapTHHY.

Obcyscoenue u 3axnrouenusn. HanoxxeHHBIE CETKH MOTYT OBITh NMPHMEHEHBI ISl ONFCAHUS TPAHHUIBI pa3liena cpen
pU MOJCTHUPOBAHUN CEHCMOpPa3BEeIKH OKEaHWYECKOro mieibda. VX HCIOIb30BaHKE MO3BOJISIET MOBBICUTH TOYHOCTh
MOJICITUPOBAHUS U CHU3UTh KOJMYECTBO apTe(haKTOB MO CPABHEHHIO C UCIIOJIb30BAHUEM TOJIBKO OJTHOM CETKU.

®unancupoBaHue: padoTa BHINIOIHEHA NpH (PMHAHCOBOH nozepkke Poccuiickoro Hayunoro ¢onza (rpoekt Ne 21-11-00139).

KiroueBbie ci10Ba: CeTOYHO-XapaKTEPUCTHUECKUI METO/I, METO/] HAJIOXKEHHBIX CETOK, METOJI CETOK-XUMep, Lienb(hoBast
ceifcMopasBeka

Jnsi uutupoBanus. Cremiok B.O. IpuMenenne MomuduKanny CETOYHO-XapaKTEPHUCTHIECKOTO METO/a C MCIOJB30-
BaHKMEM HAJIOKEHHBIX CETOK IS SIBHOTO BBIZIEIEHHSI [PAHUIIBI pa3/ieia Cpel P MOAETUPOBAHNH Peibeda OKEaHUIECKOTO
mensbha. Computational Mathematics and Information Technologies. 2023;7(3):20-27. https://doi.org/10.23947/2587-
8999-2023-7-3-20-27

Introduction. The elastic and acoustic wavespropagation in the medium is studied by many scientific and engineering
disciplines. Among the most important practical tasks considered by these disciplines are seismic stability analysis, non-
destructive defect detection and seismic exploration. Numerical modeling is widely used in solving all these problems. Two
main types of modeling tasks can be distinguished — in fact, the task of moderating the propagation of wave disturbances
in a medium with known properties (a direct task) and the task of constructing a model of the medium based on known
characteristics of the source signal and receiver readings (an inverse problem). These tasks are not independent, the solution
ofthe inverse problem usually relies on several iterations of solving the direct problem and making refinements to the model.

It is necessary to take into account its features and limitations, as well as the amount of computing resources it
requires, when choosing a numerical method used for modeling. The finite element method, the finite difference method
and the grid-characteristic method are widely used to simulate the propagation of mechanical waves.

The finite element method [1] uses non-structural meshes, most often tetrahedral, which makes it possible to describe
with good accuracy the boundaries of the modeling area, as well as the inhomogeneities and joints between layers lying
inside it. This method is based on the approximation of the desired function inside each of the cells using a given basis. It
also makes it possible to describe absorbing boundary conditions well using the PML method [2]. Its main disadvantage
is its high resource intensity.

The main idea of the finite difference method is to replace differentiation operations in the simulated equation with
non-differential expressions determined by the difference scheme used. Finite-difference schemes usually use structural
rectangular grids. Their advantage is low resource consumption with good accuracy [3].
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The grid-characteristic method [4; 5] is in many ways similar to the finite difference method. Instead of directly
replacing differentiation with a difference expression, he uses variable substitution, which allows him to move from the
original equation to the transfer equation. This transfer equation is solved by searching for the characteristics along which
the values are transferred. In this paper, a modification of the grid-characteristic method is used, in which, instead of using
characteristics, the transfer equation is solved using difference schemes.

In cases when methods based on structural grids are used for modeling, and in the field of modeling there are boundaries
of complex shape, there is a need to somehow adapt the method to describe them. In this paper, overset curved grids are
used to describe curved boundaries. The choice of this method is due to its good accuracy and low resource consumption.
Earlier in [6] it was shown how this method can be used to describe a free surface of a complex shape, and in this paper
it is used to describe the interface of media.

Materials and methods

1. Physical model. The processes of wave propagation in elastic and acoustic media are studied. Let’s first consider
the elastic medium model. At a point with a radius vector ¥ we denote the displacement vector at time ¢ as u()?,t).
Newton’s second law on the 1 axis will have the form [7]:

o’u, do;
p6t2 _Z ox. ~ /=0
J i

We assume that all offsets are small. Then we can write down Hooke’s law:

Gy = Ciu €

3,3
I=1

k=1,

where Cijkl is called the stiffness tensor, and g; is the Cauchy—Green strain tensor:

1 6141. auj 6141. auj 1 814,. auj
€ == -+ —+ —L | —L+—L |
72\ 0x;  ox Ox, Ox, 2\ ox; ox
The tensors ¢ and € are symmetric and, therefore, contain no more than 6 independent components each. The C,_jk[ ten-
sor is also symmetric, so the number of its independent components does not exceed 21, and it can be written in Voigt

notation [8] as a 6x6 symmetric matrix. In this paper, only isotropic media are considered. In such environments, this
matrix is further simplified and has the form [9]:

A+20 A A 0 0 0
A A2 A 0 0 0
A A A+20 0 0 O
Cy = .
0 0 0 pu 0 0
0 0 0 pu 0
0 0 0 0 0 uj

You can enter the displacement velocity vector at point v as a derivative of the displacement vector in time. The system
of equations will take the form:

P (veo) 47,
g—fzx(v-v)np(vmw@af).

The parameters A and p are called Lame parameters.Together with the density, they set the properties of the medium
at the point. The velocities of longitudinal and transverse waves can be expressed through them as follows:

c, = ’l+2p,
P

The continuity equation and the Euler equation are used to describe acoustic media. Denote the pressure, density and
velocity at a point with a radius vector X B at time t as p, (x,), p, (x,f) and vA4 (x,f) respectively. The equations have the
following form [10]:
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0 -
%+V-(pAvA):0,

8(;7/, + (VAV);A = _LVF
t P4

In this paper, we consider problems in which the media are at rest before the propagation of wave disturbances. In
addition, changes in pressure and density caused by wave propagation are assumed to be small compared to their values
at rest. Denote the pressure and density at rest at the selected point as p; (x,f) and p, (x,f), and their changes caused by
propagating waves, as p(x,f) and p(x,f). In the assumptions above, the equations of the acoustic medium can be reduced
to this form:

@-i-LVp =0,
ot p,

op e -
—+p,cV-v=0.
or Po

In the approximation used, the propagation of acoustic waves can be considered as a special case of the propagation
of elastic waves in a medium where only P-waves propagate. The parameters of such an elastic medium will be set by the

A
CP_C E’

c=0,

s

following relations:

p=0.
2. Grid-characteristic method. Consider the application of the grid-characteristic method for solving equations
describing an elastic medium. Let’s collect all the unknowns in these equations into one vector [11]:

q = [vl’ VZ’ v3’ GI]’ 022’ 033’ 023’ 013’ GIZ]'
Let’s put the derivatives for each of the coordinates together. We obtain a matrix equation of the following form:

0 0 0 0
—q-A,—q-A,—q-A,—q=0.
o
We will perform splitting by spatial coordinates [12], that is, we will divide one system into three different ones, one
for each axis. Since initially the system of equations is hyperbolic, it is possible to perform diagonalization of matrices 4

A, =Q,AQ,

where A, is a diagonal matrix consisting of eigenvalues A, and €}, consists of columns equal to eigenvectors A..
Next, you can replace the variable ®=C, g, after which the systems along the axes will take the form:

gcoi +A,0, =0.
Ot

Since the matrices A, are diagonal, we are actually dealing with a set of separate transfer equations for each of the
components o, These individual transfer equations can be solved using the method of characteristics [4], but in this paper
finite-difference schemes are used to solve them.

Thus, the time step of modeling occurs as follows: first, a transition to new variables and transfer equations is
performed, then a time step is performed in these variables, after which a reverse replacement is performed and new
values of the original variables in the grid nodes are calculated.

3. The method of overset grids. The method of overset grids, first described in [13], allows us to combine the
advantages of using curved grids, which make it possible to describe well the boundaries of complex shapes with low
resource consumption of structural grids. When using this method, the main grid is first constructed — a large structural
grid covering the entire modeling area. After that, the areas near the borders that need to be described are covered with
separate curved grids of smaller size. If the areas covered by overset grids make up an insignificant part of the entire
modeling area, then the share of computing resources spent on calculation in overset grids is insignificant, that is, the
addition of overset grids in this case does not lead to a noticeable increase in the resource intensity of the calculation.
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When using overset grids, the time step of modelling is performed in two stages. First, a time step is performed
independently on each of the grids. After that, the values are transferred between the grids. In areas that are covered by
overset grids, the values in the nodes of the main grid are overwritten by the values from the corresponding overset grids.
For each of the overset grids, several nodes closest to the boundary of the layers along all axes are called ghost nodes
(phantom nodes). The values in these nodes are not used to calculate new values in the nodes of the main grid, but on the
contrary, the values in them are overwritten by the values from the main grid [6]. The number of phantom node layers
used is determined based on the difference scheme used, in our case it is equal to two, since a five-point difference scheme
is used.

Since the nodes of the main and overset grids do not match, and for each grid at each time, the function values are
known only in the nodes, interpolation is used to calculate new values during rewriting. Since there are no changes in the
geometry of the computational domain in the problems considered in this paper, the grid nodes remain stationary during
the calculation. This allows you to transfer part of the calculations required for interpolation to the preprocessing stage
to save computing resources during the calculation. During this preprocessing, for all nodes of the main grid, the values
in which will be overwritten, there are nodes of the overset grid, the values in which will participate in the calculation of
new values in the node of the main grid and the summation weight, and, conversely, for the phantom nodes of the overset
grids, the source nodes of the values from the main grid and their weights are searched. Thus, only weighted summation
with known coefficients is performed during the calculation.

Commonly used methods of multidimensional interpolation include the nearest neighbor method, the inverse distance
method [14], the natural neighborhood method (also known as the Sibson method [15]) and local basis decomposition
methods. In the calculation in this paper, the method of local decomposition by radial type functions (Radial Basis
Function, RBF) was used.

Computational experiment. The propagation of wave disturbances from a point source was simulated. The size
of the simulated area was 1080x1320 meters, the upper boundary of the area coincided with the water surface, and the
lower one was at a depth of 720 meters. The source of the disturbances was located near the water surface. Receivers
were also located near the surface. The depth map was taken from the dataset [16]. The density of the shelf medium
was assumed to be equal to 2400 kg /m?, the velocities of longitudinal and transverse waves in it were 2850 m/s and 1650 m/s,
respectively. The speed of waves in the water was assumed to be equal to 1500 m/ s, and the density of water was
1050 kg /m*. The Riker pulse was used as the source signal. The time step of the simulation was 1 ms.

Two main approaches to modelling this area were considered. In the first approach, only one rectangular grid of
180%220x120 nodes with a step of 6 meters along all axes was used. Depending on whether the nodes are above or
below the bottom surface, they were assigned the physical properties of the water or the bottom material. When using
this approach, the interface of the media actually had a ladder structure. In the second approach, an additional curved grid
of 192x234x11 nodes with a step of about 6 meters was used to describe the interface of the media, the shape of which
repeated the interface. Figure 1 shows an illustration of the description of the interface in these ways is shown in Figure 1.

Fig. 1. Modelling of the interface:
a) without using overset grid; b) using overset grid

In this case, there are two ways to use overset grids. You can use two overset grids, each of which will be on one side
of the border and set a contact condition between them, or you can limit yourself to one grid in which there will be nodes
with different properties. In this experiment, the second approach was used, since nodes with different properties are still
present in the main grid, but if the areas on different sides of the border were described by two different main grids, then
using the first approach would be preferable.
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Results. Using the receiver readings obtained during the simulation, synthetic seismograms of the vertical component
of the displacement velocity were constructed (Fig. 2).

a)

b)

Fig. 2. Synthetic seismograms of the vertical component of the displacement velocity:

a) without using overset grid; b) using overset grid

No overset
Single overset

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Fig. 3. Comparison of seismogram readings on one receiver

It can be seen that these seismograms are qualitatively the same, but on the seismogram, which was built using
a overset grid to describe the interface of the media, the waves are visible better, and the number of artifacts and noise is
less. Figure 3 shows a comparison of the readings of one of the receivers.

This comparison also confirms the conclusion made: the use of the overset grid makes it possible to reduce the
modelling error, the number of parasitic waves and artifacts and get a more visual picture.

At the same time, the increase in the calculation time when adding the overset grid was insignificant and did not
exceed 10 % of the calculation time using a single grid.
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Discussion and Conclusions. In this study, it is shown that overset grids, previously used to isolate a free boundary
when modelling near the earth’s surface on land, can also be used to describe the interface of media when modelling
seismic exploration of the ocean shelf. Their use makes it possible to increase the accuracy of modelling and reduce
the number of artifacts compared to using only one grid. At the same time, the use of overset grids does not lead to
a significant increase in the resource intensity of the computing complex. In addition, the overset grids do not require
modification of the main computational grid or significant changes to the modelling process. From this we can conclude
that the use of overset grids in such tasks is often justified, since it allows you to increase accuracy with little cost.

The proposed method can also be used to describe the boundaries of geological layers in a solid medium, since there
is no fundamental difference between these tasks. However, additional modifications of the method may be required there
to take into account cases when several interface boundaries meet at one point. The study of this issue has not yet been
conducted, but it can serve as a topic for subsequent works.
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Abstract

Introduction. Seismic exploration in conditions of heterogeneity of the environment is an urgent topic for the oil and
gas industry. Consequently, the development of numerical methods for solving the direct problem of seismic exploration
remains relevant as a necessary link in the development and improvement of methods for solving the inverse problem.
The Schonberg thin crack model has performed well in the numerical solution of problems requiring explicit consideration
of geological inhomogeneities.

Materials and Methods. In this paper, we consider a modification of the grid-characteristic method using superimposed
grids. The presented approach makes it possible to conduct computational experiments, explicitly taking into account
fractured inhomogeneities with arbitrary spatial orientation. For this, in addition to the basic regular computational grid,
there is the concept of superimposed grids. Inhomogeneities, such as cracks, are described within the framework of the
superimposed grid and, in turn, have no restrictions associated with the main grid. Thus, by performing an interpolation
operation between the superimposed main grids, we can bypass the requirement of alignment of cracks and edges of the
main grid.

Results. The proposed approach made it possible to study the dependence of the anisotropy of the seismic response of
a fractured cluster on the dispersion of the angles of inclination of the cracks.

Discussion and Conclusions. A modification of the grid-characteristic method using superimposed grids is proposed to
explicitly account for fractured inhomogeneities in a heterogeneous geological environment.
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AHHOTAIUSA

Beeoenue. CeiicmopasBeqxa B YCIIOBHSI T€TEPOr€HHOCTH CpENbl SBISETCS aKTyalbHOW TeMoW sl HedTera3oBon
MIpOMBINUICHHOCTH. CIIeJ0BaTeIbHO, OCTAETCSl aKTyalIbHBIM Pa3BUTHE YMCIICHHBIX METOIOB PEIICHHs MPSIMON 3a1a4n
celicMOpa3BeIK Kak HEOOXOJMMOIO 3BeHa INpH pa3pabOTKe M YCOBEPIIEHCTBOBAaHMH METOJIOB PELICHUs] 0OpaTHOMH
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3agaun. Mozens ToHKo# TpemuHsl [lonbGepra xopomo ceOs mokasana IIpy YUCICHHOM pEIISHHH 3aad, TPEeOyoIux
SIBHOTO y4€Ta Ire0JIOTMYECKUX HEOTHOPOTHOCTEH.

Mamepuanst u memodsl. B naHHO! paboTe aBTOPHI PacCMaTPUBAIOT MOJM(UKAIMIO CETOYHO-XapaKTEPHUCTHUECKOTO
METOAa MNPHUMCHCHUEM HAJIOXKCHHBIX CCTOK. HpeﬂCTaBHeHHbIﬁ MOoAXO0J TMO3BOJACT MNPOBOAWUTH BBIYUCIHUTCIIBHBIC
9KCIIEPUMEHTHI, IBHO YUUTHIBAs TPELIMHOBATHIE HEOJHOPOIHOCTH C IPOU3BOIBHON ITPOCTPAHCTBEHHOM opueHTanueil. s
3TOTO IIOMHMO OCHOBHOM PETYIISIPHOM BEIYNCIUTEIBHON CETKH BOANTCS ITOHATHE HAJIOXXEHHBIX ceToK. HeomHopoaHocTH,
TaKKe KaK TPEIIMHBI, OIIMCHIBAIOTCS B PaMKaX HaJ0)KEHHOM CETKH 1, B CBOIO OUYEPEIb HE IMEIOT OTPaHUUCHHNH, CBS3aHHBIX
C OCHOBHOM ceTkoil. TakuM 00pa3zoM, IPOU3BOJIS ONEPAIMI0 WHTEPIOIMPOBAHHS MEXIY HAJOKEHHBIMH OCHOBHBIMHU
CETKaMHM, MBI MO>KeM OOONTH TpeOOBaHME COOCHOCTH TPEUINH U pedep OCHOBHOMN CETKH.

Pezynomamut uccnedosanus. IlpennaraeMslii MOAX0 O3BOJIII TPOU3BECTH HCCIICAOBAHNE 3aBHCUMOCTH aHH30TPOITHH
CeCMMYECKOr0 OTKIIMKA TPELIMHOBATOTO KJlacTepa OT JAUCIIEPCHH YTIIOB HAKJIOHA TPEIINH.

Oécyscoenue u 3aknrouenus. IlpenioxkeHa MOAUQPHUKALUS CETOYHO-XapAKTEPUCTHUECKOTO METO/a C MPUMEHEHHEM
HaJIOXKEHHBIX CETOK JIJIsl SBHOTO Y4eTa TPEIIMHOBATHIX HEOAHOPOIHOCTEH B TeTEPOTeHHOM I'€0JI0INIeCKON cpee.

dunancupoBanue. lccrnenoBanue BHIOIHEHO 3a cyeT rpanTa Poccuiickoro HayuHoro ¢gonzma Ne 21-11-00139. https://
rscf.ru/project/21-11-00139/

KuarwuyeBble €j10Ba: CETOYHO-XapaKTEPUCTUUECKUI METO/I, HaJIO)KEHHbIE CETKH, XUMEpPHbIE CETKH, CEMCMHUKa, CeHCMO-
pasBenka, reTeporeHHasi reoJiornueckas cpena

Jast uurupoBanus. Mutekoenr M.A., Xoxnos H.U. CeTouHo-xapakTepUCTUUECKU METOJT C MCIOJIb30BAaHHEM HaJo-
JKCHHBIX CETOK B 3aJlauye CelcMOpa3BEAKH TPEUIMHOBATHIX Teonorudeckux cpen. Computational Mathematics and
Information Technologies. 2023;7(3):28—38. https://doi.org/10.23947/2587-8999-2023-7-3-28-38

Introduction. Methods of search and exploration of oil and gas fields include an effective solution to the inverse
problem of seismic exploration in a heterogeneous geological environment. This becomes inherently important, given that
the known oil and gas deposits are gradually being exhausted, and in order to maintain the production level, it is necessary
to search for new deposits or extract minerals from already developed deposits using modern methods. Often, potential
sites are located in regions rich in fractured heterogeneities. Additionally, modern technologies for increasing production
at the fields provide for the use of such a tool as hydraulic fracturing. Modern approaches to hydraulic fracturing based
on multi-stage procedures open up opportunities for the resumption of production even in those fields that have been
recognized as exhausted for many years. The geophysical information collected as a result of seismic exploration makes
it possible to simulate the process of hydraulic fracturing, which is a critical element for adapting the technology to a
specific field. Taking into account the location of existing cracks, as well as taking into account the fracture parameters
(which can be determined using seismic exploration), it is possible to control the shape of the resulting rupture. Such
control over the shape of the created crack is relevant because of the risk of traffic jams in the formed channels, which
can lead to their blocking and, as a result, to a decrease in the efficiency of field operation. For the success of this kind of
manipulation, the presence of an accurate picture of the structure of cracks and faults hidden under the earth>s surface is
of paramount importance.

The data in the process of seismic exploration, obtained on a variety of seismic sensors located at an insignificant
depth in the earth>s surface, are interpreted by modern methods of computational mathematics to recreate a model of the
geological environment in the studied area. However, it is difficult to verify the results obtained in this way due to the
lack of an opportunity to obtain a detailed and qualitative model of the geological environment by alternative methods.
Thus, in order to develop the capabilities and accuracy of modern methods for solving the inverse problem of seismic
exploration, it is critically important to develop the capabilities and accuracy of methods for solving the direct problem
of seismic exploration.

Several techniques are known that take into account the presence of fractured structures when modeling the propagation
of elastic perturbation waves in genuine geological formations. One of the most common is a mathematical approach
based on the linear sliding model proposed by Schonberg (LSM), which was described in an article published in 1980 [1],
and received further experimental confirmation in other sources [2—3]. Nevertheless, when modeling areas with faults, the
use of anisotropic models [4] turns out to be most effective at large wavelengths, although it does not take into account
most of the characteristics. An alternative method for modeling a zone with faults is the explicit approach [5], which has
its advantages. Other techniques were also studied, including the addition of additional nodes, as shown in [6-7], as well
as the use of additional computational grids to describe the wave propagation process inside the fault [8].

The authors present a new version of the grid-characteristic method [9], which uses the technique of overset grids.
The first concepts of this approach were outlined in the source [10]. One of the initial works devoted to the application
of overset (or adaptive) computational grids was the work of authors named Berger and Joseph [11], as well as Steger
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and Benek [12-13]. The idea of using overset grids has been successfully developed and is currently being used to solve
various problems, as shown in studies [14—18]. The innovativeness of the methodology proposed by the authors lies in
the use of overset grids in solving the problems of seismic exploration of fractured areas and in organizing these grids
around cracks in such a way that the Jacobian of the transformation tends to unity. In this study, the authors focus on 2D
geological models.

Materials and Methods

1. The equation of elasticity. One of the key equations in the linear theory of elasticity is considered to be the
Hooke equation, which provides a connection between the stress tensor and the strain tensor [19-20]. The equations
of conservation of mass and momentum are also used to describe the process of wave propagation in a medium.
A more complex representation of elastic media is possible using extended equations that take into account nonlinear and
inhomogeneous characteristics of the medium. These equations may contain nonlinear relationships between stress and
strain, and a variety of physical processes, such as anisotropy or energy dissipation, can also be taken into account. Within
the framework of the study, a model of a linear elastic and isotropic medium was chosen to solve the generalized problem
of modelling the propagation of a seismic wave in the ground. This model has been studied in a number of previous
papers [21-24].

Newton’s second law is fulfilled at each point of a linear elastic medium:

pv, =(V-T), O

where T is Cauchy stress tensor, p is the density of the medium, v is the velocity of movement of the medium.
Hooke’s law in tensor form has the form:

T =htr (e)1+2pe, 2
s:%(v®u+(u®V)T), 3)

where u is the displacement tensor, I is the unit tensor, A and p are Lame parameters, the elastic deformation characteristics,
g is the strain tensor, ® is the tensor product operator (V ® v)i,j =V,v,.

Taking into account the effect of an external force f, from equations (1)—(3) it is possible to obtain a system of
equations for a linear elastic isotropic medium in the following form:

T=AV-)i+u[Ves+(vVes)), (4)
po, =(V-T) + 1. )

The system of equations (4) and (5) can be represented as a system of differential equations, here and further in the
work we assume the absence of an external force:

0. _ ov,
=T _x(zk: ajlﬁu(viuj +V 0,), (6)
o T,
o, i, )
Par’’ o,

The system of differential equations of the theory of linear elasticity (6) and (7) can be represented in matrix form,
which is convenient to use when studying the characteristic methods of computational mathematics. We introduce the

notation u = (u,,...u)"= (v,v,,T,,,T,,,T,,)", then the system of equations in the Cartesian coordinate system takes the form:

6—”+Ala—u+A28—“:0, (8)
ot ox, ox,
[ 0 p'0 0 0|
0 0 0 0 p'
A =—{A+20 0 0 0 0 0 |, )
A 0 0 0 0 0
0 pu 0 0 0 0
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0o o o0 0o o0 p']
0 0 0 0 p' o0
A,=-{0 A 0 0 0 0 (10)
0 A+200 0 0 0
B0 0 0 0 0

To describe the elastic properties of the medium, it is convenient to use sound wave velocities: longitudinal C, and
transverse C.. The longitudinal velocity reflects the velocity of the wave in the direction of force, the transverse velocity in
the perpendicular direction. They are calculated through the Lame parameters and the density of the medium as follows:

c, = At+2p (11)
\ »

c. = L. (12)
p
In this paper, the model of a two-shore thin Schonberg crack is used to simulate the propagation of elastic waves in
the presence of cracks. In the case when the crack is oriented along the OY axis, the boundary conditions have the form:
T =T!
To _ Tl

orT’.

=K (11 +uf),

where the indices 0 and 1 are used to mark the ratio of the magnitude to the left and right sides of the crack, respectively,
K, and K, are the crack parameters, which in our case of a thin liquid-filled crack are equal:

K =,

T

K,=0.

2. Grid-characteristic method. To obtain a numerical solution of a system of equations describing a linear elastic
medium, a grid-characteristic method is used. This method was first presented in [25-27]. In the context of this study,
which is limited to the numerical solution of a system of hyperbolic equations, it can be argued that for the matrix A, there
are always N eigenvalues and N linearly independent eigenvectors. This in turn confirms the possibility of the existence
of an inverse matrix for Qj. Then, taking into account the splitting by components, equation (8) takes the form:

au—Q'AQ o 12, (13)
ot " ox

X
where Q, consists of columns that are the eigenvectors of the matrix A, and A, is a diagonal matrix consisting of the
elgenvalues of the matrix A, At the same time, A, for any j has the same form

A = dia g f(h+20)/ p, —J(0 +20)/p s A wp—Wp,—[1/p , 0,00. (14)

Taking into account expressions (11) and (12), equation (14) can be reduced to the form:

A=diag{C,~C,C,~C,C,~C,0,0,0}.

Let’s make a characteristic replacement of the variables v = Qu (u = Q' v) in equation (13), b multiply on the left by
the matrix Q':
@ LA ov

ot 6x

=0.

Thus, the calculation of the value for each element of the vector u at the subsequent time step, denoted as n+1, is
carried out provided that the value of v is known: u""'= Q! y*!,
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3. Overset grids. Direct interpolation is carried out from the main grid to the external nodes of the overset grid at the
start of each stage of the computational process, which is limited to a certain time step, after performing calculations in
the nodes of the main computational grid. This action is necessary to take into account the changes in the intensity and
vector displacement of the medium caused by the wave propagation process within the main grid. After that, new values
are calculated in the nodes of the overset grid. At the end of each time step, reverse interpolation occurs from the nodes
of the overset grid to the main one. This process ensures synchronization of changes that took place during this stage of
calculations. This approach is due to the need to take into account the influence of various inhomogeneities represented
in the overset grids when performing calculations at the next time stage [28].

The authors used the bilinear interpolation function to find the values of the desired functions at a point by the values
of the function at four known points:

F_=b+bx+by+b, xy

xy

Application of overset grids

1. Implementation. A continuous medium can be represented using a single basic rectangular grid when applying
a overset grid to determine the position of an inclined crack . At the same time, cracks can be defined using overset grids,
which are arranged according to the orientation of each individual crack. The method of calculating a straight crack on
a regular rectangular grid and its application within the framework of the grid-characteristic method were described in
detail in the scientific work [9]. It is important to note that the application of the overset grid is not mandatory to account
for cracks that are coaxial with the edges of the main computational grid.

Figure 1 shows the location of the grids and cracks used, and the nodes of the overset grid involved in the interpolation
between the grids are also indicated. In the figure, the borders of the main rectangular regular grid representing the
environment are represented in black. The edges of the overset grid are highlighted in blue. Additional «ghost» nodes of
the overset grid are marked in green, where interpolation from the main grid is performed. The orange color highlights the
part of the nodes of the overset grid from where the interpolation occurs. The red line indicates the location of the crack.

Fig. 1. Using the overset grid to account for the crack

2. Verification. To assess the accuracy of the proposed modification, we will compare the readings obtained on virtual
receivers during the simulation of the interaction of an elastic wave with a crack. In one case, the crack coincides with the
horizontal axis of the main grid, and in the other, it is rotated relative to this axis using the overset grid. To make such a
turn, it is necessary to correctly process the data received from virtual receivers, as well as correctly rotate the crack and
the receivers and the elastic wave source.

Figure 2 (a, b) shows the wave patterns at one of the time points for the compared productions, as well as the location
of the receivers and the overset grid.

The initial conditions assumed the presence of elastic perturbations of the plane front, given by a Gaussian function
with a width of 10 meters. The front of the initiated plane wave was rotated relative to the simulated crack by an angle of
30 degrees. The length of the thin crack was 52 meters. In the calculation using the overset grid, the wave-crack-receivers
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system was rotated by an angle of 30 degrees. The receivers were placed on a line perpendicular to the simulated crack
and passing through its center, at a distance of 30 meters from it. The longitudinal velocity of the elastic wave in the
medium was C = 3000 m/c, the transverse velocity was C = 1500 m/c, the time step was dr = 0.0002 seconds, the spatial

step of the grids was h=2.0.

Figures 3 and 4, for receivers above the crack and behind it, respectively, show a comparison of the values of the

components of the displacement velocity of the medium obtained as a result of the experiments described above.

Fig. 2. Wave patterns at one of the time points: a) without using the superimposed grid (the position of the receivers is
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Fig. 3. Comparison of signals on receivers above the crack
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Fig. 4. Comparison of signals on receivers under the crack

Research results. The analysis of the anisotropy of the seismic response of a fractured cluster in an elastic geological
medium, interconnected with the dispersion of the slope of cracks, was carried out. A similar analysis related to the
anisotropy of the seismic response of a fractured cluster, depending on the variable distance between the cracks and
the frequency of the source, was carried out in [29]. The problem of numerical simulation of the seismic response from
fractured clusters of subvertical cracks using the grid-characteristic method has been considered in a number of scientific
articles [30-33].

Within the framework of this study, a fixed distance of 30 meters was used between vertically and horizontally adjacent
cracks. A total of 128 cracks were placed, which were organized into 8 layers and 16 columns. Each crack was inclined
at an arbitrary angle relative to the vertical and had a length of 10 meters. In each individual experiment, the angles of
rotation of the cracks corresponded to a normal distribution with an average value of 45 degrees and a variance varying
from 0 to 20 degrees. The scheme of the problem and the location of the crack cluster in the simulated half-space are
shown in Figure 5.

In a number of computational experiments, a 50-meter-long plane wave source was used, which fell vertically and
was set by the Riker function. The time integration step was 3 - 10 seconds, the total number of steps was 3000. To
register the seismic response in the experiments, 300 receivers were used, evenly distributed at a depth of 6 meters from
the surface of the simulated area. In order to isolate the seismic response from the wave passing through the receivers,
during the processing of the results, the readings of the receivers during the experiment, less than 0.0801 seconds, were
ignored. The longitudinal velocity of the elastic wave in the medium was C = 3000 m/s, the transverse velocity was
C = 1500 m/s, the spatial step of the grids was /& = 2.0.

s
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Fig. 5. The scheme of the computational experiment. Yellow and green triangles indicate
the “left* and “right” groups of receivers

To assess the anisotropy of the seismic response, the receivers used were divided into two equal groups: a group of
receivers with index L was located to the left of the middle (along the axis O) of the main overset grid, and a group of
receivers with index R was located to the right. Let the displacement velocity of the medium in the projection on the O,
axis, registered at the end of the i-th computational step, on the j-th virtual receiver in the group L be denoted V%, (for
the projection on the Oy axis respectively Vin, .)- Then the anisotropy of the seismic response A in a given experiment can
be calculated using the following formulas:

i=1 J=267
_E,-E,
CE, +E,
Ox
0.20
0.15
0.10
0.05
0.00
-0.05 Oy
0 5 10 15 20

Fig. 6. Dependence of anisotropy on the dispersion of the slope of cracks in the cluster
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Discussion and conclusions. A modification of the grid-characteristic method using overset grids is proposed to
explicitly account for fractured inhomogeneities in a heterogeneous geological environment.

A verification study was carried out, which showed the high accuracy of the proposed approach and does not introduce
a significant error compared to using the classical implementation of the thin Schonberg crack in the grid-characteristic
method and at the same time expands a number of applied problems available for numerical modeling by this method.

The dependence of the anisotropy of the seismic response on the fractured cluster depending on the dispersion of
the angle of inclination of the cracks in the latter is investigated. The obtained dependence shows a significant spread of
results, which demonstrates the complexity of the inverse problem of seismic exploration of heterogeneous geological
structures.

In conclusion, it can be concluded that the use of overset grids makes it possible to explicitly take into account
geological inhomogeneities, such as cracks, when numerically solving the problem of modeling the propagation of elastic
waves in a geological medium. The presented approach to the description of inhomogeneities has a high potential in
computational mathematics and arouses interest in its further study.
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Abstract

Introduction. Prediction of suspension deposition zones is required to assess and minimize the negative impact on the
ecosystem of the reservoir during dredging within the framework of large-scale engineering projects, prediction of
suspension deposition zones is required to assess and minimize the negative impact on the ecosystem of the reservoir.
It is necessary to build a mathematical model that takes into account many factors that have a significant impact on
the accuracy of forecasts. The aim of the work is to construct a mathematical model of transport of multicomponent
suspension, taking into account the composition of the soil (different diameter of the suspension particles), the flow
velocity of the water flow, the complex geometry of the coastline and bottom, wind stresses and friction on the bottom,
turbulent exchange, etc.

Materials and Methods. A mathematical model for the transport of a multicomponent suspension and an approximation
of the proposed continuous model with the second order of accuracy with respect to the steps of the spatial grid are
described, considering the boundary conditions of the Neumann and Robin type. The approximation of the hydrodynamics
model is obtained based on splitting schemes by physical processes, which guarantee fulfillment mass conservation for
discrete model.

Results. The proposed mathematical model formed the basis of the developed software package that allows to simulate
the process of sedimentation of a multicomponent suspension. The results of the work of the software package on the
model problem of sedimentation of a three-component suspension in the process of soil dumping during dredging are
presented.

Discussions and Conclusions. The mathematical model of transport of three-component suspension is described and
software implemented. The developed software allows to simulate the process of deposition of suspended particles
of various diameters on the bottom, and to evaluate its effect on the bottom topography and changes in the bottom
composition. The developed software package also allows to analyze the process of sediment movement in the case of
resuspension of multicomponent bottom sediments of the reservoir, which causes secondary pollution of the reservoir.

Keywords: suspension transport, multicomponent suspension, three-dimensional hydrodynamics model, splitting
schemes, numerical methods
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AHHOTaIHSA

Beeoenue. Tlpu npoBeieHNN AHOYITYOUTENBHBIX pabOT B paMKax pealn3alid MaclITaOHBIX MH)KEHEPHBIX MPOEKTOB
Tpe6yeTc>1 MPOTHO3UPOBAHUE 30H OCAKACHU B3BECHU JIs1 OICHKNU U MUHUMU3AINU HETaTUBHOI'O BJIMAHUA Ha SKOCUCTEMY
Bozoema. Jls peneHust mofoOHBIX 3a/1ad HEOOXOAUMO MOCTPOSHHE MaTeMaTHYeCKOW MOJIENH, YYUTHIBAIONIEH MHOXKe-
CTBO (baKTOpOB, OKa3bIBAIOIHNX CYHIECTBEHHOC BJINAHNE HA TOYHOCTH ITPOTHO30B. ]_IGJ'IB}O pa60TBI ABJIACTCA IMOCTPOCHUC
MaTeMaTHIeCKOW MOJETH TPAHCIIOPTa MHOTOKOMIIOHEHTHOW B3BECH, YUHMTHIBAIOIIEH COCTaB TPyHTa (Pa3jIMUYHBIA IHa-
METp YacTHUI] B3BECH), CKOPOCTh TEUCHUS BOIHOTO IOTOKA, CIOKHYIO T€OMETPHIO OEperoBod JIMHUHM W THA, BETPOBBIC
HaTIpsDKEHUS U TPEHUE O THO, TYpOYJACHTHBI OOMEH U 1Ip.

Mamepuanst u memoodst. OnricaHa MaTeMaTHIeCcKass MOJIENb TPAHCIIOPTa MHOTOKOMITOHEHTHOH B3BECH H aIllIPOKCHMa-
WS TIPEIJIOKEHHON HEMPEepPHIBHOW MOAEIH CO BTOPHIM MOPSIKOM TOYHOCTH OTHOCHTENBHO IIaroB MPOCTPAHCTBEHHON
CETKH C yYETOM I'PAHUYHBIX YCIOBHH BTOPOTO M TPETHETO POAa. ATIPOKCHMAIIHSI MOJICTH THAPOAUMHAMIKH TIPEICTaBICHA
Ha OCHOBE CX€M pacLIeIUICHHs N0 (M3MYECKUM IpoLeccaM, KOTOpash 00ecleyBaeT BHINOJIHEHHE 3aKOHA COXPaHEHHMs
Macchl B pa3HOCTHOU CXeMe.

Pe3ynemamut uccneoosanus. Ilpennaraemas MareMaTnieckasi MOJENb JierIa B OCHOBY pa3pab0OTaHHOTO MPOrpaMMHOTO
KOMILIEKCA, TI03BOJISIOLIETO MOJIETUPOBATh MPOIIECC OCAXICHUS MHOTOKOMIIOHEHTHOM B3BecH. IIpuBeieHb! pe3ynbTraTsl
paboThI MPOrpaMMHOTO KOMIUIEKCa Ha MOJICIBHOM 3ajade OCaXKACHUS TPEXKOMIIOHEHTHOM B3BECH B MPOLIECCE TaMITMHTa
IpYHTa NPH [TPOBEICHUH AHOYTTYOUTENBHBIX Pa0oOT.

Obcysicoenusn u 3akntouenua. Onrcana IporpaMMHasi MaTeMaTHIECKasi MOZEIb TPAHCIIOPTa TPEXKOMIIOHEHTHOH B3BECH.
Pa3pabotaHHbIif TPOTrpaMMHBIN KOMILIEKC ITO3BOJISIET MOJAECINPOBATE POIIECC OCAKACHUS B3BEIICHHBIX YAaCTHII PAa3JIN4-
HOTO AWaMeTpa Ha JHO W OIIEHUBATH €T0 BIMSHUE Ha peibed W M3MEHEHHNe cocTaBa AHA. Pa3paboTaHHBIA POTpaMMHBIN
KOMIUIEKC TakKe MO3BOJISIET aHAIM3UPOBATh MPOIIECC IBIKEHIUS HAHOCOB B CIy4Yae B3MYYHWBaHHUS MHOTOKOMIIOHEHTHBIX
JIOHHBIX OTJIIOKEHHIA BOJJOEMA, BEI3BIBAIOIINY BTOPUIHOE 3arps3HEHUE BOIOCMA.

KiroueBrnle ciioBa: TPAHCTIOPT B3BECHU, MHOT'OKOMIIOHCHTHAA B3BCCh, TPCXMCpPHAA MOACIb TMAPOAUHAMUKU, CXCMBbI pac-
MICTVICHUSA, YU CJIICHHBIC METO/AbI

dunancupoBaHue. VccrienoBanue BHITOIHEHO 3a cueT rpanTta Poccuiickoro HayuHoro ¢gonmga Ne 22-11-00295. https://
rscf.ru/project/22-11-00295/

Jas nutnpoBannsa. CyxunoB A.U., Kysnerosa M.JO. Marematudeckas MoOJeNb TPaHCIOPTa TPEXKOMIIOHEHTHOM
B3Becu. Computational Mathematics and Information Technologies. 2023;7(3):39-48. https://doi.org/10.23947/2587-
8999-2023-7-3-39-48

Introduction. The implementation of large-scale engineering projects, such as the construction of bridges, the
expansion of the water area accessible to navigation, requires work that has a significant impact on both the bottom relief
and the ecosystem of the reservoir as a whole. For example, during dredging, a significant amount of suspension enters
the water, which in the process of settling to the bottom or secondary agitation can negatively affect the productive and
destructive processes of the aquatic ecosystem [1-2]. To assess the possible damage caused to the ecosystem during the
dumping of soil during dredging, it is necessary to pre-assess the areas of the water area in which the suspension will settle
and in which its agitation is possible, which leads to secondary pollution of the water body. To predict the deposition zones
of suspended particles, a mathematical model of suspension transport is proposed based on a system of initial boundary
value problems, including the calculation of hydrodynamic characteristics of the water area and suspension transport.

We describe an approach to the approximation of a continuous model with a second order of accuracy with respect to
the steps of the spatial grid , taking into account the boundary conditions of the second and third kind for the proposed
three — dimensional model of multicomponent suspension transport . The proposed mathematical model of the transport
of suspended particles is supplemented by a three-dimensional model of hydrodynamics, which allows calculating the
fields of the velocity vector of the water flow [3—4]. The proposed mathematical model formed the basis of the developed
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software package that allows modeling the deposition process of multicomponent suspension. The results of the work of
the software package on the model problem of deposition of a three-component suspension in the process of dumping soil
during dredging are presented.
Materials and methods
1. Problem statement. To construct a mathematical model of multicomponent suspension transport, we use the
diffusion-convection equation, which can be written in the following form [3]:
(c, )t' + (ucr)x' + (vcr)y' +(w+w,,) cr)z' = (u(cr )x'j +(u(c,)y' )y + [v(cr)z’) +F, (1

where c, is the concentration of the 7-th fraction of the suspension, mg/l; V={u,v,w} are the components of the velocity
vector of the water flow, m/s; w_is the deposition rate of the r-th fraction of the suspension, m/s; p, v are the horizontal and
vertical components of the turbulent exchange coefficient, respectively, m*/s; ', is the function describing the intensity of
the distribution of sources of the rth fraction of the suspension, mg/ (I-s).

Equation (1) is considered under the following initial ¢ (x, y, z, 0) = ¢, (x, ¥, z) and boundary conditions:

— on the free surface:(¢”), =0;

— near the bottom surface: v(c,) = -w, c,;

— on the side surface: (c,)," =0, if (V, n) >0, and p(c,), =(V,n)c,,if (V, n) < 0, where (V, n) is the normal
component of the velocity vector, n is the normal vector directed inside the computational domain.

The diffusion-convection equation (1) is supplemented with a three-dimensional model of the hydrodynamics of
shallow water bodies [5] to calculate the velocity vector of the water flow:

— equations of motion (Navier-Stokes):

w/ ] Fvul +wu! = -P!/p +(uu;); + (uuy')'y + (Vuz'); ,
v/ Fuv] A v+ wvl ==P/[p+(w)); + (W), + ()., )
W/t uw] +vw) +ww! ==P/[p+(pw]) + (), + (vw!) +g,
— the continuity equation in the case of variable density:

p/+(pu). +(pv), +(pw). =0. 3)

where P is the pressure, Pa; p is the density, kg/m?; g is the acceleration of gravity, m/s%

The system of equations (2)—(3) is considered under the following boundary conditions:

—the entranceu = u,, v=v,, P,'=0,V,/'=0;

— lateral border (shore and bottom) puu, = -7, puv, = -1,V = 0,P/=0;

—upper bound puu, =-t,, puy, = ~Ty, W= —m—P,'/(pg), P’ =0,
where o is the intensity of liquid evaporation, 1, T are the components of the tangential stress.

2. Approximation of the suspended particleé transport problem. Let us consider an approximation of the three-
dimensional problem of transport of a one-component suspension based on the expression (1) (for each individual fraction,
the equation is written similarly):

¢/ +(ue)'+ (ve), +(we). = (uj ; (uc) . [vc;) 3 )

z

where the velocity component w implicitly takes into account the depositiqn rate of the suspension fraction in question w .
We introduce a uniform grid in time ®, = {St" =nt;n=0,N; N1= Ti,where T is the time step, , is the number of
time layers, 7 is the duration of the modeling interval.
Suppose that the calculated area is inscribed in a parallelepiped G = {O<x <L 0<y<L,0<z<L, } we obtain the
closure of the area G by joining the faces of the parallelepiped, that is, we define as G = {O Sx<L,0<y<L,0<z<L, }

Thus, we come to the chain of initial boundary value problems:
(¢") +div(V-c")=div(k - grad ¢"), ®)

where k= {p, u, v} is the coefficient of turbulent exchange, (x,y,z, 1) e Gx[0<t<T], ¢t <t<t, cn(x,y,zt )=c"'
2zt ), (G, 2, ), (x,9,2) € G.

In this case, the initial and boundary conditions will be written as:

—initial condition ¢ (x, y, z, 0) = ¢, (x, y, 2), (x,¥,2) € G;
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— boundary condition on a free surface: (c,). =0;, (x,y,2)€ 25

— boundary condition at the bottom: v(c"). = -w,c", (x,3,2) € £,;

— boundary condition on the lateral surface: (c”), =0, if (V,n)>0and p(c,), = (V,n)c,,,if (V,n) <0,
where £ = {0<x<L,0<y< L,z =_0} is the upper face of the parallelepiped G, 2,=10<x<L,0<y< L,z= Ly} is
the lower face of the parallelepiped G .

Let’s write down a term describing the convective transfer of suspended substances in a symmetrical form. Such an

approach to the discretization of the problem will allow us to construct a difference operator with the property of skew
symmetry [6]:

div(V-c") =% ua—cn+va—cn+wai"+i(uc”)+i(vc" )+6£(ch) (6)

®, ={x:x,=ih; i=0,N; hN, =L},
y = {yj 2y =jhy; j:()’_Ny; hyNy =Ly}’
®. =z 1z, =kh; k=0N; h.N. =L,

where £, hy, h_are the steps in the spatial coordinate directions O, Oy and O_, respectively, N, Ny ,N_, are the numbers
of nodes of the computational grid in each of the spatial directions, L , Ly, L _are the lengths of the computational intervals
in each of the spatial directions..

The set of internal nodes of the computational grid is denoted as @, o, 0.

The approximation of problem (5) on a space-time grid ®, x® is performed by specifying the velocities (convective
transfer coefficients) at the nodes of the grids shifted by half a step along the coordinate directions O_and O .

For the convective transport operator given in symmetric form (6) in equation (5), we have:

Cc" E%(u"(x+O.th,y,z)-E"(x+hx,y,z)—u"(x—O.th,y,z)-E"(x—hx,y,z))+

x

+%(v" (x,y + O.Shy,z)~ c" (x,y + hy,z)— V' (x,y - O.Shy,z)~ c” (x,y - hy,z))+ (7

¥y

+%(w”(x,y,z+0.5hl)~E”(x,y,z+hz)—w”(x,y,z—0.5hz).E" (x,y,z—hZ )) ,

z

where ¢” denotes a grid function ¢" =c¢(x,y,z,t,), (x,¥,z) € ®, and through ¢" denotes a sufficiently smooth function of
continuous variables (x, y, z, ).

For the diffusion transfer operator in equation (5) we have:

b Ehi(“ (x+0.5hx’y,2)c bethoy2)-2"(oyz)

h

X

X

—n(x-05n,,y,z)

—=n _=n _ —=n _=n 8
¢"(x.y.2) ; (x hx’y’Z)J+hi[H(x,y+O.Shy,Z)C (x’y+hy,;) ‘ (x,y,Z)_ ®

y y

+hi[‘/(xay,2+0.5hz)c (x,y,z+hl;)—c (x,y,z)_

z

—u(x,y—O.Shy,z, P

y

E"(x,y,z)— E”(x,y - hy,z)]

z

—v(x,y,2-0.5h)-

c" (x, y,z)— c" (x, v,z—h, )J

z

Taking into account the recorded approximations (7)—(8), we obtain the following type of approximation of equation
(5) in the inner nodes of the grid:

42



Comp ional Math tics and Information Technologies. 2023;7(3):39—48. eISSN 2587-8999

—n  —n-1
c —¢C

+%(un(x+O.th,y,Z)_Cn(x+hx,Y,Z)—u"(x—O.th,y,z)::n(x—hx,y,z))Jr

X

T

+%(Vﬂ (x,y + O.Shy,z)z" (x,y + hy,z)— Y (x,y - O.Shy,z)_c" (x,y - hy,z)j +

y

1 n 1 n — ~
+E(W (x,7,2+0.5h,)c (x, 3,2+ h, )= w"(x,p,2—0.5h, )c (an’»Z—hZ))— o
:hl[u(x+O'Sh“’y’z);n(x+hx,x’;)_zn(x’y’Z)—M(x—O.th,y,z)zn(x’y’z)_i"(x‘hx,yaz)}r
+i u(x,y+0.5hy’zjc (xayaz)_c (x’yjz)—u(X,y—O.Shv,z)c (x,y,z)—c (X,y—hy,z) N
h, h, ) 0,

+hl{v(x,y,z+0.5hz)-c (x,y,z-i—h};)—c (x’y’z)—v(x,y,z—O.Shz)c (x,y,z)—; (x,y,z—hz)j.

z z z

We supplement the obtained approximation (9) with initial and boundary conditions. To set boundary conditions
on the bottom, free and lateral surfaces of the considered area it is convenient to introduce an expanded grid [7]
© =W, xo,x0,, where

®. ={xx,=ih;i=—1,N +1; h,N =L},
o, ={yj v, =jh; j=-LN,+1; h,N, =L}y_},
®. =z, :z, =kh; k=—1,N_+1; h.N. =L}

In the future, we will assume that:
c"(x,y,2)=0, (10)

where ©"\® are the boundary nodes of the grid ® .

We also consider the values of the components of the velocity vector of the aqueous medium in the grid nodes ® \®
with fractional index values to be known. For grid nodes ® \© , that are located outside the reservoir, the values of the
velocity vector components are set to zero.

In the case of flows on the lateral faces of the region G, coinciding in the direction with the external normals to the
faces (case (V, n) = 0), the Neumann boundary conditions take place. This case can be written as:

u"(0.5h,,y,z)+u"(—0.5h,,y,2) <0,
u"(L.—05h,,y,z)+u" (L, +0.5h,,y,2) >0, (11)
v"(x,0.5h,,2)+v"(x~0.5h,,2) <0,
v"(x,0.5h,,2)+v"(x~0.5h,,2) <0,

We write down an approximation of the boundary conditions of the second kind for the convective transport operator.
Consider the case x=0,0<y < Ly, 0 <z <L_. In this case, the expression can be considered as a difference approximation
of the convective term:

%(u"(O.th, 2,28 (o y,2)— " (= 0.5k, .y, 2)E" (— by y.2))

Expression (12) approximates the convective term with an error O(4* ). In addition to the form (12), the approximation
of the convective term with an error  O(A* ) can be written as:

c" (hxayaz)_gn(_hxayaz)
2h,

—U»
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from where we get:
En(_hxnysz):En(hxay’Z)' (13)

From approximations (12) and (13) we obtain:

C, (c" l » = %E" (hx,y,z)(u"(O.th,y,z)— u"(— O.th,y,z)). (14)

X

Similarly, the cases x =L,y =0, y = Ly, z= 0 (boundary condition on a free surface) are written. We get:

cx(c")x:LX = ZLE (L.~ hoy,2)-(u" (L, +05h,, y.2)~u"(L,~ 0.5k, .2)). (15)
cle] = i e (w,hyz)- (" (6.0.50,,2)-v" (x,-0.5h,.,2), (16)
c, (e LL, = % &L, —hy,z)- (" (6, L, +0.5h,,2)=v"(x,, —0.5h,,2)), (17)
€)= 5T () (07 (058 )= ' (v, y-0.50.). (1)

We write down an approximation of the boundary conditions of the second kind for the diffusion transfer operator.
Consider the casex=0,0 <y < L,0<z<L.In this case, the expression can be considered as a difference approximation
of the diffusion term on an extended grid:

En(hxayaz)_gn(oayaz)
e (19)
E"(O,y,z)—gn(—hx,y,z)j

D" ]0 = hl{u (0.5%,,y,z)

X

—u(—O.th,y,z)~

h

X

When the first condition of (11) is fulfilled, we obtain that ¢"(—A,,y,z)=¢"(h,,,z). Then, taking into account the
last equality and expression (19), we obtain the following approximation of the diffusion transfer operator in the case:

x:0,0<y<Ly,0<z<LZ:
((u(O.th,y,z)+ u(— O.th,y,z))(c?” (hx,y,z)—E" (O,y,z))). (20)

Similarly, the casesx =L,y =0,y = Ly are written. For example, inthe casex =L, 0 <y < Ly, 0 <z <L, when the

second condition from (11) is met and taking into account equality ¢"(L, +4,,y,z)=¢"(L,— h_,y,z), we get:

1

x=L, h 2
x

(L, +0.5h,,y,2)+ (L, —05h,, y.2)€" (L, ~h,,,2)~2" (L., .2))). Q1)
Similarly for y=0andy = L:

D] = hiz((u (x,0.5h,,2)+ 1 (x,~0.5h,,2)(c" (x, 1, 2)- " (x,0,2))), (22)

D, (c” Jy:L‘ = %((u(x, L,+0.5h,, z)+ n (x, L,-0.5h,, z)) (E" (x, L,—h, Z)— c" (x, L, z))) (23)
¥

For a free surface (case y = 0) taking into account v(x, y, — 0,54_) = 0 the approximation of the diffusion operator is

D.(e")

Consider the approximation of the diffusion transfer operator on the bottom surface (z = L) on an extended grid.

written as:

z=

1 —n ~h
o = Ev(x,y,O.ShZ)(C (xayﬁhz)_c (x’y’o)). (24)

Formally , the approximation of the diffusion term can be written as:

D, (c” ]Z:LZ = hi v(x,y,L. +0.5h.) (E” oy L+ h;l)_ ¢"(x.y.L, )) - (25)

z z
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(e Cey.L) -2 (ey L - 1,))

h

z

~v(x,y,L.— 0.5h.)

Let’s use a second-order approximation of the accuracy O(h’) of the boundary condition of the third kind
v(c")! =-w,c", the relation:

( (xy,L +h) (xy,L h))

) Y (26)
v(x,y,LZ 2 w,C (x,y,Lz).
Let ‘s use the ratio:
Wy L) =2 e Lot 05 )+ vy L~ 05h) +0(82). @)
Substituting (27) into (26), we get:
L +h, L —h
(v(x.y, L. +0.5h. )+ v(x,, L. —0.5h.)) NG lh ", ))=—WSE”(x »L.). (28)
From equation (28) we have:
4w h,
c” L +h )= c" L )+c" L —h).
c (x9y9 .t z) ( (x VL +0.5h )+V(x L. —0.5h ))C (x,y, z)+c (xaya - z) 29

Then the approximation of the diffusion term in the diffusion-convection equation of the suspension has the form:

" 1 4w v(x,y,L +0.5h ) —
D = S Z Z L
z(c lz:L ( (xay,Lz+0.5h2)+v(x,y,Lz—O_5hz)c (X,ya z)"r

+hLv(x,y,LZ+ O.ShZ)( (x v,L.—h ) (x v,L, )) (30)

g "(x,y,Lz)—E"(x’y,Lz—hz))],

- 0.5h)
L ‘

z

In a similar way , it is possible to obtain an approximation of the convective operator forz = L :

" 1 4w hw" (x,y,z +0.5h ) =
C = S "z Z L
e lL 2h, [V(x, VL +0.5h )+ v(x, L —0.5h)" (o L)+

(€L

+ (w" (x,y,L. +0.5h. )= w"(x,y,L, —0.5h )) ", y, L. —h. ))

The obtained approximations of the diffusion (30) and convective (31) transfer operators at the boundary nodes
(at z = L) are suitable for bottoms with different morphological characteristics (“liquid” bottom, impermeable bottom,
etc.) when the turbulent exchange coefficient v is set accordingly.

After constructing the scheme, it is necessary to investigate the monotonicity, stability and convergence of the
difference scheme. The study of these properties uses physically motivated constraints of the Peclet grid number and the
Courant number and is based on the maximum grid principle and, due to the limited scope of the article, is not given here.

3. Approximation of three-dimensional hydrodynamics model. To approximate the model (2)—(3), we will carry
out on the calculated grid ® = ®, X ®,.. To approximate the model (2)—(3), we use splitting schemes for physical processes
[8]. According to this method, the initial model of hydrodynamics (2)—(3) will be divided into three subtasks [6, 9].

The first subtask is represented by the diffusion-convection equation, on the basis of which the components of the field
of the velocity vector of the water flow on the intermediate time layer are calculated:

U—u

' ' '
—r =t — — — —
: +uu, +vuy +wu, Z(]J,l/lx)x +(]J.M,)y +(VMZ)Z ,

v —_ v _ _ _ _ ’ _ ! _ ’
+uv, + v+ wv = ( P-Vx')x + (pvv')v + (vvz’)z ,
T - 7

w—w n MWX"F VW},"F WWZ’: (HWX,)X' + (uWy,)y, + (szr) + g[& — J 5
T p
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where u, v, w are the components of the velocity vector on the previous time layer; #,v,w are the components of the
velocity vector on the intermediate time layer; # = ou + (1 —G)u, o € [0,1] is the weighting factor or the weight of the
scheme.
Based on the second subtask, the pressure field is calculated:
— _ Aﬁ !X A; l) AMN/ lz
prapyepy=2op 00 BN (6)

‘C2 T T T

Based on the third subtask, the components of the field of the velocity vector of the water flow on the next time layer
are calculated using explicit formulas:

u-u 1 e 1 w—w 1

where u,v,w are the components of the velocity vector on the current time layer.

The approximation of the problem of calculating the velocity field of the water medium by spatial variables is
performed on the basis of the balance method.

Results. Based on the presented mathematical model of multicomponent suspension transport, a software package in
C++ has been developed that takes into account various factors that affect the accuracy of the forecasts obtained, among
which one can distinguish the complex geometry of the bottom and coastline, wind currents and friction on the bottom,
the presence of a significant gradient in the density of the aquatic environment.
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Fig. 1. Concentration of the suspension in the water column 2 hours after unloading
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The developed software package allows you to calculate:

— the velocity of the water flow based on the system of equations (2)—(3);

— the process of transport of suspended particles in the water column, taking into account the obtained flow velocity
of the water flow;

— the process of settling the suspension on the bottom based on the model (1)—(3).

As an example of the work of the software package, we present the results of numerical modeling of the problem of
transport of three-component suspension when modeling the process of dumping soil during dredging.

Parameters of the calculated area: length — 1 km; width — 720 m; depth — 10 m.

The parameters of the calculated grid: the steps along the horizontal and vertical spatial coordinates were 10 and 1 m,
respectively; the calculated interval was 2 hours, the time step was 5 seconds. The O axis is directed along the calculated
area, the Oy axis is along the width of the calculated area, the O_ axis is along the depth of the calculated area (from
0 to —10 m, where the mark 0 corresponds to the water surface, —10 to the bottom of the reservoir).

Input parameters of the model: the average distance from the point of unloading the soil to the bottom of the reservoir
in the area of dredging is 5.5 m; the area of unloading the soil along the O_axis (along the length of the reservoir) is
placed in the range from 200 to 250 m; the area of unloading the soil along the Oy axis (along the width of the reservoir)
is placed in the range from 300 to 400 m; the flow velocity at depths from 4 to 10 m was 0.075 m/s (currents are directed
from left to right); the density of fresh water under normal conditions is 1000 kg/m?; the density of suspensions is
2700 kg/m?; the particle shape coefficient for all three suspensions is 0.2222 (spherical shape); the initial viscosity of water
is 1.002 MPa /s (at a temperature of 20 °C); the particle diameter of fraction A is 0.05 mm; the deposition rate of fraction
Ais 2.31 mm/s; the percentage of fraction A is 20 %; the particle diameter of fraction B— 0.04 mm; deposition rate of fraction
B — 1.48 mm/s, percentage of fraction B — 30 %); particle diameter of fraction C — 0.03 mm; deposition rate of fraction
C — 0.83 mm/s, percentage of fraction C — 50 %.

Fig. 1 shows the results of modeling the process of transport of three-component suspension in the water column. The
horizontal axis is directed along the flow, the slice is presented in the middle of the calculated area, where the maximum
concentration of suspended particles is observed (in the y = 360 m plane).

Fig. 1 shows that the heavier fraction A is deposited closer to the dredging zone than the lighter fractions B and C. The
smaller fractions B and C are evenly distributed along the bottom of the water area.

Discussion and Conclusions. The paper presents a three-dimensional mathematical model of multicomponent
suspension transport, supplemented by a three-dimensional model of hydrodynamics of a shallow reservoir. The presented
model takes into account the composition of the soil (different diameter of the suspended particles), the flow rate of the
water flow, the complex geometry of the coastline and bottom, overburden phenomena, wind currents and friction on the
bottom, turbulent exchange, which allows to increase the accuracy of modeling.

The approximation of the proposed multicomponent suspension transport model based on the three-dimensional diffusion-
convection equation is performed with the second order of accuracy relative to the steps of the spatial grid, taking into
account the boundary conditions of the second and third kind. Approximation of a three-dimensional mathematical model
of hydrodynamics is performed on a uniform rectangular computational grid using splitting schemes for physical processes.

For the numerical solution of the obtained discrete models, a software package has been developed that allows
simulating the deposition of suspended particles of various diameters on the bottom, and assessing its effect on the bottom
relief and changes in the composition of the bottom. The developed software package also allows you to analyze the
process of sediment movement in the case of agitation of multicomponent bottom sediments of the reservoir, causing
secondary pollution of the reservoir.
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Abstract

Introduction. Two-dimensional hydrodynamic models have proven their ability to adequately describe the processes
of runoff and transportation in rivers, lakes, estuaries, deltas and seas. Practice shows that even where significant three-
dimensional effects are expected, for example, with wind flows, a two-dimensional approach can work effectively.
However, in some cases, the two-dimensional model does not accurately reflect the actual flow structures. For example, in
shallow waters with complex bathymetry, heterogeneous terrain and dynamics can lead to a non-uniform velocity profile.
The aim of the study is to develop a basis for determining in which cases a two-dimensional model averaged in depth is
sufficient for modelling hydrodynamic processes in shallow waters like the Azov Sea, and in which cases it is advisable
to use a three-dimensional model to obtain accurate results.

Materials and Methods. Local analytical solutions have been obtained for the propagation of the predominant singular
progressive wave in a shallow, well-mixed reservoir. Advective terms and Coriolis terms are neglected, the vortex
viscosity is assumed to be constant, and the lower friction term is linearized. Special attention is paid to the latter, since
the characteristics of the models significantly depend on the method of determining the coefficients of lower friction.
The analytical method developed in the study shows that certain combinations of higher flow velocities (v > 1 m/s) and
water depths (d > 50 m) can cause significant differences between the results of the depth-averaged model and the model
containing vertical information.

Results. The results obtained are verified by numerical simulation of stationary and non-stationary periodic flows in
a schematized rectangular basin. The results obtained as a result of three-dimensional modelling are compared with
the results of two-dimensional modelling averaged in depth. Both simulations show good compliance with analytical
solutions.

Discussion and Conclusions. Analytical solutions were found by linearization of the equations, which obviously has its
limitations. A distinction is made between two types of nonlinear effects — nonlinearities caused by higher-order terms
in the equations of motion, i. e. terms of advective acceleration and friction, and nonlinear effects caused by geometric
nonlinearities, this is due, for example, to different water depths and reservoir widths, which will be important when
modelling a real sea.

Keywords: hydrodynamics, shallow water reservoir, wave motion, numerical modelling
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TUIPOAMHAMMKN B MEJIKOBOAHBIX BOJ0€MAaX HA OCHOBE TPeXMEPHOI MoaeIn
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AHHOTAN NS

Beseoenue. JIBymepHbIC THAPOIMHAMUYCCKAE MOJCIH J0KA3ald CBOK CIIOCOOHOCTH aJCKBATHO OMMCHIBATH MPOIIECCHI
CTOKa M TPAHCHOPTHUPOBKH B peKax, 03epax, 3CTyapusx, AeTbTaX W MOpsx. [IpakThka mOKa3pIBaeT, 4TO JdaKe TaM, Ie
OXHIAIOTCS 3HAYUTEIbHBIE TpeXMepHbIe () (EKTHI, HaIpUMep, IPH BETPOBBIX NMOTOKAX, IBYMEPHBINA ITOIXOA MOXET pa-
6otars 3¢ dextuBHO. OHAKO B HEKOTOPHIX CIyYasx JBYMEpHas MOJICIb HEJOCTATOYHO TOYHO OTpaXkaeT (paKTHUCCKUE
CTPYKTYpHI IOTOKA. Hampumep, B MEIKOBOIHBIX BOIOEMaX CO CIOKHOM OaTUMeTprell HeOJHOPOIHBIN penbed) U TMHAMHU-
Ka MOTYT IPUBECTH K TOMY, YTO TPO(UIs CKOpOCTH OyneT HeOMHOPOAHBIM. L{enbio uccnenoBanus ABiseTcs pa3padboTka
OCHOBBI U1 OIIPEACIICHNUA TOIr0, B KaKUX ClIydasax I[ByMepHOfI MOJCIIH, pre}IHeHHOﬁ 10 FJ'Iy6I/IHC, JOCTAaTO4YHO JIsI MO-
JETUPOBAHUS MIPOIIECCOB THAPOJMHAMUKN B MEJIKOBOIHBIX BOIOEMaX, MMOJOOHBIX A30BCKOMY MOPIO, a B KAKHX CIIydasx
JUTS TIOY9EHUS TOUYHBIX PE3YIBTaTOB IIeNIeco00pa3HO MCIIONB30BAHNE TPEXMEPHONW MOIEIIH.

Mamepuanst u memoost. JIoKaTbHBIE aHATUTUYECKHE PEIICHHUS MOIYYCHBI U PACIpOCTpaHEHHS MpeoOnanaromeit
CUHTYJIIPHOHN MPOTPECCUBHON BOJHBI B MEJIKOBOIHOM, XOPOIIIO IIEPEMEIIAHHOM BO0OeMe. AJIBEKTUBHBIMH CIIaracMbIMHU
u cnaraembiMu Kopronuca npeHeOperaroT, BUXpeBas BI3KOCTh MPUHUMACTCS MOCTOSIHHOM, a cllaraeMoe HUKHETO TPCHUS
nuHeapusyetcs. [locnennemy ynensiercss 0coboe BHUMaHHE, MTOCKOIbKY XapaKTePUCTUKH MOJIENEH CYIIECTBEHHO 3aBU-
CAT OT crocoba onpeaeneHuss KodhGUIMEHTOB HUKHETO TPEHUS. AHAJTUTHUSCKUA METOJ], pa3paboTaHHBIN B HCCIENO-
BaHUM, TIOKa3bIBACT, YTO OMpEACICHHbIE KOMOMHAINN 00Jiee BRICOKHX CKOpOCTel TedeHus (1 ~> 1 M/c) 1 TiryOuH BOIBI
(d > 50 M) MOTYT BBI3BIBATh 3HAYUTEIBHBIC PA3IUYMS MEKIY Pe3yAbTaTaMU MOJAEIH, YCPETHEHHOM M0 TIyOHHE, U MOJC-
U, COoAepIKAICH MHPOPMAITUIO IT0 BEPTHKAIIH.

Pezynomamul uccnedosanusa. 1lonydeHHble pe3yabTaThl MPOBEPSIOTCS YKCICHHBIM MOJEIUPOBAHUEM CTAllMOHAPHBIX
Y HECTAlMOHAPHBIX EPHOJUUYECKUX TEUCHUH B CXeMaTH3UPOBAHHOM MPSIMOYTOJIbHOM Oacceiine. Pe3ynbrarhl, nonydyeH-
HBIE B PE3yJBTaTe TPEXMEPHOTO MOJESINPOBAHMS, CPABHUBAIOTCS C PE3yJIbTaTaMH JIBYMEPHOTO MOJEIUPOBAHIS, YCPEa-
HEHHOTO 110 TTyOonHe. O6a MOIENPOBAaHNS TOKA3BIBAIOT XOPOIIIEe COOTBETCTBUE aHAIUTHIECKAM PEIICHUSIM.
Ooécyicoenue u 3aKkntouenus. AHATUTHYECKAC PEIICHUS OBLIH HAaWIEHBI yTeM JINHEapU3aluy YpaBHEHUH, 9To, ode-
BHJTHO, IMEET CBOU OrpaHu4eHus. OTMeYaeTcs 1Ba BUAa HEIIMHEHHBIX 3((PEKTOB — BBHI3BAHHBIX WICHAMH 00JIee BBICO-
KOTO MOPSJIKA B YPABHCHUIX JBMKCHUS, T. €. YWICHAMH aJIBEKTUBHOTO YCKOPEHHUS U TPEHUS U BHI3BAHHBIX [COMETpPUYIC-
CKUMH HEJIMHEHHOCTSIMHU, YTO CBA3aHO, HAIIPUMED, C Pa3InYHON IIyOUHON BOJbI M LIMPHHOM BOIOEMA, 4TO OyJeT BaXKHO
TIPH MOJICITMUPOBAHUH PEATHHOTO MOPS.

KaioueBrle ciioBa: TuapoanHaMuKa, MeJ'IKOBO)IHI:Iﬁ BOIOCM, BOJTHOBOC ABUIKCHHUE, YUCIICHHOC MOJACTIUPOBAHUC

dunaHcupoBaHue. ccienoBannue BRIIOIHEHO 3a cueT rpanTta Poccuiickoro Hayynoro ¢orma Ne 22-71-00015. https://
rscf.ru/project/22-71-00015/

Jas uutupoBanus. [Iponerko C.B., [Iponerxo E.A, Xapuenko A.B. ComocraBineHne pe3ylsTaToB YHCICHHOTO MO-
JEMPOBAHUS TPOIECCOB THAPOIUHAMUKA B MEJKOBOAHBIX BOAOEMAax C aHANUTHICCKUM pemeHueMm. Computational
Mathematics and Information Technologies. 2023;7(3):49—63. https://doi.org/10.23947/2587-8999-2023-7-3-49-63

Introduction. Heterogeneous relief and dynamics in shallow waters with complex bathymetry can lead to the fact that
the velocity profile will be heterogeneous, in this case, the two-dimensional model does not accurately reflect the actual
flow structures. The main purpose of this study is to develop a theoretical basis for determining in which specific cases
a two-dimensional model is sufficient to simulate flow processes in shallow seas such as the Azov Sea. To this end, it
has been studied whether the reduction from 3D to 2D has a significant impact on the output data of the hydrodynamics
model, such as water levels and depth-averaged flow velocities. It has been studied which simplifications are applied
to the flow problem to allow the use of two-dimensional equations averaged over depth, rather than three-dimensional
equations for shallow water. It is investigated which parameters are important when comparing a depth-averaged model
with a model containing vertical information; in which cases a two-dimensional depth-averaged model is representative.
The analytical approach made it possible to identify the effect of depth averaging using analytical solutions for highly
simplified situations.
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Despite conducting a wide range of studies focused on the problem under consideration, they do not fully reflect
the totality of various factors and processes: hydrophysical, hydrodynamic, hydrobiological, meteorological and
anthropogenic [1, 2]. The areas of application of the models presented in the study are tides caused by wind (for example,
storm surges). River flows and stratified flows determined by density are beyond the scope of this study [3-5].

Let’s consider the most important phenomena for shallow seas like the Azov Sea and determine the characteristic
scales of length, time and speed. In the Azov Sea, the formation of currents is mainly due to three factors: the wind regime,
the flow of flowing rivers and water exchange with the Black Sea. The great variability of currents is a consequence of the
instability of the wind regime, the shallow waters of the sea and its relatively small area. In open areas of the sea, under
the influence of wind, as a rule, there is a progressive movement of the aquatic environment, covering the entire thickness
from the surface to the bottom horizons. The prevailing current velocity in the Azov Sea is 10-20 cm/s, the maximum
velocity is 180—100 cm/s [6].

The mode of excitement of the Azov Sea is due to the small area of the sea, shallow depths and significant indentation of
the shores. Wave heights of less than 1 m prevail in the described area (their repeatability reaches 75 %). The repeatability
of wave heights of 1-2 m is 2045 %, and wave heights of 2-3 m — no more than 13 %. In the central, deepest part
of the sea, wave heights do not exceed 3.5 m and only in very rare cases they reach 4 m. In the stormiest months
(December—March), the development of unrest in the described area is limited by the presence of ice [6]. As for overburden
phenomena, before which there is often a powerful overclocking, strong waves are characterized by a slight decrease in
the height of the waves before the start of the storm and then their rapid increase. Often, the processes of development and
attenuation of run-up and storm phenomena in the Azov Sea are synchronous, thus dangerous phenomena arise.

In the Azov Sea, waves are observed with a length of mainly 15-25 m, and only sometimes 80 m. The wave period is
usually less than 5 s, extremely rarely — 7-8 s. In the described area, short and very steep waves are noted, which pose
a danger to small vessels.

In the shallow Azov Sea, seismic fluctuations occur constantly. Seiches are free fluctuations that occur in moderate—
sized basins (harbors, lakes, bays, or even in the sea). These are standing waves with a frequency equal to the resonant
frequency of the pool in which they occur. The duration of sessions can vary from a few minutes to several hours. The
reason for their appearance in the Azov Sea is not only a change in wind or atmospheric pressure over the sea, but also
waves of storm surges from the Black Sea. Since seiches are a resonant phenomenon, it is obvious that the size of the pool
in relation to the wavelength is an important factor.

Materials and methods

1. Problem statement. 3D Navier-Stokes equations are used as a basis for solving fluid flow problems [7-8]. Assuming
that water is an incompressible liquid, the continuity equation is applied:

ou oOv O
t—t—=

—+—+—=0
ox 0Oy oz
with velocity components u, v, ® in the direction x, y, z respectively. The conservation of momentum is expressed as follows:
2
8(pu)+ ﬁ(pu )+ 5(puu)+ ﬁ(pum) _ _8_p+ on o1, N 0T, N ot ’
ot Ox oy oz Ox ox oy oz
2
apv) , opuv)  dlpv*) , dlpve) _ Py P O 0T
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where p is the water density; p is the pressure; f is the Coriolis parameter; T is the viscous shear stress in the i-direction
on the j-plane.
The stresses are defined as:

5u[ au]‘
T ij =pV|—— +—
ox;, ox
where v is the kinematic viscosity.
The abbreviated designation is also used, where x, = (x, y, z), u, = (1, v, ) fori = 1, 2, 3.

To account for turbulence in the Navier-Stokes equations, the variables are decomposed into an average value and
variation: u = u +u'. We substitute the expansion over all variables into the momentum equations and the average results
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into the Reynolds-averaged equations of motion, which have the same form as the original Navier-Stokes equations, with
additional turbulent stresses called Reynolds stresses: T, = pu:u; [9].

The problem of closure is one of the main tasks of turbulence research. A simple turbulence model uses the Boussinesq
hypothesis to describe turbulent motions similar to molecular motions, but with vortex viscosity coefficients v,h uv, for
horizontal and vertical directions [10]. All of the above leads to the following equations:
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For a depth-averaged flow, it is assumed that the shear stress in the layer caused by the turbulent flow is determined
by the quadratic law of friction:
_PoglUlU _

o - =poc,, U,

b
where |U] is the value of the depth-averaged horizontal velocity, and C, is the Chezy coefficient for the depth-averaged
model [11].

For models with vertical information (2DV or 3D), a quadratic formulation of stresses in the reservoir is used. The
shear stress of the layer in 3D can be related to the current directly above the layer:

Ty =PoCy, |ub|ub’
where u, — the value of the horizontal velocity directly above the layer.
2. Analytical research. Suppose that U characterizes the scales of horizontal velocities # and v, L characterizes the

horizontal scales of length x and y, and H characterizes the vertical scale z. Then scaling the continuity equation leads to
the expression for the vertical velocity scale W:
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According to the data of the Unified State Information System on the Situation in the World Ocean [6], the horizontal
component of the velocity is several orders of magnitude greater than the vertical component of the velocity for tides,
storm waves and seiche in the Azov Sea. Consequently, the vertical component of the velocity can be neglected, it will
not be considered in this study.

The vertical momentum equation reduces to a hydrostatic balance:

op

0z G

Integrating this equation in the vertical direction gives:

P(2)=—pg(C—2)+ Py, in case of ? =0,
z

where C is the height of the free surface (fig. 1); p,,, is the atmospheric pressure on a free surface.

Now:
a_p:pg%, 8_p:pg%’ ecnn@zﬁzo. “)
Ox ox Oy Oy ox Oy
Substituting this into the horizontal momentum equations (1) and (2), we obtain:
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Along with neglecting the vertical component of velocity and replacing the pressure gradient with the water level
gradient, several other terms were ignored in order to move from equations (1) and (2) to (5)—(6). Viscous stresses are
not taken into account due to the fact that turbulent stresses are many orders of magnitude higher than viscous stresses,
because molecular viscosity is only important within a few millimeters of the boundary. In addition, horizontal turbulent
stresses are not taken into account.

Surface (z = {)

Control level (z = 0)

Bottom (z = —d)

Fig. 1. Determination of surface height  and depth of undisturbed water d

Using equations (5)—(6), we determine the relative orders of magnitude of the terms in order to get an idea of the
parameters that are most important in a certain situation, and which are insignificant. Let’s consider each term separately

and perform scaling:

— inertia: 8_u ~ g;
oo T
. w U2
—advection: u—~——;
ot

L
. e 0 Ou U
— vertical momentum diffusion: —|v, — |~V ;
z

— pressure gradient: — L
p g ‘g Y g I
— Coriolis force: fv =~ fU.
The term responsible for friction is important in the study, since it is defined differently in models. For 3D model, the
ratio between the coefficient of friction and the coefficient of inertia can be expressed as:
Sriction _ vU/H? Vv

~

inertia  U/T  oH”

1
where o » —-
T

In addition, important parameters are viscosity v, wave frequency o and vertical length scale (for example, water
depth d). A dimensionless combination of these parameters, widely used in the analytical approach, is described in
[12], where the dynamic expression for the phase shift stress is compared with the expression in which the bottom
stress is proportional to the depth-averaged velocity in the steady state. The result only depending on the parameter
odv (fig. 2).

When od?/v very small, the ratio approaches unity, which means that the shear stress of the layer reacts to the periodic
flow as if it were constant at each moment of time: wd?v < 0.5. It can also be written as d” / v<0,5-T/2n~0,08-T,
where T is the period of the oscillating flow. The value d?/v can be interpreted as the time required for a viscous flow to
change the velocity profile at depth d. Thus, a quasi-stationary shear stress of the layer is expected when the adjustment
time is less than 8 % of the period.
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For turbulent flow in shallow water, the vortex viscosity estimate is [13]:

v= %Kdu* =0,067du, .

od?/v

1.0

0.8

Phase shift

0.6

0.4 Ratio of amplitudes

0.2 Bottom voltage

0

0 2 4 6 8 10 t

Fig. 2. The ratio of shear stresses of the layer at dynamic and steady flow

For the Azov Sea, with an average water depth d ~ 7.4 m and an average amplitude of the current at a depth u ~ 0.5 m/s,
the vortex viscosity estimate is v = 0,00925 m/s.

Analytical solutions can be obtained only for significantly simplified forms of the equations of motion. Since the
advection terms are nonlinear, it is necessary to exclude them from the momentum equation for an analytical approach.
When the wave propagation velocity is defined as the wavelength over the wave period ¢ = L/T, the ratio between the
advection term and the inertia term leads to the Froude number, defined as F = u/c. F <<1 meaning that the inertia term
is much more important than the advection term and therefore the advection term can be neglected. This refers to long
waves with small amplitudes relative to the depth of the water. The set of equations without advective terms reduces to:
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We will consider a periodic flow bounded by one horizontal dimension given by equation (7). The main attention will
be paid to the effect of changes in the plane (x, z). Taking into account these assumptions, the basic equation 2DV takes

the form:
ou 0’u
A YR, 8
o o %)
a¢
F=—o22.
gax

Equation (8) can be integrated over the water depth d to obtain one-dimensional equation of momentum in the
x direction:

d& )| GO0 gy,
ot 82(2:0) 82(_,:76,)

where U is the depth-averaged velocity.

On the sea surface (z = 0), the shear stress is zero, since the free surface does not create any friction (in the absence
of wind). In the formation (z = —d), it is customary to associate the shear stress with the velocity averaged over the depth
with the coefficient of friction ¢ f for the model averaged over the depth. So, when:

0
vta—::rh e, |U|U,
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the depth-averaged equation takes the form:
U < vlo _

5 y, F. )

Here the friction term is proportional |U|U and, therefore, not linear. Since linear equations are much easier to solve
analytically, it is convenient to use the linearization method. Lorenz [14] proposed such a linearization of the shear stress
of the layer, which for many decades served as the basis for simple solutions. Suppose that the flow velocity changes
sinusoidally in time:

U(t):[]cos(mt). (10)
Only the real part of the expression for U, which is used further, is considered. Figure 3 shows the corresponding

’\2 . . . . . . . . .
|U | U / U =|cos (co t)|cos (u) t), which represents friction as a function of time, showing deviations from the pure cosine
function.

1.0
|cos(cot)cos(03t)|
0.5
8 8
—cos(o? —cos(o?
- (o2) ™ (i)
0
2n ot
-0.5
-1.0

Fig. 3. Linearization of the quadratic friction term [15]

The rationale for linearization lies in the fact that, as is commonly believed, it does not reproduce the exact cosine
function as long as the damping effect of friction persists. For this purpose, the energy that is lost per cycle due to friction
is set equal for both cases. This approach allows us to obtain a suitable estimate of the linearization constant k:

8, U_.
K _Ecﬁ ENC»“ ik
where the subscript “1” indicates a one-dimensional case. This expression contains the original velocity U, which is
unknown. Although iterative approaches to its definition have been proposed, this linearization constant is often accepted
as a calibration parameter.
The shear stress of the linearized layer becomes: 1, =c¢,, |U |U ~ kdU.
Substituting this into equation (9), we obtain:

ou
—+xU=F. 11
or (an

For dynamic flow in a one-dimensional situation, this linearized equation is used, while a complex representation of
the flow velocity is introduced:

U(t)=Ue™, (12)

where U is the complex amplitude; ¢’ = cos(wt)+isin(wt), where i is an imaginary unit satisfying the equation i = v/— 1.
The factor e causes rotation in time with o as the angular frequency, which is equal to 2w/T.
Note that the velocity defined in (10) is equal to the real part of the expression:

Ult) =Re[ljei ‘”’]: Ucos (o).
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Substituting the complex periodic solution (12) into equation (11), excluding the time change ¢ in each term gives:

S I U T T
ioU+xU=F, (o+x)0=F U-—1, g=2._1  g-4—
o+ K, io 1+x, /io 1-io,

>

where d=f _ 8% k8 O
o 3t " od

i® io ox’
So, the expression for the depth-averaged velocity in the x direction is:

U=4- ! e,
l-ic,

Thus, the expression for the depth-averaged velocity U is obtained by solving the depth-averaged momentum equation.
Next, let’s compare this expression with a similar solution for the depth-averaged velocity calculated using a model with
vertical information.

.0 o’ . o . ~( N\ ~. .
The momentum equation a_ v, —zl = F with aperiodic solution u(z, t) =u (z)e’ “ (now i is the complex amplitude

as a function of the vertical coordmatgf and elimination ¢ takes the form:

iwﬁ(z)—v, —u(z):ﬁ

i(z)=Ce +Cre** + 4, p= |1 F_F.
Vv, io

On the sea surface (z = 0) shear stress T = 0 since the free surface does not create friction (in the absence of wind):

6_u =0=> (C=C, =
0z (z=0)
— §i(z)=Ccosh(bz)+ 4. (13)

There are several variants of the boundary condition in the layer to find an expression for the C integration constant.
The partial slip condition assumes velocity in the layer u # 0. It is assumed that the shear stress in the layer (z = —d) is
described by the linearized quadratic law of friction:

ou

v, — =1, ~K,du,
0z (:=-d)

8 u

where x, =—c¢, L.

3n "2 d

The subscript “2” indicates a two-dimensional case. Substituting the expression for the flow velocity (13) into equation
(14), we obtain:

v, -(Chsinh(- bd)) = x,d - (C cosh (- bd )+ A)

C-(~v,b sinh(-=bd) - x,d - cosh (bd)) = x,dA =

-1
=C=-A ( sz sinh(bd)+ cosh (bd)j .

K

The solution for the vertical velocity profile becomes:

a(-)=41 coshbz) | (s)
Vf’; sinh(hd )+ cosh (bd )
K,
~(\_ 7 [;_<cosh (b2)
ile)=4 (1 ! cosh(bd)}

-1 . -1
where Y= [1 + itanh(bd )\J = (1 + ! tanh(bd )j .
Kod o,b
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So, the velocity profile described by equation (15) is a function of a dimensionless parameter:
bd = Jiod* v, (16)

Kk, 8 u,
0, =

and dimensionless parameter G,

— = _sz -2 .
o 3n 7 od

The parameter similar to the parameter in equation (16) has already been discussed in the context of the shear stress
of the layer wd*/v.

The depth-averaged velocity is obtained:

L_lzl Oﬁ(z)dz:ljoj 1_?005h(bz) dz:é Z_icosh(bz) ’ :
d d|” bcosh(bd)|,

The equation for a one-dimensional steady-state flow model with linearized bottom friction (11) reduces to:
xU=F, a7

where K, = cf,|U/d is the linearized coefficient of friction for a depth-averaged flow (for a steady flow, the coefficient 8/3n
is not taken into account); U is the depth-averaged horizontal velocity and F' = —gd(/0x is an abbreviated designation of
the water level gradient. The expression for the depth-averaged velocity U follows from equation (17):

U=—. (18)

K
In a two-dimensional steady-state flow model with linearized bottom friction, equation (18) reduces to:

0’u

t 2
0z

Since it is assumed that F' is independent of z, integration gives:
ou

—=-Fz+C,.
0z

Vi

On the sea surface (z = 0) the shear stress t, = v,0u/0z =0 means that the integration constant C,= 0 and, therefore:
v, % =-Fz. (19)
oz
Thus, the shear stress is linearly distributed vertically with the maximum shear stress 7, in the layer (z = —d):
T, =Fd. (20)
Assuming a constant vertical vortex viscosity, the velocity profile is determined by integrating equation (19):

uz)=c, - = @

This is a parabolic velocity profile, where the integrating constant C, is equal to the maximum velocity on the sea
surface (z = 0). To find the constant C,, it is necessary to impose a boundary condition on the layer. Various approaches
are possible to implement the lower boundary condition.

The combination of the linearized boundary condition T, = k,du,, x, = Cy, |u,,| / d and equation (20) will result in an
expression for the velocity in the layer. Substituting this into equation (21), we obtain an expression for C,. Then the speed
profile becomes:

2v, K,
Integration by depth gives:
0 0 2 2
E=lju(z)dz:lj i(d2—22)+£ dz:Fd +Fd . (22)
d J-d d J-a\ 2v, K, v, kK,
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Thus, in the stationary case, there are also two solutions, (18) and (22), with two different bottom friction coefficients,
where «, # K, since the shear stress of the layer is determined differently in both cases. Assume that the depth-averaged
velocities for both models are equal 4 = U. This leads to the following relation between i, and «.:

Applying c =« / o:
2
1 1 N od ) (23)

In the relation between o, and o, there is a dimensionless parameter wd®/v now choosing a certain range for o, will
result in obtaining o, as dimensionless parameter function for each . o-ratio (23) helps comparing the amplitudes and
phases of depth-averaged velocities calculated using a one-dimensional and two-dimensional model, respectively.

Figures 4 and 5 show the ratio of the velocity amplitude and phase for several values o,. The relations of amplitudes
and phases for the corresponding physical phenomena are indicated by dots. Thus, the application of the c-relation is
limited to situations od*/v>/G,.

||u2D|/|u3D
1,5
1,4
13 c,=1,00
c,=0,50
1,2
c,=0,25
1,1
c,=0,10
1,0
c,=0,05
0,9
c,=0,02
0,8
0,7
0

10 20 30 40 50 60 70 80 90 100 wd*v,
Fig. 4. The ratio of amplitudes between U and u as a function od’/v,and G,

The ratio of velocity amplitudes is greater than 1, provided that wd?/v < 65, this means that the velocity calculated
using a depth-averaged model will be greater than the amplitude of the velocity that contains information about the
vertical than vice versa. In addition, it should be noted that for seas like the Azov Sea (green dot on the line &, =0.25) the
ratio of the velocity amplitude to 1.06 and the phase ratio to 1.01. An amplitude deviation of 6 % is expected for parameter
values that are likely to occur in practice. At the same value wd”/v, but a higher value o, the differences increase (yellow
dot on the line 5, =0.50). The only reason for the increase , when ®, d and v, remain constant would be an increase in
velocity U . So, the initial initial velocity was estimated as U=05 m/s, for U =1 m/s the yellow dot indicates the ratio
of the velocity amplitudes 1.23 and the phase ratio 0.94.

At lower values of the ratio of velocity amplitudes is almost always greater than 1, regardless of the value od*/v,. In
the case of inertia dominance (for example, for a seiche) one should not expect any difference between calculations with
vertical information and without it. This is indicated by a green dot on the line 6, = 0,02.

The result of the amplitude-phase ratio seems to be significantly sensitive to the estimation of velocity amplitudes U,as
well as to the bottom friction coefficient ¢,. It can be concluded that the regions in which significant differences (more
than 20 %) should be expected are difficult to quantify in a general sense, in addition, there are certain combinations of
flow velocity and depth water, which can lead to a significant difference in results.
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In a one-dimensional steady- state flow model with quadratic bottom friction, the momentum equation reduces to:
¢ lolU
d

where ¢ » is the coefficient of friction for the flow averaged over depth.

Since U can be considered positive at steady flow, the expression for the depth-averaged velocity becomes:

U= |F4.
<

E

(UL
1.2
1.1
1.0 G]ZI.OO
0.9 5,=0.50
0.8 5,=0.25
0.7 5=0.10
06 ,=0.05
0.5
5,=0.02
0.4
0

10 20 30 40 50 60 70 80 90 100 wd?/v,

Fig. 5. The phase ratio between U and u as a function od’/v,and |

The starting point for a steady flow with quadratic bottom friction for a two-dimensional model is equation (21).
The integration constant is again found by superimposing a boundary condition on the layer. The combination of the
quadratic boundary condition (T, = ¢, , |ub |Mb) and equation (20) will result in an expression for the velocity in the layer.
Substituting this into equation (21), we obtain an expression for C,, thus, the velocity profile becomes:

u(z)z%(d2 —zz)+ j—d:
t f2

where ¢, is the coefficient of friction for the model containing information in the vertical direction. Integration by depth

2
0 0 2

Ezlj.u(z)dzzlj. i(dz—zz)+ fd z:Fd + fa,

d J-d d J-d| 2v, 3v ¢,

sz f

gives:

Similarly, to the linearized case, under the assumption % =U follows the relation between ¢, and Cy

1:1+\/ﬁ
B

since the shear stress of the layer is determined differently. The elevation function of the level can be

E)

also c #C, and Cps

included in this analysis using the continuity equation:

ou Ov 0w
—+—+—=0.
ox 0Oy o0z

The depth—averaged version of the continuity equation is:

% 49U o, 24)
ot Ox
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where  is the height above sea level on a free surface; d is the depth of the water; U is the depth-averaged velocity. The
height of the surface can be found by substituting an expression for the depth-averaged velocity calculated using two
models.

The previously obtained one-dimensional depth averaged velocity U is equal to:

U=4 ! e,
1-ic,
where A = F/ iwu F=-goC / ox.
Substituting this into the depth-averaged continuity equation (24), we obtain:

~ 2% .
e

io ox* | 1-io,

-~
Substituting {(x,7)=C(x,¢)e’’, we obtain: in _dg 0 f’ L oo —o,
io ox” |\ 1-io,

This differential equation has the following homogeneous solution:
E(x)z C.e”+C_e™,

where * p, ==iky\/l1-io;, k, =0/c, is the wave number without friction; ¢, = \/g_d is the speed of the wave without
friction.

The general periodic solution given by equation (25) contains two exponentially decaying waves propagating in the
opposite direction. Here +ik, represents propagation in the absence of friction, 4/1-ic, represents the effect of friction.
Rewriting p as p, = u + ik:
kO

) yJl—tan’$

) Re(p): W, =k, tand,

k
where tan’§=0, =— or tan28 =0, = —-
®
Here, instead of working with o (the ratio of friction to inertia), the friction angle 8 is determined, since this seems
more convenient. The general periodic solution of equation (25) can be written as:
((x)=C, e +C e, E(x): C, et e ™M 4 C 2eM 7MY, E(x): C.+C. (26)

This is an abbreviated designation for two waves propagating in the opposite direction.
Similarly, u substituted into the continuity equation, which leads to the following complex root:

-1/2

+ p, = tik, 1—£tanh(bd) ,

. 71 .
where % :(1+ S lbd tanh(bd)J > 0, :ﬁ, bd = /Ed,
2 o Vi

The following section illustrates some of the previous developments for a singular translational wave and waves in
a pool closed at one end, both for the two-dimensional and three-dimensional case.
Results. To interpret the solution for a singular progressive wave, we will use:

C(x, t) = Re{iei“”}.
A singular traveling wave is considered, so we will use from equation (26):

é/+ (x,t) = Re{é’i (x)efo)t}z Re{c+e—P.veimt }

Substituting p, = p + ik and taking C, modulo and argument, we get:

C+(x’t):Re{|C+|e*Hxei(mt—kx+argc+)} or C+(x’t)=C~+(x)ei(mt—/a+argq)

C

—ux

where Z+ (x)=|C,le

+
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This solution shows the surface height of a singular translational wave with & (the imaginary part of p) as the wave
number (phase change per unit length). Since the phase varies with x and ¢ through oz — kx, this refers to a progressive
wave in the positive direction x, with a phase velocity ¢ = w/k an argument C, is the initial phase (phase when wt = 0)
¢, for x=0. The amplitude C_ (x, 7) for x = 0 is given through |C, | decreases exponentially in the positive direction along
the x axis with a decay rate of p.

The results of numerical experiments are presented in Table 1. Case 1 illustrates a situation in which bottom friction
does not significantly contribute to the solution (o, =0.05; d= 60 m); for case 2, friction is essential (5, = 0.50; d =20 m).

Table 1

Calculated parameters of a wave with constant viscosity v = 0.05 m*/s

Parameter Formula Case 1 Case 2
G, 0.05 0.50
o, 0.06 0.62
60 [Mm] 20 [m]
c, \/ng 24.3 [m/c] 14.0 [m/c]
k, o/c 5.80-10°¢ 1.00 - 107
k, Im (p,) 5.80-10°¢ 1.03 - 107
k, Im (p)) 5.81-10°¢ 8.79 - 10°¢
K, Re (p) 1.45-107 244 -10°¢
K, Re (p,) 1.50 - 107 1.56 - 10°¢

The amplitude of the surface rise decreases with a coefficient e#** . exp (—puAx). At a distance of Ax = 10 km one-
dimensional reduction coefficient for case 1 is equal e*"19x0.99, two-dimensional one is also equal e*°'9x0.99. For
case 2, the one-dimensional reduction coefficient is exp(—0.24)=0.78, 2D — exp(—0.16)=0.86. It can be concluded that
the differences between one-dimensional and two-dimensional results are not significant when bottom friction does not
significantly contribute to the solution.

Discussion and Conclution. Analytical solutions for a depth-averaged model and a model that contains vertical
information are:

~ 1 o 5 _
U=4- e, u:A-(l—Ltanh(bd)Je’””,
bd

1-ioc,

where v is the function of 6, and bd. Thus, the depth-averaged velocities in both models look very similar and can be
described by a function of a dimensionless o -parameter or ¢ -parameter and a dimensionless parameter bd, respectively,

where:
.2
bd = /lmd .
Vt

In order to link the above solutions, it was decided to assume that the depth-averaged velocities in both cases are equal

8 U - 8 . Up
—Cc, —> =— —_—
3r Trod  © 3n rod

6, =

for a steady flow.

Concentrating on the propagation of one predominant singular progressive wave, the analytical approach shows
that certain conditions can cause significant differences between the depth-averaged velocities calculated using two-
dimensional and three-dimensional models. However, a thorough study has led to the conclusion that it is quite difficult to
find such conditions in practice. Thus, in combination with the uncertainties associated with the relationship between the
two models, the greatest differences should be expected in places with greater water depth (d > 60 m) and high speeds
(u => 1 m/s). It should also be noted that the ratio of amplitudes is almost always greater than 1, and the ratio of
phases < 1 for seas.

Analytical solutions were found by linearization of the equations, which obviously has its limitations. A distinction is
made between two types of nonlinear effects:

1. Non-linearities caused by higher-order terms in the equations of motion, i.e. the terms of advective acceleration and
friction. The linearization of the kU friction term is based on optimal reproduction of the prevailing singular progressive
wave. Although such linearization is effective for the purposes of this study, it distorts the propagation and generation of
other components of the motion of the aquatic environment.
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2. Nonlinear effects caused by geometric nonlinearities that result from the dependence of the cross-section on the
height of the surface {. This is due, for example, to the different depth of water and the width of the reservoir, which will
be important when modelling a real sea.
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