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ANNIVERSARY OF THE SCIENTIST
IOBUJIEM YUEHOI'O

On April 8, 2024, Mikhail Vladimirovich Yakobovskiy, the Deputy Editor-in-Chief of our journal and a corresponding
member of the Russian Academy of Sciences, turned 60 years old.

In Commemoration of the Anniversary of Corresponding Member
of the Russian Academy of Sciences, Doctor of Physical and Mathematical Sciences,
Professor Mikhail Vladimirovich Yakobovskiy

Mikhail Vladimirovich Yakobovskiy, Deputy Director for Research at the Keldysh Institute of Applied Mathematics
RAS, is a leading expert in the development of parallel algorithms and simulation tools for fundamental and applied
problems of continuum mechanics on high-performance computing systems. M.V. Yakobovskiy is the author of more
than 90 scientific works, including 8 officially registered software programs. His scientific interests lie in the development
of parallel algorithms and software for solving continuum mechanics problems on high-performance multiprocessor and
hybrid computing systems, including fault-tolerant numerical simulation algorithms on exascale supercomputers.

M.V. Yakobovskiy proposed a model of a unified computing environment for solving a wide range of current
fundamental and applied problems using grids containing billions or more nodes. The software suite developed based on
this model integrates applications supporting the main stages of computational experiments and ensures the coordinated
use of multiple distributed computing resources and clusters.

Using a unified approach to processing large volumes of grid data and the close integration of computational
mathematics and applied programming methods, M.V. Yakobovskiy has created algorithms and tools that enable large-
scale computational experiments in the field of continuum mechanics on modern and prospective supercomputers with
thousands or more processors.

M.V. Yakobovskiy has developed fault-tolerant algorithms for continuous long-term computations on supercomputers
with regularly failing nodes and algorithms for guaranteed tetrahedralization of areas defined by triangulated closed
surfaces.

M.V. Yakobovskiy participated in the development of Russiars first teraflop supercomputer (RCC RAS), the
MVS-15000BM and MVS-100K supercomputers (RCC RAS), the Chebyshev and Lomonosov supercomputers (Moscow
State University), and the K-100 heterogeneous supercomputer (Keldysh Institute of Applied Mathematics RAS).

M.V. Yakobovskiy is deeply involved in scientific and organizational work. He is a member of the Scientific Council
of the Keldysh Institute of Applied Mathematics RAS, Chairman of Dissertation Council 24.1.237.02, Deputy Chairman
of Dissertation Council 24.1.237.01 at the same institute, and a member of Dissertation Council MSU.01.09 at Moscow
State University. M.V. Yakobovskiy heads the department of “Software for High-Performance Computing Systems and
Networks”.

From 2016 to 2019, he was a member of the Presidium of the Higher Attestation Commission under the Ministry
of Education and Science of Russia. He is Deputy Editor-in-Chief of the journal “Computational Mathematics and
Information Technologies”, and a member of the editorial boards of “Supercomputing Frontiers and Innovations”,
“Computational Methods and Programming”, “Advances in Cybernetics”, and “Preprints of the Keldysh Institute of
Applied Mathematics”. He is also a member of the program committees of several international conferences, co-chair of
the program committee of the International Congress “Supercomputing Days in Russia”, and the All-Russian Conference
“Scientific Service on the Internet”.

M.V. Yakobovskiy is a member of the Bureau of the Scientific Council of the Russian Academy of Sciences for coordina-
ting scientific research in the field of “Strategic Information Technologies, including the creation of supercomputers and
software development”, a member of the RAS Scientific Council on Materials and Nanomaterials, a member of the
Expert Council of the Russian Foundation for Basic Research (RFBR) on Mathematics and Mechanics, and the scientific
secretary of the Scientific Council of the RAS Presidium Program on “Fundamental Principles for Creating Algorithms
and Software for Advanced Ultra-High-Performance Computing”. He has been an expert for the RAS, RSF, RFBR, and
Federal Targeted Programs, and was Chairman of the Expert Council on Directed Basic Research of the RFBR. Under his
leadership, several RFBR initiative projects and directed basic research projects have been completed. He has participated
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in numerous RSF projects, served as project leader for the RSF, and has been a key executor of several state contracts
for Federal Targeted Scientific and Technical Programs and the “Skif-grid” supercomputing program of the Union State,
among others.

M.V. Yakobovskiy is heavily involved in educational activities. He is a professor at MIPT and Moscow State University,
and the author of four textbooks on parallel algorithms, including the monograph “Introduction to Parallel Methods for
Solving Problems”. One of his students was awarded the RAS Medal with a prize for young scientists in 2009 for the
work “Modelling Problems of Gas Dynamics and Aeroacoustics Using High-Performance Computing Systems”. He has
supervised six candidates of physical and mathematical sciences and more than 30 specialists, bachelors, and masters.
In 2016, M.V. Yakobovskiy was elected as a corresponding member of the RAS in the Department of Mathematical
Sciences of the RAS, specializing in “Applied Mathematics and Informatics”.

The editorial board of the journal “Computational Mathematics and Information Technologies”, and colleagues of
M.V. Yakobovskiy warmly congratulate the esteemed jubilarian, wishing him good health, new ideas, and creative
achievements!

Editorial Board
Computational Mathematics and Information Technologies
Boris N. Chetverushkin;
Alexander E. Chistyakov;
Vladimir A. Gasilov;
Valentin A. Gushchin;
Vladimir I. Marchuk;
Alexander P. Ch. Petrov;
Sergey V. Polyakov;
Aleksandr A. Shananin;
Alexander I. Sukhinov;
Vladimir F. Tishkin;

Yuri V. Vasilevsky
Vladimir V. Voevodin.
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COMPUTATIONAL MATHEMATICS
BBIUYUCIUTEJIBHASA MATEMATUKA
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An Adaptive Mesh Refinement Solver for Regularized Shallow Water Equations

Ivan I. But"* , Maria A. Kiryushina? [,

Stepan A. Elistratov'® , Tatiana G. Elizarova?> , Artem D. Tiniakov'

nstitute of System Programming of the Russian Academy of Sciences, Moscow, Russian Federation
ZKeldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Moscow, Russian Federation
3Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russian Federation

Mm_ist@mail.ru

Abstract

Introduction. We present a novel adaptive mesh refinement (AMR) solver, SWqgdAMR, based on the open software
platform AMReX. The new solver is grounded in regularized shallow water equations. This paper details the equations,
their discretization, and implementation features within AMReX. The efficacy of SWqgdAMR is demonstrated through
two test cases: a two-dimensional circular dam break (collapse of a liquid column) and the collapse of two liquid columns
of different heights.

Materials and Methods. The SWqgdAMR solver is developed to extend the applicability of regularized equations in
problems requiring high computational power and adaptive grids. SWqgdAMR is the first solver based on the quasigas
dynamic (QGD) algorithm within the AMReX framework. The implementation and validation of SWqgdAMR represent
a crucial step towards the further expansion of the QGD software suite.

Results. The AMReX-based shallow water equations solver SWqgdAMR with adaptive mesh refinement is described
and tested in detail. Validation of SWqgdAMR involved two-dimensional problems: the breach of a cylindrical dam
and the breach of two cylindrical dams of different heights. The presented solver demonstrated high efficiency, with
the use of adaptive mesh refinement technology accelerating the computation by 56 times compared to a stationary
grid calculation.

Discussion and Conclusions. The algorithm can be expanded to include bathymetry, external forces (wind force, bottom
friction, Coriolis forces), and the mobility of the shoreline during wetting and drying phases, as has been done in individual
codes for regularized shallow water equations (RSWE). The current implementation of the QGD algorithm did not test the
potential for parallel computing on graphical cores.

Keywords: shallow water equations, adaptive mesh refinement, quasigas dynamic equations, regularized shallow water
equations, AMReX

Funding information. His work was supported by the Moscow Center for Fundamental and Applied Mathematics under
Agreement no. 075-15-2022-283 with the Ministry of Science and Higher Education of the Russian Federation.

For citation: But LI, Kiryushina M.A., Elistratov S.A., Elizarova T.G., Tiniakov A.D. An Adaptive Mesh Refinement
Solver for Regularized Shallow Water Equations. Computational Mathematics and Information Technologies.
2024;8(2):9-23. https://doi.org/10.23947/2587-8999-2024-8-2-9-23
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OPMZMHLUZbHoe meopemudeckoe ucciedosanue

Pemiarenns ¢ aIanTUBHBIM M3MeJIbYeHHEM CETOK /ISl Pery/sipu30BaHHbIX YPABHEHUI
MeJIKOH BOIbI

N.A. Byr'? M.A. Kupomuna'? &,

C.A. Esmucrparos'? | T.I'. Enuzaposa® , A.Jl. Tunsikos!

"MHCTHTYT CHCTEMHOTO porpaMmupoBanust Poccuiickoil akagemun Hayk, MockBa, Poccuiickas denepauust

MuctutyT npukiaaHoi Mmaremaruku um. M.B. Kengsina Poccuiickoit akanemun Hayk, Mocksa, Poccuiickas ®@eneparus
SHUuctutyT okeanonorun um. ILI1. Hupuiosa Poccuiickoii akanemun Hayk, MockBa, Poccuiickas Denepanust

Mm_ist@mail.ru

AHHOTAN NS

Beseoenue. TlpencraBieH HOBBIM pelareNb ¢ afanTHBHBIM H3MenpueHrHeM ceTok SWqgdAMR Ha 0a3e OTKpBITO# mpo-
rpammHO# ardopmel AMReX. HoBrlii pemraTens OCHOBaH Ha PETYIIPH30BaHHBIX YPAaBHEHHUAX MEJKOH Boxmbl. B pabo-
TE€ ONMCAHBI ypaBHEHUS, UX TUCKpeTH3aus u ocodenHoctr peanmzamun B AMReX. Paborocmocoorocts SWqgdAMR
ObLTa IMOKa3aHa Ha JBYX TECTOBBIX 3aJa4ax: ABYMEpHas 3ajava IMpOpBIBAa KPYTOBOW AaMOBI (pacmaa cToida >KUIKOCTH)
W 3aJ1a4a O Pacraje ABYX CTOJIIOOB JKHJIKOCTH, Pa3HbIX 110 BHICOTE.

Mamepuanvt u memoowt. Pemiarens SWqgdAMR Hanmcan B paMKax pacIIMpeHns] IPUMEHHMOCTH PEryJsipH30BaHHBIX
ypaBHEHHI B 3a7a4ax, TPEOYIOIUX OOJbIINX BBIYMCIMTEIBHBIX MOIIHOCTEH W amanTHBHBIX ceTok. SWqgdAMR sB-
nsgercs nepBbIM pemareneM Ha 6aze KT/l anropurma B mporpaMMmHoM komruiekce AMReX. Peanuzanus u Banmmanus
SWqgdAMR sBisieTcsi OCHOBHBIM IIIarOM Ha My TH JalbHeimero pacumperns komruiekca K[ mporpamm.
Pesynomamuvr uccnedosanun. JleranbHo onucaH u nporectupoBaH pemarenb AMReX ypaBHeHH Menkoil BOIbI
SWqgdAMR c apantuBHBIM H3MensdeHueM cetok. st Bamupannun SWqgdAMR ncnons3oBanuch 1Be AByMEpHBIE 3a-
Jla4y: O MPOPbIBE HMIMHAPUIECKON MIOTHHBI U O MPOPBIBE JIBYX [MIMHAPUYECKUX IUIOTUH pa3HOil BeIcOTHL. IIpencras-
JICHHBIN pelareib Mokas3aj BbICOKYIO 3()(eKTHBHOCTb, @ HCIIOJIb30BaHUE TEXHOJIOTUH aalTHBHOTO N3MENIBYCHHS CETKU
MTO3BOJIMJIO YCKOPHUTH PAcU€T B 56 pa3 1o CPaBHEHHUIO C PacyETOM Ha CTAIIMOHAPHOHN CETKe.

Obcyscoenue u 3axnruenus. B anroputM MoXeT OBITh BKITIOUEHA OaTHMETPHS THA, BHEIITHIE CHIIBI (CHJIa BETpa, TPEHUE
0 1HO, cibl Kopronmca), a Takke yueT HOABIKHOCTH OeperoBOH JIMHUY TIPU OCYIICHUH-HABOAHEHUH, KaK 9TO yKe OBLIO
CeNlaHO B paMKaxX MHIMBUAYaIbHBIX kKoI0B 1151 PYMB. B nannoii peanuzauuu KT'Jl anroputma He TeCTUPOBAIUCH MEpP-
CIIEKTHBHBIE BOBMOKHOCTH MIPUMEHEHHSI pacrapajieIMBaHus BBIYUCICHUH Ha rpaduuecKue spa.

KuroueBrble cjI0Ba: ypaBHEHUS MEJIKOM BOABI, aJallTUBHOE U3MENBICHUE CETOK, kBasurazoquHamudeckue (KI'[) ypasne-
HUS, peTyIsIpU30BaHHbIe YpaBHEHUs Mekoi Bonsl (PYMB), AMReX

®uHancupoBanue. PaboTa BEITIONHEHA MTPH TTOIePKKe MOCKOBCKOTO IIeHTpa (pyHAaMEHTAITBHON U MIPUKIIATHON MaTe-
Mmaruky. CortanieHrie ¢ MUHHCTEPCTBOM HayKH | BhIcIIero oopasosanus PO Ne 075-15-2022-283.

Jas mutupoBanus. byt 1.U., Kuprommna M.A., EnuctpatoB C.A., Enuszaposa T.I'., Tunsxos A.Jl. Pemarens ¢ agan-
THBHBIM H3MEJBYCHHEM CETOK Ul PEryisipH30BaHHBIX ypaBHEHUH Menxoi Bousl. Computational Mathematics and
Information Technologies. 2024;8(2);9-23. https://doi.org/10.23947/2587-8999-2024-8-2-9-23

Introduction. Hydro- and gas-dynamics simulations require increasingly precise algorithms and detailed computational
grids, which consequently demand substantial computational resources, including methods for parallel computing on GPU
cores. Therefore, there is a need to develop a new solver with adaptive mesh refinement (AMR) based on open platforms.
This approach offers several advantages over the development of custom codes. Firstly, open platforms typically provide
well-established and thoroughly tested frameworks, endorsed by the broader scientific community, reducing the risk
of errors and enhancing overall reliability. Secondly, the use of open platforms promotes functional compatibility and
reusability, ensuring seamless integration with other tools and facilitating collaboration among researchers. Thirdly,
employing existing open platforms can significantly reduce development time and costs, as these platforms often offer
a wide range of functionalities, from data processing to visualization and parallel computing. Fourthly, open platforms
benefit from continuous development and support from the user community, leading to regular updates, bug fixes, and
performance improvements. This contrasts with custom codes, which often depend solely on the resources and expertise
of the individual or team that created them.

Among the available open-source software, AMReX was selected as the most optimal framework. AMReX enables:

1. The use of adaptive mesh refinement (AMR) technology.

2. Parallel computation on GPU cores.

3. The immersed boundary method for simulating solid bodies in flow.

4. The construction of structured grids.
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5. Integration into The High Performance Software Foundation, established by the Linux Foundation in 2023 [1],
ensuring extensive support and ongoing development of this software package.

Numerical simulations of gas dynamics problems have already been conducted using AMReX, including comparisons
between AMReX and OpenFOAM [2]. Thus, it was decided to implement a solver for hydro- and gas-dynamics problems
based on the quasigas dynamic (QGD) equations within the AMReX framework. A similar solver has already been
implemented in OpenFOAM [3, 4] under the general name QGDsolver, demonstrating high efficiency. Unfortunately,
as previously noted, OpenFOAM [5] lacks the capabilities for parallel computation on GPU cores and adaptive mesh
refinement.

This paper describes the implementation of the QGD algorithm in AMReX in a simplified form. The simplification
involves a barotropic variant of the gas dynamics equation system, which allows for the elimination of the energy equation
and the equation of state. Under certain assumptions, this barotropic variant takes the form of shallow water equations. It
is worth noting that the implementation of the SWqgdAMR solver in the AMReX software package is a key step towards
further expanding the suite of solvers based on QGD equations.

The QGD approach itself has been developed for over 30 years for gas dynamics and incompressible flow prob-
lems [6—10]. In recent years, the QGD approach has been implemented for shallow water approximation problems [11-16].

Mathematical Model and Numerical Method. Regularized Shallow Water Equations (RSWE). The RSWE can
be expressed in vector form, in the absence of external forces and assuming a flat bottom, as follows:

%+V-jm=0,
ey
Ahu) . gh’
. v =
o +V-(j, ®u)+ > VI,

where / is the water layer thickness; j, = & (u — w) is the mass flux density vector; u is the velocity vector; g is the
acceleration due to gravity; IT = I1 .+ II QGDis the stress tensor; I is the Navier-Stokes viscous stress tensor; w, .
are QGD terms; and ® denotes the tensor product. Here, the nabla operator acting on a scalar denotes the gradient, on a
vector denotes the divergence, and on a tensor denotes the covariant derivative: VI = y[yﬁ: Vo Ty The form of RSWE
considering the shape of the bottom and external forces can be found in [11-16].

Discretization of Regularized Shallow Water Equations.
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Fig. 1. Numerical stencil. The values of variables 4 and u are assigned to the cell centers with coordinates (i, /)
The component-wise form of the QGD shallow water equations is as follows:
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To discretize the equations spatially, we take into account the values at the half-cell points of the grid (Fig. 1):
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Similarly, discretization of velocity components at half-cell points is recorded. Discretization of Mass Flux:
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The regularization parameter of the algorithm
aA,

N @)
g

is calculated as

T =T,

3)

where o is a tuning parameter between 0 and 1; g is the acceleration due to gravity. A similar discretization is applied
for terms 7., 7,,. The time step on the base computational grid is chosen to satisfy the stability condition for the explicit
scheme, expressed as the Courant condition (Courant number 0 <3 <1):
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Discretization of the mass conservation equation:
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Discretization of the momentum balance equations:
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Implementation in AMReX. The numerical solution of the shallow water equations is implemented in C++ using
the open-source software AMReX. This software was chosen as the foundation because it facilitates ready-to-use
adaptive mesh refinement (AMR) logic and offers straightforward portability of computations to GPU cores via macros,
significantly reducing computational time.

Figure 2 shows the structure of the developed software.

The main solver class, AmrSWQGD, is declared in the file AmrSWQGD.H and implemented in the file AmrSWQGD.cpp.
It inherits from the AmrLevel class, defined in the AMReX core. Inheriting from this class allows straightforward adaptive
mesh refinement across multiple levels.
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AMReX AmrLevel.H

AmrCore/ AMReX AmrH
AMReX Src/
Base/ AMReX AmrLevelBld.H
AMReX ParmParse.H
- GNUmakefile
Make.QGD Make.package
SWqgdAMR/ Exec/
Task1/ inputs

AmrSWQGD.H / .cpp Taskl_fillBC.cpp

main.cpp Task]_init.cpp

SWQGD _advance.cpp
Source/

SWQGD fillBC.cpp
SWQGD _init.cpp
SWQGDLevelBld.cpp

Fig. 2. Solver structure

The solver iteration logic is defined in the file SWQGD_advance.cpp within the advance method. In this method,
a ParallelFor loop updates the fields h, ux and uy at each iteration. Here, huOld is the container for old variables, and
huNew is for new variables. Since the solution occurs on a multi-level grid (Fig. 3), where each level has its own refinement
(level 0 is the coarsest grid, and higher levels have increased accuracy), each level introduces its own time step (Fig. 4).

For example, if the grid has two levels, 0 and 1, and the grid at level 1 is twice as fine in each direction as at level
0, then one iteration of the solution proceeds as follows: calculations are performed at level 0 with a time step dt, two
iterations of calculations are performed at level 1 with a time step dt/2, and then the grids are synchronized. This algorithm
enhances computational accuracy.

It is important to note that it is not necessary to refine the entire grid at each level, only specific parts of it. To achieve
this, the solver class defines the errorEst method in the file AmrSWQGD.cpp. This method takes a reference to an instance
of the TagBoxArray container. Using a ParallelFor loop, each grid cell is examined and marked for refinement if it meets
certain conditions (defined within an if statement). Additionally, some surrounding cells are marked for refinement. Cells
that do not meet the condition are marked with the clearval tag and will not be refined.

The computational tasks themselves are located in the Exec directory, which contains the inputs files with initial and
boundary conditions.

The inputs file contains the settings for the solution, including various parameters that control the behavior of the
solver. Here are the key parameters and their descriptions:

* max_step: The maximum number of iterations;

* stop_time: The computational time in seconds at which the solution stops. Essentially, the calculations continue until
either the number of iterations exceeds max_step or the computational time reaches stop_time;

* geometry.is_periodic: An array of three boolean variables (e.g., 0 0 0, 0 1 1, or 1 0 1) that determine whether the
boundaries in each direction are periodic (1) or not (0);

* geometry.coord_sys: The coordinate system used for the solution. The recommended value is 0, which corresponds
to the Cartesian coordinate system. There is no guarantee that the solver will work correctly in other coordinate systems;

* geometry.prob_lo: The xyz coordinates of the lower left corner of the physical rectangular domain (e. g., 0.0 0.0 0.0);

* geometry.prob_hi: The xyz coordinates of the upper right corner of the physical domain (e.g., 10.0 10.0 1.0);

« amr.n_cell: An array of three integers representing the grid resolution in each direction at level 0 (e.g., 512 512 1);

» amr.max_level: An integer indicating the maximum allowable level of grid refinement;

» amr.ref ratio: The refinement ratio of the grid levels;

» amr.regrid_int: An integer representing the number of steps after which the grid should be regenerated;

» amr.max_grid_size: The solver divides the grid into domains, with the size of each domain not exceeding max_grid_size
in each direction;
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» amr.plot_int: The solver writes output to files every plot int iterations.

The boundary conditions are defined in the structure SWQGDBCEFill located in the file Taskl fillBC.cpp (where
Task]1 is the task name and can be changed to any other name). In this structure: ilo and ihi represent the left and right
boundaries of the computational domain, respectively, jlo and jhi represent the bottom and top boundaries, respectively.
The equations are solved for the variables 4, u_and u , which represent the water column height, the velocity in the
x-direction, and the velocity in the y-direction, respectively. The variable dest is a multidimensional array that stores the
values of all variables throughout the computational domain. To access the variable 4 at cell (i, j, k) you use dest(i, j, k, 0).
To access the variable ux in the same cell, you use dest(i, j, k, 1), and for uy, you use dest(7, j, k, 2). ince we are dealing
with 2D equations, the index £ is assumed to be 1.

Initial conditions are set in the file Task1 init.cpp. Here, the variable snew[bi] acts as a container similar to the
dest container in the boundary conditions structure. Initial conditions are computed in a loop using amrex::ParallelFor.
This loop, along with the macro-lambda function AMREX GPU_DEVICE, allows for the parallel computation of initial
conditions across the entire domain on GPU cores.

=0
" n=0
n=1
At
n=1
n=2 AY2 A2
n=2
At/4 At/4 At/4 At/4
Fig. 3. Adaptive Mesh Refinement Algorithm Fig. 4. Time Step Splitting Algorithm in Subcycle

To compile the program, navigate to the task folder (Taskl) and then run the command make —j n in the terminal,
where 7 is the number of cores for parallelization. To run the utility without parallelization, simply run make. After
make completes, a file named main2d.gnu.MPL.ex (the name may vary slightly) will appear in the folder. To start the
calculation, execute the following command in the terminal: mpiexec —np n ./main2d.gnu.MPL.ex inputs, where 7 is the
number of cores for parallelization. This will start the computation.

Results. Two 2D problems are used for the validation and verification of the developed solver:

The dam break problem, for which an analytical solution is well known.

The collapse of two liquid columns of different heights.

Two-Dimensional Circular Dam-Break Problem. The problem of liquid column collapse or the breakthrough of

a circular dam (Circular Dam-Break) is widely used in the validation and verification of new solvers [17-20]. Consider
a 2D plane with dimensions 40x40 m, where at the center resides a liquid column with height 2 = 2.5 m and radius
R=2.5m. The height of the liquid in the rest of the domain is /1= 0.5 m (see Fig. 5). The computational domain is divided
into 40,000 uniform cells, i. e., 200 cells in each direction. The time step is chosen as A= 10* s, and the calculation is
carried out until time ¢t =4.7 s.

Visualization in Figure 6 illustrates the liquid column collapse. Initially, the wall is removed, allowing the water to
move in all directions. As the circular shock wave propagates outward, a rarefaction wave moves inward into the original
cylinder until it completely converges at the center of the computational domain, where it reflects, causing a height
gradient and hence a secondary shock wave. Results of numerical experiments compared with the analytical solution from [19]
at time ¢ = 4.7 s are shown in Fig. 7. Panel (a) of Fig. 7 demonstrates the dependence of the solution on the algorithm
tuning parameter a. The optimal value is o = 0.2. Panel (b) of Figure 7 illustrates the convergence of the solution with
grid refinement. The characteristic Courant number is 0.2.

An example of the adaptive mesh refinement algorithm can be seen in Figure 8. Depending on the chosen adaptation
criterion (in our case, the gradient of the water column height), the mesh is refined across levels (in our case n, =4, where
n_is the maximum level in the current calculation), significantly accelerating the computation. Detailed investigation is
presented in the section on performance evaluation of the SWqgdAMR solver.
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Fig. 8. Visualization of Adaptive Mesh Refinement Algorithm at o = 0.2 at time ¢ = 3 s. The first image shows
the block decomposition, while the second image depicts the adaptive mesh

The collapse of two different-height liquid columns problem allows the solver’s capability to reproduce complex flow
structures to be tested, similar to the previous test. Considered is a 2D plane of size 2000%2000 m, with the first water
column located at (875.0) having a radius R, = 125 m and height /, = 15 m. At coordinates (1375.0) the second water
column has radius R, = 125 m, 4, = 20 m, with the water level in the remaining area set to 4, = 10 m (see Fig. 9). The
computational domain is divided into 160,000 uniform cells, i. e., 400 cells in each direction. The time step is chosen as
At=10"*s, and the computation concludes at time ¢ = 30 s.

Fig. 10 and 11 visualize the collapse and subsequent interaction of the two liquid columns. Initially, the walls are
removed, allowing water to move in all directions from each column. Subsequently, two shock waves collide, resulting in
significant deformation of the wave fronts.

250m 250 m
25
h [m]
20
2000 m 15
10
5 x1 x2 X [m]
0 500 1000 1500 2000
2000 m
a) b)

Fig. 9. Initial Conditions of the Liquid Column Collapse Problem: a — geometry of the computational domain;
b — height of the liquid column along the white line, x1 = 875 m, x2 = 1375 m
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t=0 t=5 t=10

t=15 t=25 t=35

Fig. 10. Visualization of the collapse of two liquid columns over time o= 0.2, A= 10"*s.
Time in the figure is in seconds
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Fig. 11. Plot of the collapse of two liquid columns over time in the central cross-section.
Time in the figure is in seconds, Ax = 1024, 0.= 0.2, At=10"*s

Performance of the SWqgdAMR Solver. One of the crucial criteria in developing a new solver is assessing its
performance and the efficiency of parallelization. For this purpose, the problem of the collapse of two different-height
liquid columns was utilized. A computational grid of 1.048.576 cells, a time step of At = 10 s, and computation
completion at ¢ = 0.1 c. Performance evaluation was conducted on an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz with
8 cores, and the results are presented in Table 1.

Table 1

Performance Evaluation of the SWqgdAMR Solver

Number of Cores Number of Cells Computation Time ¢, s Efficiency, %
1 1 048 576 71 -
2 524 288 40 89
4 262 144 27 66
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Using the same processor with 2 cores, acceleration of computations was investigated through the use of adaptive
mesh refinement technology. The data are presented in Table 2. The number of computational cells at .= 0 is 4 194 304,
with a base grid at n, =1 of 1 048 576, atn, =2 of 262 144, atn = 4 base computational grid of 65 536. In all
cases, flow resolution remains constant, with quality varying depending on the adaptation criterion (an example of mesh
refinement algorithm operation is shown in Figure 8). In our calculations, the gradient of the liquid column height was
chosen as the mesh adaptation criterion.

Table 2

Computation time in seconds depending on levels of mesh adaptation

Number of Cores | Number of Cells n =0 n =1 n_ =2 n_ =4

amr amr amr amr

2 4194 304 2288 359 132 41

Thus, the use of adaptive mesh refinement technology allows for significant acceleration of computations. In our case,
acceleration of up to 56 times was achieved. In [21], it was demonstrated that on identical stationary grids, AMReX is
4 times faster than OpenFOAM, indicating that with mesh refinement, speed gains of up to 232 times can be achieved.

Discussion and Conclusions. The AMReX solver for shallow water equations (SWqgdAMR) with adaptive mesh
refinement (AMR) was comprehensively described and tested in this work. Two 2D test cases were used for validation: the
breach of a cylindrical dam and the breach of two cylindrical dams of different heights. The presented solver demonstrated
high efficiency, and the use of adaptive mesh refinement technology accelerated computations by a factor of 56 compared
to computations on a stationary grid.

The SWqgdAMR solver was developed as part of efforts to expand the applicability of regularized equations in
problems requiring significant computational resources and adaptive grids. It represents the first solver based on the
shallow water equations algorithm within the AMReX software framework. The implementation and validation of
SWqgdAMR represent a crucial step towards further expanding the suite of shallow water equations programs. Future
work will include incorporating quasi-gasdynamic equations into AMReX for simulating gas dynamics problems.

In this implementation, the prospective capabilities of leveraging graphics processing unit (GPU) computing for
parallel computation were not tested. Additionally, it is noteworthy that the algorithm could be extended to include
bathymetry, external forces (such as wind force, bottom friction, and Coriolis forces), and consideration of shoreline
mobility during flooding and drying, as has been implemented in individual codes for hydrodynamic simulations.
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Abstract

Introduction. The study of heat interaction processes and the distribution of heat flaxes in the oceans is important for
understanding climate change on Earth. The North Atlantic, which is one of the key components of the global climate
system, plays a significant role in regulating the climate of our latitudes. One of the key tools for analyzing heat
distribution in the oceans is probabilistic analysis. In this work, using mathematical modelling methods, a statistical
analysis of observational data on heat fluxes in the North Atlantic is carried out.

Materials and Methods. The used methods include the analysis of random processes specified by the stochastic
differential equation (SDE) or the Ito equation, approximation of observational data, and solution of the Fokker-
Planck-Kolmogorov (FPK) equation to describe the evolution of the probabilistic distribution of heat in the ocean.
Results. Using mathematical modelling methods, a probabilistic analysis of the distribution of heat fluxes in the North
Atlantic for the period from 1979 to 2022 has been carried out. The results of the study made it possible to establish
patterns of distribution of heat flux in the studied region over the period of time under consideration.

Discussion and Conclusions. The results may be useful for further study of climate processes in the North Atlantic, as
well as for the development of resource management and environmental protection strategies.

Keywords: Random process, stochastic differential equation, Fokker-Planck-Kolmogorov equation, heat flow
Funding information. The research was carried out within the framework of a state assignment, topic No. FMWE-2024-0016.

For citation. Belyaev K.P., Kuleshov A.A., Novikova A.V., Tuchkova N.P. Probabilistic analysis of heat flux distribution
in the North Atlantic for 1979-2022. Computational Mathematics and Information Technologies.2024;8(2):24-32.
https://doi.org/10.23947/2587-8999-2024-8-2-24-32

Opueuﬁaﬂbﬂoe amnupudeckoe uccnedosanue

BeposiTHOCTHBIN aHAJIN3 pacnipe/iejieHus TOTOKOB TerJia
B CeBepHoii ATiantuke 32 1979-2022 roasi
K.II Beasies! , A.A. Kyaemon? [, A.B. HoBukosa®, H.II. Tyukosa*

"MHcrutyT okeanonoruu uM. ILIT. [uposa Poccuiickoit akagemun Hayk, I. Mocksa, Poccuiickas ®@enepartis

“MHCTUTYT NpHUKIaaHONH MareMaTuku uM. M.B. Kennpima Poccuiickoii akanemun Hayk, . MockBa, Poccuiickas @eneparms
3®uan MoCKOBCKOTO rOCYIapCTBEHHOTO yHUBepcHTeTa iMeHu M.B. Jlomonocosa B CeBacrororie, . CeBacTorosb,
Poccuiickas ®eneparus

‘®enepabHbIi HCCeOBaTENIbCKHUI LeHTp «HdOpMaTHKa 1 yrpaBieHne» POCCHIICKON akaJeMuH Hayk,

. Mocksa, Poccuiickas ®eneparus

Mandrew_kuleshov@mail.ru

AHHOTAIMSA
Beeoenue. Vzyuenne nporeccoB TeII000MEHa U paCIIPEICIICHHUS MOTOKOB TeIlIa B OKeaHaX MMEET BAKHOE 3HAYCHHUE IS
MMOHMMAaHHS KIMMAaTHYeCKUX M3MeHeHn Ha 3emie. CeBepHas ATIaHTHKA, SBISIOMANCS OJXHUM H3 KITIOYCBBIX KOMIIO-

© Belyaev K.P.,, Kuleshov A.A., Novikova A.V., Tuchkova N.P, 2024


https://doi.org/10.23947/2587-8999-2024-8-2-24-32
mailto:andrew_kuleshov%40mail.ru?subject=
https://doi.org/10.23947/2587-8999-2024-8-2-24-32
mailto:andrew_kuleshov%40mail.ru?subject=
https://orcid.org/0000-0003-2111-2709
https://orcid.org/0000-0003-2111-2709
https://orcid.org/0000-0002-4203-9953
https://orcid.org/0000-0002-4203-9953
https://orcid.org/0000-0001-5357-9640
https://orcid.org/0000-0001-5357-9640
https://crossmark.crossref.org/dialog/?doi=10.23947/2587-8999-2024-8-2-24-32&domain=pdf&date_stamp=28.06.2024
https://creativecommons.org/licenses/by/4.0/

Belyaev K.P. et al. Probabilistic analysis of heat flux distribution in the North Atlantic for 1979-2022

HEHTOB II00AbHON KIMMATHUECKOW CHCTEMBI, HTPAET CYIIECTBEHHYIO POJIb B PETYINPOBAHUY KIMMAaTa HAIINX IIHUPOT.
OnmHUM M3 KITIOYEBBIX WHCTPYMEHTOB JUIS aHAJIM3a PACTIpeIe]ICHHUs TeIla B OKeaHaxX SIBJISCTCS BEPOSITHOCTHBIM aHaIU3.
B HaCTOHlU,eﬂ pa60Te METOAaMHU MAaTCMaTHYCCKOTO0 MOIACIUPOBAHUS IPOBOAUTCI CTAaTUCTUYECKUN aHaJIN3 JaHHBbIX Ha-
OroneHNH TETIOBBIX MTOTOKOB B CeBepHON ATIIaHTHKE.

Mamepuanst u memoopt. Vicnions3yemple METOIBI BKIIIOYAIOT B ce0sl aHANIN3 CITyYaiHBIX IPOLECCOB, 33aJaHHBIX CTO-
xactuueckuM nuddepenimanbapM ypasHenueM (CAY) unu ypaBHeHuem WTo, anmpoKCUMAIIUIO TaHHBIX HAOTIOICHUN
u pemenne ypasaenus: ®oxkepa-Ilnanka-Kommoroposa (PITK) mms onrcanms 3BOMIONNH BEPOSTHOCTHOTO pacmpeiese-
HUSI TETIJIa B OKEeaHe.

Pezynemamot uccnedosanus. C NOMOIIBIO METOIOB MAaTEMaTHYE€CKOT0 MOEIMPOBAHUS ITPOBEICH BEPOSTHOCTHBIN aHa-
JU3 pacIpeieneHns moTokoB Teria B CeBepHoit ATmanTuke 3a nepuon ¢ 1979 mo 2022 roasl. Pe3ynsraTsl neciegoBaHus
TTO3BOJIMITM YCTAHOBHUTH 3aKOHOMEPHOCTH PAacIpee]IeHNs TOTOKOB TEIla B M3y4aeMOM PETHOHE 33 paccMaTpHUBacMbIl
nepuo] BpEMEHU.

Oécyscoenue u 3axniouenus. IlonydeHHbIe pe3yabTaThl MOTYT OBITH IOJIC3HBIMHU JUIS JTAIIBHEHIIIETO U3y4eHHs KIIMMa-
THUYECKHX MpoueccoB B CeBepHOIl ATIaHTHKE, a TaKKe I pa3pabOTKH CTpaTeTruil YIpaBICHHUs pecypcaMu 1 3aluThl
OKpY>KaroIlen Cpesbl.

KaroueBble cjoBa: ciaydailHbIH Ipolecc, croxacTuieckoe nuddepeHnnansHoe ypaBHeHHe, ypaBHeHne Pokkepa-
[Inanka-Konmoroposa, noTok Tera

®duHaHcupoBaHue. ccienoBanue BEIOJHEHO B paMKax rocyJjapcTBeHHoro 3aaanus, rema Ne FMWE-2024-0016.

Jas uutuposanus. bemses K.II., Kynemos A.A., HosukoBa A.B., TyuxoBa H.I1. BeposTHOCTHEII aHanm3 pacipe-
JeneHust notokoB Teria B CeBepHoit AtmanTuke 3a 1979-2022 ronsl. Computational Mathematics and Information
Technologies. 2024;8(2):24-32. https://doi.org/10.23947/2587-8999-2024-8-2-24-32

Introduction. The study of heat exchange processes and the distribution of heat fluxes in the oceans is crucial for
understanding climate changes on Earth. The North Atlantic, being one of the key components of the global climate system,
plays a significant role in regulating the climate of our latitudes. In recent decades, there has been an increased interest in
studying the temperature regime changes in this region and the interaction between the ocean and the atmosphere due to
the phenomenon of global warming and its impact on climate processes in different parts of the planet.

One of the key tools for studying heat distribution in the oceans is probabilistic analysis. It allows for a quantitative
assessment of the probability of various heat exchange scenarios and reveals trends in climate changes. In the North
Atlantic, the heat flux plays a critical role in shaping the climate conditions of the region, thus conducting a probabilistic
analysis of heat flux distribution for the period from 1979 to 2022 will provide a deeper understanding of the dynamics of
climate processes in this key region.

There are numerous works in this direction; however, each new correct and meaningful study is of great interest from
the standpoint of the methods used and the results of their application to the analysis of specific geophysical phenomena.
Important recent studies in this area include [1]. The dynamics and spatial distribution of heat fluxes in the North Atlantic
are well described, for instance, in [2, 3]. A statistical and quite detailed mathematical analysis of heat fluxes was
previously carried out in [4].

In this study, a statistical analysis of observation data from the ERAS archive [5] was conducted, and numerical solutions
to the Fokker-Planck-Kolmogorov (FPK) equations were constructed based on statistically determined coefficients of the
stochastic differential equation (SDE) (Ito equation) for interannual variability in the North Atlantic from 1979 to 2022.
These results are new and original.

A data sample was taken from the ERAS archive on the distribution of heat fluxes in the North Atlantic for the
period from 1979 to 2022. Drift and diffusion coefficients for interannual variability of heat fluxes were then calculated,
approximated by trigonometric polynomials, and finally, the Fokker-Planck-Kolmogorov equation was numerically
solved with the approximated drift and diffusion coefficients under given initial conditions for the heat flux distribution
function. The article concludes with an analysis of the results and their geophysical interpretation.

Materials and Methods

Mathematical Model. The variation in fluxes was modeled using a stochastic differential equation (Ito equation) [1, 6]:

dX =a(t,X)dt+b(t, X )dw, ¢))

where X (?) is the heat flux at time ¢; dX = X (¢ + df) — X(¥) is the variability (increment) of the heat flux over time df at
a fixed point; a (¢, X), b (¢, X) are the drift and diffusion coefficients, respectively, which depend on time ¢ and the values of
the process X (£); dW is the standard notation for Gaussian “white noise” with zero mean and unit variance, independent of
the process X (£). The data on heat fluxes specified at the nodes of a one-degree grid with a temporal resolution of 6 hours
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from January 1, 1998, to December 31, 2022, were used in the study. The explicit and latent heat fluxes were calculated
using the formulas:

0, =c,pC, (T, -T,)V, )

0,=LpC, (0, -0)V. 3)

In formulas (2) and (3), the heat fluxes are explicitly calculated through the following parameters at the ocean-
atmosphere interface: water and air temperature 7, , T , wind speed modulus V, specific humidity of the surface air Q and
the maximum specific humidity at the ocean surface temperature Q. The coefficients of proportionality in relationships
(2) and (3) are the heat exchange coefficient C, (Schmidt number) and the moisture exchange coefficient C, (Dalton
number). Also present are the latent heat of evaporation L, the specific heat capacity of air at constant pressure c, and its
density p. In this study, the values of the fluxes O,, Q,, were considered already known, and no additional calculations
were required.

The study involves modelling the processes of heat flux variability in the North Atlantic and calculating the drift and
diffusion coefficients at each moment in time using formulas (3). In this study, only heat flux maps for the middle of each
month are provided.

Let the conditional probability be:

P(y|x)=P(X (t+dt)=y| X(t)=x),

if y, x are discrete, and the conditional probability density (Radon-Nikodym derivative) is p (y | X)=p X (t+d)=
=y | x <X (f) = x + dx) and if the process X (¢) is considered continuous. For definiteness, we will consider the process
continuous with the conditional probability density p (¥ | x). To distinguish the process X (¢) from its values, the latter will
be denoted by lowercase letters. To determine the coefficients a (¢, x), b (¢, x) the following formulas are used [6]:

alt,x)=lim,, A%Jg} -x)p (v]x)dy, 4)
b*(t,x)=1im, A%J‘: (vr=xf p(v]x)dy. (5)

Thus, to determine the coefficients a (z, x), b (¢, x) according to formulas (4) and (5), it is necessary to perform the

X . —X_
algorithm described in [1]. The range of values X (¢) from X . () =X  moX (=X toX, =X . +i *% )

i=0,..., Linto L subintervals [X, X ], with X, <X (¢) = x <X and all grid points falling into this interval are fixed. Let
there be m (such points (the intervals should be chosen so that m > 0 for any X i<X(t)=x<X_ (i+1)). Moving to the step ¢ + dt
a similar division of the range of values X (¢) into subintervals [Y,Y ] is made, and from the previously fixed points, only
those points are selected for which Y, < X (¢ +df) =y <Y, for any y. Let there be / such points. Then P (y | x) = I/m. Next,
according to formulas (4) and (5), the coefficients a (¢, x) and b? (¢, x) are calculated.

Fokker-Planck-Kolmogorov Parabolic Equation. As indicated in the previous paragraph, the variability of the
random process is represented as (1). Expression (1) is understood in the integral sense, i. e.

X(z+At)—X(t):Hfta(u,X)dquHftb (e XV ()7 ()],

t t

The coefficients a (¢, x) and b? (¢, x) are calculated according to formulas (4) and (5). Consequently, the equation for
calculating the probabilities of the flux values at a given (climatic) moment in time can be written as

a_p: 8(a (t,x)p)+ 1 62(b2 (t,x)p), (6)
ot ox 2 ox?

where p (¢, x) is the sought probability density at moment ¢ for the flux value x, nd the other notations are as above. Equation
(6) (Fokker-Planck-Kolmogorov equation) is solved under Sommerfeld boundary conditions and a given initial probability
distribution. Analytically, this problem is generally not solvable, but numerically its solution is not particularly difficult.
However, for strongly oscillating coefficients, the numerical solution of this equation leads to significant computational
errors. Therefore, to reduce computational errors, it makes sense to smooth the strongly oscillating coefficients a (¢, x)
and b (¢, x).
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Least Squares Method for Approximating Monthly Coefficients. The coefficient a (¢, x) is approximated as
a trigonometric function:

a(t,x)= A(x)sin (we)+ B (x)cos (wt)+ C (x). (7

This form of the approximating function was chosen because the original drift coefficients and diffusion coefficients
exhibit a pronounced intra-annual oscillatory variability w = 21/12 (m™). hus, this form of approximation is physically
justified.

The parameters 4 (x), B (x), C (x) were determined sequentially using the least squares method. First, the parameter
C (x) was determined as the mean value of the sample:

LS (x)-C (x) = ®)
=18 t:la(t,x) C(x) 0,

and then the parameters 4 (x) and B (x) were determined. This algorithm is well-known in practical applications and
does not require additional justification. After all amplitudes are determined using formula (7), the approximation of the
coefficient a (¢, x) is represented as:

a(t,x)= A(x)sin (wr + ¢ (x))+ C (x). )
The same procedure was applied to approximate the diffusion coefficient b (¢, X)

bA(t,x):D(x)sin(wt+\y(x))+F(x). (10)

Results

Analysis of FPK Equation Coefficients. For equation (6), an implicit difference scheme of second-order approximation [7]
with the smoothed coefficients given by formulas (9) and (10) was implemented..

Figure 1 shows the graphs of the coefficients a (¢, X) and d (¢, x) averaged over a month for a period of 40 years. The
smoothed curves 4 (¢, x), constructed according to formulas (7), with the corresponding amplitudes and phases found by
the least squares method, are shown in red. Figure 1 illustrates the changes in the coefficients a (¢, X) and 4 (¢, x) over time
at flux values X, equal to X (Fig. 1 a), X . (Fig. 1 b) and the average value for the region (Fig. 1 ¢).
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Fig. 1. Changes over time of the drift coefficient a (¢, X) (W/m?*day) and the smoothed coefficient a (z, x)
(red curves) over 40 years: @ — at flux values X, b — at flux values X _, ¢ — at average flux values X

The graphs have a reasonable physical interpretation. In the first graph, the predominance of upward “peaks” and the
attainment of the maximum value of the drift coefficient are noticeable. In the second graph, the “peaks” point downwards,
and the drift coefficient reaches a minimum. In the third graph, a scatter of values from 200 to —200 is noticeable, with the
coefficients themselves averaging around zero.

Similarly, the graphs of the diffusion coefficient b (¢, X) and l;(t,x) look similar (Fig. 2).
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Fig. 2. Changes over time of the diffusion coefficient b (z, x) (W/m?/day) and the smoothed coefficient b (t,x)
(red curves) over 40 years: a — at flux values X, b — at flux values X _ , ¢ — at average flux values X

Based on the calculated values of amplitude, phase, and shift in formula (9) (as functions of only spatial variables),
their maps were constructed. A ready-made map mask of the North Atlantic was used for this purpose.

The maps clearly show the Gulf Stream and the North Atlantic Current (northeast of Iceland), where local maxima of
amplitude (Fig. 3 a), phase (Fig. 3 b), and shift (Fig. 3 ¢) are noticeable. A

The maps for the amplitude, phase, and shift of the diffusion coefficient b (t,x) (see formula (10)) have a similar
appearance, and thus, we will not include them here.
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The free coefficient of the approximated coefficients a
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Fig. 3. Spatial distribution for d (¢, x): a — amplitudes, b — phases, ¢ — shifts

Results of Numerical Calculations of the FPK Equation and Their Analysis. Figure 4 shows the results of the
numerical solution of the FPK equation on January 15 of the years 1979, 1989, 1999, 2009, 2019, and 2022 for the average flux

value on the corresponding date. The initial condition was set according to the formula p (0, X) =1/ 1(275)1/2 o Jexp (—xz/ 26’ )
(Gaussian initial density), where ¢ was set as the difference between the maximum and minimum flux values.

From these figures, it is evident that the density plots are generally reasonable, accurately reflecting the dynamics of
the equation’s coefficients. Their maximum value oscillates from 0.18 to 0.01, and their average value also oscillates from
0 (at the beginning and end of the calculation) to 50 (months) in the middle of the calculations.

The graphs are not symmetrical, and the distribution of the FPK equation solution significantly differs from the normal
distribution. The pulsations of the curves at their upper parts are explained by the coarse spatial resolution of the grid
(one degree-approximately 100 km) on which the equation’s coefficients are located. Nevertheless, these distributions are
physically reasonable and can be used in applications for analyzing climate data and making climate predictions.
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Fig. 4. Solution of the Fokker-Planck-Kolmogorov equation with approximated coefficients
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Discussion and Conclusion. In this study, probabilistic analysis of heat flux distribution in the North Atlantic from
1979 to 2022 was conducted using mathematical modelling methods. The research results allowed for the establishment
of quantitative and qualitative patterns of heat flux distribution in the studied region over the considered time period. The
obtained results can be useful for further studying climate processes in the North Atlantic and for developing resource
management and environmental protection strategies.

It should be noted that this research has its limitations, including the limited availability of data and the assumptions
underlying the applied models. Further research in this area may include extending the time range and improving analysis
methods to obtain more accurate predictions and interpretations, such as investigating multidimensional (interdependent)
quantities and finding their joint probability distributions.
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Abstract

Introduction. This work is devoted to the mathematical modelling of extreme sea level fluctuations in the Azov Sea
using remote sensing data. The aim of the study is to develop and apply a mathematical model that allows more accurate
prediction of surge and seiche events caused by extreme wind conditions. The relevance of the work is due to the need to
improve the forecasts of hydrodynamic processes in shallow water bodies (such as the Azov Sea), where such phenomena
can have significant economic and ecological consequences. The goal of this work is to develop and apply a mathematical
model for predicting extreme sea level fluctuations in the Azov Sea caused by wind conditions.

Materials and Methods. The study is based on the analysis of remote sensing data and observations of wind speed and
direction over the Azov Sea. The primary method used is mathematical modelling, which includes solving the system
of shallow water hydrodynamics equations. Wind condition data were collected from November 20 to 25, 2019, during
which catastrophic sea level fluctuations were observed. The model considers the components of water flow velocity,
water density, hydrodynamic pressure, gravitational acceleration, and turbulence exchange coefficients.

Results. The modelling showed that prolonged easterly winds with speeds up to 22 m/s led to significant surge and seiche
fluctuations in sea level. The maximum amplitudes of fluctuations were recorded in the central part of the Taganrog Bay,
where the wind direction and speed remained almost constant throughout the observation period. Data from various
platforms located in different parts of the Azov Sea confirmed a significant decrease in water level in the northeast and an
increase in the southwest.

Discussion and Conclusions. The study results confirm that using mathematical models in combination with remote
sensing data allows more accurate predictions of extreme sea level fluctuations. This is important for developing
measures to prevent and mitigate the consequences of surge and seiche events in coastal areas. In the future, it is
necessary to improve models by including additional factors such as climate change and anthropogenic impact on the
Azov Sea ecosystem.

Keywords: mathematical modelling, sea level fluctuations, remote sensing data, surge and seiche events,
hydrodynamics
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OpueunaﬂbHoe amnupudeckoe ucciedosamue

MaTemaTH4yecKoe MOAEC/JIMPOBaAHUEC KaTaCTp()(l)l/l‘leCKl/IX CrOHHO-HATOHHBIX SIBJIEHHH A30BCKOI0
MOpPH ¢ HCIIOJB30BAHUEM JAaHHBIX TUCTAHIUOHHOIO 30HAUPOBAHUSA
E.A. llpouenxo' 3, H.J, IManacenko'? , C.B. [Ipounenko’

'Taranporckuit nHcTUTYT HMeHH A.IT. Yexosa (¢punuan) PI'DY (PUHX), r. Taraupor, Poccuiickas ®enepanust
2JIOHCKOM rocyAapCcTBEHHBII TEXHHUIECKUI yHUBEPCHTET, I. PoctoB-Ha-Jlony, Poccuiickas Meneparms
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AHHOTaN NS

Beeoenue. Pabora mocesimeHa MaTeMaTHIeCKOMY MOJICITHPOBAHHIO AKCTPEMaJIbHBIX KOJIeOaHUI yPOBHS A30BCKOTO MOPS
C HCIOJIb30BaHUEM JIaHHBIX JUCTAaHLIMOHHOIO 30HAMpOBaHUs. Llenb ncciaeqoBanus 3aKitoyaeTcsi B pa3pabOTKe U MpH-
MCHECHUM MaTeMaTH4eCKOU MOJCJ/IU, KOTOpas MmO3BOJISACT 60.]'[66 TOYHO MPOrHO3UPOBATH CTOHHO-HAIr'OHHBIC ABJICHUSA, BbI-
3BaHHbIE IKCTPEMAIIBHBIMU BETPOBBIMH YCIOBHUSAMH. AKTYalIbHOCTh PabOThI 00yCIIOBIEHA HEOOXOANMOCTBIO YITyUIICHHS
IIPOTHO30B THIPOJMHAMHYECKHX IPOLECCOB B MEIKOBOAHBIX BOJOeMax (TakumX, Kak A30BCKOE MOpe), IJe IoJo0HbIe
SIBJICHUS] MOTYT UMETh 3HaUUTENIbHbIE DKOHOMUYECKHE U SKOJIOTHYECcKHe nocnencTsus. Llenb qanHoi paboTsl — pa3paboTka
1 IPUMEHEHNE MAaTeMaTHYECKOW MOJEIH AJISl MPOTHO3UPOBAHMS SKCTPEMAIbHBIX KoJeOaHUH ypOBHS A30BCKOTO MODS,
BBI3BAHHBIX BETPOBBIMH YCIOBHSIMHU.

Mamepuanst u menoowi. ViccnenoBanue 0CHOBBIBAETCS Ha aHAJIM3€ JaHHBIX JUCTAHIIMOHHOTO 30HIMPOBAHUS U Halmozie-
HUH 32 CKOPOCTBIO M HAIIPABICHUEM BETpa HaJl A30BCKHM MOpEM. B kauecTBe OCHOBHOTO METOJa UCIIOIb3yETCS MaTeMa-
TUYECKOE MOJEIUPOBAHHUE, BKIIIOYAIOIIEE PELLICHUE CUCTEMBl YPaBHEHHUI BOTHOBOM T'MAPOAMHAMUKHU JUIS MEIKOBOAHOTO
BozioeMa. J{aHHBIE 0 BETPOBBIX YCIOBUSIX ObUTH coOpanbl B iepuof ¢ 20 mo 25 Hostopst 2019 roxa, korna HaOmoOnaIMCh
KaracTpodudeckne KoebaHns ypoBHs MOpsi. MoAENb yUIUTHIBAET KOMIIOHEHTHI CKOPOCTH BOZHOTO MOTOKA, INIOTHOCTH BO-
JTHOM cpenbl, THAPOANHAMHUYECKOE JIaBJICHUE, yCKOPEHHE CBOOOTHOTO Na/ieHNs U Ko duIeHTs TypOyJIeHTHOTO 0OMeHa.
Pe3ynomamut uccnedosanua. MojaenupoBaHue 1OKa3ano, 4To MPOJODKUTEIbHOE NeHCTBHE BOCTOUHOTO BETpa CO CKO-
POCTBIO A0 22 M/C IPUBEIIO K 3HAYUTEIEHBIM CTOHHO-HATOHHBIM KOJIEOAHHUSIM YPOBHS MOPS. MaKCHMaIbHbIE aMITTTUTY (b1
KoseOaHuii ObUTH 3aUKCHPOBaHBI B EHTPaIbHON YacTH TaraHpOrckoro 3ajiMBa, I7Je HalpaBiIeHHE W CKOPOCTh BETpa
OCTaBaJIKCh MPAKTHUCCKHA HEU3MEHHBIME B TCUCHUE BCETO Mepro/a HadroneHui. JlaHHbIe ¢ pa3IndHbIX mw1aTdhopM, pac-
MIOJIOKEHHBIX B PA3HBIX 4acTAX A30BCKOTO MODs, MOATBEPAMIM HAJIHMYUE 3HAYMTEIBHOTO CHUXKEHUS YPOBHS BOJIBI Ha
CEBEPO-BOCTOKE U MOBBIIIEHNS HA FOro-3amnase.

Obcyscoenue u 3aknr0yenus. Pe3ynpraTel HCCIIEIOBAaHMS OATBEPXKAAIOT, YTO UCIONb30BaHUE MAaTeMaTHYECKUX MOJie-
JIeH B COYETaHNH C JAaHHBIMH ANCTAHIIMOHHOTO 30HIMPOBAaHMS ITO3BOMISET O0NIee TOUHO ITPOTHO3UPOBATH SKCTPEMAIIbHBIC
KoJIeOaHusl YPOBHSI MOpPsl. DTO MMEET Ba)KHOE 3HAUYEHHE ISl pa3paOdOTKU Mep IO NPEeRyNpexIeHUI0 U MHUHUMU3AIUN
HOCJIEICTBUI CTOHHO-HATOHHBIX SIBIICHUH B IPUOPEXKHBIX paiioHax. B nanpHeiinieM He0OX0AMMO COBEPILIEHCTBOBATH MO-
JIeTIH, BKITFO4asl JOTIOJIHUTENBHBIE (PAKTOPHI, TAKHE KaK N3MEHEHHE KIMMAaTHYECKUX yCIOBUH W aHTPOIIOTCHHOE BO3JCH-
CTBHE Ha KOCHCTEMY A30BCKOrO MOPAI.

KiroueBble c10Ba: MaTeMaTH4eCcKOe MOJCIIMPOBAHUC, KoJie0aHus YPOBHA MOpPs, AaHHBIC JUCTAHIIMOHHOI'O 30HAUPOBA-
HUs, CTOHHO-HAarOHHLIC SIBJICHUA, THAPOAUHAMUKA
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KUX CTOHHO-HarOHHBIX SIBIICHHIT A30BCKOTO MOPS C UCHIOJIb30BAHUEM JaHHBIX TUCTaHIIMOHHOTO 30HIupoBanus. Computational
Mathematics and Information Technologies. 2024;8(2):33—44. https://doi.org/10.23947/2587-8999-2024-8-2-33-44

Introduction. The Azov Sea, being a shallow water body, is subject to significant water level fluctuations under the
influence of wind conditions. These fluctuations can have serious economic and ecological consequences for coastal areas,
including flooding and infrastructure damage. Despite the importance of understanding and predicting such phenomena,
existing models do not always account for all necessary factors, leading to insufficient accuracy in forecasts [1-5].

The aim of this study is to develop and apply a mathematical model to predict extreme fluctuations in the Azov Sea
level caused by wind conditions. The relevance of the study is driven by the need to create accurate and reliable tools
for predicting surge and seiche events, which will enable the development of effective measures to prevent and mitigate
their negative consequences. Given the increasing frequency of extreme weather events due to climate change, the task of
developing such models becomes particularly important.

Catastrophic surge and seiche events in the Azov Sea pose a serious threat to coastal settlements and the region’s
ecology. Predicting and preventing these events requires mathematical modelling. For the effective operation of these
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models, not only field data but also remote sensing data (RSD) of the Earth are needed. In this work, the authors consider
various approaches to the mathematical modelling of surge and seiche events in the Azov Sea based on remote sensing data.

The scientific novelty of the work lies in the use of remote sensing data combined with advanced mathematical
modelling methods. This allows for a more accurate accounting of dynamic changes in the water environment and wind
conditions, enhancing the predictive capability of the models. The work presents new approaches to approximating
turbulence exchange coefficients and organizing computational experiments, which significantly improves the accuracy
and reliability of the obtained results.

Materials and Methods

1. Research Object. Throughout the year, weak winds predominate over the Azov Sea. Their occurrence rate is
60-70 %, the share of moderate winds is 20 %, and strong winds about 10%. Winds with speeds of 20—-24 m/s can occur at
any time of the year, while those over 24 m/s are only observed from October to April. Winds over 14 m/s predominantly
have a northeast and east direction. From November 20 to November 25, 2019, the Azov Sea experienced catastrophic
surge and seiche fluctuations caused by the prolonged action of easterly winds. An analysis of the wind rose, calculated for
the central part of the Taganrog Bay from November 19 to 25, shows that the wind direction and speed remained almost
constant (Fig. 1). The maximum wind speed reached 19-22 m/s, while the prevailing winds for the coast and open part
of the Azov Sea are 4.5-5.5 m/s on the coast and 7.5 m/s in the central part. Data from November 27, 2019, indicated
a gradual decrease in wind speed and, consequently, a gradual decrease in the amplitude of surge and seiche fluctuations.

Wind speed, m/s
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Fig. 1. Wind rose for the central part of the Taganrog Bay from November 19 to 25, 2019

Wind speed primarily depends on the barometric gradient and the characteristics of the underlying surface. The latter
factor causes a significant increase in the average wind speed over the open sea compared to the average wind speed on
the coast. This increase is due to the low friction of the air flow over the water surface, resulting in wind speeds recorded
at coastal stations being somewhat lower than those recorded offshore.

The coastal array of monthly average sea level values includes monthly average data on sea level measured by a gauge
at coastal hydrometeorological stations in the Azov Sea. Data from four platforms located in the northeastern part of the
sea (Taganrog, Ochakov Spit, Yeisk Port, Dolzhanskaya) show a significant decrease in water level in November 2019 [6].

Data from the Mysovoye platform, located at Cape Kazantip in the southwestern part of the sea, show a diametrically
opposite situation — a significant rise in water level was observed in November.
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Fig. 2. Depth map of the Azov Sea with marked hydrometeorological stations: Taganrog (1), Ochakov Spit (2),

Yeisk Port (3), Dolzhanskaya (4), Mysovoye (5)
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Fig. 3. Sea level at coastal hydrometeorological stations Taganrog, Ochakov Spit, Yeisk Port, Dolzhanskaya in 2019
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Fig. 4. Climate data on hydrometeorological conditions of the coastal zone of the Azov Sea: sea level at coastal

hydrometeorological station Mysovoye in 2019
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Fig. 5. Average and maximum wind speeds in 2019 in the northeastern part of the sea (top graph) and southwestern part
(bottom graph) of the Azov Sea

2. Problem Statement. Modelling of surge and seiche processes is based on solving the system of shallow water wave
hydrodynamics equations (written in Cartesian coordinates x, y, z) [7-8]:

’
’

1 ’ ’
r ’ ’ ’ ’ ’ ’
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In equations (1) and (2), the following notations are used: é; =— u, v, w are the components of the water flow
Ox

velocity in a shallow water body; p is the water density; P is the hydrodynamic pressure; g is the gravitational acceleration;
u, v are the coefficients of turbulent exchange in the horizontal and vertical directions, respectively.

Lett=p, Cd |w|w be the tangential stress vector for the free surface, where Cd._ is the dimensionless surface resistance
coefficient, which depends on wind speed (Cd = 0.0026), w is the wind speed vector relative to the water, and p, is the
atmospheric density. For the bottom, the tangential stress vector is given considering the water movement t=p_ Cd,|V|V,
Cd, = gk’/h'?, k is the group roughness coefficient (k= 0.04), 1 = H + 1 is the depth of the water area, H is the depth to
the undisturbed surface, and 7 is the height of the free surface relative to sea level.

We use an approximation that allows constructing a non-uniform depth-dependent vertical turbulent exchange
coefficient based on measured flow velocity fluctuations:

3)
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where C| is a dimensionless empirical constant determined based on the calculation of the decay process of homogeneous
isotropic turbulence, A is the characteristic grid scale, and u, v are the time-averaged fluctuations of the water flow velo-
city components in the horizontal direction.

To build a discrete mathematical model of the posed hydrodynamics problem and its numerical implementation, we
introduce a uniform grid:

W, ={t"=nt, x,=ih,, y,=jh, z, =kh; n=0,N,, i=0,N,, j=0,N,, k=0,N_,

Na=T, N =1, Nh =l Nh =},

where 1 is the time step; /4, hy, h_are the spatial steps; /, is the number of time layers; T is the upper boundary of the time
coordinate; N, N, N, are the number of nodes along the spatial coordinates; /, ly, [_ are the lengths of the edges of the
elementary parallelepiped in the directions of the axes O, O, and O, respectively.

To solve the hydrodynamics problem, we will use the pressure correction method. The method variant in the case of
variable density takes the form [9-10]:

7 '
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Here: u, v, w are the components of the velocity vector V = TR { 7, ﬁ;}, {ﬁ, v, y?;} are the components of the

velocity fields at the new and intermediate time layers, respectively; # = (17 + u)/ 2; p and p are the distributions of the water

density at the new and previous time layers.

3. Combination of Local Binary Patterns (LBP) and Neural Networks for Initial and Boundary Conditions,
and Model Verification. When correctly formulating initial-boundary value problems for systems of nonlinear
partial differential equations and determining various functional dependencies in constructing mathematical models,
it is essential to have real input data (boundary conditions, initial conditions, information about source functions).
During decision-making regarding risks associated with hazardous natural phenomena and disasters, up to 50 % of
the total time spent on computer modelling and forecasting can be dedicated to recognizing the specific situation.
This is particularly relevant to determining the location and size of phenomena such as surge, seiche, and hypoxic
events.

A readily available source of in situ information for mathematical modelling can be Earth remote sensing data. The
recognition and input of this data as initial and boundary conditions is a complex and labor-intensive procedure that
requires the creation of specialized algorithms [9—10]. Recognition is also indispensable for subsequent comparative
analysis of the accuracy of mathematical modelling.

The “neural network-LBP” algorithm, described in detail in [11-13], is a domestic solution in this problem area. For
further work, we will use satellite images taken on November 17 and 22, 2019 (Fig. 6 and 7).

The composition of various image pixels collectively works to determine the orientation and scale of the object in the
image. This allows for the recognition and localization of necessary features regardless of the image’s rotation or changes
in brightness/contrast. Image segmentation is performed considering a predefined set of semantic classes, which are
encoded by numbers from 0 to a certain limit. These semantic labels consist of subsets, each corresponding to a specific
semantic label. Thus, when a pixel is labeled with a certain semantic class number, its corresponding instance identifier
does not matter. This means that all pixels in a class belong to one instance (e. g., the same color).
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Fig. 6. Images of the study area from WorldView [14] and Sentinel-2 L2A [13] satellites, 17.11.2019

Fig. 7. Images of the study area from WorldView [14] and Sentinel-2 L2A [15] satellites, 22.11.2019

In the algorithm’s operation, segments are matched, and the PQ is calculated considering matches in two stages.
In the first stage, empirical data and predicted segments are matched with a threshold SP of 0.5. This approach results
in unique matches where segments do not overlap, so the maximum number of matches per segment is one. In the
second stage, the PQ is calculated considering the predicted and ground truth segmentation of the image. Each ground
truth segment can have no more than one corresponding predicted segment with an SP strictly greater than 0.5, and
vice versa. This means that if a corresponding predicted segment is found for a particular ground truth segment, it
automatically falls into the “matched pairs” category. If no predicted segments correspond to a ground truth segment,
it falls into the “unmatched ground truth segments” category. If no predicted segment is found for a particular ground
truth segment, the predicted segments that intersect it are classified as “unmatched predicted segments”. Thus, after
matching, each segment falls into one of three sets: matched pairs (MP), unmatched predicted segments (UP), and
unmatched ground truth segments (UT).

PO = Z(!ﬁ’,gg)eMP SP(KO’ gg)

N 1 o )
MP|+—|UP|+—[UT
[MP|+—{UP|+ U]
2 2

where ¢ are the predicted segments; gg are the ground truth segments (object environment); SP is the threshold value
equal to 0.5; MP are the matched pairs; UP are the unmatched predicted segments; UT are the unmatched ground truth
segments.

4. Description of the Software Package. In this work, an advanced software package was used, which takes into
account the dynamic changes of the computational area due to wave processes, jet effects, and the multicomponent nature
of impurities. This package is designed to construct three-dimensional velocity fields of water movement, considering
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a depth-heterogeneous vertical turbulent exchange coefficient and dynamic restructuring of the computational area
geometry. The software package is implemented in C++. The algorithm for organizing a computational experiment based
on the developed software package is presented in Fig. 8.

Start

Reading input data Refining components of the velocity
vector field

Saving velocity

Forming initial distributions and surface fields

Reformation of the computational area geometry

due to changes in the disturbance function Checking work No

completion condition

Calculation of the velocity field on the

intermediate time layer
Yes

End
Pressure calculation

Fig. 8. Algorithm scheme of computational experiment organization

The software allows for the specification of complex bottom geometry in the form of a raster model, built based on
known cadastral survey data and remote sensing data, as well as the type and characteristics of the oscillation source,
wind direction, and speed.

Research results

1. Numerical experiments based on a three-dimensional model of wave hydrodynamics. Prolonged action of
wind at significant speeds led to the development of wind-driven oscillations, where extreme downwelling was observed
in the eastern part of the Azov Sea, and upwelling in the western part. During the storm event in the Taganrog Bay
overnight from November 21 to 22, 2019, the sea level dropped below 220-240 cm relative to the mean level. Maximum
upwelling sea level rises were observed in the coastal western part of the Azov Sea, reaching 130-140 cm.
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Fig. 8. Sea level relative to the mean level of the Azov Sea, November 22, 2019
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For modelling, a section of Taganrog Bay measuring 100 by 50 meters was selected, with a maximum depth of 1.8 meters
at this site. Calculations utilized a grid of 100x200x40 computational nodes, with a time step of 0.01 seconds. Wind speed
during modelling was set at 15 m/s from the east.
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Fig. 10. Modelling results of wave heights with an east wind speed of 15 m/s

p, klla
0.0908

0.0831
0.0560

0.0277

Fig. 10. Modelling results of velocity vector field and pressure with an easterly wind at a speed of 15 m/s
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According to data from the Federal Service for Hydrometeorology and Environmental Monitoring, on November 22,
2019, the Sea of Azov experienced a northeast wind at speeds of 12—17 m/s, gusting up to 27 m/s, with wave heights
of 1.3—1.8 m. During November 22 daytime, overnight, and morning of November 23, a northeast wind at speeds
of 11-16 m/s, gusting up to 22 m/s, produced wave heights of 1-2 m. Modelling results are consistent with the data
from the Federal Service for Hydrometeorology and Environmental Monitoring. During established wave conditions,
modeled wave heights ranged from 1.6 to 2 meters.

2. Results of numerical experiments based on the “neural network-LBP” algorithm for processing boundary
contours of aquatic environments using RSD. Results of the software module allow tracking the dynamics of
contours (in our case, the shoreline) over an extended period of time (Fig. 11 and 12).

a) b)

Fig. 11. Snapshots of the study area — Stanitsa Yasenskaya:
a — November 17, 2019; b — November 22, 2019

a) b)

Fig. 12. Snapshots of the study area — Khutor Morozovskiy:
a — November 17, 2019; b — November 22, 2019

Within the framework of numerical experiments, an analysis of snapshots of the study area (Stanitsa Yasenskaya
and Khutor Morozovskiy) was conducted for November 17 and 22, 2019. The results demonstrated that the “neural
network-LBP” algorithm successfully identifies and tracks changes in the shoreline throughout the examined period.
Figures 11 and 12 depict corresponding snapshots showing the dynamics of shoreline changes over the specified period
of time.

The results of numerical experiments show the high efficiency of the “neural network-LBP” algorithm for processing
boundary contours of aquatic environments. The algorithm enables automatic recognition and input of remote sensing
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data into the model, significantly speeding up the modelling process and enhancing its accuracy. In particular, the
use of satellite image data for November 17 and 22, 2019, demonstrated the model’s ability to accurately forecast
predominant wave heights, average wave lengths, and periods of wind waves in the Sea of Azov at different time
horizons (initial time, 3, 6, and 9 hours ahead).

Discussion and Conclusions. Modelling of catastrophic surge and seiche events in the Azov Sea is based on solving
the system of shallow water wave hydrodynamics equations, which allows for the consideration of complex dynamic
processes affecting sea level and wind waves. This study employs the Local Binary Patterns method in combination
with neural networks for processing boundary contours of aquatic environments. This approach enables more precise
modelling and prediction of extreme sea level fluctuations, which is particularly important for shallow water bodies
like the Azov Sea, where such phenomena can have significant economic and environmental consequences. The
obtained results underscore the importance and necessity of further research in hydrodynamic modelling and the use
of advanced data processing methods to improve forecasts of natural phenomena related to changes in sea level and
wind wave dynamics.
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Abstract

Introduction. Currently, frequency modes of operation of electron accelerators based on capillary discharges are actively
investigated. Electrons in these systems are accelerated by femtosecond laser pulses passing through the discharge plasma.
Materials and Methods. The paper presents results of three-dimensional magnetohydrodynamic modelling of the capillary
discharge cycle, including stages of filling a short capillary with working gas (hydrogen), formation of the plasma channel,
and restoration of the working medium before the start of the next discharge. Calculations were performed assuming the
system is under external cooling, which maintains thermal balance at intermediate stages of the working cycle, and under
constant conditions of gas supply and evacuation.

Results. The computational experiments demonstrate the capability of generating beams of relativistic electrons with a repe-
tition frequency of approximately one kilohertz.

Discussion and Conclusions. The obtained results allow us to speak about the prospects of using LWFA with a short
channel length and a high repetition rate of the capillary discharge.

Keywords: mathematical modelling, magnetohydrodynamics, capillary discharge, laser acceleration of electrons
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OpueuHaJleoe meopemuvyeckoe uccnedosamue

MopaesupoBanne KanuJJISIPHOTO pa3psijia B pe;KuMe MOBTOPeHUsl
IS KOPOTKUX KAMWLISIPHBIX CHCTEM MPH Pa3JHYHBIX CIOC00aX 3aM0JTHEHUS

B.A.TacunoB , H.O. Cagenxko [, 10.C. lllapoBa

MuctutyT npuknanxHoi matemaruku uM. M.B. Kengsima Poccuiickoit akagemuu Hayk, T. Mocksa, Poccuiickas deneparus

Msavenkonkt@gmail.com

AHHOTALUSA

Beeoenue. B Hactosiiiee BpeMst aKTHBHO HCCIICAYIOTCS] YACTOTHBIE PEXXUMBI PA00THI YyCKOPHUTEIIEH 3JIEKTPOHOB Ha OCHOBE
KallMUIIPHBIX pa3psioB. DJEKTPOHBI B HUX YCKOPSIOTCS O] JIEHCTBHEM JIa3€PHBIX HUMITYJILCOB (PEMTOCEKYHIHOTO
Jana3oHa JUTENbHOCTH, IPOIyCKAEMBIX Yepe3 IIa3My paspsa.

Mamepuanet u memooel. B pabore paccMaTpuBaAIOTCA PE3YyJIbTaThl TPEXMEPHOTO MarHUTOTHIPOIMHAMHYECKOTO
MOJICITMPOBAHMS LIMKJIA KaMJUIIPHOIO pa3psizia, BKJIIOYAIONIErO CTAJIMU 3alOJIHEHHs KOPOTKOro Kalmuiipa pabouum
ra3oM (Bogopoz), GopMHpPOBaHNE IIA3MEHHOTO KaHajla, BOCCTAHOBJICHHE pabodel cpeasl epe HauaaoM CIIAYIOMEero
pa3psiaa. PacyeTsl BBITOIHEHBI B TIPEIIONOKEHAN O TOM, YTO CHCTEMa HaXOANUTCS IT0/{ BHEITHUM OXJIaXKJCHHEM, KOTOpOoe
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o0ecrieunBaeT TeMIIepaTypHBIii 6aJaHC Ha IPOMEXYTOUHBIX dTarax paboyero IuKIIa, a TAKXKE IIPH IIOCTOSHHBIX YCIOBHAX
ITOJIa4X ¥ OTKAYKH pabodero rasa.

Pesynomameut uccinedosanus. Pe3ynbTaThl BRIYHCIUTENBHBIX SKCIIEPUMEHTOB ITOKA3BIBAIOT BO3MOXHOCTHh TCHEPALIUU
My4KOB PEJSITUBUCTCKUX AJIEKTPOHOB C YaCTOTON MOBTOPEHHUS OKOJIO OJHOT'O KUJIOTEpIIa.

Oobcyscoenue u 3akniouenue. IlonyueHHble pe3ynbTaThl MO3BOJSIOT FOBOPUTHh O MEPCHEKTUBHOCTU HCIOJIb30BAHUS
KJIITY ¢ manoit niuHOK KaHaina U BEICOKOW YacTOTON MOBTOPEHUS KAMMJUISIPHOTO paspsija.

KaroueBbie cjioBa: MaTeMaTHYeCKOe MOJEIMPOBAHHE, MATHUTHAS THIPOJWHAMUKA, KalWUIAPHBIA pa3psl, a3epHoe
YCKOPEHHE JJIEKTPOHOB

Baarogapuoctu. PesynbraThl momydeHsl ¢ ucnonb3oBaHueMm obopymoanus L[KIT UIIM mm. M.B. Kengeima PAH
(http://ckp-kiam.ru). ABTOpBI IpU3HATENBHBI KaHAUAATY Qu3.-MaT. HayK [.A. bargacapoBy 3a o0cyskieHue pe3yIbTaToB
BBIYHMCIIUTENBHBIX SKCIIEPUMEHTOB.

Jas uutupoBanus. acuos B.A., Casenko H.O., Hlaposa F0.C. MoaenupoBanue KanmuUBSIPHOTO pa3psiia B PeKUMe
MOBTOPEHUSI TSI KOPOTKUX KAMWIUIAPHBIX CHCTEM IIPU PAa3IMYHbIX criocobax 3amonnenus. Computational Mathematics
and Information Technologies. 2024;8(2):45-59. https://doi.org/10.23947/2587-8999-2024-8-2-45-59

Introduction. The method of generating relativistic electron beams in the field of laser radiation was proposed and
substantiated in [1]. Since then, compact laser electron accelerators have found applications in a wide range of fundamental
and applied research fields. Among these, developments in free electron lasers (FELSs) [2], creation of Compton sources of
radiation and electron-positron colliders [3, 4], and others have been highlighted. Works [5—8] have presented theories and
results of several experiments on electron beam generation using the Laser Wakefield Acceleration (LWFA) mechanism.

Capillary discharges are widely employed in many experiments in the field of pulsed plasma physics as a simple and
convenient tool for generating “quiet”, non-turbulent plasma with reliably controlled parameters. Capillary discharges as
a means of creating plasma channels for laser electron acceleration and other applications are extensively discussed in
works [7-15].

In several applications (medical-biological research, material sciences, etc.), there is a demand not for high-energy
gains achieved by accelerated electrons, as demonstrated in experiment [13], but rather for a high repetition rate (of the
order of and exceeding 1 kHz) of electron accelerator pulses. For instance, in [16], a discharge waveguide for LWFA using
hydrogen as the working gas was discussed, achieving a repetition frequency of several kHz. Other plasma waveguides
for LWFA operating at high repetition rates are described in works [17, 18]. Typically, such experiments utilize relatively
short capillaries, approximately 1-3 cm in length. In this regard, several publications highlight the possibility of using
short plasma channels to obtain electron beams with energies up to 1 GeV [18-23] as one of the main research outcomes.

This paper presents results from three-dimensional modeling of capillary discharge. The primary focus is on the
formation process of the plasma waveguide, which can serve for electron acceleration by a laser pulse. Comparisons are
made between computational results and theoretical estimates of accelerated electron energies. The main external factors
affecting the capillary in our model include the gas flow into the capillary feeding channels and the plasma heat exchange
with the capillary walls.

The research multifunctional code MARPLE, developed at the Institute of Applied Mathematics named after
M.V. Keldysh [20], is utilized for modeling the described process.

Materials and Methods. Computational experiments to study the dynamics of capillary discharge plasma are
conducted using a single-fluid two-temperature magnetohydrodynamic (MHD) model. This model incorporates electron-
ion energy exchange, thermal conductivity of the ion and electron components of the plasma. The main system of
equations solved includes [24]:

Continuity equation

op
L 4+V(pV)=0,
5 (V)

momentum balance equation
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Maxwell’s equations (excluding displacement current)
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The main system of equations is closed by the equation of state in the form of

p,=p;(p,&).p,=p,(n,e),
. 1 i
and Ohm’s law in the form of E = —(V X B)+ =
c c

It is assumed that throughout the entire duration of the electric discharge, the condition of quasi-neutrality of the gas-
plasma medium is maintained n, — Zn, = 0.

The operational cycle of the capillary is divided into three consecutive stages. The first stage involves filling the
capillary with cold gas (hydrogen) until flow stabilization occurs. The second stage is the actual electric discharge
necessary for forming the discharge channel in a fully ionized environment, where the termination of the electrical pulse
is characterized by rapid recombination within the discharge plasma. In the final, third stage of the cycle, hot gas escapes
from the capillary and is replaced by a fresh portion of gas from the feeding channels. The stages of filling and purging
are calculated in a single-temperature approximation, as the presence of the electron component during this period is
negligible.

The study considers two geometrical configurations of the system: with two and with eight feeding channels. The
results of the calculations are compared with those from [21], obtained under the same conditions of capillary discharge
implementation but in a simpler problem setup, considered in a highly idealized two-dimensional cylindrical (7, z)
geometry. The capillary of circular cross-section is assumed to have a length of 2 cm and a diameter of 300 um
(see Fig. 1). The computational domain is structured as follows: the main capillary channel is modeled as a tube with
open ends, to which the feeding channels of the same diameter as the capillary (300 um) are attached at a distance of 0.8 cm
from the center of the main tube. Electrodes with a half-aperture angle of 45° and a length of 0.2 cm are positioned at the
ends of the capillary, followed by a free gas exit area with a length of 0.2 cm.

The construction of the computational domain for the capillary with eight feeding channels is carried out by assuming
that the number of feeding channels per half-length of the capillary is four, cross-attached to the capillary. This geometry
of the entire structure allows for a more homogeneous gas flow in the region where the feeding channels connect with the
capillary.

The computational mesh is built considering the symmetry of the geometrical model of the system with eight feeding
channels, thereby limiting calculations to one eighth of the entire area filled with the working substance (feeding channels
and the main capillary tract). The electromagnetic field is computed for the capillary channel in a dielectric, as commonly
implemented in most designs [2, 16, 21]. High-conductivity metal electrodes (copper, aluminum) are attached to the
ends of the capillary in accordance with this design. Consequently, during the calculation stage of the electric discharge,
boundary conditions for the equations of electrodynamics are applied from the general magnetohydrodynamic system.
Gas dynamic equations are solved using standard impermeable wall conditions for the capillary walls, while at the
open ends of the capillary, gas parameters are computed according to the methodology for implementing non-reflecting
boundary conditions [22].
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Fig. 1. Geometry of the computational domain: @ — general view for the system with two feeding channels;
b — general view for the system with eight feeding channels; ¢ — characteristic dimensions of the domain are identical
for both considered variants of the capillary system construction; d — characteristic dimensions of the domain
for the system with eight feeding tubes

Calculations were performed for two consecutive operating cycles. During the capillary filling stage, both primary
and repeated, the inlet pressure into the feeding channels for the two-channel system was set to p = 0.125 bar with
a temperature of 300 K, while for the eight-channel configuration, p = 0.083 bar at 300 K was used. These inlet gas
parameter values ensure equal gas flow rates during system filling and approximately equal values of gas flow parameters
along the capillary axis after reaching steady-state flow conditions. Once steady-state flow is achieved within the system,
the filling stage is considered complete. The gas parameters attained in the capillary at this stage serve as initial data for
the discharge phase.

In accordance with numerous experiments [16—19, 21], the following dependence for the electrical current through the
capillary was used for the calculations:

t t
I =1 exp|l-———1 M

where [, = 210 A; ¢ is the current time from the start of the discharge; ¢ = 0.15 ps is the time of maximum current
strength. The current pulse profile is shown in Fig. 2.

The azimuthal component of the magnetic field at the insulator boundary, specified as a boundary condition for the
magnetic field, is approximately taken as B, = 21(£)/R, where I(f) is calculated using equation (1), and R is the radius
of the capillary tube. The second stage of the capillary operation concludes when the discharge current ceases. Over
the subsequent short interval, the ionized substance electro-conducted recombines. The gas state during this period is
assumed as the initial state for the subsequent refilling stage.

During the final stage, the process of restoring the distribution of neutral hydrogen in the capillary is simulated. This
includes the expulsion of hot hydrogen from the capillary and its replacement with a new portion of cold hydrogen from
the feeding channels, initiating the start of the refilling process.

For the case of eight feeding tubes, calculations for all three discharge stages are performed within one eighth of
the total flow area. This is feasible due to the symmetry of the capillary construction with feeding tubes. The electrode
at the end of the capillary is considered as a cylindrical layer of metal — a “ring” approximately one-tenth of the
radius thick.
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Fig. 2. Current profile as a function of time

Results

Primary filling. The primary filling stage concludes upon the establishment of steady hydrogen flow through the
capillary. Fig. 3 and 4 depict density profiles along the capillary axis at various time points for systems with two and eight
feeding channels (Fig. 3), as well as in the two-dimensional model (Fig. 4) with simplified (ring-shaped) gas delivery into
the capillary. The corresponding stages of gas flow evolution are illustrated.
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Fig. 3. Density distribution along the axis of the capillary for two geometries at corresponding time points
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Fig. 4. Density distribution along the axis of the capillary for the two-dimensional model discussed in [21]

The slight difference in parameters upon reaching steady state does not significantly influence subsequent stages. As
demonstrated in Figure 5, for three different feeding channel geometries, the establishment times are as follows: 2 feeding
channels — 200 ps, 8 feeding channels — 225 ps, two-dimensional model of capillary feeding — 125 ps.

Due to thermal conductivity, the gas temperature at this stage equalizes and matches the temperature of the capillary
wall, which is 300 K.

225

200 8 channel

2 channel
175 2D

150

25

0

Overcoming Filling Stationary
a conducting channel

Fig. 5. Establishment time of flow during the primary filling stage for different geometries

Fig. 6 illustrates the distribution of mass flow (g/s) along the system and across the main channel near the inlet of the
feeding tube (0.82 cm) for eight and two feeding tubes.

The slight yet noticeable asymmetry in flow parameters observed in different cross-sections in the case of two feeding
tubes filling the capillary is indicative of the quality of the waveguide channel, which must possess sufficiently high radial
symmetry to ensure the high efficiency of electron acceleration by a laser pulse. The symmetry of flow is particularly

crucial in the vicinity of the capillary axis, where the channel with parameters necessary for electron acceleration is
formed.



Comp ional Math tics and Information Technologies. 2024;8(2):45—59. eISSN 2587-8999

1.6e-04 " 1.7¢-04
) 0.00015 =
0.0001 & g
5 0.0001 &
5e-5 505
7.8e-11 7 811
1.4e-04
0.00012 1.6e-04
0.0001 & ®
85 9 0.0001 %
6e-5 g g
de5 ses O
2e-5
5.2e-12 6.40.08

Fig. 6. Mass flow distribution in the cross-section of the capillary near the inlet of the feeding channel for eight
and two feeding channels

Discharge. To form a plasma channel capable of efficiently guiding an accelerating laser pulse through it, an electrical
discharge is applied to the cold gas flow. For modeling the discharge, we utilize the initial state of the gas obtained after
establishing it during the filling stage.

The MHD model we employ does not include descriptions of the electrical breakdown stage. The breakdown lasts about
10 ns and minimally affects the properties of the plasma channel. For modeling the second stage, the gas is transitioned
into a weakly ionized state by increasing the temperature to 0.3 eV. Fig. 7 and 8 demonstrate that this artificially induced
initial temperature jump constitutes less than 5 % of the maximum discharge temperature and does not significantly
impact the state of the electro-discharge plasma.
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Fig. 7. Distribution of electron and ion temperature components along the axis of the capillary at the moment
of maximum current for two and eight feeding channels
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Fig. 8. Distribution of electron temperature in the longitudinal section at the moment of maximum current:
a — 8 feeding channels; b — 2 feeding channels

The following distribution of electron density along the axis of the capillary for various time points has been obtained
(Fig. 9). The slight increase in density near the exit during the initial period is due to the capillary gas experiencing some
retardation as it displaces the gas that filled the nozzle towards the end of the first stage of the filling process.
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Fig. 9. Electron concentration along the axis of the capillary at different times relative to the start of the electrical
discharge for a system with eight feeding channels

For cases with two and eight feeding channels, the distribution of plasma density during discharge is nearly identical
with minor differences in the region from 0.75 to 1 cm (Fig. 10). This is caused by the displacement of discharge plasma
into the feeding channels during the discharge process; it should be noted that the cross-sectional area through which gas
enters the capillary is four times larger in the case of eight tubes compared to two tubes.

The most pronounced non-uniformity is observed in the flow section near the feeding channels, as shown in Fig. 11.
In the junction area of the feeding channels, the electron density is approximately half that of the central part of the
capillary. Additionally, good symmetry of distribution can be noted. It is reiterated that radial symmetry in the distribution
and homogeneity of the channel along its axis are crucial for acceleration. The significant gradient of density along the
boundaries of the forming waveguide also plays a crucial role in creating favorable conditions for the collimation of laser
radiation in the waveguide, as clearly demonstrated in Figure 15.
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Fig. 10. Distribution of electron density in the longitudinal section at the moment of maximum current:
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Fig. 11. Distribution of electron density in the longitudinal section near the attachment of feeding channels at the
moment of maximum current: a — 8 feeding channels; b — 2 feeding channels
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Fig. 12. Hydrogen ionization levels at three control points along the axis of the capillary
(distance from the center indicated) as a function of time
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The channel is considered prepared to pass an accelerating laser pulse through it when the hydrogen ionization level
reaches unity. We examine the ionization evolution (Fig. 12) at three control points along the axis taken at specific
distances from the capillary center: 0 cm — center of the main channel, 0.8 cm — point opposite the feeding channels,
1 cm — end of the capillary. Based on the data presented in Figure 12, it can be concluded that a waveguide with the
required properties forms along the entire length of the capillary and exists from the moment of maximum current (150 ns)
to approximately 700 ns, 1. ., for a period of approximately 500—-600 ns.

From the density distribution presented in Figure 10, it follows that there are differences in the plasma waveguide structures
depending on the geometry of the feeding channels. This difference is insignificant for the electron density distribution in
the central part of the capillary. Discrepancies in electron density distribution near the feeding channels and further towards
the open end are much more pronounced — up to 50 % lower than the average density in the segment from 0.75 to 1 cm
along the capillary length. In the case of eight feeding channels, a significant portion of the plasma is displaced into them,
resulting in a region of reduced plasma density near the entrance of the feeding channels. In the case of two channels, plasma
displacement into the channels is less noticeable, and plasma flows more through the ends of the capillary.

The most important characteristic of the plasma concerning its use as a working medium for electron acceleration
by a laser pulse is the electron concentration along the axis of the capillary. The average electron concentration value at
the moment of maximum current is nearly identical for both cases in the flow region between the central section of the
capillary and up to a distance of approximately 0.75 cm from the center, with slight differences in the end regions, and is
approximately 7, = 1.8x1018 cm . In the region of maximum rarefaction, from 0.75 to 1 ¢m, the electron concentration
is approximately 7, = 0.8x1018 cm™. It should be noted that these concentration values are in good agreement with the
concentration value ~2x1018 cm, determined in [2, 21] for a capillary with the same diameter and length as in the
present work, calculated for an experiment with a laser pulse energy of ~3 J with a duration of about 30 fs.

Fig. 13 and 14 show the transverse distribution of density and electron concentration at the center of the tube (x =0
cm). The obtained density values for eight and two feeding tubes are close to the values obtained in the two-dimensional
variant. Minor differences in electron density distributions for the two capillary filling options are due to the different
mesh structures used in these variants, which are also reflected in the temperature profile (Fig. 7, 8). Figure 15 presents
the electron concentration distribution across the capillary at various distances from the center.

The transverse dynamics of capillary plasma, leading to the formation of a plasma channel suitable for laser acceleration,
is analogous to that considered in [9], where calculations were based on a one-dimensional flow model under cylindrical
symmetry approximation. Three-dimensional modeling shows that the lifetime of the plasma channel is determined by the
plasma flow into the open ends of the capillary and partially backflow into the feeding channels.

The duration of the electrical pulse has less influence on the channel lifetime compared to a longer capillary — 10
centimeters or more.

Figures 16 and 17 show the distribution of electron concentration at the location of the attachment of feeding channels.
In the case of eight channels, this area exhibits greater optical transparency compared to the two-channel variant. Apart
from lower transparency, the “two-channel” system notably disrupts the radial symmetry of the plasma channel. The
duration of the electrical discharge stage is measured from the moment of discharge initiation until nearly complete
hydrogen recombination.
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Fig. 13. Transverse distribution of electron density and concentration at the center of the capillary for two and eight
feeding channels at the moment of maximum current
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Fig. 14. Transverse distribution of electron density at the center of the capillary in the two-dimensional model [21]
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Fig. 15. Transverse distribution of electron concentration at various distances from the center of the capillary for eight
and two feeding channels
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Fig. 16. Electron concentration distribution across the capillary section near the attachment of feeding channels (x = 0.8):
a — 8 feeding channels; b — 2 feeding channels
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Fig. 17. Distribution of electron concentration across the diameter of the section in the case of eight feeding channels,
as well as along the vertical and horizontal axes in the case of two feeding channels

Gas Exhaustion and Capillary Refilling. Upon completion of hydrogen recombination within the capillary,
a sufficient amount of hot gas remains under high pressure. Active gas expansion continues towards the open ends and
feeding channels, starting from the initiation of the electrical discharge.

Gas exhaustion is considered complete when the hydrogen pressure in the feeding reservoir exceeds that of the
expanding gas, initiating the process of refilling the capillary with cold gas. It is noteworthy that during refilling, the
central part of the capillary already contains gas which, as it cools down, returns to its initial state.

The refilling process occurs almost identically to the initial filling. The difference lies in a denser environment
compared to its initial state, as well as a higher gas temperature within the “capillary + feeding channels” system. The
times for initial and repeat fillings are found to be close; for the sake of analysis convenience, they are considered equal
in the capillary operation cycles.
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Fig. 18. Density profiles along the axis of the capillary for initial and repeat filling scenarios, illustrated for the case with
two feeding channels
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Fig. 18 shows a comparison of density profiles along the axis for initial and repeat filling for the case with two feeding

channels.

Discussion and Conclusion. The calculated time for one cycle of “filling — discharge — relaxation” is presented
in Table 1. In the calculation based on the two-dimensional model, the time for repeat filling does not exceed half of the

time for initial filling.

Calculated time for one cycle of “filling — discharge — relaxation”

Table 1

Mounting Type 8 channels 2 channels 2D
Filling time, ps 225 200 125
Ionized state, s 5 5 5
Release of heated gas, ps <50 <45
Total cycle time, ps <280 £250 <130 (neps.)
<60 (110BT.)

The shape of the feeding channels (2 tubes, 8 tubes, two-dimensional filling model) has the greatest influence on the
operating frequency of the short capillary. The diameters and lengths of the feeding channels evidently affect the filling
rate. To a lesser extent, the temperature and pressure of the gas entering the system affect the cycle duration. The intensity
of filling is determined by experimental conditions [2].

The mathematical model of the capillary system developed by the authors allows concluding that the capillary can
operate in the frequency range from 1 to 16.5 kHz.

In conclusion, let’s assess the energy gained by electrons during their acceleration by a laser pulse in the capillary
discharge channel, for which we can use, for example, the formula proposed in [23]:

O,4I(W/cm 2) ’
ne(l/cm3)

where W is the energy of accelerated electrons; / < 10" W/cm® is the intensity of the accelerator laser; 7, is the average
electron density along the path of the beam.

As initial data for estimation, we take the parameters of the plasma medium at the center of the capillary close to
the maximum current strength (~150 ns). Using the data obtained during the discharge phase, we can expect electron
energies during acceleration, according to formula (2), W, < 0.5 GeV, which holds true for all three considered
geometrical variants.

The obtained values of acceleration and potential operating frequency of the accelerator indicate the prospect of
using a short-length capillary plasma accelerator. An important characteristic of the electron beam is its emittance. For a
precise assessment, modeling based on a Particle-in-Cell approach, for example, in a ponderomotive approximation [5],
is necessary. Corresponding computational experiments are the subject of further research.

w (Gev ) ~ @
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Abstract

Introduction. The study focuses on modelling the process of ultrasound medical examination in a heterogeneous
environment with regions of significantly different sound speeds. Such scenarios typically arise when visualizing
brain structures through the skull. The aim of this work is to compare possible approaches to determining the interface
between acoustically contrasting media using convolutional neural networks.

Materials and Methods. Numerical modelling of the direct problem is performed, obtaining synthetic calculated
ultrasonic images based on known geometry and rheology of the area as well as sensor parameters. The calculated
images reproduce distortions and artifacts typical for setups involving the skull wall. Convolutional neural networks
of 2D and 3D structures following the UNet architecture are used to solve the inverse problem of determining the
interface between media based on a sensor signal. The networks are trained on computational datasets and then tested
on individual samples not used in training.

Results. Numerical B-scans for characteristic setups were obtained. The possibility of localizing the aberrator boundary
with good quality for both 2D and 3D convolutional networks was demonstrated. A higher quality result was obtained
for the 3D network in the presence of significant noise and artifacts in the input data. It was established that the 3D
architecture network can provide the shape of the interface between media in 0.1 seconds.

Discussion and Conclusions. The results can be used for the development of transcranial ultrasound technologies.
Rapid localization of the skull boundary can be incorporated into imaging algorithms to compensate for distortions
caused by differences in sound velocities in bone and soft tissues.

Keywords: transcranial ultrasound, matrix probe, aberrations, mathematical modelling, grid-characteristic method,
convolutional networks
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AHHOTAIMSA
Beeoenue. Pabora mocBsIcHa MOACTUPOBAHUIO MTPOIIECCa YIBTPAa3BYKOBOTO MEAMIIMHCKOTO HCCICIOBAHUS B TETEPO-
TEHHOH cpejie, B KOTOPOU MPUCYTCTBYIOT 00IaCTH C CYIIECTBEHHO Pa3HOM CKOPOCTHIO 3BYKa. Takue MOCTaHOBKY 3a]1a4
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BO3HHUKAIOT, HATPUMED, IPH BU3yaIH3alMU CTPYKTYp Mo3ra yepe3 uepen. Llenbio naHHoit paboThI SIBISIETCS CPAaBHEHHE
BO3MOYKHBIX ITOJIXOJIOB K ONPEACICHHUIO TPAHUIIBI Pa3/ieiia aKyCTUICCKHA KOHTPACTHBIX CPEll ¢ UCIIOIb30BAHHEM CBED-
TOUYHBIX HEMPOHHBIX CETEH.

Mamepuanst u memoost. B paboTe BBITIONHACTCS YUCICHHOE MOJICTHPOBAHUE TPAMOU 33aa4ll — IOJMYyYCHHE CUHTE-
THYECKUX PACYETHBIX YIABTPA3BYKOBBIX M300PaXKEHHIA [0 NU3BECTHOM F€OMETPUH U PEOJIOTUH O0JIACTH, a TAKKE Mmapame-
Tpam aatunka. Ha pacuéTHbix n300paxeHHsX BOCIPOU3BOISTCS HCKAXKEHHSI ¥ apTe(aKThl, THIIMYHBIE IJISl TOCTAHOBOK CO
cTeHKoit uepena. [lyist pemenus: oOpaTHol 3aa4M ONpe/eNIeHNs TPAHUIIBI pa3jielia Cpejl 0 CUTHAIY C IaTYMKa UCTIONb3Y-
10Tcs cBEPTOUHBIE HelipoHHbIe ceT 2D u 3D cTpykTypsl, cienyromme obmien apxurekrype UNet. Cetu oOyuarorcs Ha
HaOopax pacuyETHBIX JJAaHHBIX, IIOCJIE YEro TECTUPYIOTCS Ha OTIENBHBIX IPUMEPaXx, He UCI0JIb30BaHHBIX MTPH 00yUYEHUH.
Pesynomamut uccinedosanusn. IlonydeHsl pacuéTHble B-CKaHBI [UIsl XapaKTEPHBIX MOCTAaHOBOK. [loka3aHa BO3MOXK-
HOCTb JIOKAJIH3AIUU TPaHUIbl abeppaTopa ¢ XOPOILIMM KauecTBOM Kak [yt 2D, tak u mis 3D cBéprounsix cereit. [o-
Ka3aHo 0oJiee BRICOKOE KauecTBO pe3ynbrara st 3D cereil B cilydae HAIUYUs 3HAYUTEIBHOTO [IyMa U apTe(akToB BO
BXOJIHBIX JJAHHBIX. YCTaHOBJICHO, YTO Ce€Th 3D apXUTEKTypbl MOXKET 00ECIIEUUTh MOTyUeHHE (POPMBI TPAHHUIIBI pa3/elia
cpen 3a 0,1 cekyHIbI.

Oocyrcoenue u 3akarouenus. Pe3ynbsrarsl pad0OTHl MOTYT OBITh UCIIOIB30BAHBI [T PA3BUTHS TEXHOJOTHI TPaHCKpa-
HUAJTHHOTO YJIBTPa3BYKOBOTO MCCIICIOBaHUS. BBICTpas JOKamu3anus TPaHUIbl CTCHKU Yeperna MOXKET OBITh BKITIOYC-
Ha B aJITOPUTMBI MOCTPOCHUS U300PAXKEHUS Il KOMIICHCAIIMHM MCKaXEHUH, BRI3BAHHBIX Pa3InIMeM CKOPOCTEH 3ByKa
B KOCTHBIX U B MSITKUX TKaHSIX.

KuroueBsble ciioBa: TpaHcKkpaHuanbHoe Y3, MaTpuuHBIi JaT4WK, abeppaluu, MaTeMaTHYeCKOe MOJCIHPOBAHHUE,
CETOYHO-XaPAKTCPUCTHICCKUI METOl, CBEPTOYHBIC CETH

®dunancnpoBanne. Pabora BoinoHeHa py GUHAHCOBOU nojizepkke Poccuiickoro Hay4gHoro goxaa (ko npoekra 22-11-00142).
Jas uutupoBanusi. BaciokoB A.B. Ompenenenme rpaHHMnbl pasfenia Cped MO JaHHBIM MaTPHUYHOTO YABTPA3BY-

KOBOTO JaTYMKa C HCIOJb30BAaHHEM CBEPTOUHBIX HEHPOHHBIX ceTeit. Computational Mathematics and Information
Technologies. 2024;8(2):60—67. https://doi.org/10.23947/2587-8999-2024-8-2-60-67

Introduction. This study addresses the problem of ultrasound image formation in a heterogeneous medium with
regions of significantly different sound speeds. This setup is aimed at applications in visualizing brain structures through
the skull bones. Despite years of medical technology development, this specific task remains extremely challenging, as
existing methods have many limitations and require highly skilled specialists.

The problem arises from the fact that typical algorithms used in commercially available equipment assume that
the sound speed in the area of interest changes minimally. This assumption is valid for soft tissues. However, when
examining the brain through the skull, this basic assumption fails, leading to highly distorted images using traditional
ultrasound approaches [1].

This study focuses on determining the boundary between two media-rigid (model skull wall) and soft (model brain
tissue). The proposed solution method must operate in near real-time to ensure practical application. In the future, rapid
localization of the skull boundary could be included in imaging algorithms to compensate for distortions caused by
differences in sound velocities between bone and soft tissues.

Convolutional neural networks are considered for this task due to their extensive use in related biomedical tasks
and their ability to operate at high speeds. Previous studies [2—6] have demonstrated the effectiveness of convolutional
networks for ultrasound imaging and elastography. However, using this general approach requires careful calibration
for each specific task [7].

Materials and Methods. For the direct problem, numerical modelling of the ultrasound pulse propagation in
a sample is performed to obtain synthetic calculated ultrasonic images based on known geometry and rheology of the
area and sensor parameters.

The medium is described using the acoustic approximation [8], a significant simplification compared to the full
system of elastic equations, including only longitudinal waves. This approach is widely used for describing ultrasound
pulses in biological tissues, as the attenuation coefficient for shear waves in ultrasound is four orders of magnitude
higher than for longitudinal waves [9].

The numerical solution of the direct problem uses the ray tracing method with wavefront reconstruction [1],
allowing the calculation of ultrasound images qualitatively and quantitatively corresponding to experimental data.
The method describes reflections from extended boundaries and point reflectors. In this study, the boundary between
layers and large pores are modeled as extended boundaries, while small reflectors are considered point sources. After
recording the reflected signal, it is processed, and B-scans are constructed using algorithms from [10].

The inverse problem is to determine the shape of the boundary between acoustically contrasting layers based on
the sensor’s recorded signal. The input data for the inverse problem is the response from the medium registered by the
matrix ultrasonic sensor. The output is the position of the boundary between the two media.

Convolutional neural networks are used to solve the inverse problem of determining the boundary based on the
sensor signal. A synthetic dataset was generated from 1024 direct problem calculations for network training. Separate
examples not included in the training set were used for testing.
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This study investigates both 2D and 3D networks to compare results. All convolutional networks follow the UNet
architecture [11]. The depth of both 2D and 3D networks is four blocks.

For the 2D network, the three-dimensional data is represented as a set of two-dimensional slices. Each slice is
processed with three channels — the target slice and two adjacent slices — providing the network with some three-
dimensional context [12, 13].

For the 3D network, three-dimensional data is input using a patch-based approach [14, 15], allowing flexible
memory management on the GPU when processing large input data.

Results. The direct problem setup involves calculating the propagation of the ultrasound signal in an area
containing a boundary between acoustically contrasting layers. The calculation area is a parallelepiped. The upper
face corresponds to the external boundary of the area where the matrix ultrasonic sensor is located. Outside the contact
zone with the sensor, the upper face is modeled as a free surface. The other three boundaries are set as non-reflective
boundary conditions.

The boundary between the two acoustically contrasting layers is assumed to be smooth and may have an arbitrary
shape. Additionally, the upper layer contains many small reflectors, creating background noise in the final ultrasound
image, and several large pores whose response intensity is comparable to the boundary reflection.

The sound speed in both layers is constant. The upper layer is more rigid, with a sound speed of 30 km/s. The lower
layer is softer, with a sound speed of 15 km/s. The number of small reflectors varied from 100 to 2500, and the number
of large pores from 5 to 50.

The matrix sensor has a square shape of 24x24 elements, emitting a signal at 3 MHz. The sampling frequency for
signal reception is 45 MHz. The final data dimension is 24x24x1024, where 24x24 are the physical dimensions of the
sensor and 1024 are the time samples recorded during the experiment by each sensor element.

Fig. 1 shows the profile of the medium interface in one of the calculations is presented. Four slices of the complete
three-dimensional data are shown — the position of the interface under the rows of sensor elements from the 5th to the
8th. The vertical axis represents the 24 elements of the matrix sensor in the given slice. The horizontal axis represents
time samples. The image is cropped to the first 400 samples out of a full set of 1024 samples.

Fig. 2 shows the raw ultrasound image for this calculation is demonstrated. The overall “noise”, visually seen
as fluctuations in the intensity of the gray background, is associated with a large number of small reflectors in the
medium. The interface between media is visible as an area of intense response with varying amplitude. Individual
bright responses from large pores can be seen at depths of 50, 70, 90, 110, 130, and especially 230 (the last two slices
in the figure). These bright responses significantly interfere with the automatic image processing, as they even exceed
the intensity of the response from the desired boundary.

Figs. 3 and 4 show the results of the 2D convolutional network. Figs. 5 and 6 present the results for the 3D network.

Slice 5
0
20
0 50 100 150 200 250 300 350
Slice 7
0
20
0 50 100 150 200 250 300 350
Slice 6
0
20
0 50 100 150 200 250 300 350
Slice 8
0
20
0 50 100 150 200 250 300 350

Fig. 1. Location of the medium interface
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Fig. 6. Predictions of the 3D network after binarization

Discussion and Conclusions. The results show that the 3D convolutional network significantly outperforms the
approach of processing three-dimensional data as slices using 2D networks in determining the shape and position of the
boundary. Qualitatively, the boundary is generally correctly identified in both scenarios, but the 3D network exhibits
substantially less blurring. Notably, the 3D network is almost unaffected by noise and interference in the input signal,
both random and those caused by the presence of large bright reflectors. The results of the 2D network (Figs. 3 and 4)
show a significant number of detections in the area before the desired boundary — where large pores were located in the
object. This is not a random error; the network solves the segmentation task by aiming to detect acoustically contrasting
boundaries, and the boundaries of the pores also fall into this category. However, this effect is undesirable. When using
the 3D network (Figs. 5 and 6), such problems are virtually eliminated. This is because the three-dimensional structure
of the input data allows the convolutional network to fully utilize the spatial information about the reflectors and learn to
ignore geometrically small objects.

The total processing time for a single three-dimensional image using the 3D network was about 0.1 seconds on
commercially available GPUs. Thus, the possibility of real-time localization of the aberrator boundary with good quality
has been demonstrated. This fact can be further used to create new ultrasound imaging algorithms employing methods for
compensating distortions caused by differences in sound speeds in tissues.
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Abstract

Introduction. Many mathematical problems are reduced to solving partial differential equations (PDEs) in domains of
complex shapes. Existing analytical and numerical methods do not always provide efficient solutions for such problems.
Recently, neural networks have been successfully applied to solve PDEs, typically addressing boundary value problems
for domains with simple shapes. This paper attempts to construct a neural network capable of effectively solving boundary
value problems for domains of complex shapes.

Materials and Methods. A method for constructing a neural network to solve the Dirichlet problem for regions of complex
shape is proposed. Derivatives of singular solutions of the Laplace equation are accepted as activation functions. Singular
points of these solutions are distributed along closed curves encompassing the boundary of the domain. The adjustment
of the network weights is reduced to minimizing the root-mean-square error during training.

Results. The results of solving Dirichlet problems for various complex-shaped domains are presented. The results are
provided in tables, comparing the exact solution and the solution obtained using the neural network. Figures show the
domain shapes and the locations of points where the solutions were determined.

Discussion and Conclusion. The presented results indicate a good agreement between the obtained solution and the exact
one. It is noted that this method can be easily applied to various boundary value problems. Methods for enhancing the
efficiency of such neural networks are suggested.

Keywords: Dirichlet problem, complex-shaped domain, neural networks
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AHHOTAIHSA

Beeoenue. Muorue 3amauy B MaTeMarhKe CBOIATCS K pelieHHo nudepeHInalbHbIX YPaBHEHUI B YaCTHBIX MPOM3-
BOJIHBIX JUts obnacteil crnoxHOM ¢opMmbl. He Beerna cylnecTByole aHaIUTHUECKHE U YUCIICHHBIE METOIbI TIO3BOJISIOT
3¢ GEKTHBHO MOTYyYUTH PELIeHNe TON00HBIX 3a1a4. B mocnennee BpeMs JOCTAaTOYHO YCIENTHO Ay pemeHus auddepen-
LUaJIbHBIX YPAaBHEHUI B YaCTHBIX MPOU3BOJHBIX IIPHMEHSIOTCS HEHpoHHBIE ceTH. [Ipn 3ToM 00BIYHO paccMaTpHUBarOTCs
KpaeBble 3aJa4n Uil o0nacTeil, nMeronux npocryio Gopmy. B nannoit pabore npennpuHUMaeTcs! HONBITKA TOCTPOUTH
HEHPOHHYIO CeTh, CIOCOOHYI0 3(h(heKTHBHO pelaTh KpaeBble 3a7a4u JUIs 00aacTel CIOKHON GOpMBI.
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Mamepuanst u memoost. ITpennaraeTcst METOA MOCTPOCHUS HEMPOHHOU CETH UIs penieHus 3anaun Jupuxie s oma-
CTel CIOKHOW QOopMEL. B kKauecTBe aKTHBAIIMOHHBIX (PYHKIMHA MPHHAMAIOTCS POU3BOIHBIE OT CHHTYJSPHBIX PEIICHUI
ypaBHeHus Jlamnaca. CHHTYApHBIE TOUKU 3TUX PELIEHUI pacIpeAeIeHbI 10 3aMKHYTHIM KPHUBBIM, OXBATHIBAIOLIUX IPa-
Huiy obnactu. Hactpoiika BecoB ceTH CBOANTCS K MUHUMHU3AIMN CPEJHEKBAAPATHYECKON OMIMOKH 00yUeHHSI.
Pe3ynomamut uccnedosanus. IlpencrapieHsl pe3ybTaTsl pellieHus 3a1a4 JJupuxie a1 pa3InuHbIX o0IacTell CIoxKHON
(dopmbl. Pesyabrarel MpeaCTaBiCHBI B BH/C TAOJHII, COACPIKAIINX TOYHOC PEIICHHE W PEIICHHUE, MOIYYCHHOE MPU T0-
MoIy HelpoHHOH ceTn. Ha pucyHKax mpeacTaBieH BHI 0OMacTel M PacloiioKeHHE TOYEK, B KOTOPHIX ONPEAeIsIoch
pelIeHue.

Oocyscoenue u 3axknovenusn. IIpeacTaBIeHHbIE Pe3yabTaThl CBUAETENBCTBYIOT O XOPOIIEM COBHAJECHUH MOIy4YEHHOTO
pemieHus ¢ To4HbIM. OTMeUaeTcs, 4YTO JaHHbIM METOA JIETKO IPUMEHUM K Pa3IHMYHBIM KPaeBbIM 33/lauaM. YKa3bIBarOTCA
CIOCOOBI MOBBIIEHUS PPEKTUBHOCTHU ITOJOOHBIX HEHPOHHBIX CETEH.

KuaroueBble cioBa: 3a1a4a Jlupuxire s 001acTH CI0KHOM (HOpMBI, HEHPOHHEIC CETH

Jos nurupoBanus. [anaOypaun A.B. IlpumeHenne HeWpoHHBIX cereil aisl pemieHus 3agauu upuxie ans o0-
nmacteir  crmoxHOM  (opmer.  Computational Mathematics and  Information  Technologies. 2024;8(2):68-79.
https://doi.org/10.23947/2587-8999-2024-8-2-68-79

Introduction. Differential equations in partial derivatives are often used in modelling various phenomena. The
domains in which these differential equations are defined often have sufficiently complex shapes, making it difficult or
impossible to apply known methods effectively. The rapid development of computer technology has allowed for the use
of various machine learning methods in solving PDEs.

Recently, the neural network method, whose theoretical foundations were laid in the mid-20th century by
AN. Kolmogorov, has been increasingly used to solve such problems. These methods typically use well-studied
differential equations that are relatively simple to solve. Many developers apply boundary value problems for the Laplace
equation for this purpose.

For example, the work [2] assesses the quality of approximate solutions to the Laplace equation constructed using
neural networks. In [3], a neural network is used to solve the problem of membrane deflection. The article [4] discusses
the numerical solution of the Poisson equation in a two-dimensional domain using the Galerkin method and the Ritz
method with deep neural networks. Various approaches to training radial-basis neural networks for solving the Poisson
equation are discussed in [5].

The study [6] proposes a network architecture that allows solving Laplace, Poisson, heat conduction, and wave
equations for rectangular domains. Methods for solving PDEs using radial-basis neural networks, feedforward networks,
and modified neural networks are considered in [7]. Using a perceptron-type neural network with a single hidden layer, [8]
obtains an analytical approximation of solutions for parabolic-type PDEs.

The use of radial-basis functions in implementing the finite element method with neural networks is explored in [9].
Studies [10, 11] vary the parameters of radial-basis functions when training radial-basis neural networks.

The method of physics-informed neural networks is currently gaining popularity for solving PDEs [12]. The study [13]
describes algorithms for using physics-informed neural networks to solve classical mechanics problems.

Artificial neural networks were used to solve the Navier-Stokes equations in [14]. The article [15] investigates
approaches to solving heat and mass transfer problems based on a perceptron-type neural network.

The examples above illustrate a wide range of problems solved using neural networks and the various approaches to
applying neural networks to solve different boundary value problems. Neural networks are more commonly applied to
solving boundary value problems for domains of simple shapes. This study aims to propose an approach for using neural
networks to solve boundary value problems for complex-shaped domains.

Materials and Methods. Consider the Dirichlet problem for a plane region G, bounded by a smooth closed curve y. One
effective method for solving this problem is the boundary integral equation method. To obtain the corresponding boundary
integral equation, Green’s formula can be used:

1 [ou Ud 1 (Ou

——|—u

u= —
21 Jyon 21 yon

Here, U is the singular solution of the Laplace equation.

Using a quadrature formula for calculating integrals, this relationship can be repre-sented as:

u; = 1 ’ Ck[ﬁ_u} [U]ik l : Ck[”]k [G_U} ’ (M
k ik

P o Lkl on otk on

where u, is the value of u at the i-th point of the boundary vy, C_are the coefficients of the quadrature formula.
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In this expression, [U ] # and Y can be considered as activation functions, while C, u and C, [u]k can be
. . on | on
considered as weights. ik k
By requiring the fulfillment of the relationship in each point of the boundary for all functions of the training set, a
system of equations for determining the weights can be obtained using the least squares method. However, these systems

of equations are ill-conditioned. To improve the conditioning of these systems, the singularity of [U ],.k and {a—U} , can
be increased by shifting the integration contour some distance away from the boundary y. on Jy
The Dirichlet problem solution can then be sought in the form:
N N
u(x)= D wif (s )U e o, )+ D v f (5, )V (o),
k=1 k=

1

where f'(s,) is the value of the unknown function u on the boundary; U (x, 5, ) u V (x, 1, ) are activation functions; o, and
T, are points on closed curves y, and v,, encompassing the boundary v; x is a point in the domain G.

The curves y, and v, are similar to the contour y and are obtained by shifting each point in the direction of the outward
normal to the boundary by distances ¢, and ¢, respectively.

During network training, weights are adjusted and the values ¢, and ¢,, are determined by minimizing the error
functional:

M N (N 2
J(Wk»"kaepsz)zz Z {Zwkfij(xiack)+V/cJ[ij(xisTk)_fij} >
' =

j=1 =1 =

where x, is the coordinate of the i-th point of the boundary contour v; // is the boundary value of the j-th function in the
training set at point x, .

From the relations
obtained.

The values ¢, and ¢, are determined by simple iteration. Assuming €, = £ +1, the values of ¢ = a + &, j =1,2,...L are
chosen. The value of ¢, that provides the best result is selected. After that, all neural network parameters are determined
and its configuration is completed.

The accuracy of the obtained solution can be assessed by comparing the values of u on the boundary calculated using
the neural network:

oJ =0 " o =0, m =1,2,...Na system of linear equations for determining w_and v, can be

ow,, ov,,

706)= 3w 60U 60+ 07 (6,07 (55

1

with the given boundary conditions f(s).
The defined network parameters do not always ensure the desired accuracy of the neural network solution. In this case,
the required accuracy can be achieved by iterative refinement of the obtained result:

Auo(si):f(si)’ u, (Si):f(si)’
AV (sl.):z]i:kau”(sk)U(si,Gk)+Z]i:VkA“n ()7 (515 70)

Au™! (Si):AuM1 (Si)_AV’Hl (Si)’ ”t}1+l (Si):”t”+l (Si)""A”nH (Si)’

n+l

u, (S,-) are the values of the refined solution at the boundary of the region. " Ay (s, 1|

The refinement process continues until the specified accuracy is achieved, i. e. m < orthevalue
t i

starts to increase.
After this, the value of the solution at any point x in the domain G can be computed using the formula:

u (x)z Zszl Wil U, (Sk )U (x, O )"' Zszl Vildy (Sk )V (x, Tk)v

where u (s,) are the refined values of the unknown function on the boundary .

The training set used functions that are solutions to the Laplace equation:
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r¥cos [karccos(in + r*sin (karccos (KD =Xt + Y7,
r r

where k=0,1,2,3,...M.

These functions were specified in different coordinate systems, each rotated relative to the others by an angle that is
a multiple of 2/5.

Results. The presented method was utilized to solve the Dirichlet problem for regions whose boundary y was defined as:

= t)+ t
{x aC(')S( ) gc'os (oc ) e [0, 27r],
y=bsin (t) +gsin (oc 1),
where a, b, g, g, oc are variable parameters.
1.5
1.0 *3
*4 *13
*5 *14 *2
0.5 *15 93 12
*25 *24 *22
*11 *1
N 0w *6 w6 31 . *21
w7 28 %20
2*9 *10
—0.5 *17 *1g
"7 *19
*8
1.0 *9
-1.5
-1.0 -0.5 0 0.5 1.0 1.5
X

Fig. 1. Region G1

Figure 1 shows the region whose boundary correspondstoa=1,b=1,g=0.1, g =-0.1, «c = 4. The numbered stars
indicate the locations of points in region G1 where the exact Dirichlet problem solutions and the values obtained using
the neural network with & =5 are calculated.

Table 1 presents the calculation results corresponding to the solution

u = e** cos2.45y. @)
The table includes the point numbers in region G1, their coordinates, the exact solution of the Dirichlet problem, and

the solution obtained by the neural network.
Table 2 presents the calculation results corresponding to the solution

X' +xpt +x’ -yt +5x+5
u= 1 2 ' 3)
(x + 1) +y
in region G1.
Figure 2 shows the region correspondingto a=1,b=1,g=0.1,¢=0.1, c = 5. Tables 3 and 4 present the calculation
results corresponding to solutions (2) and (3) in region G2 for €, = 6.45. Figure 3 shows region G3, corresponding to
a=1,b=1,g=0.2,q=-0.2, c = 2. The calculation results corresponding to solutions (2) and (3) in region G3 for (3)

g, = 6.3, are presented in Tables 5 and 6.
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Fig. 3. Region G3
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Table 1
The calculation results

Point number 1 2 3 4 5 6 7
X 1.0351 0.6510 0.2626 -0.3216 —0.8728 —0.8497 —0.8020
y 0.0602 0.5496 1.0030 0.7890 0.5597 —0.0620 -0.6571
The exact solution 12.4909 1.0954 —1.4745 —-0.1611 0.0234 0.1233 —0.0055
The HC solution 12.477 1.1020 —-1.4730 -0.1630 0.0240 0.1240 —-0.0090
Point number 8 9 10 11 12 13 14
X -0.2036 0.3771 0.7239 0.7804 0.4546 0.1996 -0.2272
y —0.8273 —0.9658 —0.4493 0.0437 0.3866 0.7557 0.5518
The exact solution 0.2675 —1.7992 2.6689 6.7272 1.7790 -0.4516 0.1244
The HC solution 0.2736 -1.7670 2.6512 6.7282 1.7803 —-0.4501 0.1245
Point number 15 16 17 18 19 20 21
b —-0.6570 —-0.5950 —0.6056 —0.1406 0.2827 0.5081 0.4747
y 0.4233 —0.0455 —0.4941 —0.5800 -0.7287 -0.3129 0.0239
The exact solution 0.1017 0.2313 0.0800 0.1058 —0.4254 2.5011 3.1943
The HC solution 0.1023 0.2312 0.0817 0.1020 -0.4318 2.4936 3.1933
Point number 22 23 24 25 26 27 28
X 0.2190 0.1240 —0.1139 —0.3981 —0.2894 -0.3700 —0.0650
y 0.1909 0.4589 0.2673 0.2597 -0.0257 —0.2984 —0.2831
The exact solution 1.5265 0.5851 0.6001 0.3033 0.4912 0.3007 0.6557
The HC solution 1.5259 0.5857 0.5997 0.3032 0.4903 0.3003 0.6527
Point number 29 30 31
X 0.1694 0.2492 0.0744
y —0.4441 -0.1493 0.0000
The exact solution 0.7030 1.7196 1.1998
The HC solution 0.6961 1.7160 1.1980

Table 2
The calculation results

Point number 1 2 3 4 5 6 7
X 1.0351 0.6510 0.2626 -0.3216 —0.8728 —0.8497 —0.8020
y 0.0602 0.5496 1.0030 0.7890 0.5597 —-0.0620 -0.6571
The exact solution 3.9985 3.8121 3.1740 4.1404 7.0650 9.9034 5.9459
The HC solution 4.0010 3.8210 3.1740 4.1330 7.0860 9.8590 5.9370
Point number 8 9 10 11 12 13 14
X -0.2036 0.3771 0.7239 0.7804 0.4546 0.1996 -0.2272
y -0.8273 -0.9658 —0.4493 0.0437 0.3866 0.7557 0.5518
The exact solution 3.8595 3.2536 3.8810 4.0331 4.0649 3.7186 4.8021
The HC solution 3.8675 3.2293 3.8793 4.0297 4.0655 3.7168 4.7974
Point number 15 16 17 18 19 20 21
X -0.6570 —-0.5950 -0.6056 —-0.1406 0.2827 0.5081 0.4747
y 0.4233 —0.0455 —0.4941 —-0.5800 —0.7287 -0.3129 0.0239
The exact solution 6.8777 7.6080 6.2579 4.5410 3.7216 4.0829 4.2223
The HC solution 6.8790 7.5937 6.2519 4.5407 3.7254 4.0835 4.2207
Point number 22 23 24 25 26 27 28
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Continuation of table 2
X 0.2190 0.1240 -0.1139 —0.3981 —0.2894 —-0.3700 —-0.0650
y 0.1909 0.4589 0.2673 0.2597 -0.0257 —0.2984 —0.2831
The exact solution 4.4902 4.3447 5.1277 6.1527 5.9413 5.9450 4.9773
The HC solution 4.4883 4.3425 5.1237 6.1467 5.9351 5.9387 4.9750
Point number 29 30 31
X 0.1694 0.2492 0.0744
y —0.4441 —0.1493 0.0000
The exact solution 4.3023 4.4661 4.8261
The HC solution 4.3041 4.4653 4.8236
Table 3
The calculation results

Point number 1 2 3 4 5 6 7
X 1.0403 0.6832 0.2463 —0.3558 -0.7924 —1.0403 —0.6832
y 0.0633 0.5522 0.9914 0.9278 0.4881 —0.0633 —0.5522
The exact solution 12.6374 1.1533 —1.3835 -0.2702 0.0526 0.0772 0.0406
The HC solution 12.5300 1.1510 -1.3230 —0.2480 0.0360 0.1000 0.0290
Point number 8 9 10 11 12 13 14
X —0.2463 0.3558 0.7924 0.7591 0.4985 0.1798 -0.2596
y -0.9914 -0.9278 —0.4881 0.0462 0.4029 0.7235 0.6771
The exact solution —0.4138 —1.5445 2.5519 6.3819 1.8691 -0.3111 —0.0465
The HC solution —0.4635 —1.4973 2.5558 6.3787 1.8724 —0.3007 —0.0338
Point number 15 16 17 18 19 20 21
X —0.5782 -0.7591 —0.4985 -0.1798 0.2596 0.5782 0.4217
y 0.3562 —0.0462 -0.4029 —0.7235 -0.6771 —0.3562 0.0257
The exact solution 0.1559 0.1547 0.1625 -0.1290 —0.1660 2.6505 2.8047
The HC solution 0.1554 0.1509 0.1558 —0.1404 -0.1775 2.6392 2.8042
Point number 22 23 24 25 26 27 28
X 0.2770 0.0999 —0.1442 -0.3212 -0.4217 -0.2770 —0.0999
y 0.2238 0.4019 0.3761 0.1979 -0.0257 —0.2238 -0.4019
The exact solution 1.6820 0.7064 0.4246 0.4027 0.3551 0.4329 0.4331
The HC solution 1.6832 0.7097 0.4288 0.4031 0.3514 0.4279 0.4261
Point number 29 30 31
X 0.1442 0.3212 —0.0282
y -0.3761 -0.1979 0.0000
The exact solution 0.8608 1.9437 0.9332
The HC solution 0.8512 1.9369 0.9308

Fig. 4 and Fig. 5 show graphically obtained results of solving the Dirichlet problem in G3 for solution (3).
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Fig. 4. HC solution in G3 corresponding to (3)
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Fig. 5. The exact solution in G3 corresponding to (3)
Table 4
The calculation results
Point number 1 2 3 4 5 6 7
X 1.0403 0.6832 0.2463 —0.3558 —0.7924 —-1.0403 —0.6832
y 0.0633 0.5522 0.9914 0.9278 0.4881 —0.0633 —0.5522
The exact solution 3.9985 3.8023 3.1994 3.5918 7.2276 12.5939 6.2589
The HC solution 3.9990 3.7940 3.1690 3.6220 7.2120 12.488 6.2450
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Continuation of table 4

Point number 8 9 10 11 12 13 14
X —-0.2463 0.3558 0.7924 0.7591 0.4985 0.1798 —-0.2596
y -0.9914 -0.9278 —0.4881 0.0462 0.4029 0.7235 0.6771
The exact solution 3.2856 3.3263 3.8398 4.0402 4.0187 3.7979 4.4638
The HC solution 3.3086 3.3405 3.8291 4.0326 4.0107 3.7853 44515
Point number 15 16 17 18 19 20 21
X -0.5782 -0.7591 —-0.4985 -0.1798 0.2596 0.5782 0.4217
y 0.3562 —0.0462 -0.4029 —0.7235 -0.6771 —0.3562 0.0257
The exact solution 6.7562 8.9677 6.1858 4.1803 3.8289 4.0072 4.2753
The HC solution 6.7422 8.9594 6.1844 4.1866 3.8342 4.0038 4.2690
Point number 22 23 24 25 26 27 28
X 0.2770 0.0999 —0.1442 -0.3212 -0.4217 -0.2770 -0.0999
y 0.2238 0.4019 0.3761 0.1979 -0.0257 —0.2238 -0.4019
The exact solution 4.3835 4.4688 5.0283 5.9328 6.5585 5.7193 4.8676
The HC solution 4.3760 4.4594 5.0170 5.9234 6.5537 5.7168 4.8675
Point number 29 30 31
X 0.1442 0.3212 -0.0282
y -0.3761 -0.1979 0.0000
The exact solution 4.4325 4.3410 5.0723
The HC solution 4.4321 4.3377 5.0668
Table 5
The calculation results

Point number 1 2 3 4 5 6 7
X 1.1387 0.6789 0.1404 -0.4339 -0.7355 —0.7488 -0.7213
y 0.0610 0.4697 0.7826 1.0207 0.5615 -0.0620 -0.6858
The exact solution 16.0958 2.1517 —0.4790 -0.2769 0.0320 0.1579 -0.0187
The HC solution 16.055 2.1310 —0.4540 —0.2700 0.0420 0.1780 —0.0090
Point number 8 9 10 11 12 13 14
X -0.3119 0.2489 0.7847 0.8836 0.4897 0.0792 -0.3416
y -0.9953 -0.7209 -0.4028 0.0444 0.3136 0.5423 0.7854
The exact solution —0.3552 —0.3575 3.7699 8.6620 2.3870 0.2911 —0.1498
The HC solution —0.3695 —0.3003 3.7043 8.6771 2.3820 0.3008 —0.1382
Point number 15 16 17 18 19 20 21
X -0.5300 -0.4937 -0.5321 —-0.2508 0.1566 0.5793 0.5776
y 0.4312 —0.0454 -0.5297 —0.7550 —0.4856 —0.2725 0.0244
The exact solution 0.1343 0.2965 0.0732 —0.1490 0.5459 3.2463 4.109099
The HC solution 0.1459 0.3115 0.0881 —0.1402 0.5636 3.2274 4.1094
Point number 22 23 24 25 26 27 28
X 0.2626 0.0059 -0.2309 -0.2835 -0.1876 -0.3050 -0.1775
y 0.1262 0.2540 0.5029 0.2748 -0.0254 —0.3423 —0.4667
The exact solution 1.8128 0.8243 0.1887 0.3903 0.6302 0.3166 0.2683
The HC solution 1.8150 0.8318 0.2004 0.4015 0.6414 0.3311 0.2834
Point number 29 30 31
X 0.0459 0.3328 0.1744
y -0.2032 —-0.1161 0.0000
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Continuation of table 5

The exact solution 0.9832 2.1689 1.5329
The HC solution 0.9924 2.1689 1.5373
Table 6
The calculation results

Point number 1 2 3 4 5 6 7
X 1.1387 0.6789 0.1404 -0.4339 —-0.7355 —0.7488 -0.7213
y 0.0610 0.4697 0.7826 1.0207 0.5615 -0.0620 -0.6858
The exact solution 4.0101 3.8766 3.6988 3.1990 6.4195 8.8530 5.4894
The HC solution 4.0110 3.8840 3.6990 3.2160 6.4370 8.8080 5.4920
Point number 8 9 10 11 12 13 14
X -0.3119 0.2489 0.7847 0.8836 0.4897 0.0792 —-0.3416
y -0.9953 -0.7209 -0.4028 0.0444 0.3136 0.5423 0.7854
The exact solution 3.2886 3.7558 3.9008 4.0079 4.0963 4.2640 4.1824
The HC solution 3.2830 3.7587 3.8986 4.0062 4.0998 4.2648 4.1807
Point number 15 16 17 18 19 20 21
X -0.5300 -0.4937 -0.5321 -0.2508 0.1566 0.5793 0.5776
y 0.4312 —0.0454 -0.5297 —0.7550 —0.4856 —0.2725 0.0244
The exact solution 6.2152 6.9516 5.7855 4.1727 4.2569 4.0602 4.1378
The HC solution 6.2154 6.9378 5.7897 4.1682 4.2566 4.0600 4.1380
Point number 22 23 24 25 26 27 28
X 0.2626 0.0059 -0.2309 —-0.2835 -0.1876 -0.3050 -0.1775
y 0.1262 0.2540 0.5029 0.2748 -0.0254 —0.3423 —0.4667
The exact solution 4.4559 4.8437 4.9521 5.6575 5.5545 5.5934 49136
The HC solution 4.4563 4.8424 4.9498 5.6532 5.5499 5.5904 49112
Point number 29 30 31
X 0.0459 0.3328 0.1744
y -0.2032 —-0.1161 0.0000
The exact solution 4.8040 4.3626 4.6270
The HC solution 4.8022 4.3624 4.6263

In all cases, when clarifying the decision, M = 75, & = 0.00025 were taken and the Euclidean norm was used.The
following activation functions were taken

86 85 85
9y, V(eyits)= Y- Y,
'10°s (5.7.1:5) 10°s 0'1d’s

Y:In%, R=y(x—1F +(y—s).

Discussion and Conclusion. he presented results convincingly demonstrate that the proposed method for
constructing a neural network to solve the Dirichlet problem for regions of complex shapes is highly effective.
This method can also be utilized for solving other partial differential equations. It can be easily adapted for solving
three-dimensional problems and boundary value problems for multiply connected regions. Its efficiency can be
further enhanced by appropriately selecting activation functions (by choosing parameters ¢, and ¢,), by optimizing
the training set selection, and by fine-tuning the weights. All of the above indicates the considerable potential of the
proposed method.

U(x,p,t,5)=
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06 asmope:
Anexkcannp BacuibeBnu lanadypaun, kananaar Gpusnko-MareMaTHYeCKUX HaykK, TOLEHT Kadeapbl MaTeMaTHKU U
nH(popMaTHKH JJOHCKOTO TocynapcTBeHHOro TexHI4Yeckoro yauepcutera (PO, 344003, . Poctos-na-/{ony, . ['arapuna, 1),
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Kongnuxm unmepecos
ABTOD 3asBJseT 00 OTCYTCTBHH KOH(IUKTa HHTEPECOB

Aemop npoyuman u 0006pusL OKOHUAMETbHbIU 8APUAHI PYKONUCU.
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