8, 3,2024



Computational Mathematics and Information Technologies

Peer-reviewed scientific and theoretical journal (published since 2017)

eISSN 2587-8999
DOI: 10.23947/2587-8999

Vol. 8, no. 3, 2024

The scope of “Computational Mathematics and Information Technologies” is focused on fundamental and applied
research according to the following scientific sections:

1. Computational Mathematics
2. Mathematical Modelling
3. Information Technologies

Indexing RSCI, Crossref, Cyberleninka

Name of the body Mass media registration certificate 3J1 Ne ®C 77-66529 dated July 21, 2016
that registered the issued by the Federal Service for Supervision of Communications, Information
publication Technology and Mass Media

Founder Federal State Budgetary Educational Institution of Higher Education Don State
and publisher Technical University (DSTU)

Periodicity 4 issues per year

Address of the 1, Gagarin sq., Rostov-on-Don, 344003, Russian Federation

founder and publisher

E-mail CMIT-EJ@yandex.ru

Telephone +7(863) 273-85-14

Website https://cmit-journal.ru

Date of publication 30.09.2024

© Don State Technical University, 2024


mailto:CMIT-EJ%40yandex.ru?subject=
https://cmit-journal.ru
$$$/Dialog/Behaviors/GoToView/DefaultURL

Computational Mathematics and Information Technologies

Peunensupyemblii HayuHO-TeopeTHYecKHUii :KypHaa (u3naércs ¢ 2017 rona)

eISSN 2587-8999
DOI: 10.23947/2587-8999

Tom 8, Ne 3, 2024

Kypunan «Computational Mathematics and Information Technologies» opuenTHpoBaH Ha ¢yHAaMeHTAJIbHBIE
1 MPUKJIATHbIE HCCJIeT0BAHMS M0 CIeAYIOIHM HAYYHBIM pa3iejam:

1. BerauciurenpHas MaTeMaTHKa
2. Maremarrnyeckoe MOJICITUPOBaHHE
3. MHdopMaIHOHHBIC TEXHOIOTHH

Hnoekcayus PUHII, CrossRef, CyberLeninka

Haumenosanue CBHIETEIBCTBO O PETUCTPAIMU cpeacTBa MaccoBor uHpopmanuu IJI Ne ®C 77 — 66529
opeana, ot 21 urons 2016 r., Beigano denepanbHoii cityx00ii 1o Han30py B cdepe cBsizu, HHPOP-
3ApecUCMPUPOBABULECO  MaHOHHBIX TEXHOJIOTHI U MaCCOBBIX KOMMYHHUKAIMI

uzoauue

Yupeoumens denepanbHOE TOCYIAPCTBEHHOE OIOHKETHOE O00pa30BaTENbHOC YUPESIKICHHUE BBICIICTO

u usoamens obpaszoBaHms «J{0OHCKOW TOCYIapCTBEHHBIN TexHIUeCKuil yHIBepcuTeT (I TY)

IHepuoouunocmo 4 BBIyCKa B TOJ

Adpec yupeoumens 344003, Poccuiickast ®enepanusi, r. Poctos-Ha-Jlony, rut. ['arapuna, 1
u uzoamenst

E-mail CMIT-EJ@yandex.ru

Teneghon +7(863) 273-85-14

Catim https://cmit-journal.ru

Jlama svixooa 6 ceem

© JloHCKOM TOCYIapCTBEHHBIN TeXHUUECKU yHUBepcuTeT, 2024

30.09.2024


mailto:CMIT-EJ%40yandex.ru?subject=
https://cmit-journal.ru
$$$/Dialog/Behaviors/GoToView/DefaultURL

Comp jonal Math tics and Information Technologies. 2024;8(3). eISSN 2587-8999

Editorial Board
Editor-in-Chief, Alexander 1. Sukhinov, Corresponding member of RAS, Dr.Sci. (Phys.-Math.), Professor, Don State
Technical University (Rostov-on-Don, Russian Federation), MathSciNet, RSCI, ORCID, ResearcherID, Scopus,

sukhinov@gmail.com, spu-40.4@donstu.ru
Deputy Chief Editor, Mikhail V. Yakobovski, Corresponding Member of RAS, Dr.Sci. (Phys.-Math.), Professor, Keldysh

Institute of Applied Mathematics, Russian Academy of Sciences (Moscow, Russian Federation), RSCI, ORCID
Executive Secretary, Alexander P. Petrov Dr.Sci. (Phys.-Math.), Head Scientist Researcher, Keldysh Institute of Applied

Mathematics, Russian Academy of Sciences (Moscow, Russian Federation), RSCI, Istina, ORCID, ResearcherID, Scopus

Vladimir V. Voevodin, Corresponding Member of RAS, Dr.Sci. (Phys.-Math.), Professor, Lomonosov Moscow State
University (Moscow, Russian Federation)

Vladimir A. Gasilov, Dr.Sci. (Phys.-Math.), Professor, Keldysh Institute of Applied Mathematics, Russian Academy of
Sciences (Moscow, Russian Federation)

Valentin A. Gushchin, Corresponding Member of RAS, Dr.Sci. (Phys.-Math.), Professor, Institute of Computer Aided
Design, Russian Academy of Sciences (Moscow, Russian Federation)

Galina G. Lazareva, Corresponding member of RAS, Dr. Sci. (Phys.-Math), Professor of RAS, RUDN University,
(Moscow, Russian Federation)

Vladimir I. Marchuk, Dr.Sci. (Eng.), Professor, Don State Technical University (Rostov-on-Don, Russian Federation)
Igor B. Petrov, Corresponding Member of RAS, Dr.Sci. (Phys.-Math.), Professor, Moscow Institute of Physics and
Technology (State University) (Moscow, Russian Federation)

Sergey V. Polyakov, Dr.Sci. (Phys.-Math.), Professor, Keldysh Institute of Applied Mathematics, Russian Academy of
Sciences (Moscow, Russian Federation)

Vladimir F. Tishkin, Corresponding Member of RAS, Dr.Sci. (Phys.-Math.), Professor, Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences (Moscow, Russian Federation)

Boris N. Chetverushkin, Academician of RAS, Dr.Sci. (Phys.-Math.), Professor, Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences (Moscow, Russian Federation)

Alexander E. Chistyakov, Dr.Sci. (Phys.-Math.), Professor, Don State Technical University (Rostov-on-Don, Russian Federation)


https://mathscinet.ams.org/mathscinet/MRAuthorID/216938
https://elibrary.ru/author_items.asp?authorid=143825
https://orcid.org/0000-0002-5875-1523
https://www.webofscience.com/wos/author/rid/I-1091-2016
https://www.scopus.com/authid/detail.url?authorId=8573972700
mailto:sukhinov%40gmail.com?subject=
mailto:spu-40.4%40donstu.ru?subject=
https://elibrary.ru/author_items.asp?authorid=10790
https://orcid.org/0000-0002-9498-1457
https://elibrary.ru/author_items.asp?authorid=15671
https://istina.msu.ru/workers/2082576
https://orcid.org/0000-0001-5244-8286
https://www.webofscience.com/wos/author/rid/R-6729-2016
https://www.scopus.com/authid/detail.url?authorId=57192177702

Computational Mathematics and Information Technologies. 2024;8(3). eISSN 2587-8999

PepakumonHnasi KoJierus

TInagnwtii pedoakmop, CyxwHOB Anekcannp VpaHoBud, wieH-koppecrioHIeHT PAH, moxtop ¢(u3nko-MareMaTHdecKux
Hayk, Tipodeccop, [loHCKOI rocyaapcTBeHHbIN TexHuueckuil yausepcuret (PoctoB-nHa-/{ony, Poccuiickas deneparus),
MathSciNet, PUHII, ORCID, ResearcherID, Scopus, sukhinov@gmail.com, spu-40.4@donstu.ru

3amecmumens 2nasnozo pedaxkmopa, Slkoo6oBckuii Muxaun Bmagumuposud, dneH-koppecnonaeHT PAH, mokrop

(u3MKO-MaTeMaTHUeCKUX Hayk, npodeccop, HHCTUTYT mnpmkiamHoi wMaremarukn wuMm. M.B. Kemgemma PAH
(Mocxkga, Poccuiickas @eneparus), PUHIL, ORCID

Omeemcmeennvlii cekpemaps, IletpoB Anekcannp IIxoyH Yo, HOKTOp (QH3HKO-MATEeMaTHYCCKUX HAyK, BEYIIUIH
Hay4YHBIN COTpYAHUK, IHCTUTYT MpukinaaHoit marematuku uM. M.B. Kengpsima PAH (Mocksa, Poccuiickas denepartus),
PUHII, UCTUHA, ORCID, ResearcherID, Scopus

BoeBognn Biaagumup BanentuHoBud, uwieH-koppecnonneHT PAH, mokrop ¢u3nko-MaTeMaTnieckux Hayk, mpodeccop,
MockoBckwii rocyaapcTBeHHbIH yHIUBepcuTeT nM. M.B. JlomoHocoBa (Mocksa, Poccuiickas @enepariys)

I'acunos Biaagumup AHaTOJbeBHMY, IOKTOp (H3MKO-MaTeMaTH4eckux Hayk, npodeccop, MHCTHUTYT mpuKiamHON
maremaruku uM. M.B. Kengpima PAH (Mocksa, Poccuiickas @eneparist)

I'ymua BaneHTHH AHaTOJbeBUY, WieH-KoppecnoHaeHT PAH, mokrop ¢m3nko-maremMaTHdeckux Hayk, mpodeccop,
WucTtutyT aBToMatu3anuu npoektupoBanus PAH (Mocksa, Poccuiickas denepariust)

JlazapeBa 'amuna lennaapeBHa, wieH-koppecnoraeHT PAH, nokTop ¢pusnko-maTeMaTHuecKux Hayk, mpodeccop PAH,
Poccuiickuii yauBepcuret npyx0b1 HapoaoB (Mocksa, Poccuiickas @eneparivis)

Mapuyk Baagumup WBaHoBHY, JOKTOp TEXHHUYECKUX HayK, mpodeccop, JJOHCKOW rocyaapcTBeHHBIH TEXHUIECKHN
yauBepcureT (Pocros-Ha-/lony, Poccuiickas denepariust)

MerpoB Urops Bopucosuy, wren-koppecrorneHT PAH, mokrop ¢pu3nko-mMareMaTiHaecKix Hayk, mpodeccop, MockoBckuit
(U3MKO-TEXHUYECKUIT HHCTUTYT (TocynapcTBeHHbIN yHUBepcuTeT) (Mocksa, Poccuiickas denepanust)

Moaskos Cepreii BragmmMupoBuy, TOKTOp GU3NKO-MATEMAaTHISCKUX HAYK, CTAPIINA HAYIHBINH COTPYyIHUK, HCTHTYT
npukiagHoi Matemaruku uM. M.B. Kennpiiia PAH (Mocksa, Poccutickas deneparust)

Tumkun Baagumup ®enopoBuy, wieH-koppecmoHneHT PAH, mokrop (u3mko-maTeMaTHUecKAX Hayk, Tpodeccop,
WuctutyT npukianHoit Mmarematuky uM. M.B. Kennpia PAH (Mocksa, Poccuiickas @enepariys)

YerBepymkun bopuc HukxonaeBuu, akagemuk PAH, mokTop Qu3mko-MaTreMaTHndecKux Hayk, Ipodeccop, HayJIHBINH
pyxoBoxuTens MHcTHTYTa MpukiIaaHoi Maremaruku M. M.B. Kengpima PAH (Mocksa, Poccuiickas @eneparist)
YucrsakoB Anexkcanap EBrenbeBud, T0KTOp (PH3HKO-MaTeMaTHIecKux Hayk, mpodeccop, JoHCKO# rocyaapcTBeHHBIN

TexHuueckuit ynusepcutet (PoctoB-Ha-lony, Poccuiickas ®enepanns)


https://mathscinet.ams.org/mathscinet/MRAuthorID/216938
https://elibrary.ru/author_items.asp?authorid=143825
https://orcid.org/0000-0002-5875-1523
https://www.webofscience.com/wos/author/rid/I-1091-2016
https://www.scopus.com/authid/detail.url?authorId=8573972700
mailto:sukhinov%40gmail.com?subject=
mailto:spu-40.4%40donstu.ru?subject=
https://elibrary.ru/author_items.asp?authorid=10790
https://orcid.org/0000-0002-9498-1457
https://elibrary.ru/author_items.asp?authorid=15671
https://istina.msu.ru/workers/2082576
https://orcid.org/0000-0001-5244-8286
https://www.webofscience.com/wos/author/rid/R-6729-2016
https://www.scopus.com/authid/detail.url?authorId=57192177702

Computational Mathematics and Information Technologies. 2024;8(3):5. eISSN 2587-8999

Contents

ANNIVERSARY OF THE SCIENTIST

Congratulations to Corresponding Member of RAS
Alexander Ivanovich SUKRINOV .......eeeeeeeeeeccecrnrrsnnnneeeececcsssssnanseeeecccssssssnssssseccesssssonnansans 7

INFORMATION TECHNOLOGIES

Mathematical Modelling of Spatially Inhomogeneous Non-Stationary

Interaction of Pests with Transgenic and Non-Modified Crops

ConSIAering TAXIS ..ccccvererssrncsssrncssnncssnicsssrisssssesssssessssssssssessssssssssssssssssssssssssssssssssssssnsess 9
A.L Sukhinov, 1.A. Bugaeva

MATHEMATICAL MODELLING

A Modified Bubnov-Galerkin Method for Solving Boundary Value Problems
with Linear Ordinary Differential EQUAtions .........coeeveeirenneenseensnensenssncsseecssnecnees 23
N.K. Volosova, K.A. Volosov, A.K. Volosova, D.F. Pastukhov, Yu.F. Pastukhov

Mathematical Modelling of the Impact of IR Laser Radiation
on an Oncoming Flow of Nanoparticles with Methane ..........cccccevveerccnccneccsccnneccens 34
E.E. Peskova, V.N. Snytnikov

COMPUTATIONAL MATHEMATICS

Construction of Second-Order Finite Difference Schemes

for Diffusion-Convection Problems of Multifractional Suspensions

In Coastal Marine SYSTEIMS ....c.ceveeirensieessuenssnncsaenssnesssesssnssssssssassssessssssssssssassssasssssssaass 43
V.V Sidoryakina



Computational Mathematics and Information Technologies. 2024;8(3):6. eISSN 2587-8999

Conep:xanue

IOBUJIEU YYEHOI'O

ITo3npaBienne ¢ wonaeeM wieHa-koppecnonaenta PAH A.W. CyxuHoBa .............. 7

NHOPOPMAILIMOHHBIE TEXHOJIOTUHN

MaremaTn4eckoe MoAeTHPOBaHUE IPOCTPAHCTBEHHO-HEOHOPOIHOIO
HECTALMOHAPHOI'0 B3AaUMOJCHCTBUSA BpeauTe/Ieil ¢ TPaHCTeHHOM

U HeMOAU(PUIUPOBAHHON ATPOKYJIBTYPAMHM € YUETOM TAKCHCA «everrersrsserccssssssncssnsans 9
A.U. Cyxunos, U.A. byzaesa

MATEMATHYECKOE MOJIEJIMPOBAHHUE

Mopudunuposannsiii Meroa byoHoBa-I"ajiepkuna 115 pereHust

KpaeBbIX 32/124 C JIUHEHHbIM 00bIKHOBEHHBIM

Au(ppepeHuaIbLHBIM YPABHEHUEM 23
H.K. Bonocosa, K.A. Bonocos, A.K. Bonocosa, /].®. Ilacmyxos, FO.®D. Ilacmyxoé

MaremaTnueckoe moaeanpoBanue Bo3aeiicteus UK-n1aszepHoro usinyyeHus
HA BCTPEYHBIH MOTOK HAHOYACTHUIL C METAHOM .eevereersssssresssssssesssssssssssssssssssssssssssssnases 34
E.E. [leckosa, B.H. Chnoimnuxog

BBIYNCJIUTEJIBHAA MATEMATUKA

IocTpoenne pa3HOCTHBIX CX€M BTOPOIr0 MOPSAKA TOYHOCTH U 32124
AUPPY3MH-KOHBEKIMU MYJIbTH(PPAKLHOHHBIX B3BeCeH

B NPUOPEKHBIX MOPCKHX CHCTEMAX eecvueersrrcssecssansssessssesssssssansssassssssssssssassssassssssssssssassss 43
B.B. Cuoopsaxuna




Comp ional Math tics and Information Technologies. 2024;8(2):7-8. eISSN 2587-8999

ANNIVERSARY OF THE SCIENTIST
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In Commemoration of the Anniversary of Corresponding Member
of the Russian Academy of Sciences, Doctor of Physical and Mathematical Sciences,
Professor Alexander Ivanovich Sukhinov

Alexander Ivanovich Sukhinov is the head of the Department of Mathematics and Informatics at Don State Technical
University, Director of the Research Institute of Mathematical Modeling and Forecasting of Complex Systems, Doctor of
Physical and Mathematical Sciences, Professor, Corresponding Member of the Russian Academy of Sciences (RAS), and
Honored Scientist of the Russian Federation.

A.L Sukhinov has developed and studied scalable parallel methods for solving grid equations of diffusion-convection-
reaction, including the minimal correction method and the adaptive alternating-triangular method for problems with
a non-self-adjoint operator, which demonstrate the best convergence rate under constraints imposed by the grid Peclet
number. He has also constructed and investigated efficient parallel algorithms for solving diffusion-convection-reaction
and hydrophysics problems based on splitting schemes and scalable methods for grid equations, which take into account
the architecture of advanced high-performance computing systems with massive parallelism.

A.L Sukhinov created, studied, and implemented on distributed-memory supercomputers a complex of interconnected
3D precision models of hydrodynamics, heat, salt, suspension transport, and biogeochemical cycles for coastal systems.
These models accurately reproduce vertical mass exchange and are stable for depth variations of up to 40-50 times. Based
on these models, vortex structures were discovered in the Sea of Azov and the Mediterranean Sea, along with hypoxic
zones and anaerobic contamination, as well as highly accurate predictions of extreme storm surges.

A.L. Sukhinov constructed a correct linearization of the initial-boundary problem for a quasilinear parabolic equation
describing sediment transport in coastal systems and proved the convergence of the solutions of the linearized problems
to the solution of the original nonlinear problem. He also studied the “closeness” of solutions to the initial-boundary
problems for models of the dynamics of biogeochemical cycles, described by ten diffusion-convection equations with
nonlinear and linearized source functions.

A.L. Sukhinov implemented a monotonic difference scheme approximating the initial-boundary problem for the
biogeochemical cycle dynamics model, described by ten unsteady three-dimensional diffusion-convection equations with
nonlinear source functions. The resulting discrete model of biogeochemical cycles was applied to a real coastal ecosystem —
the Sea of Azov; simulation results using real data demonstrated the ability to make valid predictions of the geographic
dynamics of phytoplankton population distribution under changing weather and climate conditions, such as increasing
salinity and decreasing freshwater inflow.

For the parallel numerical solution of hydrophysics problems in marine and coastal systems, A.I. Sukhinov developed
explicit parallel algorithms based on the introduction (following B.N. Chetverushkin’s regularization method) of second-
order difference derivatives into discrete models with the correct determination of permissible regularization multiplier
values, which allowed the reduction of the parallel solution time for hydrophysics problems by 50-70 times compared
to other known discrete models, including for storm surge prediction and the consequences of natural and man-made
disasters.

AL Sukhinov participated in 17 expeditions to the Sea of Azov, the Mediterranean Sea, and other locations. In 2001,
he contributed to the discovery of a vast hydrogen sulfide contamination zone in the Sea of Azov. Based on the developed
models, the mechanism of this catastrophe was explained, and the existence of large-scale closed circulations in the
eastern part of the Sea of Azov was uncovered, acting as giant natural traps for pollutants and plankton populations — the
so-called S-structures.

On the initiative of A.I. Sukhinov and under his leadership, major projects were carried out from 2015 to 2023
under the Federal Target Program “Research and Development in the Interests of Developing Russia’s Scientific and
Technological Complex for 2014-2020”, the Russian Science Foundation, the Russian Foundation for Basic Research,
and others, with a total budget exceeding 280 million rubles.
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A.L. Sukhinov engages in significant scientific and organizational work. In 2019, he was elected a Corresponding
Member of RAS in the Department of Mathematical Sciences. He is an expert for the Russian Foundation for Basic
Research, the Russian Science Foundation, RAS, and the Directorate of Scientific and Technological Programs of the
Ministry of Education and Science of Russia. He chairs the Dissertation Council 24.2.297.10 at Don State Technical
University in the specialty “Mathematical Modeling, Numerical Methods, and Software Systems”, and is also a member
of the dissertation councils at Southern Federal University and North-Caucasian Federal University. He serves on the
editorial boards of three peer-reviewed journals and one journal indexed in Scopus, and he is a member of the program
committees of three prestigious international and national conferences.

The results of A.I. Sukhinov’s scientific research and experimental development have been implemented in enterprises
in Russia and the Rostov region (Donenergomash, Don Technologies, etc.). His work has been published in over 430
papers, including five monographs, 10 textbooks, and 14 patents and certificates of authorship. From 2019 to 2023, he
published more than 100 scientific works, including over 60 indexed in the Scopus and Web of Science databases.

A.IL. Sukhinov makes a significant contribution to the development and improvement of the educational process and
the training of engineering and scientific-pedagogical personnel. The precision mathematical models and supercomputer
software systems developed under his guidance have been implemented in the educational process. He has supervised
the preparation of four Doctors of Science and 33 Candidates of Science. His students have won seven grants from the
Russian Science Foundation and the Russian Foundation for Basic Research, as well as a Presidential Grant for Young
Scientists from 2015 to 2022.

The editorial team of the journal Computational Mathematics and Information Technologies, along with Alexander
Ivanovich’s colleagues, congratulates the esteemed celebrant, wishing him good health, new scientific discoveries, and
the joy of seeing the results of his work! May there be many more successful projects and grateful students ahead!

Editorial Board of
Computational Mathematics and Information Technologies

Executive Secretary — Alexander P. Petrov;
Boris N. Chetverushkin;
Alexander E. Chistyakov;
Vladimir A. Gasilov;
Valentin A. Gushchin;
Vladimir I. Marchuk;
Alexander P. Ch. Petrov;
Sergey V. Polyakov;
Aleksandr A. Shananin;
Vladimir F. Tishkin;
Yuri V. Vasilevsky;
Vladimir V. Voevodin;
Mikhail V. Yakobovskiy.



Comp ional Mathematics and Information Technologies. 2024;8(3):9-22. eISSN 2587-8999

INFORMATION TECHNOLOGIES
NHO®OPMAIMOHHBIE TEXHOJOI'NHN

UDC 51-76, 519.6 Original Empirical Research
https://doi.org/10.23947/2587-8999-2024-8-3-9-22

Mathematical Modelling of Spatially Inhomogeneous
Non-Stationary Interaction of Pests with Transgenic
and Non-Modified Crops Considering Taxis
Alexander I. Sukhinov! &3, Irina A. Bugaeva?

"Don State Technical University, Rostov-on-Don, Russian Federation
2Southern Federal University, Rostov-on-Don, Russian Federation

Msukhinov@gmail.com

Abstract

Introduction. This paper addresses a unified spatially inhomogeneous, non-stationary model of interaction between
genetically modified crop resources (corn) and the corn borer pest, which is also present on a relatively small section of
non-modified corn. The model assumes that insect pests influence both types of crops and are capable of independent
movement (taxis) towards the gradient of plant resources. It also considers diffusion processes in the dynamics of all
components of the unified model, biomass growth, genetic characteristics of both types of plant resources, processes
of crop consumption, phenomena of growth and degradation, diffusion, and mutation of pests. The model allows for
predictive calculations aimed at reducing crop losses and increasing the resistance of transgenic crops to pests by slowing
down the natural mutation rate of pest.

Materials and Methods. The mathematical model is an extension of Kostitsin’s model and is formulated as an initial-
boundary value problem for a nonlinear system of convection-diffusion equations. These equations describe the
spatiotemporal dynamics of biomass density changes in two types of crops — transgenic and non-modified — as well
as the specific populations (densities) of three genotypes of pests (the corn borer) resulting from mutations. The authors
linearized the convection-diffusion equations by applying a time-lag method on the time grid, with nonlinear terms from
each equation taken from the previous time layer. The terms describing taxis are presented in a symmetric form, ensuring
the skew-symmetry of the corresponding continuous operator and, in the case of spatial grid approximation, the finite-
difference operator.

Results. A stable monotonic finite-difference scheme is developed, approximating the original problem with second-order
accuracy on a uniform 2D spatial grid. Numerical solutions of model problems are provided, qualitatively corresponding
to observed processes. Solutions are obtained for various ratios of modified and non-modified sections of the field.
Discussion and Conclusion. The obtained results regarding pest behavior, depending on the type of taxis, could significantly
extend the time for pests to acquire Bt resistance. The concentration dynamics of pests moving in the direction of the food
gradient differs markedly from the concentration of pests moving towards a mate for reproduction.

Keywords: mathematical modelling, genetically modified corn, crops, fast and slow taxis

For citation. Sukhinov A.l.,, Bugaeva [.A. Mathematical Modelling of Spatially Inhomogeneous Non-Stationary
Interaction of Pests with Transgenic and Non-Modified Crops Considering Taxis. Computational Mathematics and
Information Technologies. 2024;8(3):9-22. https://doi.org/10.23947/2587-8999-2024-8-3-9-22
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OpueunaﬂbHoe amnupudeckoe ucciedosamue

Maremarunuyeckoe MOJIEJIUPOBAHHUEC MPOCTPAHCTBCHHO-HCOAHOPOAHOTO HECTAIIHOHAPHOI'0
B3aMMO/JeCTBUSA BpeauTeIeil ¢ TPAHCTeHHOH U HeMOAU(PUIMPOBAHHON arpOKY/IbTYPaMH
C YUYETOM TaKCHCA

AM. Cyxunos' [, M.A. Byraesa’

! IToHCKO#t TOCYAapCTBeHHBIN TEXHUYECKUIT yHUBepcuTeT, I. Poctos-Ha-J{ony, Poccuiickas @enepaniis

2TOxHbI# (enepabHbIil yHUBEpCHTET, T. PocToB-Ha-/loHy, Poccuiickas ®eneparius

Msukhinov(@gmail.com

AHHOTANHUSA

Begeoenue. PaccmarpuBaercs 00beMHEHHAs! TIPOCTPAHCTBEHHO-HEOJHOPOIHASI HECTAIOHAPHAsI MOJIEIIb B3aUMOACHCTBHS
TeHETUYECKU MOAUMUIIMPOBAHHOTO PACTUTEIILHOTO pecypca (KyKypy3bl) PH HATUYKH Ha TI0JIC BPEAUTEIS — KyKypy3HOTO
MOTBITbKA, TAKKE JIOKATM30BAHHOTO Ha OTHOCUTEIBLHO HEOOJIBIIIOM YYaCTKE MOJIst HeMOAU(HUIIMPOBAHHOMN KyKypy3bl. [Ipes-
TIOJIATAETCsI, YTO Ha 00€ PaCTUTENIBHbIE KyIBTYphI BO3IECHCTBYIOT HACEKOMBIE-BPEAUTEIH, CIIOCOOHBIE K CAMOCTOSTEIEHOMY
TIEpEMETIICHHIO (TaKCHCY) B HANPABJIEHUHN IpalieHTa PaCTHTEIBHOTO pecypca. Takxe paccMarpuBaeMast MOJETb YIUThIBA-
eT mudQy3nOHHBIE MPOIECCH B ANHAMUKE BCEX KOMIIOHEHTOB OOBEJMHEHHOW MOJEIH, POCT OMOMAcChl, TeHETHIECKNE
0COOEHHOCTH 000MX BUIOB PACTUTEIIHLHOIO peECypca U MPOLIECCOB BbIEIaHUs arpOKYJIBTYP, SIBJICHUS POCTa U JIeTpaIaliiy,
muddy3nn 1 MyTanmu BpenuTeneld M JaeT BO3MOXKHOCTb, HA OCHOBE NMPOTHOCTHYECKHX PacyeToB, C OJHOH CTOPOHBI,
YMEHBIINUTb IOTEPHU ypOXKasi, C APyTrOil CTOPOHBI — IOBBICUTH CTOMKOCTh TPAHCTEHHOW arpOKYJIBTYPhl K BO3ACHCTBUIO
BPEIUTEIS 3a CUET CHUKEHHSI CKOPOCTH €r0 €CTECTBEHHON MyTaIlHH.

Mamepuanst u memoowi. MareMaTnieckasi MOZACNb TPEICTaBIsCT coboi pa3BuTHe Moxenu KocTHnbIHA W ABISETCS
HavyaJIbHO-KpPaeBOW 3a/1aueil 11l HeIMHEWHON CHCTEMBI ypaBHEHMH KOHBEKUUH-AN(PQY3UH, KOTOPBIE OMHMCHIBAIOT MPO-
CTPaHCTBEHHO-BPEMEHHYIO JAMHAMUKY M3MEHEHMsS IUIOTHOCTH OMOMAacChl JBYX THIIOB arpOKYJIBTYpbl — TPaHCTEHHOMH
U HeMOAU(UIIMPOBAHHOM, a TAKXKE YACIbHBIC YACICHHOCTH (TUIOTHOCTH) 00pa30BaBIINXCS B PE3YJbTAaTe MyTallMi TPEX
TEHOTHUIIOB BpenuTeNel (KyKypy3HOro MOTBUIBKA).

ABTOpaMu BBINOJIHEHA JINHEAPH3aLM YPaBHEHUH A (y3HH-KOHBEKIIUH 110 TIPaBBIM YacTsIM Ha BPEMEHHOH CETKe — He-
JVHEHHBIC WICHBI, BXOAAIINE B KaKA0€ U3 YpaBHEHUH, OepyTcs C 3ama3gpIBAHUEM Ha MPEIBIAYIIEM BPEMEHHOM CIIOE.
Unensl, onpeesnsoIne TAaKCHUC, TPEICTaBICHBI B TAaK Ha3bIBAEMOI CUMMETPHYHOH (hopMe, rapaHTHPYIOIIEeH KOCOCHM-
METPHYHOCTh COOTBETCTBYIOILETO HENPEPHIBHOIO OIEparopa, a MpH anmpoKCUMAILMKM Ha MIPOCTPAHCTBEHHOH ceTKe —
U Pa3HOCTHOTO OIlepaTopa.

Pe3ynvmamot uccnedosanus. IloctpoeHa ycToifunBasi MOHOTOHHASI Pa3HOCTHAS CXEMa, alllIPOKCHMHUPYIOIIAs HCXOTHYIO
3a/aqy CO BTOPBHIM IOPSIKOM Ha MPOCTPAHCTBEHHOM paBHOMepHOU 2D cetke. [IpuBeneHsl pe3yasTaThl YUCISHHOTO pe-
LIEHUs] MOZIETBHBIX 3a/1a4, Ka4ECTBCHHO COIIACYIOIINECS C PeaIbHO HaOMoAaeMbIMH IponeccaMu. [1omydeHs! pemeHns
JUISL pa3JINYHBIX COOTHOIEHUH MOAU(UIIMPOBAHHOTO W HEMOAN(HUIIMPOBAHHOTO YIACTKOB MOJIS.

Oobcysncoenue u 3axnroyenus. [lonyueHHble pe3ynbTaThl yueTa OBEICHUS BpeIuTeliel B 3aBUCUMOCTH OT TUIIA TaKCHCa
MOT'YT TI03BOJIUTh CYIIECTBEHHO YBEJIMYHUTH BpeMsi IpuodpeTeHus Bt-yctoitunBocTy. [Ipn 3TOM muHaMKMKa KOHLEHTpa-
ou Bpe]lHTeHeﬁ, MNEPEMEUIAONINXCA B HAIIPABJICHUU I'PaAUCHTA IMOMCKA MHIITH, 3HAYUTCIIBHO OTIIMYAaCTCA OT KOHIICHTPAa-
LIUH BPEAUTEIIEH, TEPEMEIAIONINXCS B HAITPABICHUH MapTHEPA IS pa3MHOKEHHS.

KuroueBble cjI0Ba: MaTeMaTHIeCKOE MOMICIIMPOBAHIE, TCHETHUSCKH MOAN(UIIPOBAHHAS KYKypy3a, arpOKYIbTypa, ObI-
CTPBIM U MEJICHHBIN TaKCHC

Jasi uutupoBanusa. CyxuHoB A.M., byraesa HM.A. Maremaruueckoe MOIEIUPOBAHUE MPOCTPAHCTBEHHO-HE-
OJTHOPOIHOIO HECTAIIMOHAPHOTO B3aUMOJCHCTBHS BpPEAUTENICH C TPaHCTCHHOM M HEMOTU(HUIIMPOBAHHON arpo-
KyasTypamu ¢ ydetoMm Takcuca. Computational Mathematics and Information Technologies. 2024;8(3):9-22.
https://doi.org/10.23947/2587-8999-2024-8-3-9-22

Introduction. A unified spatially inhomogeneous non-stationary model is considered, describing the interaction of
genetically modified crop resources (corn) [ 1-5] in the presence of pests, specifically the corn borer, which is also localized
within a relatively small section of the field growing non-modified corn. It is assumed that insect pests affect both types
of crops and are capable of moving independently in the direction of the plant resource gradient, thus accounting for the
phenomenon of taxis [6, 7]. Furthermore, the model incorporates diffusion processes in the dynamics of all components
of the unified model.

The arrangement of two types of crops of the same species — transgenic and non-modified — on the same plot of land
(field), with the non-modified crop occupying a significantly smaller area, allows for the localization of a large proportion
of pests in this smaller area [8—13]. By selecting the relative size of this area and considering factors such as soil fertility,
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biomass growth, diffusion, and genetic characteristics of both types of crop resources, predictive calculations based on
the developed model can be used to reduce crop losses. The processes of crop consumption, growth, degradation, taxis,
diffusion, and pest mutation are also accounted for additionally, this approach increases the resistance of transgenic crops
to pest damage by slowing the natural mutation rate of pests.

Materials and Methods. The mathematical model is formulated as an initial-boundary value problem for nonlinear
convection-diffusion equations with nonlinear functions on the right-hand side [14—17]. These equations describe the
spatiotemporal dynamics of biomass density changes for two types of crops — transgenic and non-modified — as well as
the density of three pest genotypes, which arise due to mutations in the corn borer.

Transgenic corn lines resistant to pests, producing “Cry 3 Bt” toxin crystals, are engineered using the bacterium
Bacillus thuringiensis var. Tenebrionis. It is assumed that the gene responsible for Bt-resistance in an individual pest can
exist in two states, referred to as alleles: the Bt-susceptible allele (s-allele) or the Br-resistant allele (r-allele) [15—17].
These two alleles form three pest genotypes: Bt-susceptible genotypes (ss and s, if Bt-resistance is recessive) and the Bt-
resistant genotype (77). The proposed approach is based on a modified demo-genetic model of Kostitsin [1, 15-21], which
describes the dynamics of competing pest genotypes using Lotka-Volterra equations [2, 3].

In this work, the convection-diffusion equations were linearized on the time grid, where the nonlinear terms [22, 23] in
each equation were taken with a delay from the previous time layer. The terms defining taxis are analogous to advective
transport terms and are presented in a symmetric form that ensures the skew-symmetry of the corresponding continuous
operator. When approximated on a spatial grid, this also ensures the skew-symmetry of the finite-difference operator. This
approach, with relatively mild restrictions on the time step during the approximation on a 2D spatial grid, allows for the
construction of a stable monotonic finite-difference scheme.

Formulation of the Initial-Boundary Value Problem. Let R = R(x, y, f) represent the biomass growth of the studied
crop, and 7, be the Malthusian growth rate coefficient. The well-known equation for the dynamics of biomass density
takes the form:

OR R
EZSRAR-FVRR(I—K—R)—QRN, (1)

Ty =r +g(x, p,1).

where g(x, y, ) is a function accounting for the fertility of a specific field section.
It is assumed that two types of plant resources exist — “regular” and transgenic crops:

R=R +R, 2

where R, = alx, y) R is the initial biomass of the regular plant resource, R, = (1 — a (x, ))R is the initial biomass of the
transgenic plant resource, N =N +N, +N,_ s the total pest population density, N, =N, (x,y,?) is the density of
genotype ij at point (X,y) € Q at time ¢ (i, j = r uma s); N, N , N _are the pest population densities correspond to the
respective genotypes, K, is the carrying capacity of the environment, d, is the diffusion coefficient for the plant resource,
o(x, y) is the competition coefficient between the two types of plant resources (which can be neglected if the distance
between patches exceeds 5 meters).

For each pest genotype, where necessary, indices are used in the notation: ss and rs for Bt-susceptible genotypes and
rr for the Bt-resistant genotype.

Recall that the goal of using transgenic crops to suppress the pest population in agricultural fields is to reduce the risk
of the pest adapting to the B#-toxin [8—13, 15, 16], produced by the transgenic crop, within the given spatial configuration
of the system and under the prescribed “high-dose/refuge” strategy scenarios recommended for managing pest resistance
to Bt plants. The “high-dose” means that the toxicity level of the Bt-crops is sufficiently high to kill nearly all pest larvae.
The small percentage of surviving (Bt-resistant) individuals should be controlled by designating special areas on or near
the transgenic fields where non-modified crops (refuges) are planted. These refuges serve as a source of Bt-susceptible
individuals, which, by mating with Bt-resistant individuals, should decrease the proportion of resistant offspring.

The biomass growth for both types of crops, considering diffusion, is modeled by the following equations:

R

R _ 5, AR +r,R(0-F_ar N,

or X,

OR R (3)
6; — SRARZ + rRRZ(l —K—R)—(,ZRZNW.
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Let’s introduce the functions that describe the offspring distribution ﬁj, where the indices j, j represent the genotypes ss, 7s, ss:

1 N, Y
N_,N =W_—| N =
](ss( 8552 sr rr) S8 N( ss+ 2 ) >

2 N_\(N
" N ,N ,N )=W_ —|N_+—|—==4+N_|, 4
f[‘j f;f( S8 sr N‘) rs N( Ss 2 j[ 2 H)

1(N g
N N N )Y=W —| "N | .
ﬁ)‘( SS rs )r) rr N( 2 + rrJ

The primary Bt-resistance management strategy, the “high-dose/refuge” approach, is modeled as follows. It is assumed
that the pest’s habitat {2 may consist of an arbitrary number of areas planted either with Bt-corn (Q,), or regular corn
(Q,)- Leto € (0,1) be the selection coefficient for Bz-resistance. Then, the fitness of the pest genotypes is expressed as:

W, _=1-c, HaBceM Q;

l=h.c, xeQ,;
v, () '
l-c+h (o-c), xeQ,; (5

Bt>

1, Q
WV(X):{ X e ref

88
-0, xeQ),,

where c is the cost that the Bt-resistant genotype pays for the advantage it has on Bt-fields; /_ is the dominance level of selection
for Bt-resistance; 4_is the dominance level of the cost ¢, the parameters 6, ¢, h_, h < [0,1] are determined empirically.

Let a represent the search activity coefficient of the corn borer, characterizing its sensitivity to the heterogeneity of
corn distribution, b be the fertility coefficient, p — the mortality rate of genotypes, o — the competition coefficient
between them. W, € [0,1] denotes the fitness coefficient of genotype i/ in the environment, determining its survival
depending on its localization in the habitat (on B#-plants or in a refuge). It is worth noting that when the coefficients
(i. e., the habitat is homogeneous and serves as a refuge), summing the system of equations leads to a simple logistic
growth equation for the entire population.

Results. To solve the task at hand, we modify the Kostytsyn>s demo-genetic model (1) by adding terms accounting for taxis:

oN 1 N
—% 4V(N_v )=8AN_ +eaRW_—(N_+—-) —uN_,
a t ( ss S‘S) ss 58 N( ss 2 ) MN ss
%+V(N”v”) =0AN  +eaRW 3(NYY +£)*
o Vi : : st ©
N,
*(Nrr +Tm)_“‘Nrs’
oN N,
—Z+V(N,v,)=08AN,, +eaRW, L (N, +—2) —uN,,
ot N 2

where K, = (b—u)/oc is the environmental capacity, 8, is the diffusion coefficient of the plant resource, W, are the
adaptability coefficients for pests with the ij-th genotype, jf/ proportions determining the distribution of pest offspring
among the three considered genotypes i (ss, s7, 1) (4), N; = N, (X, y,?) is the density of the ij genotype at point (x, ) € Q
attime ¢ (i, j=rors), N, N, N_ are the densities of the corresponding pest genotypes, N =N _+N_+ N _is the total
population density, p is the mortality coefficient for the genotypes, v, v , v , wm vl.j(x, ¥, f) are the velocities of pest
movement in the spatial variables x and y for the corresponding types in the direction of the plant resource gradient.

For two types of taxis (fast and slow), the biological significance and the equations governing them will be presented
below. Each type is characterized by its ability to locate areas with high prey concentrations. The moth’s search behavior
is modeled based on the assumption that the acceleration of the pest’s movement is proportional to the gradient of plant

density or the change in biomass growth:
dv,
d_j =kVR+ 5VAVU., (7
t

where R = R(x, y, ) represents the biomass growth of the plant resource population at point (x, y) at time #; v’.j(x, ¥, t) denotes
the velocities of pest movement, A is the Laplace operator, V is the gradient operator.
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Here and further, the habitat boundaries of the community are assumed to be uninhabited, meaning that both diffusion
and advective flows of individuals across the boundaries are absent:

VN;on =0, ven=0, (x,y)€0Q . (®)

Here n is an external normal to the border 0Q; Q is the spatially two-dimensional region representing the pest’s
habitat; (x, y) € Q (x, y) the closure of this region Q. Such a formulation of boundary conditions allows for a natural
ecological interpretation, specifically the spatial isolation of the trophic community.

Let us now consider the pest dynamics equations, where pest activity is determined by the sum of the densities of two
species of insect pests:

N=N"4+ N )
where NV u N® and are the pest densities in the passive and active state, respectively.

Considering equation (9), the system of equations (6) for the passive behavior of pests can be rewritten as equations
(10):

oNW 1 N
T by (N = 5OANY + eaR W, Ny Ze | N0 BN,
at 55 \s N(l) s S8 S8

rr

on N0 NO
a” + V(N = §WANY + ear W, i(N(l)+i . N§1)+? —uNy —BNNY,
. , ‘

rs I’Y 1 N(]) 2
10
oNy M, Lo MY ) "
a” +V(Nrr rr) 8 +eaRW W NW +? },LNW BNNrr,
t

(x,»)eQ(x,y),0<t<T,
N (x5, 0,0) = N}, R (%, 3,,0) = R},
— M o1y —
VNij -I’l—O, Vvij 'n—O,(x,y)eaQ,

In the active state, considering that the pest, which is susceptible to the pesticide, only consumes the conventional
plant resource (and not the transgenic crop), we derive the following system of equations (11):

2
oN" NP

SS ( (2 (2) (2) rs —_ (2) — (2)
o +V(NVT) = 8" AN +eaR W, Ve N+ > UN —BNN,

oN® N® N©®
S VONE) = SN+ eaR ], —| N+ || N4 | -,
t

2
2 (11)
oy (), @ (e, N @ e
—+ V(N V) = 8 AN +eaRW, —| N, +—"—| —uN,” —BNN,’,
ot "NO 2
(x,)€Q(x,y), 0<t <T,
N(z)(xo,yO,O) ¥ ’R(xoayo’o):Rl*’
— 2y,
VN!.,. n=0,Vy"en=0,(x,y) € Q2
By summing the first three equations, we obtain (11%):
oN, (),2)y = s AN @ _ N0 @
8—+V(N” v7)=08"AN_" +eaR N*” —uN;’ —BNN",
t
(x,y)eQ(x,y),0<t<T, (11%)

N(z)(xo’y()ao) ,j aR(xovy()»O):Rl*’
VNI;. Jen = 0, vaz)-n =0,(x,y) € 0Q.
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Slow taxis in the passive state for the three types of insect pests is described by the following equations (12):

0]
W ta _a;“ +VINOWY [ =80A00 +kVR,
t
oW
Wi - V(N =80 + kOVR
; SV :
o (12)
Wt a| ==+ V(N | =80AvY + £ IVR
rr at rr rr v rr >

(x,y)eQ(x,y),0<t<T,
N[/(-I)(xo,yo,o) = N;aR(xoayoao) = R*,
VN en =0, Vv®en = 0,(x,y) € Q.

Fast taxis in the active state is described by a single equation for pesticide-resistant insect pests (13), since genotype-
specific traits are not significant when searching for a mating partner:

N A A SEZ)AV(Z). (13)
In equations (12)—(13), all velocities vl(_l),vl(_z),ij € (ss,sr,rr) are spatially two-dimensional vectors.

To linearize the system (3)—(11), considering the initial and boundary conditions, we construct a uniform time grid
o, over the time interval 0 <z <7 , where T is the characteristic period of crop maturation (from early spring to late
summer), with a time step T:

o, ={t, =kt,k=0,1,..,N;Nt=T}. (14)

On this constructed time grid, we build a sequence of linearized initial-boundary value problems, which are
interconnected at each step by the initial and final values. The idea behind such linearization is that all nonlinear terms in
the corresponding partial differential equations are taken from the values at the previous time layer relative to the current
one. For the first time layer, the appropriate initial conditions are used.

Let the solutions of the sequence of linearized initial-boundary value problems be denoted the same as the solution to
the original nonlinear problem (3)—(13).

Initially, for each ¢, starting from the initial moment ¢, the velocities of slow and fast taxis are determined from
equations (15) and (16), respectively. The value of k£, k =1,..., N is fixed for all initial-boundary value problems of the
linearized system of partial differential equations solved at the given time layer ¢, , <t <t , k=1,..,N:

(1.(k)
6v,.j

ot

+lAv@)’“‘) =
ij
o

1
O OVND )+ VN v )+
Le0mf i OVR ),
! (15)
V(l)’(o) _ V* v(l),(k) (tkil) _ vl(jl)’(kfl) (tkfl )’ k = 1, seey N:

i iV

Loy <t<t,(x,y) € Q(x,y),
Nij'l)(xosyosto) = Ng(/l)(xoayoao) = N,;(x’y),Rlo(xosyosO) = R*(Xay),
V(ng.l)-n) =0, Vv‘(”’(k’” n=0,ij €(ss,sr,rr),(x,y) € oL

V(z),(k) — k(Z)VN(Z),(k—l) +6(v2)AV(2),(k)
WO =V NP (s vsty) = Ny (6 0), (16)
VOO ) =V, ),

L <t=t,k=1.,N,(x,y)eQx,y).

#

In relations (15) and (16), the initial conditions V),

V™R (x,), N,j (x,»), N;-* (x,y) are represented by known
functions. For the sake of brevity, we will not separately specify the initial and boundary conditions for systems (17)—(19).
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Here and throughout, for the system (17)—(19), the value of the parameter £ is fixed and is the same as in equations
(15)—(16). It remains constant across all systems (17)—(19) until the corresponding initial-boundary value problems are
solved within the given time interval ¢, | <t <¢, .

For system (3), we have the following:

OR™® R*(, )+ R, )
=B AR 4R (1= = . ) =aRO (N (1 )+ NP, ),
R
8R"‘) RM t )+R* V(¢
R
RV, )= Rf“(rk,l),Ri“(rk,l) =RV (1, ),
L <t<t,k=1.,N,(xy)eQx,y).

For system (10), we have the following:

Ny

a (V(N (k) (k 1))+VN (k) (k 1)) 6(] (k 1) 4
t

(1),(k-1) 2
+eqR* Y (tk—])VVss (11) = [N()U») + N ; (tk 1)J _HNS),(M _BN(k)Ngi),<k)’
1 N (K E 3

(1),(k)

e 2 (V(N ), 1)(A ”)+VN (1), (l)(k 1)) st AN(')”‘ b
ot

+eaR"“ ™ (1, W ! NOED )+NW) :
1 k-1 rs N(l) (k) k-1 2

_ NO® as)
.[NS),(/( 1)(tk—l)+ s _HN,(S) (k) BN(k)N(l) )
(16
B (V(N (k) (k 1))+VN l)(k) (k 1)) 8(]
ot

2
()(k)+Nl)(k V()

_ _ 1
vea(RE (4 )+ RV @ W, —gs (N 2 ] —uNY BN,

RV (4)=RV (). R () = RV (1),
(1)(k)(t ) Nl)(k 1)(t l)Nl)(k)(t 1) N(l),(kfl)(tkl)
NOO@ =N e <t<t,k=1,..,N; (x,y) € 0Q.

For the system of equations (11*), we have the linearized formulation (19).

Subsequently, all linearized initial-boundary value problems are approximated on an extended uniform two-
dimensional grid using implicit schemes with second-order accuracy with respect to spatial grid steps and first-order
accuracy with respect to the time step. Considering the limited speed of pest movement and the symmetric form of the
terms describing taxis (skew-symmetry of the corresponding grid operator), it is possible (by selecting a sufficiently small
time step) to satisfy the conditions for the applicability of the discrete maximum principle and the positive definiteness
of the grid operator for each equation in the system (15)—(19) in the Hilbert space of grid functions. Consequently, we
obtain a stable difference scheme. Due to the considerable complexity and volume of work, these studies are expected to
be carried out in future research planned on this topic.

(2)(k)
ov 1 (2)(k) (2)(k=1) (2(k) 2)(k-1)
o +_(V(N (v )+VN (¢, 1)V )=
2),(k)

=8@AN"" —pN N,

19)
RO ) =R )R () = B0, ),
NGt = N ) NS ) = NS )
NYO @ =N D@ Ot <t <tk =1,..,N; (x,y) € 3Q.
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The resulting system of difference equations, which approximates the sequence of initial-boundary value problems
(15)—(19) with a sufficiently small time step (hundreds or thousands of seconds), exhibits strict diagonal dominance. It is
advisable to solve it using the Seidel method, which converges at a rate of geometric progression.

To model possible scenarios of the behavior of a biological system consisting of predators and prey, a software
package was developed [21]. A two-dimensional grid of size 100x100 units is considered, with a spatial step of 1 and
a time step of 0.01. The weight for the difference scheme is set to 0.5. At the initial moment of simulation, the prey
concentration was set to a constant value of 1, while the initial predator concentration is shown in Figures 9 and 10. The
following parameters were used to simulate changes in population concentrations: the mortality coefficients for the plant
resource B, =B, = 1, the predator growth coefficient, which is taken as the product of the pest’s efficiency coefficient e and
the pest’s resource search efficiency coefficient a: ea = 1, and the taxis coefficients &V = £» = 40. For equations (1)—(7),
it is assumed that the mobility of the different moth genotypes is the same 6 = 1 the pest mortality coefficient p = 6.84,
the carrying capacity of the environment K = 5*106 kg/km?, and the Malthusian growth coefficient », = 25.3 year . In all
numerical experiments, it was assumed that at the initial moment, the pest density was uniformly distributed over space
at N°=2,948 x 10° individuals/km?.

According to the authors’ assumptions, at the beginning of the study period, there are pests with dominant (ss) and mixed
(rs) genes that lack resistance to transgenic crops. Pests with recessive traits (77-genotype) emerge as a result of crossbreeding
by the end of the first month after the first generation reproduces. For the first few months, recessive traits manifest only
in individuals with slow taxis. The movement of pests is directed inward, towards areas planted with conventional crops
(referred to as “refuges”). Here, through crossbreeding, the insects lose their resistance to transgenic crops.

As food sources are depleted, the boundaries of these areas “smooth out”, naturally evening out the spatial distribution
of pests [18, 20, 21]. Pest behavior changes by the second year. Over the first two years, the dynamics of the pests
shift significantly depending on their activity — whether they are feeding or reproducing. Rapid consumption of the
conventional plant resource inevitably leads pests towards the biomass gradient of the transgenic crops. However,
successful reproduction is only possible in areas with conventional crops, which highlights the significant role of both fast
and slow taxis in the model. Consequently, the movement of all pests is directed away from the “refuge” areas. As they
deplete the conventional crop zones, the pests move toward regions where its biomass increases, eventually entering the
transgenic fields, where they reproduce and gradually acquire resistance to transgenic plant varieties.

It should be noted that the main field cannot border other modified crops. Figures 1 and 2 present recommendations
for farmers from the company’s official website.

As the total area of “refuges” increases (>20 %), the acquisition of Bt-resistance slows down, which aligns with the widely
accepted recommendations for the size of “conventional” plots on genetically modified fields — ranging from 5 % to 20 % (Fig. 1).

Total Corn Acres”

Refuge Acres
B.t. Acres
Persent of Required Refuge — or

Based on total corn acres.

“Includes all corn acres that are infield or adjasent to each other
and will be allocated to the B.t. product and its associated refuge.

Fig. 1. Recommended sizes of “refuges”

while the transgenic variety is indicated in green (Fig. 1 and 2). Here, the “striping of refuges” may be uneven across
the field, and their placement depends on the agro-climatic conditions (Fig. 2).

Now, let us consider the dynamics of pest distribution under various configurations of “refuges” on fields with
modified crops. The study period for pest dynamics is set at # = 10 conditional years. It is reasonable to assume that the
boundaries of the main field should be “surrounded” by corn that does not possess Bt-resistance to facilitate easier access
to the “refuge” for pests.
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< 1,2 mile < 1,2 mile
Block

<1,2 mile <1,2 mile

Perimeter Strips

Corn Borer Refuge (i. €. , Roundup Ready Corn 2
or conventional ccfr}g) 2. Recommended locations for corn plots by Monsanto

Let us consider the first type of refuge placement, where a single plot of conventional corn is located at the center of
the field.

0.03

0.02

0.01

Fig. 3. Depletion of plant resource on transgenic field with a single “refuge” at ¢ = 10

By depleting the safe areas of “conventional” crops, the pest is driven in search of food toward the transgenic region.
Let us examine the depletion of plant resources by the pest in more detail. Fig. 3 illustrates two areas of depletion, where the
boundary consists of conventional and transgenic crops. The plots of “‘conventional” crops are depleted more rapidly.

In May 2013, RapidEye began monitoring large agricultural plots from space, allowing for the first comparison between
numerical research results and the actual conditions of agricultural lands. An overview of satellite images of the U.S. Corn
Belt revealed a predominance of the fourth type of distribution, which is easily explained in terms of cultivation convenience
and field management. The color differences between the plots (an example of the adjacency of “conventional” and modified
varieties of corn is presented in Fig. 4) are attributed to the quality of the plants, their adaptability to the environment, and
their immunity to pests.
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Fig. 4. Proximity of conventional and modified corn varieties!

The influence of the spatial configuration of refuges on the effectiveness of the “high dose — refuge” strategy was
investigated for fixed values of refuge percentage and pest mobility in the simplest case, where the pest’s range is
represented as a rectangle Q = [O, Lx]x [O,Ly]. Numerical experiments with the demo-genetic model demonstrated that
for a total moth range of 16 km by 16 km, positioning a single strip of refuge in the center of the field approximately
halves the time T, significantly increasing the level of infestation of the Bz-field by moths. Dividing a single strip of
“refuge” into several strips enhances refuge effectiveness.

A comparison of the results of numerical simulations in cases where the boundaries were also “refuges” or belonged
to the main transgenic part of the field indicated the superiority of the first type of distribution.

The depletion of food with a “striped” arrangement of “refuges” is clearly illustrated in Fig. 5. Depletion occurs more
rapidly at the boundaries of the area than in the central “refuges”, and the presence of boundary “refuges” facilitates
quicker depletion of the “conventional” crop.

Fig. 5. Depletion of plant resource on transgenic field with four “refuges”

A similar effect is observed for refuges of rectangular or square shapes (Fig. 6 and 7). Let us consider a refuge
arrangement where four square plots of “conventional” corn are positioned at the center of the transgenic field. The
presence of “refuges” of varying sizes and arrangements is justified only in cases of significant height variation across
the field. However, in such cases, a three-dimensional model of pest dynamics would need to be developed. The results
obtained confirm our hypothesis that the distribution of “refuges” across the main field area should not touch the boundaries
of the region; otherwise, we reduce the likelihood of pests accessing the “refuges”.

Forecasting pest dynamics over a period of # = 100 reveals that the overall behavioral model of pests during resource
depletion remains consistent (Fig. 7). The foliage and fruits of plants are most adversely affected by insect pests, which
aligns with natural observations.

It is noteworthy that even with a single “refuge”, the depletion pattern can be quite unusual, depending on the selective
characteristics of the corn variety and the landscape features (Fig. 8).

"Photo from http://www.monsanto.com
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The number of pests increases much more slowly relative to the decrease in their mortality coefficients, indicating the
need to investigate the influence of other model parameters on population dynamics.

Let us now examine the dynamics of pests based on various mortality coefficients. For the European corn borer,
Ostrinia nubilalis, this coefficient is p = 6.845. Other corn pests exhibit significantly greater survivability. In the area
under consideration, let the adaptation coefficients of the genotypes to the environmentbe w _=w_=0.45,w =0.1 (with
Bt-resistance at 10 %), he duration of the study is set at 2 years.

Figure 9 illustrates the dynamics of concentration with a linear increase in pest survivability.

0.05

0.01

Fig. 6. Depletion of plant resource on transgenic field with four rectangular “refuges”

40 -0.03
60 40

80 60
—0.02 80

—-0.01

Fig. 7. Depletion of plant resource on transgenic field with four square “refuges”
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Fig. 8. Forecasting pest dynamics on a field with a single “refuge”
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Fig. 9. Pest concentration dynamics at different mortality coefficients
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Discussion and Conclusion. Despite the fact that the total area of “refuges” remains unchanged relative to the total
field area at 20 %, the depletion of resources occurs faster with a larger number of “refuges” For a given habitat size
increasing the number of refuges by reducing their size while maintaining the overall 20 % refuge area can decrease
the effectiveness of the “high dose — refuge” strategy. It is reasonable to assume that the easier it is for pests to reach
the “refuges”, the quicker they lose their resistance to the toxin. To make it easier for pests to access the “refuges”, it
is necessary to reduce the size of the refuges while preserving the 20 % ratio of the total field area. A key feature of the
model presented is the differentiation of pests based on the type of taxis they exhibit, which significantly influences the
pest population dynamics.
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Abstract

Introduction. The paper considers the solution of boundary value problems on an interval for linear ordinary differential
equations, in which the coefficients and the right-hand side are continuous functions. The conditions for the orthogonality
of the residual equation to the coordinate functions are supplemented by a system of linearly independent boundary
conditions. The number of coordinate functions m must exceed the order n of the differential equation.

Materials and Methods. To numerically solve the boundary value problem, a system of linearly independent coordinate
functions is proposed on a symmetric interval [—1,1], where each function has a unit Chebyshev’s norm. A modified
Petrov-Galerkin method is applied, incorporating linearly independent boundary conditions from the original problem
into the system of linear algebraic equations. An integral quadrature formula with twelfth-order error is used to compute
the scalar product of two functions.

Results. A criterion for the existence and uniqueness of a solution to the boundary value problem is obtained, provided
that # linearly independent solutions of the homogeneous differential equation are known. Formulas are derived for the
matrix coefficients and the coefficients of the right-hand side in the system of linear algebraic equations for the vector
expansion of the solution in terms of the coordinate function system. These formulas are obtained for second- and
third-order linear differential equations. The modified Bubnov-Galerkin method is formulated for differential equations
of arbitrary order.

Discussion and Conclusions. he derived formulas for the generalized Bubnov-Galerkin method may be useful for
solving boundary value problems involving linear ordinary differential equations. Three boundary value problems

with second- and third-order differential equations are numerically solved, with the uniform norm of the residual not
exceeding 107",

Keywords: numerical methods, ordinary differential equations, boundary value problems, Galerkin method,
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AJIA pelICHUA KPpaeBbIX 3a1a4 € JIMHEHHBIM 00bIKHOBEHHBIM
aupdepeHHaAIBHBIM YPABHEHUEM
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*Poccuiickuii yHUBEPCHTET TpaHcopTa, I. MockBa, Poccuiickas Oeneparis

3Tlonowkuii rocynapcTBeHHbI yHuBepcuTeT UM. EBdpocunuu ITonoukoii, . HoBonosouk, Pecry6iuka Benapych
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AHHOTANHUSA

Beeoenue. PaccmarpuBaeTcs pelieHHe KpaeBbIX 3a/1a4 Ha OTPE3Ke € IMHEHHBIMU OOBIKHOBEHHBIMH AN epeHIInaTbHbI-
MH YPaBHEHHSIMH, B KOTOPBIX KOA(QUIMEHTHI U NpaBast 4acThb SIBJSIFOTCS. HENPEPBIBHBIMUA (PYyHKUUAMU. YCIOBHS OPTO-
TOHAJIPHOCTH HEBSI3KU YPABHEHUS KOOPAWHATHBIM (QYHKIMSM JIOTIOIHSIOTCS CHCTEMOM JIMHEHHO HE3aBUCUMBIX KPAeBbIX
yCcImoBHiA 3a1a9u. YHCII0 KOOPIMHATHBIX (DYHKITHH 7 TOIDKHO OBITH OobIie mopsiaka 7 1 depeHnanIbHOr0 YpaBHEHHS.
Mamepuanst u memoosl. []J1s YNCICHHOTO PEIICHNS KPAeBOH 3a1a4uM MPEUIOKEHA CUCTEMA JIMHEHHO HE3aBHCUMBIX KO-
OpIMHATHBIX (QYHKIMI HA CHMMETPHYHOM oTpeske [—1,1] ¢ exnandHOMi HOpMO# YeOblmeBa Kaskaoi QyHKIMN CHCTEMBI.
[Tpumenen monudunupoBannslii Metox [lerpoBa-l"anepkuHa ¢ BKIIIOUEHHEM JIMHEIHO HE3aBUCHMBIX KPAeBbIX YCIOBHN
UCXOJJHOM 3a/1auyl B CHCTEMY JIMHEHHBIX alreOpanyeckux ypaBHeHHH. [IpuMeHeHa nHTerpaibHas KBaaparypHas Gopmy-
JIa ¢ IBEHAJNAThIM TOPSAKOM IOTPEIIHOCTH JUIsl BBIYUCICHUS CKAJISIPHOTO MPOM3BEACHUS IBYX (YHKIIHUIL.

Pezynomamut uccnedosanusn. I1omydeH KpuTepuil CymecTBOBaHUS U €IMHCTBEHHOCTH PEIICHUS KPAcBOW 3a/adu, TPH
YCIIOBUH, YTO M3BECTHBI /# JIMHEHHO HE3aBUCHMBIX PEHICHUH OIXHOPOAHOTO AnddepeHnaabHoro ypasHenus. [lomyde-
HBI (POPMYJTBI JUT MAaTPUYHBIX KO3()(UIMEHTOB U KOX(P(HUIIMEHTOB PaBOil YaCTH CHCTEMBI TMHEHHBIX anreOpandecKux
YpaBHEHHI JJIs1 BEKTOPA PA3JIOKEHUs PEIICHHs II0 CUCTEME KOOPAMHATHBIX (DYHKIMHA. DOpMyYITbl MOTy4EHbI TSt JTMHEH-
HBIX AU PepeHINaTbHBIX YPaBHEHUI BTOPOTO U TPEThEro NopsakoB. MoauduimpoBanHblii Meton byOHoBa-I"anepkuna
c(OpMYIIMPOBaH JUIsl ypaBHEHHUS IPOM3BOJILHOTO MOPSIKA.

Obcyscoenue u 3axnouenue. llonydaennsie popmyinsl o6obmennoro Meroga byOHoBa-I anepkiHa MOTYT OBITH ITOJIE3-
HBIMH ISl pELICHUs] KPaeBhIX 3a7a4 C JMHCHHBIMU OOBIKHOBEHHBIMHU IU((epeHINaTbHBIMI ypaBHEHHAMH. YHCICHHO
pEILIeHBI TPH KPaeBbIX 33/1a4 C YPaBHEHUSIMH BTOPOTO M TPETHETO IOPSAKOB, paBHOMEPHAsi HOpMa HEBS3KH HE TPEBHI-
nraet 107!

KioueBble ciioBa: 4KCICHHBIE METOIbI, OOBIKHOBEHHBIE NU(QepeHIHaibHble YPaBHEHHUS, KpaeBble 3aJa4yu, METOJ
T'anepkuna, runpoguHamMuKa

Jas nurupoBanus. Bomocosa H.K., Bomocos K.A., Bomocosa A.K., Ilactyxos A.®., Ilactyxosl0.®. Momu-
¢umupoBaHHbld Meton bByOHoBa-I'anmepkuHa aiIs pelIeHHS KpaeBBIX 3alad C JIMHEWHBIM OOBIKHOBEHHBIM JAU(}-
¢depennmansHbiM - ypaBHeHueM. Computational Mathematics and Information Technologies. 2024;8(3):23-33.
https://doi.org/10.23947/2587-8999-2024-8-3-23-33

Introduction. Boundary value problems involving ordinary differential equations can be classified by the order of
the equation. For instance, in hydrodynamics problems, these equations may be of the first [1], second [2], or third
order [3-4].

The most well-known methods for solving boundary value problems on an interval with ordinary differential equations
are the sweep method and the shooting method [5]. In these methods, the unknown function is sought on a given grid (the
so-called grid function). In this study, the solution is found in a functional form using a system of linearly independent
coordinate functions that are smooth and bounded in absolute value on the symmetric interval [—1, 1]. The unknown solution
function is expanded in a basis of linearly independent coordinate functions. Using the Bubnov-Galerkin method [6], where
the residual of the differential or integral equation is orthogonal to the coordinate functions, the expansion coefficients of
the solution are determined from the orthogonality conditions.

In [7], it was shown that in the simplest classical variational problem (a boundary value problem), the solution must
be sought in the class of admissible functions defined by the boundary conditions. This idea was used by the authors in
the modified Bubnov-Galerkin method, incorporating n—1 (where # is the order of the equation) linearly independent
boundary conditions into a system of m linear algebraic equations. The number of orthogonality conditions is thus
m—n+1 (where m is the number of coordinate functions). In this study, the modified Bubnov-Galerkin method is applied
to boundary value problems involving second- and third-order equations.
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Materials and Methods. Let the unknown function u(x) € C"[a,b], which is continuously differentiable » times,
be the solution of a boundary value problem with an ordinary differential equation of order n with variable coefficients
g:,(x),i=0,n

Llu(x)]= f(x), x € (a,b),

B n d[ (1)
Llu(x)] = [Z g (x)ﬁjuu).
> (e @) =1, n=1LE.
o @)

(B (®)) =71, u=k+1,n.

In the boundary value problem (1)—(2), the functions g,;(x)(i =0,n), f(x) € C[a,b] are given and continuous on the
segment [a, b]. The first k equations in the system (2) represent the boundary conditions at point x = g, and the last n—k
equations represent the boundary conditions at point x = b. For the closure of problem (1), it is necessary that the total
number of boundary conditions be equal to 7. The coefficient matrices ocL,[SL,i =0,n—-1,u= 1,_n, as well as the numbers
Yu» W=1,n are given.

Boundary conditions of the form (2) are called separated. The relationship between the numbers of boundary conditions
OLL 5 BL determines the existence and uniqueness of the solution of the boundary value problem (1)—(2).

Statement 1. Let 7 linearly independent particular solutions of the homogeneous equation (1) U, (x),j = I,_n be
given. Then the boundary value problem (1)—(2) has a unique solution if and only if the following condition
detA4, #0,u= l,_n,j =1,n is satisfied:

n—1

ZOLLU/('i) (a)ap- =Lk
=

A

12

n—1
Z BLU () =k+Ln.
i=0

Proof. Let us write the general solution of equation (1) as u(x) = ZU S(X0)D; +u(x), j = 1,n, where D, are arbitrary
_ Jj=1
integration constants, u(x) is a particular solution of the non-homogeneous equation (1), and U (x) are linearly independent
particular solutions of the homogeneous equation (1).

Substituting this solution u(x) into the boundary conditions (2):

n—

| (o0 (0) :i ! [Z U @)D, +u”_(a)] =7, <,
()

n—1 n—1 _
[z alU" (a)ij =y, - Za;u“) (a),1n=1k.
i=0 i=0

Similarly, for the point x = b, we obtain:

i(iBLUﬁi)(b)JDj :Yu_iﬁim,}l:k-ﬂ,n. (4)
J=E\ =0 i=0

P

n
J=1

The resulting non-homogeneous system of 7 linear algebraic equations (3)—(4) with respect to the » unknowns D,j=1,
n as a unique solution if and only if the determinant of the matrix det 4, # 0, = 1,n, j = 1,n, where

n—1
Z OLLUj('i) (Cl), w= Lk
A4,=1"" (5)
D> BUY Bhu=k+1Ln.
i=0
Statement 1 is proven.

Let us now consider a simple case of problem (1) involving a second-order ordinary differential equation (ODE) with
Dirichlet boundary conditions:
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Lu(x)]= f(x), x € (a,b)
PN
Llu(x)] = {gz (x) 0

u(a)=u,,u(b)=u,.

g, (x>%+go (x)}u(x) ©)

Let us generalize the Bubnov-Galerkin method, as proposed in work [6] for solving Fredholm integral equations of the
second kind, to the solution of the Dirichlet problem with the second-order ODE (6).
We begin by selecting a system of basis (coordinate) functions ¢, (x):

{o,(0}, = {(%j xelabli= W} ©

Statement 2. The coordinate functions of the system (7) ¢,(x) € C*[a,b] are bounded in modulus, differentiable any
number of times, and linearly independent. r—a—b

Proof will be conducted by contradiction. We use a linear mapping z = e e[-1,1], x € [a,b], which bijectively
maps the interval x e[a,b] onto a symmetric interval z €[~1,1]. Such a straightforward method is employed by the
authors of the textbook [5] in the task of constructing integral quadrature formulas. Assume that the system of coordinate
functions is linearly dependent, and taking into account the variable z it takes the form {(p,.(z) =z ,ze[-11]i= O,m}.
If the system of functions is linearly dependent, then there exists a non-trivial solution (o, o, ... & ) to the equation
oy +a,z+a,z +. o, 2" =0Vz e[-1,1].

The last equation has no more than m real solutions, whereas a solution is required for all points of the interval
z €[-1,1]. This contradiction proves the linear independence of the functions in system (7). The functions in (7) are
infinitely continuously differentiable with respect to the variable x as they are polynomials of finite degree, and they are

also bounded since ||(p,. || c= rr[lal)i]|z" | =1. Statement 2 is proven.
ze[-1,

We will apply the Bubnov-Galerkin method using the system of linearly independent coordinate functions (7) to solve
the Dirichlet boundary value problem (6). The symmetric interval z € [-1,1] in our problem results in a consistent order of
error at the nodes symmetrically located with respect to the midpoint of the interval ¢ = (¢ +b) /2 and generally reduces
the norm of the error.

Let us express the solution as a series expansion in terms of the linearly independent system of coordinate functions:

u(x) =u(@)+ )0, (C, =u(c)+Z(2[§x_—_ac) c, ®)

In equation (8), the coefficients Cj are unknown and need to be determined.

From equation (8), we derive the identity u(c) = u(c), which resembles the expansion of an unknown function in a
Taylor series centered at some point x = ¢ = (a+b)/ 2, although we do not know either the function itself or its derivatives.
Substituting equation (8) into equation (6), we obtain the residual (discrepancy) of equation (6):

J=1 J=1

R(u((x)) = Llu(x)]— f (x) = L[u(c) +> 0,0, j —f(x)=L(u(0))+ Y Lo, (x)C; - £(x).

The Bubnov-Galerkin method is orthogonal, so we require the residual to be orthogonal to the maximum number of
coordinate functions, {1, z,2%,..,2""2 } Specifically, we impose orthogonality with respect to m—1 functions that contribute
the most to the residual of equation (6):

(R(u(x)),,(x))=0,i=0,m—-2 < Z"XL@]. (x), 0, (x)>Cj =(f ()~ L(u(c)).0,(x)).i =0,m-2. )

In equation (9), we introduce the notation:
(f.q)= J‘f (g (x)dx, L(u(c))=gy(x)u(c) = gy(x)u,.

Unlike the method described in [6, p. 140], the last condition, numbered m, for the system of linear algebraic equations
(SLAE) with respect to m unknowns C,,j=1m, will be derived from the boundary conditions

C _,,m=2l
m—1 m (10)
C .m=2l+1.

m?2

ub _ua

=C +C, +...+{
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Let us demonstrate the validity of equation (10). At the endpoints of the interval, specifically at the points x = a, x = b,
we can use the expansion given in equation (8) to obtain:

u(a)Eua=u(c)+i(%j L =u, +z C],u(b) ub—u(c)+Z(Mj j=uc+zm:Cj.

By summing the two most recent equations and expressing u(c) = u , we obtain

uc=(ua;ub)—cg_c4_ {Cm’m 2 (11)

C ..m=2+1.

m-1°

B

Similarly, by subtracting the first equation u, from the second equation u_ and expressing —~ 5 ¢ we obtain equation

(10). Next, we substitute the value u(c) obtained from equation (11) into the right-hand side of equation (9). Then, we
move all terms involving C] to the left-hand side of equation (9) to obtain the system of linear algebraic equations (SLAE)
for the coefficients Cj

m

> a,,Cr=f,i=0,m-1 (12)

=

The elements of the matrix @, ;,i=0,m-1,j= 1,m and the coefficients on the right-hand side f,- in the system of
equations (12) are defined as follows:

L(pj o, ,ecm/l]_l(modZ)l—Om 2
L((p/ 1), (pl ,ECIHN ] = 0(m0d2)z—0m 2

Lecmni=m—1, j =1(mod?2)
0,ecu i =m—1, j =1(mod 2)

o f(x) L j,(p[(x)>,ecmi:0,m—2
f 9

U, —u

L ecmmi=m—1

(2242

Remark 1. It is not possible to use both Dirichlet boundary conditions u(a), u(b) directly in the system of linear
algebraic equations (12) because these conditions are linearly dependent.
Proof. Let us substitute the value of u(c) = u, from equation (11) into the expressions for u(a), u(b):

u, +u, C,.m=21 u, +u, C,om=21
=| < -C,-C,—...— U + | C +C,+...+ .
u(c) ( 2 j 2 {C m=2k 410 Z 2 1 C . m=20+1

m=1>

The last expression is equivalent to (10).

L C ,,m=2l
— +ZC (u +ubj+C1+C3+...+{ "

J C,.m=2l+1.

The last equation is equivalent to equation (10), which proves the linear dependence of the boundary conditions.

Remark 2. In equations (12), for the matrix coefficients a, in even columns, the differential operator L acts on the non-
positive function 9, (x)-1, and in odd columns on the alternatmg coordinate function 9 (x). If the determinant of the matrix
in the SLAE (12) is non-zero, then the numerical solution of (12) is unique. Let us now write the differentiation formulas
for the linear operator L as defined in equation (6), applied to the coordinate functions from equation (8):

Lo, = gy(x),ecinj =0,

_28( 2x—a—-b - o)
¢ = b-a) +g,(x )(—a ),ecnyl] L

—Ai(i_ (2x—a-by’ Q2x—a-b)"" 2%—a->bY _
Lo, =4j(j l)gz(x)—(b_a) +2)g(x )—(b_a) +g(x )( - ) ,eciu j > 2.
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Considering (11), the numerical solution of the Dirichlet problem (6) can be reduced to expression (14) by converting

formula (8): . |
ol e e o

It follows from (12) that the vector C included in formula (14) has the form C = 4 71]7.
Let us estimate in absolute value u(x) based on the given formula C = 4~ f

|u(xﬂ 2:E:k?|<

u

a

+|u
Ll ey, <l

|”b|
+2mmaxC
Jj=lm

+amla’] 7] =

e <

It is known that the norm ||B || of an arbitrary square matrix B(mxm) is determined by the formula |B || - =max z |b |

i=l,m

= 7]

In [9], a composite quadrature integral formula with a uniform step and with the 12th order of error O(h'?) i is obtamed,
which is used by the program to calculate all matrix elements a; as well as the coefficients of the right side: f; of SLAE
(12) through the scalar product of two functions:

(11.3,) IM@WAWh MZL“xWAHC+OMu)m—mgh—é—npeN, (15)

i=0 ny

where the weight coefficients of the integral quadrature formula (15) are determined by the value of the remainder modulo
10 of the node number of the uniform grid i:

16067 . .
————.ecmu [ =0mnmm i = n,
299376
ﬂ,ecnu i=0(mod10)u (0 <i<n,),
149688
20575 ,eciu i =1 (mod 10 Jumm i =9 (mod10),
74844
C = ﬂ,ecnn i=2(mod10 Jum i =8 (mod10),
99792
> ,ecin i =3 (mod10 Jum i =7 (mod10),
6237
1825 ,ecii i =4 (mod 10 ) i =6 (mod10),
5544
17807

,ecm i =5 (mod10).

Here are examples of numerical solution of boundary value problems by the algorithm (12)—(15).
Example 1 [10]. Solve the Dirichlet boundary value problem (16)

Yy —y=2x,(0)=0, y(1) =-1,x [0,1]. (16)

The exact solution y(x) = sh(x)/sh(1)—2x.

A program in the Fortran language, where functions and variables are set with double precision according to the
algorithm (12)—(15), gives the Chebyshev vector norm of the difference between the exact and approximate solution
||y—u||c =4,218847493575595E — 015, if the number of coordinate functions m = 11, the number of intervals for

calculating the scalar product of functions by formula (15) on a uniform grid is »n, =50,
—a

. b
||y—u||c :ggr)llc|y(xi)—u(xl.)|,xi =a+hih=

nl

The inverse matrix A~ n the system of linear algebraic equations (12) is calculated by the msimsl linear algebra library
to find the vector of expansion coefficients C o J = 1,m.

Example 2 [9]. Solve the Dirichlet problem for the Poisson equation on a rectangle

— oV
u,+u, =e sinx, 0<x<m0<y<n

=0.

y=n

u

x=0 y=0
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We are looking for a solution to the problem in the form u(x) =sin(x) (). This choice of solution automatically
fulfills two boundary conditions u|y:0 = u|y:n =0. Substituting the solution u(x) into the Poisson equation
sin(x) ( -1 y)) = ¢’ sin(x), Vx € (0, ), we obtain the Dirichlet boundary value problem for f(y):

" _ — Y
{f M-S =e a7
f(0)= f(m)=0.
The last Dirichlet boundary condition f(0) = f(x) =0 in (17) fulfills the boundary conditions of the original problem

o=t =0.

The general solution of the homogeneous equation (17) 1" (y)— f(») = 0 canbe written as Jyo(¥)=Ach(y)+ Bsh(y),
and the partial solution of the inhomogeneous equation is sought in the form

ul

L. :Cyey,ﬁ"(y) =Ce” (y+2),fq" —f. =Ce” (y+2)—Cyey = & 2C:1,C:%.

Let’s write down the general solution of the inhomogeneous equation (17) as

T

—Te
2sh(m)’

Jou(¥)= Ach(y)+Bsh(y)+%y,ﬁ),H(0) =0=4=0,/,,(0)=0=B=

ye” sh(m) — me" sh(y) u(x,y) = ye” sh(m) — me" sh(y)
2sh(m) T 2sh(m)

fO)= Jsin(x) the exact solution of the problem from Example 2.
Solving numerically the boundary value problem (17) using the algorithm (12)—(15), we obtain the Chebyshev
norm for the difference between the numerical and approximate solutions with the number of coordinate functions
m=11, the number of intervals for calculating the scalar product of functions on a uniform grid » =100,
I = frum||. =8.079448221565144E —011.
Let’s estimate the uniform rate of computational error in Example 2 using the algorithm (12)—(15)

¢ I = Funle IsinGe =1 = frun ] = 8-107".
In hydrodynamics [3, 4], boundary value problems with a third-order differential equation are encountered. Consider
example 3.
Example 3.

e — e

num

u' (x)+u (x) = -2sin(x),x € (0,), (18)
u(0) = 0,1'(0) =0, y(m) = 0.

Let ‘s solve the homogeneous equation u"(x)+u (x)=0. Its characteristic equation and eigenvalues are equal
A +L=0< ) =0,A,, =+i =++/-1, which correspond to 3 partial linearly independent solutions

{U,(x) = 1,U, (x) = sin(x),U; (x) = cos(x)},{U} (x) = 0,U, (x) = cos(x),U; (x) = —sin(x)},

{U] (%) = 0,U} (x) = =sin(x), U; (x) = —cos(x)} .

Let’s check the existence and uniqueness of the solution of the boundary value problem (18). Write down the elements
of the matrix according to the formula (5):

a) =la; =00, =0;09 =0;0) =105 =0;B) =1;B =0;B; =0,

n—1

Z(XLU;D (a),n=1k

i=0

n—1

ZB;U;”(b),u =k+Ln k=2n=3.
i=0

4,=11+0-0+0-0=1,4,, =0-1+1-0+0-0=0,4;, =1-1+0-0+0-0=1,
A, =1-5in(0)+0-cos(0) +0- (—sin(0)) = 0, 4,, = 0-5in(0) +1-cos(0) + 0 - (—sin(0)) =1,
A4, =1-sin(n)+0-cos(w) + 0 (—sin(n)) = 0, 4, =1-co0s(0)+0-(—sin(0)) + 0- (—cos(0)) =1,
Ay, =0-cos(0)+1-(—sin(0))+0-(—cos(0)) = 0, 4;; =1-cos(w) + 0 (—sin(r)) + 0- (—cos(w)) = —1.
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1 0 1
Since [0 1 0]|=-2#0, the boundary value problem (18) has a unique solution.
1 0 -1

By direct verification, we will make sure that the exact solution of the boundary value problem (18) is the function
u(x) = xsin(x),u (x) = sin(x) +xcos(x),u (x) =2 cos(x) —xsin(x),
u'(x) = =3sin(x) —xcos(x),u (x)+u (x) = =3sin(x) — x cos(x) +sin(x) + x cos(x) = =2 sin(x),u(0) = u(w) = u (0) = 0.

Statement 1 for boundary value problem (18) is fulfilled, therefore, the solution of the problem is unique and coincides
with u(x) = xsin(x). There are no other solutions.

Let’s calculate the first derivative u(x) by formula (8) and equate it to zero at the point x = a.

X=a

, N N 2j 2x—a-bY" .
“(x)=Z‘Pf(x)C/=Z(b_Ja)(( > j C,=0& G ~2C,+3C, +..+ m(-1)""C, =0. (19)
Jj=1 Jj=1 =

For a boundary value problem with a third-order differential equation (18), we obtain a system of equations

>a,C =7 i=0m-1. (20)

J=1

(Lo, ¢,),ifj=1(mod2),i=0,m~3
<L((pj—1),(pi>,ifj50(mod2),i=m
a,; =11, if i=m—-2, j=1(mod2)

0, if i=m—2,=0(mod2)

J) T ifi=m—1

B

<f(x)—L[u" ;”b),cpi(x)>, if i=0,m—3

YU ifimm—2 :
2
0,ifi=m-1

|
[

Lo, = g,(x),ifj =0,

g =25 +go(X)(—2x_a_bj,ifj=l,

" (b-a) b-a
Lo, =8g2(x)(b_;a)z+4gl(x)%+go(x)(%jz,ifj=2, 21)
Lo, =8~/ (x)%+
47D, (x>%+ 2e, (x>%+ % (x)%,ifj >3,

/=

u(x) = (%} N iﬂ(zz—_aa_bjx J{—l + (2—1)f+1 H ¢ -

The inverse matrix 4™ is calculated by the msimsl linear algebra library to find the vector of expansion coefficients
C;,j=1,m, using the coeflicients of the system of linear algebraic equations (20). A program using formulas
(14), (20), (21), (22) gives a numerical ™" and exact u;™" = x, sin(x,) solution to problem (18) on a uniform grid

b-a
n
exact solution of this problem is presented in Table 1.

x,=a+h-i,i=0,n,h=

,n, =50,a =0,b = The number of coordinate functions is m = 15. The numerical and
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Table 1
Problem solution (18)

X, " et U — g
0.000000000E+000 0.0000000000E+000 0.00000000000E+000 0.00000000E+000
0.12566370614359 1.5749838632E-002 1.5749838632E-002 3.36702887793E-013
0.25132741228718 6.2502585803E-002 6.2502585803E-002 —7.5051076464E-014
0.37699111843077 0.1387796868382 0.1387796868384 —2.2543078515E-013
0.50265482457436 0.2421558085434 0.2421558085436 —2.5310309403E-013
0.62831853071795 0.3693163660978 0.3693163660980 —2.3742119381E-013
0.75398223686155 0.5161363581649 0.5161363581652 —2.1926904736E-013
0.87964594300514 0.6777788480392 0.6777788480394 —2.0117241206E-013
1.00530964914873 0.8488110105527 0.8488110105529 —1.7474910407E-013

1.13097335529233

1.0233352874866

1.0233352874867

—1.4477308241E-013

1.25663706143592

1.1951328658964

1.1951328658966

—-1.3122836151E-013

1.38230076757951

1.3578164206656

1.3578164206658

—1.4432899320E-013

1.50796447372310

1.5049888502957

1.5049888502959

—1.6875389974E-013

1.63362817986669

1.6304045878204

1.6304045878205

—1.7497114868E-013

1.75929188601028

1.72812998993818

1.72812998993833

—1.5254464358E-013

1.88495559215388

1.79269929884481

1.79269929884493

—1.2145839889E-013

2.01061929829747 1.81926273330968 1.81926273330979 —1.1013412404E-013
2.13628300444106 1.80372339742481 1.80372339742493 —1,2212453270E-013
2.26194671058465 1.74285989495849 1.74285989495861 —1.2412293415E-013
2.38761041672824 1.63443180085643 1.63443180085651 —8.038014698286E-014
2.51327412287183 1.47726546439236 1.47726546439237 —-5.1070259132E-015
2.63893782901543 1.27131799485423 1.27131799485419 4.50750547997E-014
2.76460153515902 1.01771770348181 1.01771770348179 2.17603712826E-014
2.89026524130261 0.71877973673595 0.71877973673604 —9.7144514654E-014
3.01592894744620 0.37799612718318 0.37799612718362 —4.3676173788E-013

3.07876080051800

0.193316990170226

0.193316990171009

—7.8290152139E-013

3.14159265358979

3.8472143247E-016

—1.0104259667E-015

1.39514739920E-015

The first column of Table 1 shows the value of a node x, of a uniform grid, the second column contains a numerical

solution ", and the third column contains the exact solution " in nodes x,. The last column contains their difference
num exact
u™" —u
In Example 3, the program gives the error rate [u" —u " . = max u"" —u ~7.829E - 013.
i=0,n

Results. The authors have developed the following algorithm for the modified Bubnov-Galerkin method:

— in the boundary value problem with an ordinary differential equation of order # it is necessary to select a system of
m+1 coordinate functions {l,z,zz,..., z"m> n};

— from the n boundary conditions, choose a system of linearly independent conditions (in the case of specified function
values u , u, there are n—1), independent conditions) and include the independent boundary conditions in the system of
linear algebraic equations (SLAE);

— require that the first m—(n—1) = m—n+1 coordinate functions should be orthogonal to the residual of the differential
equation. Then, the non-homogeneous system of linear algebraic equations will have m—n+1+n—1 =m rows and m
unknowns C,, j = 1,m.

Discussion and Conclusions. The main results obtained by the authors are as follows:

1. A system of coordinate functions is proposed that is infinitely differentiable, bounded, and linearly independent on
the interval [—1,1], designed for solving boundary value problems with a linear differential equation of order .

2. For the first time, a modified Bubnov-Galerkin method is introduced, in which the system of linear algebraic
equations (12), (20) includes n—1 boundary conditions of the problem.
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3. A criterion (5) for the existence and uniqueness of the solution to the boundary value problem with separated
boundary conditions is obtained for the case where n linearly independent solutions of the linear homogeneous differential
equation are known (Statement 1).

4. The modified Bubnov-Galerkin algorithm is proposed for boundary value problems with second- and third-order
equations (12)—(15) and (20)—(22).

5. Three examples have been numerically solved using the modified algorithm, achieving a uniform error norm of no
more than 1071,
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Mathematical Modelling of the Impact of IR Laser Radiation
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Abstract

Introduction. The study is devoted to the numerical investigation of laser radiation’s effect on an oncoming two-phase
flow of nanoparticles and multicomponent hydrocarbon gases. Under such exposure, the hydrogen content in the products
increases, and methane is bound into more complex hydrocarbons on the surface of catalytic nanoparticles and in the
gas phase. The hot walls of the tube serve as the primary source of heat for the reactive two-phase medium containing
catalytic nanoparticles.

Materials and Methods. The main method used is mathematical modelling, which includes the numerical solution of a
system of equations for a viscous gas-dust two-phase medium, taking into account chemical reactions and laser radiation.
The model accounts for the two-phase gas-dust medium’s multicomponent and multi-temperature nature, ordinary
differential equations (ODEs) for the temperature of catalytic nanoparticles, ODEs of chemical kinetics, endothermic
effects of radical chain reactions, diffusion of light methyl radicals CH, and hydrogen atoms H, which initiate methane
conversion, as well as absorption of laser radiation by ethylene and particles.

Results. The distributions of parameters characterizing laminar subsonic flows of the gas-dust medium in an axisymmetric
tube with chemical reactions have been obtained. It is shown that the absorption of laser radiation by ethylene in the
oncoming flow leads to a sharp increase in methane conversion and a predominance of aromatic compounds in the
product output.

Discussion and Conclusion. Numerical modelling of the dynamics of reactive two-phase media is of interest for the
development of theoretical foundations for the processing of methane into valuable products. The results obtained confirm
the need for joint use of mathematical modelling and laboratory experiments in the development of new resource-saving
and economically viable technologies for natural gas processing.

Keywords: mathematical modelling, subsonic flows, two-phase medium, laser radiation, chemical reactions
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OPMZMHLUZbHoe meopemudeckoe ucciedosanue

MaremaTnyeckoe MoaeJIMPOBaHUE BO3AeHCTBUS
HNK-n1a3epHOro u3/jy4eHusi HA BCTPEYHbI MOTOK HAHOYACTHI] ¢ METAHOM

E.E. ITeckoBa! [, B.H. CHLITHHKOB?

'MopnoBckuii rocynapcrBeHHbli yauBepcuter uM. H.IT. Orapéga, . CapaHck, Poccuiickas ®eneparms
MucruryT Karaausza Cubupckoro otaenenus Poccuiickoii akagemun Hayk, . HoBocubupek, Poccuiickas ®eneparms

Me.e.peskova@math.mrsu.ru

AHHOTANHSA

Beeoenue. Pabora nocpsiieHa YUCICHHOMY HCCIIEIOBAaHHIO BO3JCHCTBHS J1a3€pPHOTO M3JIyYCHUs] HA BCTPEUHBIN JIBYX-
(baSHBIﬁ IMOTOK HAHOYACTHUIl C MHOTOKOMITIOHEHTHBIM I'a30M U3 YIJTICBOJAOPOIOB. HpI/I TaKOM BOS}IGﬁCTBI/II/I YBEIIUYNUBACTCA
COZIepXKaHUe BOJOPOJA B IMIPOAYKTaX M MPOHCXOANUT CBA3BIBAHIE METAaHA B YIIICBOIOPO/BI OOJIEE CIIOKHOTO CTPOSHHSI Ha
MTOBEPXHOCTHU KaTaJIUTHUECKIX HAHOYACTHIL M B Ta30BOH (aze. [opsane cTeHKH TpyOBI SIBISIOTCS HCTOYHHUKOM OCHOBHOTO
IIporpeBa peakMOHHOH AByX(a3HOH cpelpl ¢ KaTAINTHIECKUMH HAaHOYaCTHIIAMH.

Mamepuanst u memoosl. B xaduecTBe 0CHOBHOTO METO/Ia UCIIONbB3YETCSl MATEMATU4ECKOE MOAEIUPOBAHUE, BKIIOUAIOIIEe
YHCIIEHHOE PEellIeHHEe CUCTEMbl YPaBHEHUH BSI3KOI Ta30MbLICBOM BYX(a3HOH cpelbl C yYETOM XUMHYECKHX PEaKUi 1
JIa3epHOTO M3JTy4eHHs. MoJieb MO3BOMISIET OTHOBPEMEHHO YUUTHIBATh JBYX(a3HYIO ra3onbUIEBYIO Cpely, MHOTOKOMIIO-
HEHTHOCTH M MHOTOTEMIIEPaTypHOCTh cpelibl, 0ObIKHOBEeHHBIE Auddepennnansusie ypasaeHws (OY) ans remmeparyps
KaTanuTuaecknx HanodacTuil, OlY XxuMuuecko KHHETHKH, SHAOTepMUYEeCcKHE 3P (EKTH paguKaIbHO-IIETHBIX PEaKIUH,
mddys3uro JErknx METHIBHBIX paaukanos CH, n aromos Bomopona H, KoTopble HHUIIMMPYIOT KOHBEPCHIO METaHa, Mo-
IJIOILEHHUE JIA3EPHOTO M3JIyYEHHUS STHICHOM M YaCTHUIAMHU.

Peszynomamur uccnedoganus. Ilomydensl pacnpenenaeHus MapaMeTpoB, XapaKTePU3YIOIUX JAMUHAPHBIE JO3BYKOBBIE
TEUEHHsI Ta30MBIICBON CPEeIbl B 0CECUMMETPHYHON TpyOe ¢ XUMHUECKUMH peakiisiMi. [1okazaHo, 4To MOTIIONICHHE JTa-
3€pPHOTO M3IIyYCHUS STUICHOM BO BCTPEYHOM ITOTOKE IMPUBOIUT K PE3KOMY YBEIWIECHUIO KOHBEPCHHM METaHA U IPEHMY-
IIECTBEHHOMY BBIXO/ly aPOMaTHYECKUX COCTMHEHHH.

Oécyscoenue u 3axniouenue. YncneHHOE MOJICITUPOBAHUE TUHAMUKH PEAKIIMOHHBIX JIBYX(a3HBIX CpPed MPENCTaBIsIET
HHTEpeC Ul pa3paboTKU TEOPETUUECKUX OCHOB IepepaboTKN METaHa B IIEHHbIE NPOAYKTHI. [loyyeHHbIe pe3ysbTarsl
€CTECTBEHHBIM 00pa30oM MOATBEPXKIAIOT BBIBOI O HEOOXOAMMOCTH COBMECTHOTO HCIIOJIBb30BAHUS CPEACTB MareMarnye-
CKOTO MOJICJIMPOBAHUS U Ja0OPaTOPHBIX IKCIIEPUMEHTOB ISl pa3pabOTKH HOBBIX pPecypcocOeperaroimx 1 SKOHOMHUYe-
CKH 00OCHOBAaHHBIX TEXHOJIOTHIA NepepadOTKH MPUPOTHOTO rasa.

KiroueBble ciioBa: MareMaTH4eCKOE MOICIUPOBAHUEC, NO3BYKOBLIC ITOTOKH, I[ByX(i)a3Ha$[ cpeaa, J1a3epHOC U3TYyUCHHC,
XUMHUYIECKUE pECaKINN

®dunancupoBanue. Pabora BbIojgHeHa NpU (HPUHAHCOBOHW Moz iepkke MUHHCTEPCTBA HAYKH M BBICILIETO 00pa30BaHUs
P® B pamxax rocymapctBenHoro 3amanus Mucturyta karamm3a CO PAH (mpoext FWUR-2024-0033).

Jasi uutupoBanus. [leckoBa E.E., CubiTHukoB B.H. Maremarnueckoe monenupoBanue BosaeictBusi UK-nazepHoro
M3IyYeHHsT Ha BCTPEUHBIM MOTOK HaHoJacTHil ¢ MetaHoM. Computational Mathematics and Information Technologies.
2024;8(3):34-42. https://doi.org/10.23947/2587-8999-2024-8-3-34-42

Introduction. In laser thermochemistry, the impact of laser radiation on an oncoming two-phase flow of methane
and catalytic nanoparticles is considered [1, 2]. In such a flow, at temperatures above 1000 K, methane is converted into
ethylene, acetylene, hydrogen, and aromatic compounds [3, 4]. The chemical reactions involved in the conversion of
hydrocarbons in the gas phase and on the surface of catalytic nanoparticles are chain reactions involving radicals, which
require a description that includes a large number of components and stages, including the convective and diffusive
dynamics of active radicals [5]. These chemical reactions generally define an endothermic process, which shifts toward
higher product yields with additional energy absorption. Such absorption can be provided by infrared (IR) radiation from
a CO, laser directed along the flow into the initial zone of chemical transformations [2]. At the same time, the case when
laser radiation is directed at the oncoming flow into the region of high methane conversion is of particular interest. The
consideration of this case is the purpose of this publication.

The complexity of multicomponent chemical processes, along with heat and mass transfer, requires mathematical
modelling of subsonic flows of reactive two-phase media, consisting of gas and solid ultrafine particles. The authors have
developed their own CFD code for calculating the dynamics of such media [2]. This code comprehensively considers
subsonic multicomponent gas dynamics with volume changes due to chemical reactions, multicomponent dust dynamics,
heterogeneous-homogeneous kinetics of radical chain reactions for hydrocarbons, radiation transfer, and absorption. As a
simplification of the model, the flow is considered in an axisymmetric cylindrical 2D space.
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Materials and Methods

Mathematical Model. IR laser radiation excites vibrational degrees of freedom in ethylene molecules, which appear
as products of gas-phase chemical reactions and on the surface of catalytically active nanoparticles. Thermal relaxation
of ethylene, which absorbed laser radiation, leads to heating of all components of the gas. The heat exchange between the
gas and nanoparticles, occurring in the free molecular regime (for nanoparticles with diameters in the tens of nanometers),
tends to bring the temperatures of the particles and gas to thermal equilibrium. The heated walls of the tube provide the
bulk of the energy necessary for the highly endothermic conversion of methane.

To study the effect of laser radiation on the oncoming flow of methane and nanoparticles, a mathematical model was
developed based on a system of equations for a viscous gas-dust two-phase medium, taking into account chemical reactions
and laser radiation [1, 2]. This system of equations is based on the Navier-Stokes equations, using the approximation of
small Mach numbers [6, 7]. The system describes significantly subsonic flows (M << 1) with volume changes, small
pressure variations, and simultaneous significant increases in velocity due to chemical reactions, laser radiation, heat
exchange between the gas and particles, and dissipative processes.

The mathematical model consists of a system of time-parabolic and space-elliptic equations, owing to the solution of
the equation for the dynamic pressure component. The model accounts for: a two-phase gas-dust medium; multicomponent
and multi-temperature aspects; ODEs for the temperature of catalytic nanoparticles; ODEs for chemical kinetics;
endothermic effects of radical chain reactions; diffusion of light methyl radicals (CH,) and hydrogen atoms (H), which
initiate methane conversion; and the absorption of laser radiation by ethylene and particles.

The mass transfer equation for the gas mixture components is given as:

op,Y, N

or V-(p,Y,)==V-J, +R,, m=1M. 1)

The equations for the mass transfer of nanoparticles are:

op; - —

—~+V-(p,v)=0, i=1N. 2

o HV(pY) )
The momentum transfer equation is:

a@%w-(pw)wﬁ:v-% 3)

The equations for gas and particle enthalpy are:

%(pghg +leihi)+v '((pghg +leihi)‘_}) = _Vﬁ—zi4nsl.2nic(7;4 _7;;4) “)
+(ng(x+2ilniai)F.

Condition for the divergence of the velocity vector is:

L v C,(1-T)
S=V.v= — )
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Equation for the intensity of radiation is:

1
(VAVT +Y 9D,V Y, Vh,) 5)
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Equations for the temperature of nanoparticles are:
dr, 1 ; 1T
i oc[.F—4nS[20(7}4—T;)—anipgct& 4 —1|-O-R|. (7
d  mCpy, 2 =1 T,
Equations of chemical kinetics are:
op,Y —
m=Rm, m=1,M. (®)
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Here p, is the density of the gas mixture; ¥, is the mass fraction of the m-th gas component; M is the number of
components in the gas mixture; J is the d1ffus10n flux vector; R is the rate of formation or consumption of the m-th
component of the mixture; v is the veloc1ty of the gas and particle ﬂow, p, is the density of the i-th particle; N is the number

N
of particle fractions; p =p, +Z>lp,. is the total density of the gas and particles; m = P, — Py is the dynamic pressure

component; where p, is the pressure and p, is the constant pressure in the region; T is the viscous stress tensor; h, is the
enthalpy of the gas, /, is the enthalpy of each particle fraction, ¢ is the heat flux vector, n, is the average concentration
of absorbing gas molecules per unit volume; 7, is the concentration of particles in the dust fraction; F is the radiation
intensity; a, o, are the absorption coefficients; T . is the gas temperature; 7, is the temperature of the particles in the dust
fraction; s, is the particle radius; ¢ is the Stefan-Boltzmann constant; C, is the heat capacity of the mixture at constant
2m,Cp, (v=DT, . . . . . . .
pressure; {, = ———————= is the thermal relaxation time of the particle in the medium; m, is the mass of the
ams; p,c,(y+1)
particle; C,, is the heat capacity of the particle material at constant volume; v is the adiabatic index of the gas mixture; a
is the accommodation coefficient; c, is the average thermal velocity of gas molecules; M is the average molecular weight
of the mixture; M is the molecular weight of the m-th component of the mixture; / is the laser radiation propagation
coordinate; c, is the average thermal velocity of gas molecules; Q is the heat effect of the reaction; R is the number of
transformations per unit time.

Information on the expressions for determining the diffusion flux vector, the rate of formation or consumption
of gas components, the viscous stress tensor, the enthalpy of each particle fraction, the heat flux vector, absorption
coefficients, thermal relaxation time, the average thermal velocity of gas molecules, and the heat effect of the reaction
is provided in [1].

Chemical processes in the heated medium are calculated based on a kinetic scheme of interconnected heterogeneous
and homogeneous radical-chain reactions, which includes 40 elementary stages and 15 components of the gas mixture.
The scheme was designed for a temperature range from 900 K to 1400 K [8]. The laser beam diameter, power, and
duration are parameters that are defined in the initial and boundary conditions. Further, the use of continuous CO, laser
radiation is assumed, although single-pulse and pulse-periodic radiation modes for the CO, laser may also be studied.

The presented system of equations is complemented by initial and boundary conditions. The initial conditions include
the concentrations of gas components Y,,? , particle concentrations n[O, gas temperature Tgo, particle temperature T, pressure
p°, and flow velocity v*. The boundary conditions consider the inflow conditions (Y,;",nf”,]“&f",];i", p"”,\?), outflow
conditions p°, and adhesion conditions (T;””"d ,v=0).

During one time integration step, the equations of chemical kinetics (8) are solved sequentially to account for the
contribution of chemical reactions to the component composition, the equations for particle temperature (7) and laser
radiation (6) are solved, and the system of equations (1)—(4) is integrated without considering the dynamic pressure
component. The values of the gas component and nanoparticle densities, the total enthalpy of the gas and particles, and
the preliminary velocity vector are obtained. From the computed values, the gas mixture temperature, gas component
concentrations, and nanoparticle concentrations are derived. At the final stage, Poisson’s equation is solved using the
condition for the divergence of the velocity vector (5) to find the dynamic pressure component w\pin, and the velocity
vector is corrected.

The described computational algorithm was implemented in C++ using MPI parallel computing technology. The
most labor-intensive step is the calculation of the chemical kinetics equations [9], as it involves solving a stiff system of
equations that includes dozens of gas mixture components. Another labor-intensive step is solving Poisson’s equation for
the dynamic pressure component, where it is necessary to solve a system of linear algebraic equations (SLAE), the size
of which depends on the computational grid. The computational algorithm for individual equations was tested on known
solutions. The algorithm was previously tested in limiting cases on analytical solutions for model problems of Poiseuille
flow, Couette flow, and heat conduction with a chemical reaction (in the flat variant), as well as experimental data on
ethane pyrolysis. The convergence of the numerical method was verified and confirmed on a sequence of refined grids.

Results

Inlet and Outlet Flows in the Computational Domain. The cylindrical shape of the computational domain is
determined by the typical design of reactors in chemical technologies and the well-studied nature of flows in straight pipes
with circular cross-sections. The cross-section of the laser radiation beam, in the geometric optics approximation, is often
also circular, with the radius adjustable by optical elements. The coaxial propagation of the laser beam through a circular
tube is easily achievable in laboratory experiments. For computational experiments aimed at determining the influence
of laser radiation on the counterflow of reagents, such a configuration of the computational domain, along with the
radiation, is of particular interest. This setup eliminates the need to calculate flow distributions over the azimuthal angle
in the cylindrical coordinate system, reducing the problem to a two-dimensional formulation, which greatly simplifies
the development of the computational algorithm. The main expected result of introducing laser radiation into the reaction
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medium is the creation of a high-temperature region, which serves as a source of additional radicals outside this region.
This significantly enhances the reactive capacity of the system at the outlet and allows for higher methane conversion
rates under otherwise equal conditions.

The computational domain (Fig. 1) represents a cylindrical tube with a total length of 600 mm and a diameter of
20 mm. The domain consists of four zones from A to D. Zone A has reduced wall temperatures and is intended for the
calculation of radiation input. It is isolated from the main reaction zone C by an annular inlet 1 for relatively cold methane.
In zone B, the walls heat the methane to a certain temperature. Reaction zone C is 330 mm long and is bounded by an
annular inlet 3 for the gas-dust mixture and an annular outlet 2 for the reaction products. In zone D, a flow of methane
with nanoparticles is formed, moving towards the laser radiation. Such an arrangement of the reaction zone is necessary
to organize the impact of laser radiation on the reacting mixture in the product outlet area and to prevent overheating of
the tube’s end walls.

Radiation

1 2 3
Fig. 1. Scheme of the calculation area with inlet and outlet flows

Initial and boundary conditions. At the initial moment, the area is filled with methane at a temperature of 973 K and
a pressure of 101.325 Pa. Inlets 1 and 3 define conditions for the inflow of a flow with a specified constant flow rate of
10 L/h (10 % from inlet 1, 90 % from inlet 3) and the composition of the mixture. A gas-particle mixture (methane and
catalytic nanoparticles with a radius of 5-10~° m, and a concentration of 1.2-10'® m) is supplied through inlet 3, preheated
to 1173 K. Energy is introduced into the reaction zone through walls B and C, which are at a temperature of 1173 K. As it
moves through the reaction zone, the gas and particles are heated from the walls to the center. A relatively cold methane
with a temperature of 573 K is supplied through inlet 1. At the wall temperature of 1173 K, it remains inert and flows
counter to the gas-particle mixture. The mixing of flows and the output of reaction products occur at outlet 2. The wall
temperature in zones A and D is 573 K. To the left along the axis, radiation from a 30 W CO, laser with a beam diameter
of 12 mm is introduced. The width of the annular inlets 1 and 3 is 5 mm, and the outlet 2 is 8 mm.

The described problem is solved in a cylindrical coordinate system for the case of axisymmetric flow. The calculations
are based on a 2D grid of rectangles, with 6000 cells, a spatial step of #=107, and a time step of Ar=10">.

For the chosen size and initial concentration of nanoparticles, particle aggregation into fractal agglomerates may
occur, but the time for this process significantly exceeds the residence time of the nanoparticles in zone C. Furthermore,
the total surface area of fractal agglomerates changes little, maintaining a total catalytic surface sufficient for methane
conversion. For the given parameters, the ratio of the thermal conductivity length of the gas to the radius of the pipe and
the ratio of the diffusion length of a hydrogen atom to the radius is greater than 1. This defines the heating of the medium
in the pipe. The filling of the entire mixture with hydrogen atoms radially ensures the occurrence of radical chain reactions
with methane and secondary hydrocarbons. The mixing of the relatively cold counterflow of methane in the annular
output zone 2 and the absorption of laser radiation provides the cooling of the gas-particle mixture at the outlet.

Flow without Laser Radiation Input. Let’s consider the flow of a two-phase gas-particle mixture with chemical
reactions in the axisymmetric pipe presented in Fig. 1, without the introduction of laser radiation. The conversion of
methane is an endothermic process, and the energy required to initiate the reactions is supplied to the system through the
continuous heating of the walls of the area.

Counterflows of the supplied gas-particle mixture through the annular inlet 3 on the side surface of the pipe mix
effectively, reverse, and form a laminar flow along the axis (from right to left). At a distance of one diameter of the pipe
from inlet 3, under the influence of wall heating, the velocity reaches its maximum value of 11 cm/s (Fig. 2). In this area,
the conversion of methane begins, accompanied by a redistribution of reaction products. The presence of hydrogen in the
products leads to a significant change in the volume of the medium, causing flow deceleration that starts at a distance of
two diameters from inlet 3. The decrease in velocity corresponds to an increase in particle concentration in the second
part of the reaction zone (closer to outlet 2). The presence of inlet 1 also affects the formation of gas flows, resulting in
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the methane supplied to this area limiting the reaction zone. The gas-particle flow and the methane flow mix, creating a
deceleration zone at the outlet 2 (Fig. 2).

The maximum concentration of particles, which is twice that of the concentration at inlet 3, is observed at outlet 2 (Fig. 3).
The temperature of the mixture in the reaction zone is close to the wall temperature (Fig. 4), illustrating the condition in
which the energy supplied from the walls of the pipe is sufficient to heat the entire area and facilitate the endothermic
chemical reactions. The special design of the pipe also plays a role here — lower temperatures at the end walls due to gas
insulation in these areas protect the windows (for potential laser radiation input) from heating.

Velocity magnitude
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Fig. 2. Velocity distribution, m/s
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Fig. 3. Nanoparticle distribution, m=

Temperature
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Fig. 4. Temperature distribution, K

Mass fraction CH4
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Fig. 5. Methane mass fraction distribution

Chemical reactions are initiated at a distance of one pipe diameter from inlet 3 due to wall heating and proceed
throughout most of the reaction zone C, with more active methane conversion (71 %) near outlet 2. The maximum
methane conversion is observed in this area due to the accumulation of nanoparticles (Figs. 3, 5), which act as active
centers for chemical reactions, and the mixture’s temperature, which is approximately equal to the wall temperature. As
the gas-particle flow moves, reaction products are formed and accumulate, with their maximum concentrations occurring
near outlet 2. The main products are aromatic compounds — 31.5 %, ethylene — 16.2 %, and hydrogen — 10.0 %. At
outlet 2, the methane conversion is 65.0 %, as the reaction mixture mixes with the counterflow of methane (10.0 % comes
from inlet 1, 90 % from inlet 3).

Effect of Laser Radiation. Let’s consider the results of the calculation for a chemically active two-phase flow in the
presence of laser radiation. A laser beam with a power of 30 W and a diameter of 12 mm is introduced along the axis of
the pipe through the left end.

The laser radiation, entering the pipe from the left, passes through the buffer zone filled with optically transparent
methane and is absorbed in the outflow area by nanoparticles and ethylene (Fig. 6).
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The energy input leads to the formation of a high-temperature region, with values reaching 1364 K (Fig. 7). The shift
of the elevated temperature into the buffer zone is explained by the diffusion of ethylene and hydrogen, which absorb the
radiation, with hydrogen having thermal conductivity several times higher than other components of the mixture. Despite
the temperature increase in this area by almost 200 K compared to the calculation without radiation, the flow velocity and,
consequently, the particle concentration do not change throughout the pipe volume (Figs. 8, 9). The energy from the laser
radiation, along with the temperature increase, is consumed by endothermic chemical reactions.

1 laser

0.0e+00 50000 100000 150000 200000 2.5e+05

Fig. 6. Radiation intensity distribution, W/m?

Temperature
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Fig. 7. Temperature distribution, K
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Fig. 8. Velocity distribution, m/s
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Fig. 9. Nanoparticle distribution, m™>

Figures 10—12 show the distribution of the main components of the gas mixture along the pipe. From the graphs,
it is evident, as in the case without radiation, that there is a gradual increase in reaction products toward outlet 2, with
methane conversion reaching 73 %. However, with the introduction of laser radiation, a significant redistribution of the
component composition occurs along the pipe. The highest mass fractions of hydrogen (Fig. 11) and aromatic compounds
(Fig. 12) are observed near outlet 2, as these products form at temperatures above 1300 K, provided by the laser radiation
input. The mass fraction of ethane in this area rapidly decreases, as it undergoes pyrolysis at such high temperatures. The
maximum ethylene fraction of 19 % is observed in the central part of the reactor, decreasing to 6 % toward the outlet. The
appearance of about 5 % hydrogen in the left “protected” area of the pipe is explained by its diffusion.

Mass fraction CH4

27e-01 04 05 06 07 0.8 0.9 1.0et+00

Fig. 10. Methane mass fraction distribution
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Mass fraction H2
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Fig. 11. Hydrogen mass fraction distribution

Mass fraction C6H6
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Fig. 12. Aromatic compounds mass fraction distribution

Since the counterflows of methane mix at the pipe outlet, the observed methane conversion decreases to 69.0 %, with
the following mass fraction distribution of target reaction products: aromatic compounds — 44.0 %, ethylene — 6.0 %,
and hydrogen — 11.6 %.

To study the influence of parameters in the computational experiment, calculations were performed for other values
of wall temperatures in reaction zone C, ranging from 1073 K to 1173 K, with all other initial and boundary conditions
unchanged. In the presence of laser radiation, the dependence of methane conversion on wall temperature is linear: with a
25 K increase in the mixture temperature, the additional methane conversion is around 10 %, primarily forming aromatic
compounds. This is due to the fact that, upon reaching a certain temperature, the kinetics of the chemical reactions shift
toward the formation of these compounds.

Discussion and Conclusion. Mathematical modelling of chemically active two-phase gas-particle flows was carried
out using a self-developed program. The program is designed for calculations in cylindrical coordinates for axisymmetric
subsonic flows with small pressure variations. The numerical algorithm imposes no restrictions on changes in flow velocity
within the computational domain or on significant volume changes due to chemical reactions. The developed program
was adapted to study methane conversion in a pipe with counterflows of reacting gas and IR laser radiation. In a series of
computational experiments without radiation and with 30 W radiation, the effect of laser radiation on the dynamics of the
chemically active counterflow of the gas-particle mixture was investigated.

It was found that relatively low-power and low-intensity IR laser radiation, around 30 W/cm?, absorbed directly in the
gas, has a strong impact on the counterflow of the two-phase nanoparticle and hydrocarbon gas mixture. This influence
results in the creation of a higher temperature zone at the outlet of the reaction medium. Elevated temperatures and the
heat power input in the presence of radiation lead to a shift in methane conversion products toward increased yields of
aromatic hydrocarbons. The increase in aromatic output is achieved by introducing laser energy at the final stage of the
chemical process. The quenching of the resulting products occurs as the reaction mixture exits the laser radiation zone.
Numerical modelling of the dynamics of reactive two-phase media is of interest for developing the theoretical foundations
for methane conversion into valuable products. The results naturally confirm the conclusion that mathematical modelling,
combined with laboratory experiments, is essential for developing new resource-efficient and economically viable
technologies for natural gas processing.
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Abstract

Introduction. This paper addresses an initial-boundary value problem for the transport of multifractional suspensions
applied to coastal marine systems. This problem describes the processes of transport, deposition of suspension particles,
and the transitions between its various fractions. To obtain monotonic finite difference schemes for diffusion-convection
problems of suspensions, it is advisable to use schemes that satisfy the maximum principle. When constructing a finite
difference scheme that adheres to the maximum principle, it is desirable to achieve second-order spatial accuracy for both
interior and boundary points of the domain under study.

Materials and Methods. This problem presents certain difficulties when considering the boundaries of the geometric
domain, where boundary conditions of the second and third kinds are applied. In these cases, to maintain second-order
approximation accuracy, an “extended” grid is introduced (a grid supplemented with fictitious nodes). The guideline
is the approximation of the given boundary conditions using the central difference formula, with the exclusion of the
concentration function at the fictitious node from the resulting expressions.

Results. Second-order accurate finite difference schemes for the diffusion-convection problem of multifractional
suspensions in coastal marine systems are constructed.

Discussion and Conclusion. The proposed schemes are not absolutely stable, and a detailed analysis of stability and conver-
gence, particularly concerning the grid step ratio, remains an important problem that the author plans to address in the future.

Keywords: coastal marine systems, multifractional suspension, diffusion-convection problem, difference scheme,
approximation error
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OpueuHanbHoe meopemuvueckoe uccnedosamue

ITocTpoeHue pa3sHOCTHBIX CXeM BTOPOI0 NMOPSAAKA TOYHOCTH AJI4 32124 AUPPY3UN-KOHBEKIUH
MYJIbTH(PPAKINOHHBIX B3Beceil B MPUOPEKHBIX MOPCKUX CHCTEMAax
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AHHOTALUA

Beeodenue. PaccmarprBaeTcs HauabHO-KpaeBas 3ajiada TPAHCIIOPTa MYIBTH(PAKIIMOHHBIX B3BECEH MPHUMEHUTEIHLHO K TIPH-
OpeKHBIM MOPCKMM cucTeMaM. J[aHHast 3a/1a9a OMUCHIBACT MPOIIECCHI MEPEHOCA U OCKICHHS YaCTHUI] B3BECH, a TAKXKE B3aUM-
HBII Tepexon MeXy ¢€ pa3nuuHbIMU (pakipsiMi. C IIE/IbI0 TOMyYCHHs] MOHOTOHHBIX Pa3HOCTHBIX CXeM I 3amad auddy-
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3WU-KOHBEKIIMH B3BECEH I1eImeco00pa3Ho MCHOb30BaTh PA3HOCTHBIE CXEMBI, YIOBICTBOPSIOININE MIPUHIMITY MakcumyMma. [Ipn
TTOCTPOCHUH Pa3HOCTHOM CXEMBI, ISl KOTOPO# OyAeT BBITOTHEH MIPUHIAIT MAKCHMYMA, JKEIaTeITbHO ITOTyYUTh BTOPOI OPSIIOK
aIIPOKCUMAIIMH IO TPOCTPAHCTBEHHOM ITEPEMEHHO# Kak JUIsi BHYTPEHHHMX, TaK U JUISl TPaHMYHBIX TOUEK UCCIIeLyeMOit 001acTH.
Mamepuanvl u memoownl. JJanHas 3a7a4a BbI3BIBAET ONPEIECIICHHbBIE TPYIHOCTH IIPU PACCMOTPEHUM I'PAHUL] TEOMETPH-
YeCKo# 00J1acTH, Il KOTOPBIX BEIIONIHEHBI TPAaHUYHBIC YCIOBHS BTOPOTO M TPETHETrO poaa. B 3Tux ciaydasx, 9ToOBI co-
XPpaHUTb BTOPOH MOPSI0K OTPELUIHOCTH alPOKCUMAINH, BBOAUTCS «PACIIMPEHHAs» CeTKa (CeTKa, JONOoJIHeHHas QHK-
TUBHBIMU y371aMH). OPHEHTHPOM CIYXKHUT allPOKCUMAIHS YKa3aHHBIX TPAHUYHBIX YCIOBHHU MO (OpMYysie IEHTPAITHHBIX
pa3HOCTEH U UCKITFOYCHUE U3 MTOMyYCHHBIX BBIPAKCHUN (DYHKITUI KOHIICHTPAIMH B3BECH B (PUKTHBHOM Y3JIC.
Pezynemamut uccineoosanus. I1ocTpoeHbl pa3HOCTHBIE CXEMbI BTOPOTO NOPS/IKa TOYHOCTH JUIs 3a1a4u Au((Py3uu-KOH-
BEKIIMU MYIBTH(PAKIIMOHHBIX B3BECEH B MPHOPEKHBIX MOPCKUX CHCTEMAX.

Obcyscoenue u 3axnouenue. [IpeUIOKCHHBIE CXEMBI HE SBISIOTCS aOCONIOTHO CTAOWIBHBIMH M TIOAPOOHBIA aHaIH3
YCTOWYMBOCTH M CXOAMMOCTH, CBS3aHHBIN C OTHOLIEHUEM IIIarOB CETKH, SIBJSIETCS] BaXKHOU MPOOIeMOi, KOTOPYIO aBTOpP
IUTAHUPYET PEeIIaTh B OyayIIeM.

KaioueBble cioBa: npuOpeXHbIE MOPCKHE CHCTEMBI, MYIIBTH(PAKIIMOHHAS B3BECh, 3aa4a AN Py3UH-KOHBEKIIUH, Pa3-
HOCTHAas CXeMa, MOTPELIHOCTh AllPOKCUMAIIH

duHancupoBanme. lcciemoBanue BBIONHEHO 3a cueT rpaHTa Poccumiickoro HayuHoro domma Ne 23-21-00509,
https://rscf.ru/project/23-21-00509

Mo uurupoBanusi. Cunopsikuna B.B. [locTpoeHne pa3HOCTHBIX CXeM BTOPOTIO MOPSsi/IKa TOYHOCTH JUIs 3a1a4 Auddy-
3UH-KOHBEKIINH MYIbTH()PAKIIMOHHBIX B3BECEH B MPHOPEXKHBIX MOpckux cucrtemax. Computational Mathematics and
Information Technologies. 2024;8(3):43-59. https://doi.org/10.23947/2587-8999-2024-8-3-43-59

Introduction. Suspended matter (suspension) is a natural component of marine systems. Changes in the quantitative
and qualitative composition of the suspension can shape the landscape, negatively affect ecological communities, and
shorten the lifespan of infrastructure. To address these issues, a clear understanding of the transport processes of suspended
matter, accounting for spatial and temporal variations, is necessary. Typically, mathematical and numerical modelling
methods are employed for these purposes [1-4].

In this article, we present a mathematical model of suspension transport based on a three-dimensional diffusion-
convection equation. The model considers the multifractional composition of the suspension, water flow velocity,
hydraulic particle size, complex bottom geometry, wind stress, bed friction, and other factors [5—8]. Special attention is
paid to the approximation of the proposed model at both internal and boundary points of the computational domain. The
proposed methods enable the construction of a finite difference scheme that approximates the model with second-order
accuracy in relation to the spatial grid steps, taking into account boundary conditions of the second and third kinds.

Materials and Methods

1. Formulation of the Diffusion-Convection Problem for Multifractional Suspensions. In a rectangular Cartesian
coordinate system, we consider the three-dimensional diffusion-convection equation using a skew-symmetric form of the
convective transport operator [5—7]:

660; +C,c,=Dc,+F.,r=1,2,3, (x,y,z)e@, é:{OSxSLX,OSySLy,OSzSLZ};

Cocr El u%_’_vac’, } acr +wr' a(uc’) } a(Vcr) I a(W'Cr) i
Lo e oy o

0 oc,\ 0O oc ) 0O oc,
Dcr = ”’h,r - ”’h,r +— ”'v,r 4
ox ox) Oy oy) Oz 0z
1

F =(a,6,(x,,2,0) B¢ ) 47,6,
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where ¢, ¢, =c (x,y,z,t) is the concentration of particles at time ¢, ¢ € [0; T1; u, v, w are the components of the velocity
vector of the water medium U ; w/, w.=w+w, . are the hydraulic sizes of the particles; W,,.H,, are the horizontal and
vertical diffusion coefficients of the particles, respectively; F', is the source term; o 3 are the coefficients describing the

intensity of conversion of particles from one fraction to another, and o, >0, B,>0; v, is the external source power of

particles. Here, the subscript » indicates that the particle belongs to fraction number .
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The equation (1) is supplemented by the initial conditions:
c(%,20)=c¢.(x,,2), (x,y,2)e G;

and the boundary conditions:
— on the lateral faces of the parallelepiped G:

— A 1 .
¢ =¢, if u-<0;

oc,

=0, if u20;

n

()

€)

“4)

(u, is the projection of the velocity vector onto the outward normal 7 at the boundary, and ¢, represents known con-

centration values);
— on the upper surface of the parallelepiped G:

— on the lower surface of the parallelepiped G:

r

oz

=—g.cC,.

©)
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Using the methods described in [9], a transformation with a “time lag” on the time grid ®_ ={t, =nt,n=0,1,...,N,, N,t=T}

was performed, along with a transition to a new coordinate system Oxy9, 0€[0;1] according to the formulas:

-
GZTT]: Xg =X, Vo=V>

where / is the depth and 1 is the height of the free surface relative to the mean free surface [10].

Equation (1) is then transformed as follows:

acll
6’+C0cr" =Dc'+F",r=1,23,t  <t<t
t

n=L2,..,N,,

> -1 n?

ox oy 'HeO ox oy H 00

. 0 oc') 0 o'y 1 0 oc!
Dcr = ”‘h,r_ +— “’h,r_ +_2_ “’v,r_ >
Ox Ox ) Oy dy ) H” 00 00

F'=(0,¢,™ (x,.0.8,,)-Byel J+vie],

el El["ac: 0y Lae o) o) 1 6(w;c:>},

E 2([5101"’l ()c,)/,e,tlﬂ)—(>czc§)+(oc3c§”l (x,y,e,tnfl)—Bzcg)—i-y;E; ,
E=(B,67 (6,208, )—0u¢ J+75¢]
The initial and boundary conditions (2)—(6) will be transformed as follows:
c (x,9,0,0)=c,, (x,y,@)eé,
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2. Second-Order Finite Difference Scheme for the Diffusion-Convection Problem of Multifractional Suspensions
at Internal Nodes. Let us assume the existence of continuous (bounded) fourth-order partial derivatives with respect to
the spatial variables (x, y, 0) for the functions c’,7=1,2,3, and continuous second-order partial derivatives with respect

to the time variable . In other words, the derivatives ﬂ, o'e ,64—0:, E
. ox'” oyt 08' or & Py e
(x,,0)eG, 1, <t<t,, n=1,..,N,. andwealsoassume the continuity of second-order partial derivatives: ;g”, ;’2”'", a:‘z"r,
o'u v o'W ’ g
ox*’ oy”” 00
For the approximation of the problem (8)—(13), we will use the following grids:

are continuous and thus bounded for all

O=0, XO X0y, O=O, XD Xy,

o, ={x:x=ih;i=1,...N ~L;(N,~)h =L ~h|,
o, ={y: y=jh; j=l,..N,~1; (N, <) =L, ~h ),
o, ={0: 0=khy; k=1,...,Ny—1; (N, =1)h,=1-h,},
o, ={x:x=ih;i=0,1,..,N;Nh =L},
®,={y:y=jh; j=0L...N s Nh =L,
®, ={0:0=kh,; k=0,1,...,.N,; N B, =1}.

Next, in the notation of the grid functions for ¢ and F" we will use a bar over them. Based on the assumptions
introduced, we arrive at the approximation of equation (8):

& (4:3,:00)-8" (%,5,.6)
T

+C,c' =Dc +17,,",r:1,2,3, (xl.,y/.,ek)em, t en,

Gy’ =%(u" (x,. +0.5h,,y,,6, )Er” (xl. +h.,y; ,Gk)—u" (xl. -0.5h,.y,.9, )E,_" (x,. —h..y;.9, ))+

x

+%(v" (., +0.51,,0, )" (x,,y,+h,.0,) V" (x,¥,-0.5h,,0, )& (x,.3,~h,.0,))+

y
] n —n m —n
S 508 OO SR (5.0, ) (5,3, 0,-0. 51 (5.3,0, ),

1
DErn :ﬁ(”’h,r (xt +0'5hx 5 76/:)(5: (xi +hx Y ’ek)—Er" (xi’yj ’ek))_“h,r (x: _O'th Y ’ek)' (14)

x

1
(& (%.3,.0)-¢ (xi—hv,y,,ek)))+h—2(uh!, (3.3, +0.5h,.0,)(@" (3.3, +1,.0, )-8 (x,.,.0,)) -

p

—-n —n 1
My (xz ’yj _O'Shy 7ek )(Cr (xi 7yj ’ek)_cr (xz ’yj _hy 7ek))>+m(uv,z~ (xz ayj ’ek +0'5h9)'

(07 (620 + ) =2 (32370, )) 1y, (3370, =058 ) (€ (3.9,,0, )= (53,6, ~14 )
F'=(0,8" (2,900, )-B@')+15,
B =B (600, 1) =08 JH{0:8 (6,.04,)-B,& 415
F=(B,6 (2,900, )—0u )43
We will verify that the finite difference scheme (14) has second-order accuracy. To this end, we will substitute the

exact solution ¢’ (xl.,yj,ek)zcr (xi,yj,ek,tn), (xi,yj,é)k)eG, t,.en ,n=0,1,...,N, of the problem (3)—(8) into equation (14) and
demonstrate that for the approximation error

c (xi Y ’ek)_cfil (xf’yj ’ek)
T

v (x.,.8,)=

Gl (x[,yj,G,()+Dcf (x[,yj,Gk)+F,” (x,.,yj,ek) 15)

¥
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the following relationship holds:
' (xi,y/.,ek):0(r+h2), n=0,1,...,N,,
where 1’ =R +h} +h; .
We express the function ¢’ in a Taylor series expansion around the node (x,- BICA J,Z):

ac,'j(x[.,yj,ek,tn)Hach(x,»yz,,Gk,tn)Tz : O(TS)‘
ot ot 2

n—1

Cr (xz ﬂyj ’ek ﬂtn—l):C: (x[’yj 9ek 7tn)

Using relation (17) for the first term from the left-hand side of equation (15), we find:

c’n (x' Y ’ek ’t")_C:H <xi 24 ’e]‘ ’t"_l) 1|:C: (xz Y sek ,ln)_[cf (x,- Y >ek ,tn)_aC: (Xi ,gj ’e_k ’tn)‘t+
’ t

T T

: ¢! (x[,yzj,ek,t,,)rz : O(TS)J:IZM"'O(T)’

(16)

)

(18)

To estimate the approximation error of the convective transport operator from equation (15) we utilize the Taylor

series expansions ¢”,u",v", w" around the node (xl., V;,0; ,tn):

0c!(x,7,0,), ! (%70, )

5,02 1,0, L0y FECr O o
oc'(x,y..0 0’ (x,,y,,0, )
c:’(xi,yjihy,@k):c;’(xi,yj,@k)i i (x;a;" k)hx : ‘ (gyzy" k)z :O(h;’),

n , oc’(x,y,,0 o (x.,y.,0, )i
C, (x,-,yj,ek ihe):Cr (x,.,yj,ek)i ( ae] /c)he+ (692/ k)hze +O(hg),

u'(x,+0.5h,,y,.6, )+u" (x,—~0.5h,,y,.6,)=2u"(x.,y,.6,)+O(k}),

ou’ (7,,0,)

u”(xl.+0.5hx,yj,6k)—u" (xl. —O.th,yj,ek):
x

h,+O0(h}),
V" (xl.,yj +0.5hy,9k)+v" (x,.,yj —O.Shy,Gk)=2v"(xi,yj,9k)+0(hj),

v (x, yj+0.5hy,ek)—v"(x,.,yj—o.5hy,ek):%yyf’e")hy+o(hj),

W (%,,3,.0,+0.58 )+w" (x,,3,,0,—0.5h, ) =2w/"(x.,¥,.6,)+O(h; ),
w" (xi »Y;:0, +0,5h9)+ w'" (xl. Y50, —O,She):2wr'" (xl. Y, ,Gk)+0(h92),
By substituting the corresponding expressions (19)—(27) into expression (15) for C,c we obtain:

100" (x,,.8,) , 0 (02,0, 107 (%.3,.0,) ,

Cocr":2 ax Cr ('xi’yj’ek)-‘r ax 2 ay \_,: ('xi’yj 7ek)+Vn (xi,yj,ek).
ooy, 0), 1 (8, U ey 02000
Oy I 2H(x,.y,) 00 “r (xi’y_f’ek)JrH(x”yj)Wr (x.,-0,) 2w

+O(hf +h +h92)

(19)

(20)

1)

(22)

(23)

24

(25)

(26)

@7

(28)

To estimate the approximation error of the diffusion transport operator from equation (15), we utilize ¢/, W,,,H,, in

the Taylor series expansions around the point (x,., Y ,Gk):

oc, (x,.,yj,Gk)h : 0’ (4,0 ) iascrn (26.2,-0,) 2

39, 00) = 1,02 L0y T O D50, O
o (x.,v,.0,) " (x.y 0 ) T (x,y,.0,)
C:‘(xpyj ihy,ek)ch(xnyj;ek)i Cr (XIa;j k)hy t < (;yzyj k) 2 + 5 (;ygjj k)6 {O(hj)a

29

(30)

47
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80'_1(xi,y/.,9k)h0 0 (x,:0) 1, 0 (%0, )

& (5.3, 0 by )=el (37,0, )= === o ot e toW) (1)
o, (% +0.5h,,,.0, )41, (% -0.5k,,7,.8,)=2m,, (x.,v,.8,)+O(R7), (32)
uh,y(xi+0.5hx,yj,Gk)—p_hJ(xi—O.th,yj,ek)zwhx+0(hj), (33)

X
W, (%2, +0.5h,,6, )+w,, (x.»,-0.5h,.6,)=2u,, (x.,,6,)+O(k;), (34)
uh,r(x[,y/+0.5hy,9k)—uh’,,(x,.,yj—O.Sh},,ek):%j}j’ek)hy-kO(hi), (35)
My (557,60, 0.5k )1, (%,3,.8,-0.5h,)=2u, , (x.,7,,6,)+ O ), (36)
om,, (%-7,-60,) . 37
p.v‘r(xl.,yj,ek+0.5h6)—;,tv,r(x,.,yj,9k—0.5h6)=‘6—6‘h9+0(he). (37)

By substituting the corresponding expressions from equations (29)—(37) into the expression for Dc’ we obtain:

o Oy, (%.3,.0,)0¢] (x,.,.6;) 10 (%,,,6,) 0w, (%,0,,6,)9¢! (%,3,.8)

De: ox Ox THar (x,., %) ox’ oy oy
Fc(x,y,.8 1 (0w, (x.v.8,)0c"(x,v .8
o ) (O D), (0 3
iV
2 n
T \x0,.9) (;f(;zy i )}ro(hj +h+ ).

From the equalities (18), (28), and (38), it follows that the overall order of the approximation error of the finite
difference scheme (14) at the grid nodes ®_x® is equal to O(r+h2), B =h.+h+h -

It is important to note that the initial condition (9) is set exactly on the grid ® xo .

3. Second-Order Finite Difference Scheme for the Diffusion-Convection Problem of Multifractional Suspensions
o'c d'c o'c! o
o'’ oyt 00t ot

2. 2 2 1 2 2 2
5—‘2’, 6—5, 0 iy g By 0 “g’r,a Pir - Additionally, we
ox~ oy~ 00 Ox~ oy 00
assume the existence and continuity of mixed partial derivatives. We will consider that the following conditions are satisfied:

at Boundary Nodes. We will assume the existence and continuity of the derivatives

r=123

as well as the continuity of the second-order partial derivatives:

o’ o o ot dler ol ol ol ot ol ol ot
oxot” dyot 900t otox> 0tdy* o108’ dyox’” 00dx’ oxdy®” 908y° 6xd0® 8yde’”

o o o o o o
ol Vaox alifol s o> aliifor o) il s) allits> ool MiNs) Vas s i

o, Oy, 0w, Fw,, dp,, A PV AV S Fw" Fw Ow"
oxdy” ox00  oyox’ 900x dyo0  oxdy 903y Oydx dyo0 dxd0  dyo0’ d00x SO0y

We will assume that the following conditions are satisfied:

h, hy hy
ku gh_gkm k21 Sh—Sk22, k}l —h_gkn’ (39)
Y X Y
ks ki okyys Ky s Ky Ky, represents some positive constants.

To approximate the boundary conditions, we introduce an extended grid:

®" ={(x.,,0,).i==1,0,...,N,+1,j==1,0,...N, +1k==10,....N,+1,

x,=ih;y,=jh 0, =kh;N,h,=L;Nh =L ;N =1}.
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For the nodes of the @ \@ we assume the values of the components of the velocity vector are equal to zero:
E,"(xi,yf,ek)=o, if (xl.,yj,E)k)E(Tf\(T) (40)

furthermore, we consider the values of the components of the velocity vector of the water medium and the

hydraulic diameter of the particles in the suspension at the grid nodes ® \@w with fractional indices to be known:
u'(~0.5h,,y;,6,), u" (L +0.5h,,.0,), v"(x,=0.5h,,6,), v"(x.L,+0.5h,.0,), w"(x.y,,~0.5k), w/"(x,y,.1+0.5h,).
The boundary conditions (10) are approximated as follows:

¢'(0.y,,8,)=c.,if u"(0.5h,.y,.6,)+u"(~0.5h,.,.6,)>0,

¢'(L,.y;.0,)=c.,if u"(L,~0.5h,,y,.0,)+u" (L,+0.5h,,y,.0,)<0, (x,»,.6,)€®"; )
¢’ (x,0.8,)=c., if v'(x,,0.5h,.6,)+"(x,,~0.5A,.6,)>0,

' (x.L,.0,)=c.,if v'(x,,L,~0.5h,,0,)+V"(x,,L,+0.5k,,6,)<0, (x,y,.6, ) .

In the case of flows on the lateral surfaces of the domain G, that coincide in direction with the external normals to the
surfaces, i. ., when the conditions are met:

u" (O.th,yj,ek)+u” (—O.th,yj,ek)<0,

u'(L,—0.5h,,y,.0,)+u" (L,+0.5h,.y,.6,)>0, (x.y,.6,)ed;

(42)
V' (x,0.5k,,6, )+ (x,,~0.5h,.6,)<0,
Vv (x,.,Ly —O.Shy,ek)+v" (x,.,Ly+0.5hy,9k)>O, (xi,y_/.,ek)e(T)+
Neumann boundary conditions are applicable.
Let us proceed to the construction of the difference scheme for the case when condition (11) is satisfied.
The condition (11) is equivalent to the following in case of x,= 0:
oc(0.7,:6,)_, 43)
ox
On the grid ' the node is internal (Fig. 1).
X, =—h, x,=0 x, =h x, =2h
0
05h 05h
hX
Fig. 1. Construction of the extended grid at the left end of the segment 0 <x, <L
The difference scheme at the nodes (0, Y, ,Ok) will be written as follows:
E’n (O’y"ek)_E’W] (O’y"ek) 1 (,n —n n —n
! . 2y A% (O.th,y/.,ek)cr (hx,yj,ek)—u (—O.ShX,y/.,Gk)cr (—hx,y/.,ek))+
1 1
+—(v"(0,y,+0.54,6,)c"(0,y,+h ,0,)-v"(0,y,—0.54 .6, )(c"(0,y,—h .0, ) J+————
2hy( ( Vi v k) V( y;h, k) ( Y Bl k)(r( Yi—h k)) 2H(0,yj)he (44)

—n m —n 1
-(w;" (0,9,,0,+0.5h)¢" (0,,,6, +h,)—w" (0,,,6, =0.5h )" (0, yj,ek—he))zh—z(uh, (0.5h,,y,.6,)

—n —n —n —n 1
'(Cr (hxayjaek)_cr (O’yj’ek))_”'h,r(_o'th’yj 7ek)(cr (anj ’ek)_cr (_hx’yjaek)))—i_ﬁ'
>
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(1, (0,3 +0.5h,.0,)(@ (0.9, +4,.,0,)= (07,6, )=t (0,3, =0.55,.0,)(@ (0.7,.6,)-
1
2 (0.3, ~h,.0,))+ m(%( 3,0, +0.5h)(S7 (0.7,.0,+,)57(0.7,.0,))-

—u,,(0.y,.6,~0.5%)(c"(0.,.6,)-2" (0.7,.8,~h )+ F
(O’y,f’ek)eaf,V=1,2,3,n:l,...,M

In our reasoning, we focus on the approximation of the given boundary condition using the central difference formula
and the exclusion of values at the fictitious node (—h)C 2V ,Gk) from the resulting expression and equation (44). The functions
¢’ (—hx,yj,ek) will be included in the expressions

1
—h(u”(O.th, ¥,.0,)¢" (,.y,.6,)-u"(-0.5h,.y,.0, )¢ (h,.»,.6,))

x

1
L, 0503, 0 (3,020,301, (058,00 (0.,0.) 5 (.3,)

which we will denote as COEr"| . o
b= b=

We will write condition (43) as follows:

& (h.y,,8,)-¢" (~h,.y,8,)
2h

X

=0 (45)

and from this, we obtain:

&' (~he.y,0,)=C" (h,.,.6,). "

Substituting the value ¢ (—hx, yj,ek) obtained from formula (46) into the expression for C;c' L:O , we find:

—n
0 Cr

1
27(u" (0.5h,.,y,.6,)—u"(<0.5h,.y,.6,))c; (h,.,.6; ). (47)

x

=0

Preliminary calculations showed that when using equality (45), the approximation error of the expression for C 5"|
_, Will be O(h). To determine the overall order of the approximation error
O(h?) of the difference scheme, a different approach will be proposed for the operator Dc; |

By expanding the functions c; ( h..y,.9; ) in a Taylor series around the point ( BICH ) we obtain:

0c;(0,3,8,), 0 (0.3,.0,)? , 2°¢/ (07,0, )

crn (ih»r’yj’ek)ch (O’yf’ek)i Ox hx I 8)62 2 - axs 6 l (48)
I 64cf (O’i}j,ek)h‘j I O(hf)
ox 24 ’
Using relation (48), we will explicitly write the leading term of the residual:

% ey, 8 oy, 8)_060(0,8) P 00,08 o

2h, ox a6

The last expression, taking into account the condition M:O can be written as:

X

& (h-y,0,)-¢ (~he., ,ek):hf 0'c(0.y, ’e")+0(hx4). (49)

2h 6 ox’

X

Using equality (49), we will find the value of the function ¢/ at the fictitious node (~h,,»,0) from the expression:

1 0°c(0,y,,0
& (3, 0,)=2 (17,0, 20210

e} (50)
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. . o o "(0,y.,0
Further reasoning will focus on the approximation of the derivative M .

(3x3 3 ~n
We will differentiate both sides of equation (8) with respect to the variable and express the derivative ——- from the
n X
resulting equality. Next, we will take the limit as x — 0 and considering that MZO , we find:
Ox
G0y:0) 1 [@¢(0.9,.0,) (0, \0°¢(0,,,8,) @v'(0,,,6,)0¢! (0,y,.6,)
o’ w,,(0.v,.0,)  axor RS ox oy
o°c’(0,y.,0, ow"(0,y.,6,)oc!(0,y.,0 o*c"(0,y,,0
+Vn<0’y_’ek) "( y./ ’t)} 1 r ( y] k) '( yJ k)} 1 Wrm(o’y.’ek) ’( y./ 1‘)+
’ oxdy  H(0y,)  ox 0 H(0,y)) ! ox00

L 10(0.0,6,) , 107V(0.,.6,) ,

2. m
< (O’y/’ek)+_ ) 1 ow (O’yj’ek) 0

¢ (O’y.f ,Ok)—

2 r ( ’y'79k} !
ox 2 Oxdy / 2H(0,y;,)  0xd0 51)
O, (020006 (0.3,0) o 00 0)0GON0) - o102 1
ox ox’ Ox oy’ I ooyt H? (0, y j)
(@1, (0.7,.8,)0c (0.y,.6, ) ou,,(0,5,,6,)0°¢(0,7,.6,) an,,(0,y,.6,)°¢(0,y,.6,)
0x00 00 00 0x00 Ox 00’
o (O,y.,Gk) _
+””(O’yf"6")Taej2 ,r=1,2.3,(0,y,.6,)<G.
It is evident that the equality holds:
OF" (O,yj,ek)zaFZ" (O,yj,ek)zaﬁgﬂ (O,yj,ek)zo
Ox Ox Ox
For the reader’s convenience, we will approximate the expression in parentheses from the right side of expression (51)
for each term separately. Initially, we note that for the coefficient ! , which stands before this parentheses, we
will use the expression: By (0.0,
1 _ 2
Mh,r (O’yj ’ek) “’h,r (OSh\' 9yj !ek )+H'h,r (_Oth ’yj ’ek>
0’/ (0.7,.6,)

Let us consider the derivative . For it, we have:

OxOt

Oxot ot ot h

x

azc: (O’yj ﬁkL%[aErn (hg 5y .0, ’tn) ac!’ (_hx9y] 0, Jn)}+0(hf)=2L'

. Erﬂ (hx’yj vek L, +T)_E;~n (hv g ’ek gt —T) Ern (_hx’yj’ek A +T)_Erﬂ (_hx’yj ’ek al _T)+0(T2) +
" 21

)2 2h, 2h,

x

+0(h2):L(r(X’y/’e t+T) ( hey; 0 tn—"_r) Ern( hesy; Bt~ ) r( heoy Bt )JJ,- (53)

1
+Eo(r2)+0(hj).

X

Using equality (50), the relationships can be written as:

¢’ (hx Y5500, ir)—Er" (—hx,y/ ,0,.t, +'c) h’f oc (O,yj 0., ir) . .
2hx 6 6)63 ' O(hx ) (54)

51
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3*c/(0,y,.6;)

With the help of equality (54), we will transform equality (53):

o 1 R3¢ (0,,.0,08,+1) 8°¢(0,,.8,.4,-7)) 1 o) +o(i)
oxdr 216 o’ o’ ) 2h, 4
_— | TG00t .
ntroducing the notation q)(O, ;50,58 it)—T , we will write the last equality as:
azcj _h_x2 (p(O,yj,Ok,tn+r)—(p(0,yj,9k,tn—r)\I 1 5 )
ey . Jraoteeof) =
From which it follows:
e =5(5“’(°’yf’e“t") 0(2) [+ o))
oot 6 ot ) 2h,

In accordance with the Courant condition [11], the quantity is bounded, and we can assume that the equality holds:
1

EO(IZ):O(hX) . Taking this into account, we have:

/ o 1w 09(0,y,.9,.1,)
aor 6 o

+0(h,). (56)

00(0,y,,0,., 1) °¢/(0,y,,0,.1,*7)
ot - otox’

Considering relation (56) and the boundedness of the derivative the expression

is equal to zero up to O(h).

oxor (0.0,
Next, we will show that the derivative —f2
Ox0Oy

Taking into account the inequality &, Sh—xéklz from (39), we have:

y

83Cf(o’yj’ek):L 0 (h-y,8,) 0T (~h.y,.9,) +O(R)=
oxdy’  2h oy oy’ i

when approximated with an error of O(# ) also tends to zero.

1 (Ern (hx 2y th, ,Gk)—zan (hx Y :ek)"'an (hx .y, =h, aek)

=2_hx hf
Ern (_hx Y +hy =9k)_25rn (_hxz’yj =9k)+Ern (_hx g _hy’ek)+0(h2)j+0(h2):
5 ’ *
(@ 0T oy 1 0) 2 (A, )2 (o, 0,) -
" 2h, 2h, '

2h

x x

& (hy —h 0)-" (<hy,~h 0,)) 1
: (o2 =h0) = (o, =, ")J+2—O(hj)+0(hj):

1 [E;n (hx’yj+hy’ek)_5rn (_hx’yj +hy :ek) 2?}" (hx Y 76k)_5rn (_hx’yj76k)

hy 2h, 2h,
I E:! (hx :yj _hy>ek)_z.r” (_hx :yj _hy aek) +O(hf +h )
2h, !
Based on equality (57), the relationship can be written as:
& (3, £h,0,)-T (<hoy, +h,0,) I (O,yj;thy,ek) (). (58)

2h, 6 Ox
Using equalities (58), we will transform relationship (57):

3 n 3 n 3 n 3 n

oc (o,yjz.,ek): 12 G (O,yj:—hy,ek) ,0¢ (o,{j,ek) o (O,yj;hy,ek) 01
oxdy n 6l ox ox ox ’
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3¢’ (0,y,.6;)

ox’

ox’

63cf(0,yj,6,()zﬁ (0.3, +1,.0,)-26(0.y,.6,)+¢(0.y,~4,.6,) +O(I2 +h) (59)
oxoy’ 6 h; ror

Let 9(0,y,£h,.6,) ,9(0,,.6,)= . Then the last equality can be written as:

From equality (59), it follows that:

0 (0,y,,6,) n2(°¢(0.y,.6
G(xayjz k):?( (ayZ/ ot )J+O(h‘2+hy)'

The last equality can be transformed into the form:

836‘: (O,yj ’ek ) :h‘? aZ(P(Osyj ’ek)

+O(h,).

3*9(0,y,.6,) °c(0,y,.6,)
2 - 3

oy oy*ox

Considering relation (60) and the boundedness of the derivative with respect to O(h ) the

3 n
oc (O’y_f 2 ) is equal to zero.

6x6y2 3 n 2 n 2 n
By applying similar reasoning for the derivatives ¢ (O’y’z' ’e") , oq (O,y i ) , oc (O’yf ’9")
0x00 Ox0y 0x00

that when the inequalities from (40) are satisfied, these derivatives are equal to zero up to O(h).

expression

it can be easily verified

2 n
Let us consider the derivative M . We have:
ox

o'c (o,yj,ek):a" (hx,y,.,ek)—za_" (o,yj,ek)+a" (_hr’yj’ek) , O(hz) (1)
ox’ i TN

In the last equality, the value of the function ¢ at the fictitious node (—hx Y ,Gk) will be replaced using expression (50).
We obtain

¢ (0,y,,0,) 1(_, . ., o (0,,,0
%:F[Cr (hx,yj,ek)—Zc, (O,yj,ek)+[cr (hx,yj,ek) ; (5x3j k) : O(hj)Jj+

x

3 n
) 2,05 0.,00) -0 o

or

A ox’
¢ (0,,,6,) 2., . hoc(0,y,,0
C(Tyfk);ﬁ(c, (h,3,.0,)-2"(0, yj,ek))—i%. (62)
2 n 2 n
The terms u" (0, yj,Gk)a i (g’fj ’ek) and Ot (g’yj ’9")8 s (g’i}" ’ek) from equality (51), which include the factor
X x x
M , are approximated by the expressions using relation (62):
ox
0°c'(0,.,6,) 1 2. _
u”(O,yj,Gk)%;E(u” (O.th,yj,Gk)+u” (—O.Shr,yj,ﬁk))(h—z(c,” (hx,yj,ek)—c," (O,yj,ek))—
' (63)
1 2(0.3,,0,))
3 ox’ ’
ow, (0,.,0,)8%"(0,y.,0,) 1 2.,
B, (axyj k) ‘ (axijj k)gh_(“h,r(O‘thayj:ek)_“h,r(_O'th’yjaek))(h_z(cr (hx’yj’ek)_
' ’ (64)
. ho'c'(0,y,,0
—C, (O’yj ’ek))_?x (6x3j k)J
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2 n
When approximating the derivative W , We obtain:
Y
azc:(o’i}f’ek) r( ’y/+h 9) ( ’2)}/’9) Er”(O Vi~ h 9) O(hz) (65)
oy hy
2 n n
Approximating the term o, (0.7,.0,)0°¢ (O’fj ) from equality (51), which includes the factor M,
. . ) Ox oy oy’
using relation (65), we get:
o, (0,y,,6,)8°c"(0,y,,0 1 -
h, (axyj A) ¢ (ayi’/ k);h h2\uhr(0 5h, ,yj,Gk)—uv)r(—O.ShY,yj,Gk))(cr (O,yj+h},,9k)— )

~2¢/(0.3,,6,)+¢ (0., ~h,.6,))

The approximation of the form (66) is carried out with an accuracy of O(h ). Indeed, it is not difficult to verify:

2 n
Ern(o yj +h e ) 251( ’yj’ek)_'_a"(()’yj _hyaek):%hj*—O(hj’)’ (67)
t,, (0.5h,,7,,0,) -1, (0.5, y,,ek)zwhx+o(hj). (68)

X

Taking into account equalities (67) and (68) for relation (66), we obtain:

oW, (OJ’] ’ek)ach (O’yj ’ek): 1 (auh,r (O’yj ’ek)h +O(h3)J{82an (Osyj’ek)hz J"O(h})J:
x x y Y

ox o’ hi\ ox )
(69)
0w, (0.5,,6,)0°27(0.,.6,) o)
ox oy’ SO
When approximating the derivative w, we obtain:
o (O,yj,ek):a” (O’yj’ek +hy)=25(0,9,.0,)+¢" (O»y/vek ‘he) { O(hez) (70)
00’ B
2 n n
Then for the term L on, (O’y" ’ek)a & (O,y/. ’ek) from equality (51), which includes the factor w,
H(0,y)) ox 06’ 20’
we find: I
1 auvr(o’ypek)azc: (05.}’,"61() 1 (
: = . .0, )—u, (—0. . . 71
0y o YT (o,yj.)\“v"(o 5h,.5,.8,) M, (-0-5h,.y,.6,)) (71)

(E(0.9,.0,+1) =227 (0.9,.0,)+2" (05,0,

1 om,(0.,.6,)0°¢(0.y,.6,)

The error of the approximation of the expression using relation (71) is O(h).

2 2
Indeed, taking into account the equality " (O’y’ ) ox o
o°c'(0,y.,0, )12
Ey"(O,yj,Gk+h9)—25r”(O,yj,ek)+5r"(0,yj,9k—%):2%%+O(h§), (72)
we obtain:
Lo, (00,0)0¢(0,8) 1 (ow,(0.5,8), +O(R) UACEIRR (73)
H(0,y)  ox 00’ g0y )\ ax Y 00’

om,,(0,y,.6,)0°c(0,y,.6,
+0(h;)]= “’(axy ) (aef )rom)
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Next, let us consider the derivative w When approximating it with central differences, we get:
Y
0¢/(0.,.6,) _&'(0.y,+h,.0,)-c (0, yj—hy,ek)w (i) 74
oy 2h, !
Then for the term o (O’yj ’ek)ac: (O’yj ’ek) from equality (51), which includes the factor M, we find:
Ox oy oy
0V (0.3,,0,)2/(0.3,.8,) =y (0.5h,.y,.6,)—v"(~0.5h,.y,.6,))(c" (0., +h,.6,)- (73)
ox dy 2hh, R O A TR
(0,0

Here

o' (O,yi,ek)zv” (O.th,y/. ,Ok)—v" (—O.th,y/. ,Ok) { O(hf) (76)

ox h

X

ov'(0,y,,6,)c! (0,y,.6,)

It is not difficult to verify that the approximation error for expression , carried out using

relation (75), is O(hj) and the equality holds: ox o
203, 0)0¢02,0) 1 [O2:8), o[O3, o) )
Ox oy 2hxhyk Ox oy i’ !
L, (0.,.6,)ac; (0, yj,ek)w ).
ox oy ’
When approximating the derivative % , We obtain:
dc, (o,yj,ek):a"(o,yj,ek+he)—5;’ (O’J’f’ek_he)LO(hg) (78)
o0 2h, ' '
m n 2 n
Then for the terms — o' (0.,,0,)2c!(0.,.6,) and — L 0, (09,0,)0¢(0,6,) from equality (51),
H(0,y,)  ox 00 H*(0,y,)  ox00 00
which include the factor % , we find:
1 awrm (Oﬂyj aek)ac: (O’yj ’ek)~ 1 (i _am(_ .
H(O,yj) Ox 00 :2@}191‘1(0,)//)\% (O.Sh“yj’ek) " ( G )) (79)
(Ern (anj ’ek +he)_Ern (O’yj ,ek _he));
1 ', (0.,.6,)0¢(0,y,.6,) 1 .
H(0,y,)  oxd0 20 :2hxhezH2(0,yj)L(M oo (0-5h02,,0,+0.50 )=
(80)
-, (-0.5h,.y,.0,+0.5h))~(u,,(0.5%,.y,.6,~0.5h }-u,,(0.5h,.y,;.6,—0.5h,)) |
(€(0.,.6,+h,)~"(0.9,.8,~y))
Here, the equalities used in writing relations (79) and (80) are:
Gwr"’(O,yj,ek):wr'" (O.th,yj,ek)—wr'" (—O.th,yj,ek) I O(hxz) (81)

ox h

x
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O'w,, (03,0, _1(w,,(0-5k,.,.0,+0.5k)-p,, (-0.5h.y,.6,+0.5h,)
0x00 hy h

x

(82)

h

X

l’lv," (Osh)» ’yj’ek _O'She)_”'v,r (_OSh ’yf’e 0. She)J 0(h9)+0(h2)

GF

Taking into account the inequality &, <—<k,, from (39), we can assert that the approximation of the form (80) is
carried out with an error of O(# ).

=

When approximating ¢’ (0, yj,Gk) , we replace it with its grid analog ¢ (O, v j,ek).

18%4°(0,5,.6,) , 18v'(0.,,6,)

1 &w'(0,,.6,)
Then for the terms — 0,y,,6,), ’ j
ox’ c,( Vi k) 2 oxoy

2H(0,y,)  ox00

c’(0,y,,6,) and (0,5,,6,),

which include the factor ¢ (0, y j,ek) , we find:

1

162u"(0,y,,9k)c,1(0 ) 1
r )

SR )(u"(O.th,yj,ﬁk)—Zu"(O,yj,ek) u'(-0.5h,,y,., ))

0.542H(0,y,

c' (07yj ’ek);

(83)

l@zv" (O,yj,Gk)
2 Ox0Oy

¢/ (0.3,0,)23 W [(v(0.5h,.y,+0.5h,.6, )=V (~0.5h,.y,+0.5h,.6, ))- ”

~(v"(0.5h,.y,-0.5h,,0,)—v"(~0.5h,,y,—0.5h,.6,)) ¢/ (0.7,.6; )

1 azwrm(o’yj’ek) n
20(0,y)  x0 (0,9

It

1 ~
W(O’yj)[(wy (Oth,y,ek +05h9) (85)

~(w"(<0.5h,.y,.0,+0.5h,))(w!" (0.5h,.,.0,—0.5h }—w/"(<0.5h,.,.0,~0.5h,)) [ (0.5,.6, ).

It is evident that expression (83) is obtained with an accuracy of O(4?).
In writing relations (84) and (85), the equalities used are:

aV'(0,y,,8,)  1(v'(0.5h,,y,+0.5h,,8,)=V"(=0.5h,,y,+0.5h,.8,)
oxdoy h,
(86)
v(0.5h,.y,-0.5h,.0,) " (<0.5h,.y,~0.5h,.6,)) 10(h2)+0<h2)

h ) h

x

" (0,y,,6,) 1(w"(0.5h,,y,,8,+0.5k)—w/"(<0.5h,,y,.0,+0.5h)
oxd0  h h,

(87)

p +h—0(h§)+0(hj).

x X

w"(0.5h,,y,=0.5h,,60,)—w"(-0.5h,.y,~0.5h, ,ek)J !

Considering equalities (86) and (87), we obtain that the error of the approximations (84) and (85) is O(%)).

Thus, we have obtained the approximations for all terms located in the parentheses on the right side of equality (51).
As aresult of substituting into equality (51) the approximations carried out by expressions (63), (64), (66), (71), (75), (79),
(80), (83)—(85) with an error of O(h ) ((or higher), we obtain:

7% (03,0,

=9, +0(h) 9

where

9,=9,,(9,2(1,.,.6,)+9,,¢(0,y,+4,,6,)+9,,¢(0,y,~,.0,)+9,,2(0,y,.0, +/1,)+9,,(0,y,.0, ~h))+

x

+9,,¢(0,y,.6,)).
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o = S(uh,r(O.th,yj,Gk)+uh,r (—O.Slzx,y,.,ﬁk))
© 4p, (0.5h,,y,.6,)+2u,,(<0.5h,.y,.6,)~(u" (0.5h,.y,.6, )+u" (<0.5h,.y .6, ))A,

>

1 2
9, =§(u" (0.5h,.y,.0,)+u"(<0.5h,,y,.6, ))—E(um (0.5,.y,.8,)-m,,(~0.5,.y,.,));

1 1
9]2 =2h i (\}n (05]’!)(7)’, aek)—vn (_Oshxsy/ ’ek))_ﬁ(“h,r (OShV ’yj ’ek)_uv,r (—OShV ’yj’ek )),
Xy oty
1 1
Yo=5 (v"(0.5hxayj,Gk)—v"(_O.th,yj,ek))—W(ph,r(O.th,yj,ek)—},tv’y(—O.th, ,.0,));
Xy S
1 1
=0 (v'(0.5h,.y,.6,)-" (_o.shr,y,,ek))—ﬁ(uh, (0.5h,.,y,.6,)—,,(-0.5%,.y,.6,));
Xy N,
1 m R _ 1 _
Su=g oy W (o,y_,)(w’ (0.5h,.y,.6,)-w"(-0.5h,,,.0,)) ) (o,yj)(““" (0.5h,.y,.6,)

1
-u,,(~0.5h,.,.6,)) o >(uv,, (0.5h,.y,.6,+0.5h,)—n,,(~0.5h,.y,.6,+0.5h,)—
>

2 IH
-u,,(0.5%,,,,6,-0.5h,)+p,,(~0.5k,,y,,6,—0.5h,));
1

1
9 = ﬁ(wrm (O.th,y].,ek)—w,f" (_O'thsyj’ek))

15 _thhe[—] O,J/j , —m(uv,r(O.ShﬂyﬂOk)_

1
-u,,(~0.5%,.,.6,)) ( )(uvgr(O.ShX,yj,Gk+0.5h9)—uw(—O.th,yj,ek+0.5he)—

+2hxh62H2 0.y,
-u,,(0.5k,,y,,6,-0.5h,)+p,,(~0.5h,,y,.6,—0.5h,));

1
816:—?(u"(O.th,yj,ek)-i—u”(—O.ShX, ,.6,))

x

+W(I/In (0.5hx,yj,9k)—

n n 1
20 (0.9,.0, ' (<0.5h,.7,.0, )+ =

xy

(v"(0.5h,,,+0.5h,,6,)—V"(~0.5h,,y,+0.5h,.0,)-

—"(0.5h,,y,-0.5h,,0,)+v" (<0.5h,,y,~0.5h,,0,))+ (w"(0.5h,.y,.0,+0.5h,)—

2h iy H(0,y,)

058,005 (05,7, 0,05k (05,30, 0.5k )

11 1
+2(h'3 . o0 R (ijj)J(ph,, (0.5h,,y,0)-p,, (~0.5h,, yj,e,())-

Using equality (88) for Dc” ,» We can construct the expression:

x, =

1 _ -
7 ly=0 ;h_xz(uh,r (Oth 9yj 99k)+“’h,r (_O'th ’yj 5ek ))(C;n (hx ’yj 7ek)_crn (anj aek ))_ (89)

h
My, (_O'Sh,v Y :ek )?81 .

Ultimately, the difference scheme (44), taking into account relations (47) and (89), will take the form:

—n _—n-1 1
= :r 4 (1 (0.5h3,.0, )" (0555, .0 ))e; (h.,.0,)+
1 n —n n —n 1
+2hy(v (0,y,+0.54,,6,)c" (0., +h,.8,)—v"(0,y,-0.54,.6, )" (0, yj—h),,ek))+w.

1
(w"(0,y,.8,+0.5k,)c"(0,,.0, +h )—w" (0,y,,0,~0.5k,)c" (0, yj,ek—he):ﬁ(ph, (0.5h,.,,.0,)+
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hoo 1
+a,, (<0.5,,3,.0,))(E” (,.,.0,)-¢"(0.5,.6,))—m,, (<05, y,.,ek)?xs;1 +?(uh,,(0, ,+0.5h,.0,)- (90)

;
(S (034,,0,)-27(0,3,0,)) ., (0,7, =0.5h,.0,)(€ (0.9.0)= (0.7, =, 0, ))}+

1
+—
Hz(oﬂyj)hez

(€(0.5,.6,)-2 (0,,.6,—hy)))+ F". (0.3,,6,)e®", r=1,2.3, n=L,....N,.

(1, (0,3,,8,+0.5R)(€" (0,0, +1 )2 (0,6, )1, (0,56, ~0.5h, )

The error of the approximation of scheme (90) at the boundary nodes of the grid ®" in case of x, = 0 is equal to
O(t+k) -

For the case when the boundary condition (11) is satisfied and x, = L, as well as for the cases of boundary conditions
(12) and (13), the methods for constructing the difference scheme for the problem (8)—(13) are analogous to those described
above, starting from relation (43). Due to the complexity of their description within this article, they are not provided.

Discussion and Conclusion. A second-order difference scheme for approximation on a uniform grid is proposed,
which approximates the initial-boundary value problem for the three-dimensional diffusion-convection equation of
multifractional suspensions at all nodes of the uniform grid, including boundary nodes. Special attention is given to the
description of the approximation methods at the boundary nodes of the grid using an extended grid. The proposed scheme
has an approximation error in the norm of the grid space C: second order with respect to the spatial grid steps and first
order accuracy with respect to the time step. Further research is focused on proving the stability and convergence of the
constructed difference scheme based on the grid maximum principle under mild constraints on the grid Peclet number, the
satisfaction of the Courant condition, the aforementioned smoothness conditions, and other restrictions that are naturally
satisfied for discrete models of hydro-physical coastal systems.
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Aemop npoyuman u 0000puI OKOHYAMENbHBLI 6APUAHIN PYKORUCH.
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