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Increasing the Accuracy of Solving Boundary Value Problems
with Linear Ordinary Differential Equations
Using the Bubnov-Galerkin Method
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Abstract

Introduction. This study investigates the possibility of increasing the accuracy of numerically solving boundary value
problems using the modified Bubnov-Galerkin method with a linear ordinary differential equation, where the coefficients
and the right-hand side are continuous functions. The order of the differential equation » must be less than the number of
coordinate functions m.

Materials and Methods. A modified Petrov-Galerkin method was used to numerically solve the boundary value problem.
It employs a system of linearly independent power-type basis functions on the interval [—1,1], each normalized by the unit
Chebyshev norm. The system of linear algebraic equations includes only the linearly independent boundary conditions
of the original problem.

Results. For the first time, an integral quadrature formula with a 22nd order error was developed for a uniform grid.
This formula is used to calculate the matrix elements and coefficients in the right-hand side of the system of linear
algebraic equations, taking into account the scalar product of two functions based on the new quadrature formula. The
study proves a theorem on the existence and uniqueness of a solution for boundary value problems with general non-
separated conditions, provided that » linearly independent particular solutions of a homogeneous differential equation
of order n are known.

Discussion and Conclusion. The hydrodynamic problem in a viscous strong boundary layer with a third-order equation
was precisely solved. The analytical solution was compared with its numerical counterpart, and the uniform norm of their
difference did not exceed 5-10°. The formulas derived using the generalized Bubnov-Galerkin method may be useful for
solving boundary value problems with linear ordinary differential equations of the third and higher orders.

Keywords: hydrodynamics, numerical methods, ordinary differential equations, boundary value problems, Galerkin
method
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AHHOTALMA

Beeoenue. Viccnenyercss BO3MOXHOCTh — YBEIMYEHHMS  TOYHOCTH  UYHCIEHHOTO  pelIeHWs KpaeBOM  3amauu
MOIU(UIMPOBAHHBIM MeToIoM byOHOBa-I"anepkuHa ¢ TMHEHHBIM OOBIKHOBEHHBIM aU((HepeHIINATFHBIM YpaBHCHHEM,
B KOTOpPOM KO3((PHIMEHTHI U TpaBasi 9acTh SBIAIOTCS HempepbBHBIMH (yHKImaMu. [lopsaok nuddepeHmmaatsHOro
ypaBHEHHS 7 JOJDKEH OBITh MEHBIIIE YMCIIa KOOPJHMHATHBIX (QyHKIUH m.

Mamepuanst u memoowt. [ YUCICHHOTO pEIICHUS KPacBOM 3aJayll HCIOIB30BaH MOAUMDUIIMPOBAHHBIA METO]
[lerpoBa-I'anepkuHa ¢ cucTeMol JTHHEHHO HE3aBHCHUMBIX 0a3HMCHBIX (DYHKLIHMIH CTETEHHOTO BHAa Ha oTpeske [—1,1] ¢
eIMHUYHOM HOopMO# UeOblmeBa /il Kakaoi (GyHKIMM cucTeMbl. B cucTeMy JHMHEHHBIX aareOpandeckux ypaBHEHUH
BKITFOYCHBI TOJFKO JIMHEHHO HE3aBUCHMBIC KPAeBhIC YCIIOBHSI HCXOTHOW 3aauu.

Pesynomamul uccinedosanusn. BriepBble TIOCTpPOCHA WHTETpajbHAs KBajapaTrypHas (opMyiia Ha PaBHOMEPHOH CETKe
C IBaAUaTh BTOPHIM MOPSJIKOM IOTPEHIHOCTH JUISi BBIYUCICHHS DJIEMEHTOB MAaTpHIBI U KOI((QHUIUESHTOB MpaBOi
YacTH CHCTEMBl JIMHEHHBIX alreOpanvdecKhX YpaBHEHHHA C YYETOM CKaJSIpHOTO MPOHM3BEACHUS IBYX (YHKIHN IO
HOBOH KBanpaTypHOi (opmyre. JlokazaHa Teopema CYIIECTBOBAHMSA W €IUHCTBEHHOCTH PEIICHHS KpaceBOH 3agadu C
Hepa3eNeHHBIMA KPaeBbIMHU YCIOBUSIMH OOIIEro BH[A, €CIIM M3BECTHHI 71 IMHEHHO HE3aBUCHMBIX YAaCTHBIX PEICHUN
OTHOPOIHOTO MU PEPEHINATHFHOTO YPaBHEHU TTOPSIKA 7.

Obcyscoenue u 3akatouenue. TOUHO pelreHa THAPOTUHAMUYECKAS 33a7ada B BA3KOM CHIJIBHOM IOTPAaHUYHOM CJIOE C
YpaBHEHHEM TPETHEro Mopsiaka. AHAIMTHYECKOE pPElIeHHEe CPAaBHEHO C YMCIICHHBIM pElIeHHEM, paBHOMEpHash HopMa
pasHocTu peuiennii He npebimaet 5-107"%. TlonyuenHble 00001IeHHBIM MeToJ0M ByOHOBa-T anepkuta hopMyIbl MOTYT
OBITH MOJIC3HBIMHU [UISA PEIICHUS KPaeBBIX 3a/1a4 C JTHHEHHBIMH OOBIKHOBEHHBIMHU TU(GepeHINaTbHEIMA YPAaBHEHUIMHI
TPEThero u 0oJiee BEICOKHUX MOPSIKOB.

KuaroueBble cjioBa: THAPOJMHAMUKA, YUCICHHBIE METOJIBI, OOBIKHOBEHHBIC AU (epeHInabHbIe YpaBHEHUS, KpacBbIe
3a7a4u, MeTo] ['anepkuna

Jas umtupoBanus. Bonocosa H.K., Bonocos K.A., Bonocosa A.K., Kapnos M.U., ITactyxos J[.®., [Tactyxos 10.D.
YBennueHre TOYHOCTH PEIICHHS KPaeBhIX 3a1ad ¢ JIMHEHHBIMI OOBIKHOBCHHBIMU TH(PEepEHINATEHBIMA YPAaBHCHUSIMHA
MerogoM bybOnoBa-I'anepxkuna. Computational Mathematics and Information Technologies. 2024;8(4):7-18.
https://doi.org/10.23947/2587-8999-2024-8-4-7-18

Introduction. The most well-known methods for solving boundary value problems for ordinary differential equations
on an interval are the shooting method [1] and the tridiagonal matrix algorithm [1]. These methods determine the unknown
function on a given grid (grid function) using difference equations. In this study, a boundary value problem in the boundary
layer of a viscous incompressible fluid, described by a third-order ordinary differential equation [2—-3], is considered, and its
numerical solution is obtained in a functional form. The hydrodynamic problem in the viscous boundary layer is solved
using the modified Bubnov-Galerkin method [4] with a system of linearly independent basis functions. These basis
functions have a simple power form, are defined on the interval [—1,1], and are normalized using the unit Chebyshev
norm. The unknown solution function is expanded into a series of linearly independent basis functions. In this study, the
existence and uniqueness theorem for a boundary value problem on the interval [a, b] with a linear ordinary differential
equation of arbitrary order n is generalized to the case of non-separated boundary conditions.

A new integral quadrature formula for a uniform grid, with the number of intervals being a multiple of twenty, is
developed for the first time in this work. The quadrature formula achieves a 22nd order error. Compared to the previous
work [4], the new quadrature formula, applied to calculate the matrix elements and coefficients in the right-hand side of
the system of linear algebraic equations using the scalar product of two functions, reduces the Chebyshev norm of the
problem’s error by an order of magnitude. For a third-order equation, the system of linear algebraic equations includes
n—1 linearly independent boundary conditions and m—n+1 orthogonality conditions for the residual of the differential
equation to the basis functions [4-5] (n is the order of the ODE, and m is the number of basis functions). An exact
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solution to the problem [1] with selected parameters was obtained, allowing the computation of the Chebyshev norm of
the difference between the exact and numerical solutions. Methods for high-accuracy computations in hydrodynamics are
presented in works [6-8].

Materials and Methods

Problem Formulation. Let the unknown function u(x) be continuously differentiable n-times on the interval
u(x) e C"[a,b], be the solution to a boundary value problem governed by an n-th order linear ordinary differential
equation with variable coefficients g,(x) € Cla,b],i=0,n:

Llu(x)] = f(x), x € (a,b)

Llu(x)] = {ﬁgi<x>;"—);,)u<x), )
S (ot @)+ BLu®B)) = v, u =1 @

i=0

In the boundary value problem (1)—(2) the functions g,(x)(i = (),_n), f(x) e Cla,b] are given and continuous on the
interval [a, b]. The boundary conditions (2) are specified as linear forms of the function and its derivatives up to the n—1-
th order at the points x = a, x = b. These conditions are of a general type. For the problem (1) to be well-posed, the total
number of boundary conditions must equal n. The coefficient matrices (XL , BL ,i=0n-Lu= I,_n , and scalars v, , p= I,_n
defining the boundary conditions are given. The relationship between these parameters o, ,, determines the existence
and uniqueness of the solution to the boundary value problem (1)—(2).

Theorem 1. Let n linearly independent particular solutions of the homogeneous equation (1) be known
U;(x),j = 1,n. Then the boundary value problem (1)—(2) has a unique solution if and only if the following condition is

J— JR— n-l J—
satisfied: detA, #0,u=1n,/j=1n, where 4, = Z(GLU?)(G)+BLU;~I)(Z7)):H,J‘ =1,n.
i=0

Proof. The general solution of the linear inhomogeneous equation (1) is given by:

u(x)= >0, (0)D, +u(x), j =Lon,

where D, are arbitrary constants of integration, u(x) is a particular solution of the inhomogeneous equation (1),

and L[u(x)]= f(x); Uj(x) are linearly independent particular solutions of the corresponding homogeneous equation
LIU,;(x)]=0,j=1,n.
Substituting the solution u(x) into the boundary conditions (2) gives:

"i(a;u“’ (@) +Bu (b)) =§{a; [2 U (a)D, + u(i)(a)J +BL, (2 U b)D, + u“')(b)ﬂ =y, &

(€)

n n—1 n—1 —_— _— -
Z[Z%Uﬁ-’)<a>+BLU5-”<b>jD/- =y, — 2 o (@) + B (b, =T,
j=1\i=0 i=0

An inhomogeneous system of » linear algebraic equations (3) with respect to n unknowns D, j = 1,n has a unique
solution if and only if the matrix 4 is non-singular, that is, det4, #O0,u=1,n,j=1Ln,

n-1 R
Ay =2 (U@ +BLUCB))owj =1, )

Theorem 1 is proven. It should be noted that Theorem 1 generalizes Statement 1 from the work [4, p. 25] for the
case of separated boundary conditions. In the works on hydrodynamics [2-3], T.Ya. Ershova presents a two-dimensional
hydrodynamic problem for a viscous layer, taking into account the continuity equation in incompressible fluid and the
fluid dynamics equation, which is reduced, using self-similar variables, to a third-order differential equation in the strong
boundary layer:

Lu=eu (x)+ru (x)= f(x), x(0,1),e €(0,1), r = const > 0, (5)
1(0)=0, u(1)=0,u (1)=0.
We will solve problem (5) analytically for a particular case of the right-hand side of the equation

f()=leu (x)+ru' (x)=1, z(x) =u'(x), ez (x)+rz(x)=1.
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Let us write the general solution of the homogeneous equation
ez (X)+rz(x) =0 & 2/ (x) = —iz(x) < z(x) =C, exp[—zxj.
€ €

By integrating the last solution twice, we obtain
2

u'(x)= jz(x)dx =-C, Eexp(—zxj—i- C,u(x)= ju'(x)dx =C, %exp[—zxj+ Cx+C,.
r € r €

A particular solution of the equation eu’ (x)+7u (x) =1 is sought in the form:

W) = O () =0, 2C =1 &5 C = u(w) = 2,
r 2r
2 2
u,,(x)=u,, (x)+u(x)=C, g—zexp(—ixJ+ Cx+C, +)2€—,u'o”(x) =-C, Eexp(—ixj—i- C +2 (6)
r € r r €

on
7

Function (6) is the general solution of equation (5) with the right-hand side f'(x) =1. We apply the boundary conditions
of problem (5):

2 2
w0)=0C, 40, =00, =-C, %
r r

2

u()=0 < COS—Zexp(—z)+C] fC 0 (=0 —cofe>q)(—1j+c71 oo
r € 2r r € r

Then s
C = cofexp(_fj—l, COS—ZeXp[—ij+C1 +C, +L:0<:>
r g) r r € 2r
2 2
6 Zof L) Zon{ L)L e L v
r € r € r r- 2r 2 r 2
2[(8 +sr)exp(—)—8 j
€
2 2
CZ =—C € = & )Cl = £ _l

0 2 .
g Zr[s2 —(82 +sr)exp(—rD 2[(82 +sr)exp(—rj—82J d
€ €
As a result, we obtain:
& exp[—rxj aexp(—rj s s
€ € 1 € X
+ —— |x+

2r((82+8r)exp(—2j—gz) z((gugr)exp(_;j_gzj r 2r[82_(82+8r)exp(_3)+; (7

For testing the program using the Bubnov-Galerkin algorithm [2—4], we choose the parameters » = 1, £ = 1/2, and from
formula (7) we obtain the function (8).

u(x) =

ap(2-2) (€-2)x & ¥

u(x)= + - +—. (®)
23-¢’)  (3-¢’) 2(3-¢") 2
As in the work [4], we choose a system of basis functions ¢,(x),i = O,_m, m > n, that is linearly independent.
m 2x—a-bY L — o —
(6,0}, = {(b_—aj ,xela,bl,i= O,m}, o, ). = ,2}2"2]|¢f ()| =1Vi=0,m. 9)
dIx—q—
A linear transformation z = xb—ab,z € [-1,1] bijectively maps the interval [a, b] to the interval [-1,1]. The basis

functions ¢ (x) with even indices are even on the interval [-1,1], while those with odd indices are odd. Let the midpoint of
the interval [a, b] be denoted by ¢ = (a + b)/2. We expand the solution of the general problem (1) in terms of the system
of basis functions (9):

2(x—c
b—a

u(x) = u(c)+f:¢,(x)z)/. = u(c)+f:( ]j D,. (10)

From formula (10), the identity follows u(c) = u(c), and formula (10) itself is the expansion of the unknown function
in a power series centered at x = ¢ = (a + b)/2.
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Note. The Bubnov-Galerkin method is orthogonal. However, it does not require the system of basis functions to be
orthogonal polynomials, such as Legendre polynomials on the interval [-1,1] with a weight function p(z) =1, ze[-1,1].
The system of functions (9) must be linearly independent. It should be noted that the orthogonality of the system of functions (9) in
the residual of the differential equation in problem (1) is expressed with the weight function p(z) =1, ze[-1,1]. Moreover,
finding derivatives of any order from functions (9) is significantly easier than from Legendre polynomials.

Substitute (10) into equation (1) and write the residual of equation (1):

R(u((x)) = L[u(x)] - f (X)=L(u(0)+i¢_,-(X)D_ J J(x)=L(u(c)) ZLd) ()D; = f(x).

According to the Bubnov-Galerkin method, we write the orthogonality conditions of the residual with respect to the
maximum number of coordinate functions { l,z,2°,..,z2"" }, for solving problem (5) with the third-order equation, which
contributes the most to the residual of equation (5) (for m—n+1 functions in the general problem (1)):

(R(u()),6,(x)) =0,i=0,m-3 = i<L¢,~(x>,¢,-<x)>Dj = (/@=L (u(©)).4,(),i =0,m =3, (11)

In formula (11), the symbol (g, g) denotes the scalar product of functions:

(0.8)= Iq(X)g(X)dx, L(u(c)) = go(x)u(c) = g, (x)u,. (12)

To ensure the closure of the system (11), two additional equations are required. As shown in work [9], the boundary
value problem requires that the solution belongs to the class of admissible functions, meaning that all linearly independent
boundary conditions should be used. At the endpoints of the interval x = a, x = b, using formula (10), we obtain:

L . m oy J m
u(a)=u, =u(c)+ Z(Mj C=u, + Z(—l)' D u(b)=u, =u(c)+ Z[Mj D =u, +ZD..
b-a ! J=1 ! j=1 b-a ! =i
By summing the last two equations and expressing u(c) = u , we get

D m=2]
u =%\ p o _p L (13)
2 D .m=2[+1.

m-12

Similarly, expressing = , we obtain the formula:

D,  ,m=2l

D .m=2l+1. (14)

m?

u, —

~=D, +D3+...+{

We compute the first derivative u(x) from formula (10) and set it to zero at the point x = b according to the boundary
condition of problem (5):

m m ; oy Jj-1
(@) =30,D, =32 ((2)‘ = bj D, =0 D, +2D, +3D, +...+mD, =0. (15)
= =GRl b-a ).,
Substitute the value of u(c) from formula (13) into the right-hand side of equation (11), then move all terms containing
D to the left-hand side of equation (11). Taking into account formulas (14) and (15), we obtain a system of linear algebraic
equatlons (16) for the unknown coefficients D

Zalij f l—Om 1 (16)

where the elements of the matrix a, ,,i =0,m—1, j = 1,m and the coefficients of the right-hand side f. of system (16) are
given as:

(Lo ,,¢,>, if j =1(mod2),i =0,m—3

(L(9,-1),4,), ifj =0(mod2),i=0,m3
a,, =11, ifi=m-2, j=1(mod2) ,

0, ifi=m—2,,j=0(mod2)

j, ifi=m-1

11
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<ﬂ@—L(u+%j¢(w>iﬂ=Qm—1LF%;%j=(%;%Jgﬂﬂ

u,—u, ...
L e ifi=m-2 ,

7-

0,ifi=m-1
The action of a third-order linear differential operator in problem (5) on a basis function with index j can be represented
by the system of formulas (17):

8(x), ifj =0,
2g1(x) 2x—a-b) ...
(b— ) 0( )[ —a j lf]_L
~b
1, ={8g 00—+ g 020 g o )(Mj ifj=2,
(b —a) (b—a) a

o ) (Zx—a—b)/ ’ ( a—b)/f2
81 -1 - 22,0 ) g - 2t
-a) -a)
(2x—a—b)j7l

g () (2x—a-b)

(b-a) (b-a)’

The numerical solution of problem (5) is obtained by substituting (13) into formula (10), resulting in the expression (18):

B )

In solution (18), the unknown vector D is determined from the system of linear algebraic equations (16) D = A’I?, .
The estimate of the uniform norm of the solution u(x) yields the following result:

| ) | u, ot
ZZ|D | <=

+2jg,(x) ifj > 3.

-y vamo), <L Ll a7 =

+ 2mmax Dj =
Jj=l,m

o ===

where the norm of the inverse matrix 4 is determined by the formula "Arl "C = max i|d; i |

i=l,m =

In work [4], to compute all matrix elements a, and the coefficients of the right-hand side f of the system of linear algebraic
equations (16) through the scalar product of two functions (12), a composite quadrature integral formula (19) with a uniform
step and 12th-order error O(/'?) was applied. This formula was used by the program for the numerical solution of test example 3:

b-
(7.32) Iyl(xm(x)dx Sthl (3)C, +O(").m =10p.h=""5 p N, (19)

1

where the weight coefﬁments of the integral quadrature formula (19) are determined by the remainder of the division of
the node index i on the uniform grid by 10.

16067
299376’
16067
149688’(
26575 ,(i=1mod10)v (i =9mod10),
74844
-16175
‘ 99792
%l,(i =3mod10)v (i = 7mod10),
6237

—4825

5544
17807
12474

i=0vi=n,

zzOmole)/\(0<i<n1),

,(i=2mod10) v (i =8mod10), (20)

,(iE4m0d10)v(i = 6mod10),

,i =5mod10.
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Applying the scalar product formula for two functions using formula (19) with weight coefficients (20) and the Petrov-
Galerkin algorithm (16)—(18) with m = 16 basis functions and », = 20 integration intervals, the program computes the
uniform norm of the residual in problem (5). The exact solution is calculated using formula (8) on a uniform grid:

b-a

n

exact

u™ . x,=a+h-i,i=0,n,h=

num exact
—u

u = max

C i=0,n

u™" —ut ~ 2.016997679987753E-012.

In this study, a novel quadrature integral formula with a uniform step and a 22nd-order error O(4?) is proposed for the
first time. This formula enhances the accuracy of the scalar product computation and the evaluation of matrix elements
and the coefficients of the right-hand side of the system of linear algebraic equations (16), thereby reducing the norm of
the residual error in problem (5).

For the quadrature integral formula on a uniform grid [a, b] [1, p. 87], with an error of O(h*?) and considering
symmetry, the quadrature formula is written relative to the midpoint of the interval [a, b]:

c=(a+b)/2<z=0, x:@+@z,z e[-1L1],x e[a,b],dx=(b;—a)dz

we obtain:

i=10

If(x)dxz@jf(z)dz,ff(z)dz=Cof(O)+ZCi(f(—z[.)+f(z,.)),z[ =i/10. 2n

By substituting even-degree power functions into formula (21), we simplify the computations as follows (odd-degree
functions result in the trivial identity 0=0) f(z) = {0, 22, 2%, 25, 28, 20, z!2, 214, z16, '8 220} we obtain a system of 11 linear
inhomogeneous algebraic equations for the variables C,,i =0,10:

10
C +25C.k=0
0 Z : (22)

10 -
2> 2C,k =1,2,3,4,5,6,7,8,9,10;z, =i/10,i = 1,10.
i=1

Results. The system of equations (22) was solved symbolically without rounding using a symbolic computation
environment. The coefficients C, are provided in formula (24), and Table 1 illustrates the comparison between
computed and exact values. The table presents the numerical values of /", (the right-hand side of formula (22))

_1+ (=D

and the exact values of the integral 7°“¢, (the left-hand side of formula (22)) for power functions

f2)={1,z, 2% ... 2%, 2%} on the interval [-1, 1] taking into account the coefficients.

Table 1
Comparison of Numerical and Exact Values
k e, = ey D’ Jrm
k+1 k
0 2.00000000000000 2.00000000000003
1 0.000000000000000E+000 1.379105163401562E-015
2 0.666666666666667 0.666666666666679
3 0.000000000000000E+000 2.586472702681419E-015
4 0.400000000000000 0.399999999999999
5 0.000000000000000E+000 —3.694961003830599E-016
6 0.285714285714286 0.285714285714285
7 0.000000000000000E+000 —4.388850394221322E-016
8 0.222222222222222 0.222222222222222
9 0.000000000000000E+000 —-1.752070710736575E-016
10 0.181818181818182 0.181818181818181
11 0.000000000000000E+000 —1.613292832658431E-016
12 0.153846153846154 0.153846153846153

13
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End of table 1

k e, = I+ D' Juem

k+1 k
13 0.000000000000000E+000 —-8.500145032286355E-017
14 0.133333333333333 0.133333333333333
15 0.000000000000000E+000 2.602085213965211E-017
16 0.117647058823529 0.117647058823529
17 0.000000000000000E+000 1.092875789865388E-016
18 0.105263157894737 0.105263157894737
19 0.000000000000000E+000 1.578598363138894E-016
20 9.523809523809523E-002 9.523809523809518E-002
21 0.000000000000000E+000 1.717376241217039E-016
22 8.695652173913043E-002 8.695652174444995E-002

The conditions of the system (22) and Table 1 demonstrate that the quadrature formulas (22) and (23) achieve twenty-

second order accuracy.
If

then

b—aznh,nzZOs,seN,(

jf(x)dx =104

b-a

n=20s

leOsh,xl. =a+i-h, l':(),_n,

> Cf(x)+0(h”).x, =a+i-h,i=0,n,
i=0

The scalar product of two functions, as defined by formulas (19) and (20), is expressed as follows:

b "
(3>32) = [ 2102, (0)dx =108 3, (x,) v, (%,)C, + O(h™ ),y = 20s,h =
a i=0

where C, are the weight coefficients in the composite quadrature integral formula (23), which are obtained by solving the

system of linear algebraic equations (22):

14

b-a

,SEN,

1

1145302367137 . .
,ifi=0ori=n,
48426042384720
45302367137 4t (i — 0mod 20) and (0<i<n,),
24213021192360
w, if (i =1mod 20) or (i =19mod20),
1470076286679
~19467909708875 , if (i =2mod 20) or (i =18 mod20),
41162136027012
w, if (i =3mod20) or (i =17mod20),
3430178002251
—13929922392633 i (i = 4mo0d20) or (i =16mod20),
54882848036016
>0652939811064 , if (i=5mod20) or (i =15mod20),
2450127144465
—155790561130375, if (i=6mod20) or (i =14mod20)
3430178002251
286953364893000 i (i = 7mod 20) or (i =13mod 20)
3430178002251
_ 202376261017623 "4p (; — §mod 20) or (i =12mod 20)
3920203431144
1704056522480500 , if (i =9mod20) or (i =11mod20)
10290534006753
—1684005984173647,ifiElOInOdZO.
9355030915230
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We will find the characteristic equation and the particular solutions of the homogeneous equation (5) with the chosen
parameters:

e=—,r :l,sum(x)-i-ru"(x):%um(x)—i-u"(x) =0 A +20° =0 A, =4, =0,A, =-2,

| —

These correspond to three linearly independent solutions:

{U,(0) =1U, (x) = x,U, (x) = exp(-2)}{U; (x) = 0,U; (x) = LU, (x) = ~2exp(-2x)}

{U;(x)=0,U;(x) = 0,U; (x) = 4exp(-2x)}..

Next, we verify the existence and uniqueness of the solution to the boundary value problem (5) with parameters € = —,r =1.

1
2
Finally, we compute the elements of the matrix, as defined in formula (4), for solving the system of equations:
n-1 B — '
A, =2 (U (@) +BU (1)), j =1om, u(0) =0, u()) =0, u' (1) =0 <
i=0
a) =Loy =0;a7 =0 = 0;p; =087 =0,
ay =0;0, =005 = 0;8; =L, =0;B; =0,
ay =00, = 0;05 = 05 = 08, = 1;B; =0,
4, =0UP0)+B U 1)+ UL (0) +BUL 1)+ a2UP (0) +BUP (1) =1-14+0-1+0-0+0-0+0-0+0-0=1,
Ay, = a2U (0)+BUO (D) + o, UN(0)+ LU (1) + 02U (0)+BUP (1) =0-1+1-140-0+0-0+0-0+0-0 =1,
Ay, = o2U(0)+ U 1) +alUL (0)+BLUL (1) + 02U (0)+B2UP (1) =0-1+0-1+0-0+1-0+0-0+0-0 = 0,
A, =) UL (0)+BULY 1)+ iU (0)+BULY () + ot U (0)+BUP (1) =1-0+0-1+0-1+0-1+0-0+0-0 =0,
Ay, = a3US (0)+BIU (1) +a UL (0)+BLUY (1) + 03U (0) +BUP (1) =0-0+1-1+0-1+0-1+0-0+0-0 =1,
Ay, = alUL (0)+BUL (1) + kUL (0)+BLUL (1) + a2UP (0) +BUP (1) =0-0+0-1+0-1+1-1+0-0+0-0 =1,
Ay = U (0)+ B0 ) +0,U3" (0)+BUL" (1) + af UL (0)+BIUY () =11+ 0-¢7 +0-(=2) +
+0-(-2e°)+0-4+0-4e =1,
Ay = o3U;" (0)+BU5" (1) + 0,U5” (0) +BU5Y (1) + 03U (0) + U7 (1) = 01+ 1-e7 +0-(=2) +

2

+0-(-2¢7)+0-4+0-4e 7 =¢?,
(i
Ay, = QUL (0)+BUL (1) + oiUL" (0) +BLU (1) + a3US (0) + BIUT (1) = 0-1+0-€7 +0-(=2) +
+1-(2¢7)+0-4+0-4¢” = -2e.

1 0 1
1 = 1
Since [1 1 €7 |= | ; S|t 1‘ =-3¢” +1#0, according to Theorem 1, the boundary value problem (5)
01 -2 I 7
. 1 . . . . . . 1 .
with parameters € = > r =1 has a unique solution. The exact solution with the right-hand side f(x)=1l,e= E,r =1is

given by function (8). No other solutions exist.

The inverse matrix 4! in the system of linear algebraic equations (SLAE) (16) is computed using the msimsl linear
algebra library to find the coefficient vector D,, j = 1, m. The program, using formulas (16), (17), (18), (23), and (24),
provides the numerical solution to problem (5)

X =a+h-i,i=0,n,h= o =20,a=0,b=1.

. 1 1 .
with parameters &= E,r =1, f(x)=lg,(x)=¢e= E,gz (x)=r=1g,(x)=0,g,(x) =0, as presented in Table 2. The

number of basis functions is m = 18.

15
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Table 2
Numerical #"" and Exact u“ Solutions to Problem (5)

X, um e e
0.000000E+000 0.0000000000E+000 0.00000000000E+000 0.00000000E+000
5.0000000E-002 1.99620012886537E—002 1.99620012886524E—-002 1.231653667E-015

0.1000000000 3.48011017443269E-002 3.48011017443259E-002 1.006139616E-015
0.1500000000 4.52427162923431E-002 4.52427162923431E-002 6.938893903E-018
0.2000000000 5.19432275007362E—002 5.19432275007366E—002 —3.816391647E-016
0.2500000000 5.54965548776091E-002 5.54965548776098 E—002 —6.800116025E-016
0.3000000000 5.64400990171948E—-002 5.64400990171955E-002 —7.563394355E-016
0.3500000000 5.52601200856299E-002 5.52601200856307E—002 —8.118505867E-016
0.4000000000 5.23966044761353E-002 5.23966044761364E—002 —1.033895191E-015
0.4500000000 4.82476683407243E-002 4.82476683407254E-002 —1.075528555E-015
0.5000000000 4.31735420704626E—-002 4.31735420704638E—-002 —1.221245327E-015
0.5500000000 3.75001756023005E-002 3.75001756023019E-002 —1.415534356E-015
0.6000000000 3.15225006355969E-002 3.15225006355983E-002 —1.450228825E-015
0.6500000000 2.55073824076967E—002 2.55073824076980E-002 —1.356553758E-015
0.7000000000 1.96962905709227E-002 1.96962905709242E-002 —1.467576060E-015
0.7500000000 1.43077159020167E—002 1.43077159020178E—002 —1.103284130E-015
0.8000000000 9.53935703127063E—003 9.53935703127128E-003 —6.574601973E-016
0.8500000000 5.57009907686709E—003 5.57009907686645E—003 6.435824095E-016
0.9000000000 2.56180398726754E-003 2.56180398726446E—003 3.080001531E-015
0.9500000000 6.609305099950E-004 6.609305099896E—-004 5.435105490E-015
1.0000000000 0.0000000000E+000 —1.110223024625157E-016 1.110223024E-016

In the first column of Table 1, the values of the nodes x, on the uniform grid are given. In the second column, the
numerical solution ™" is recorded, and in the third column, the exact solution #“ at the nodes is presented. The last
exact

. . . . num
column contains the difference between the numerical and exact solutions %; — u;

Fig. 1. Program Results

Taking into account formulas (23)-(24), the program gives an error norm
"u'""” —u o = maxju"" —u"| ~ 5.435105E-015 with a result several times smaller than when using the scalar
i=0,m

product formulas (19)—(20). Fig. 1 shows that the number of basis functions is optimal when the coefficients decrease in
absolute value as their index increases. The advantage of the scalar product formulas (23)—(24) over formulas (19)—(20)
also lies in the weak dependence of the error norm on the number of basis functions over a wide range of their values.
Discussion and Conclusion. The theorem of existence and uniqueness of the solution to the boundary value problem
with a linear ordinary differential equation of order n has been generalized to the case of non-separated boundary
conditions, provided that » linearly independent particular solutions of the corresponding homogeneous equation are
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known. The boundary value problem with a third-order differential equation in the boundary layer for an incompressible
fluid, with parameters € = 0,5, » = 1 and constant right-hand side f{x) = 1 has been solved analytically. A Bubnov-Galerkin
method with a system of linearly independent basis functions on the interval [-1,1] has been proposed for the numerical
solution of the boundary hydrodynamic problem with a strong boundary layer. The basis functions are bounded by the
Chebyshev unit norm. A new quadrature integral formula with a uniform step has been introduced for calculating the
matrix elements and right-hand side coefficients in the Bubnov-Galerkin method, which results in a second-order error
bound. The Chebyshev vector norm for the difference between the exact solution and the numerical solution on a uniform
grid, using the scalar product formulas (23) and (24), is comparable to 10~ and is several orders of magnitude smaller
than the norm of the residual using the scalar product formulas (19) and (20) in the same hydrodynamic problem.
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Abstract

Introduction. Drilling mud losses are among the most common complications encountered during well drilling. Forecasting
these losses is a priority as it helps minimize drilling fluid wastage and prevent wellbore incidents. Mud loss events are
primarily influenced by the geological properties of the formations being drilled. Understanding the relationship between
mud loss occurrences and the geological characteristics of the formations has both fundamental and practical significance.
Given the complexity of predicting mud loss probabilities using traditional mathematical models, this study aims to develop a
machine-learning-based system to predict the probability of mud losses based on well location and stratigraphic description.
Materials and Methods. Experimental data from 735 wells at the Shkapovskoye oil field, including well location
coordinates, geological layer indices, and mud loss intensities, were prepared for computational analysis. The dataset was
divided into training and testing subsets. The classification problem was addressed using four intensity classes with the
following machine learning models: Decision Tree, Random Forest, and Linear Discriminant Analysis.

Results. Predictions generated by the three models were compared against the experimental data in the test set. The
evaluation metrics included accuracy and recall. All three models achieved an average prediction accuracy of 91%. Linear
Discriminant Analysis was identified as the most accurate model.

Discussion and Conclusion. High-accuracy predictions enable reliable forecasting of the probability and intensity of
mud losses based on the location and stratigraphic description of new wells. The study presents three machine learning
methods that demonstrated superior results in solving this problem.

Forecasting Drilling Mud Losses Using Python

Keywords: Python, mud loss, drilling, machine learning methods, Decision Tree, Discriminant Analysis, Random Forest
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OpuZuHafleOB amnupudeckoe ucciedosamue

IIporuno3upoBanue norJioueHuii 6yposoro pacrsopa na Python

H.B. Kopunaaes' D[4, K.®. Koaexuna'?
'V pumcknii rocyaapcTBeHHbIN HEDTAHOW TEXHUUCCKHI YHUBEPCUTET, T. Y da, Poccuiickas Oenepanus
NucrutyT Herexumuu u Kartanuza YOUL PAH, r. Ya, Poccuiickas @enepanus

< nik-kornilaev@mail.ru

AHHOTALUSA

Beeoenue. Tlornomenus OypoBOro pacTBopa SIBIIOTCSA OTHUM H3 HanOojee paclpoCTpaHEHHBIX BHAOB OCIOXKHEHUI
B OypeHun ckBauH. IlepBocTereHHOW 3agauei sBISETCS NPOTHO3UPOBAHHME IPOIECCa ITOTVIOMICHUS, TAaK Kak
MIPEAYNpEKACHIE TaHHOTO BHJIA OCJIOKHEHHs ITO3BOJMT MHHHUMM3HMPOBATH MOTEpH OypOBOTO pacTBOpa, a TaKxkKe
MIPEAOTBPATUTh aBapyM B CKBaKMHE. BO3HMKHOBEHME IOTIJIONMICHUI OOYCIIOBICHO MpPEXIE BCEro Te0J0rMYeCKUMHU
CBOWCTBaMH ILIACTOB. BhIsICHEHHE CBA3U MEXy BO3SHUKHOBEHHEM IOIIIONICHUH OypOBOr0 PacTBOpa U Ie0JIOTHYECKUMHU
XapaKTepPUCTUKAMH pa30ypuBaeMbIX IUIACTOB MPEACTABISIET Kak (yHAaMEHTAlIBHBIH, TaK ¥ NpakTHYecKuil nHTepec. B
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CBS3H CO CII0KHOCTBIO ONPEAEIIEHUS BEPOSITHOCTY BO3HUKHOBEHUH OTJIOLIEHUH C TOMOILIBIO U3BECTHBIX MATEMAaTUYECKUX
Mozenell OblIa IMOCTaBJICHA IIeTTh UCCIEIOBAHUS — IOCTPOHUTH C MOMOIIBI0 METOIOB MAIIMHHOTO OOYYEHHS CHCTEMY,
MIPOTHO3UPYIOUIYIO 3HAUE€HUSI BEPOSITHOCTH BO3HUKHOBEHMSI MMOTJIOIEHUH B 3aBUCUMOCTH OT MECTOIOJIOKEHHU S CKBAXKUHBI
U e€ cTpaTUrpauIecKoro OmUcaHusl.

Mamepuanst u memoowl. JKCIepUMEHTaNIbHBIE TaHHbIE 0 735 ckBaxkuHax IIIkamoBckoro MecTopoxkaeHus (KOOpIUHATHI
MECTOTIOJIOKEHHUS, T€OJIOTHUECKUI NHAEKC M1acTa, 3HAYeHNE MHTEHCUBHOCTH MOTJIOIIEHH ) ObLIN TIOJTOTOBJICHBI aBTOPAMHU
K BeIYHCIIEHUAM. VcxomHble qaHHbBIe OBUTH pa3efieHbl Ha 00yJaromlylo U TeCTOBYIO BEIOOPKH. [IpencraBieHbl BapHaHTHI
pemeHns 3a1aun KIacCu(UKAUU 10 YeThIpeM KilaccaM MHTEHCHBHOCTH TOTJIOMICHHHA C WCHOJNB30BAHHUEM CIETYIOMINX
MOJIEIICH MAITIHHOTO O0YUYCHHUS: «ICPEBO PEIICHUID, «CITyJallHBIN JIECy, «IMHCWHBIN TUCKPIMHUHAHTHBIA aHAIIN3).
Pezynomamul uccnedosanus. Pe3ynbtaTsl IPOTHO3UPOBAHUS MO TPEM MOJAEISIM CPAaBHUBAIIUCH C OKCIIEPUMEHTATLHBIMU
JTAHHBIMH TECTOBOM BHIOOPKH. J[JIs1 OIICHKH KayecTBa MOJIEJICH UCIIOIb30BAIMCH METPUKH «TOUYHOCThY U «IOJIHOTaY. 1o
BCeM TPEM MOJIENIsIM OblIa JIOCTUTHYTA CPEAHss TOYHOCTh MpezckazaHus 3HaueHuit — 91 %. beuto ycranoBieHo, 4yTo
HauboJIee TOYHOW MOJIEIBIO SBISETCS «IMHEHHBIN TUCKPUMUHAHTHBIN aHATH3Y.

Obcyscoenue u 3aknrouenue. [IporHO3BI BBICOKOH TOYHOCTH MO3BOJBIIOT IPECKA3bIBaTh, C KAKOH BEPOSTHOCTHIO OyIyT
BO3HMKATh TOIVIOIIEHHS ONpPENeNEHHON MHTEHCUBHOCTM B 3aBUCUMOCTH OT MECTOIIOJIOXKEHHUSI HOBOM CKBAXXHHBI U €€
crpaturpaduueckoro onucanus. B paboTe mpeIcTaBIeHO TPU METO A PEIICHHS 33 Ia4H, TIOKA3aBIINX HAWITYYIIINC PE3YIbTATHL.

Kouessie cioBa: Python, norsnoenue, 0ypeHne, METO/ bl MAITMHHOTO 00y YEHUsI, IepPEBO PELICHHUH, TUCKPUMUHAHTHBIN
aHaJIN3, CIIy4YalHbIN Jec

s uurupoBanus. Koprmwraes H.B., Konequna K.®. IlporrosupoBanwe mormormenuii OypoBoro pactsopa Ha Python.
Computational Mathematics and Information Technologies. 2024;8(4):19-26. https://doi.org/10.23947/2587-8999-2024-8-4-19-26

Introduction. To enhance competitiveness and optimize drilling expenses, artificial intelligence methods are widely
employed in managing drilling processes today. Preventing complications and accidents remains a primary objective, as
it helps minimize or entirely avoid unexpected costs associated with their mitigation.

Mud losses represent the complete or partial loss of drilling fluid as it filtrates into the formation. This phenomenon
is influenced by numerous factors grouped into two major categories: geological and technological. Geological factors,
such as rock properties (porosity, fracturing, permeability), have a greater impact than technological factors (properties of
the selected drilling fluid, flushing fluid pressure). This is because surface operations allow for fine-tuning of the drilling
process and control of critical parameters, whereas obtaining precise rock characteristics is not always feasible. Under
conditions of high subsurface pressures and temperatures, formations may exhibit unpredictable properties.

In [1], the patterns of mud loss occurrences were thoroughly studied at the Yuzhno-Orlovskoye field in the Samara
region. Table 1 presents data on the presence and intensity of mud losses based on research conducted at specific drilling
intervals, accompanied by stratigraphic descriptions of the underlying formations.

Table 1

Intensity of Mud Losses in Wells

Well Number Loss Interval Stratigraphy Mud Loss, m*h

16 2079-2087 o8 10
21742624 D"+ D/" catastrophic

4 2005 D™+ DJ" 0.4

5 2124-2181 6-20

2188 D+ Dy full

2245-2259

12 1925-1964 C/ 2-3
2064-2114 D/ 4-18
2150-2178 D™ full

19 2099-2103 D/ 12-60
2130-2236 D" full

From Table 1, it is evident that wells with similar rock properties exhibit mud losses of varying intensity, highlighting
the unpredictable nature of mud loss occurrences.
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Numerous studies [2—5] have focused on forecasting various types of complications and developing recommendation
systems to address potential issues, including mud losses. The core of such software solutions relies on artificial neural
networks trained on large volumes of geological data collected from geophysical logging stations. However, these systems
share common drawbacks, including the inability to promptly obtain comprehensive downhole data in real time. This
limitation restricts the amount of input data, reducing the model’s prediction accuracy. Furthermore, when developing
such systems, it is essential to consider the protective policies of oil and gas companies, which often make it impossible to
access sufficient initial data for model development. Therefore, there is a need to create effective algorithms and software
solutions capable of operating under conditions of limited input data.

The aim of this study was to develop a machine learning-based system to predict the probability of drilling mud losses
of a specified intensity, depending on the well’s location and the stratigraphic description of the formations being drilled.

To achieve this goal, the following tasks were undertaken:

— prepare experimental data for calculations;

— analyze machine learning algorithms and develop a program using the most optimal methods.

Materials and Methods. The Shkapovskoye oil field, located in the Republic of Bashkortostan, was selected for
studying mud losses. In [6], a map of the field was presented, where wells are marked with symbols indicating the
intensity of mud losses for each well. The map of the Shkapovskoye oil field is shown in Fig. 1.

Fig. 1. Shkapovskoye Oil Field

Four classes of mud loss intensity were defined:

— 0 m*h — no mud losses (dot, or a small circle);

— 0 to 40 m*/h — low-intensity mud losses (large circle);

— 40 to 80 m*h — moderate-intensity mud losses (triangle);

— Over 80 m*h — catastrophic mud losses (square).

Using the Yandex.Maps service, the length and width of the field were determined. Then, based on the map data, the
coordinates of each well were calculated using the GeoGebra software package. A fragment of the calculation is shown in Fig. 2.

Fig. 2. Determination of Well Coordinates
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Wells marked with differently colored dots correspond to mud loss intensity levels in increasing order:

— blue dots — 0 m*h (no mud losses);

— green dots — 0 to 40 m*/h (low intensity);

— orange dots — 40 to 80 m3/h (moderate intensity);

—red dots — over 80 m3/h (catastrophic losses).

For stratigraphic descriptions, we utilized information indicating that the primary productive horizons are the Pashian
(d3_p3), Kynovian (d3_kn), and Starooskolskiy (d2_st) horizons of the Devonian system. Additionally, the Bobrikovian
horizon (c1_bb) has industrial significance, albeit to a lesser extent [7].

The data for the wells were categorized as follows: coordinates, stratigraphic description, and mud loss intensity.
Various machine learning methods were tested on this dataset, and the most suitable ones were selected for further model
optimization.

Decision Tree. This algorithm creates a tree-like structure based on “If ..., then ...” rules. These rules are generated
during training on the dataset by generalizing multiple observations, making them easily interpretable. Mathematically,
the decision rule can be expressed as a set of conjunctions:

R(x)=n,, [a/. sf,.(x)sbj], (D

where J is the set of features selected for decision-making; f,(x) represents a real-valued feature, and a, bj are the
conditions. If all features satisfy the conditions, the rule returns 1; otherwise, it returns 0.

The advantages of decision trees include their simplicity of interpretation compared to neural networks and some
other machine learning algorithms, as well as low requirements for data preprocessing. However, the disadvantages
include a high likelihood of overfitting, as the algorithm can create excessively large trees, which may not generalize
well to other datasets.

Random Forest. The Random Forest algorithm is a versatile machine learning method based on an ensemble of decision
trees. Compared to other machine learning methods, the theoretical foundation of Random Forest is straightforward. The
formula for the resulting classifier a(x) is as follows:

ibi (x), 2)

where N is the number of trees; i is the tree index; b represents a decision tree, and a(x) is the sample generated based on
the input data.

Despite its versatility, this method has several significant drawbacks:

— difficulty in interpretation;

— inability to extrapolate;

— susceptibility to overfitting on highly noisy data;

— bias towards features with a larger number of levels when working with datasets containing categorical variables
with varying levels [9].

Linear Discriminant Analysis (LDA). The main idea behind the selected algorithm is based on the assumption of
a multivariate normal distribution within classes and the search for a linear transformation that maximizes the between-
class variance while minimizing the within-class variance [10].

The proposed algorithm has the following advantages:

— lower tendency to overfit (compared to logistic regression), as LDA models the data distribution within each class
and requires fewer parameters for estimation;

— it is more stable and efficient when there is a large number of classes with good linear separability.

The main disadvantage of LDA is its sensitivity to outliers and inefficiency when the number of features significantly
exceeds the number of objects.

Results. The classification task was solved using the Python programming language, with the libraries sklearn, pandas,
numpy, tkinter, and the MySQL DBMS. The program flowchart is shown in Fig. 3.

To visualize the modeling results, we compared the absorption intensity of wells in the test sample with the absorption
intensities predicted by the models. The absorption intensity schemes for the test sample wells are shown in Fig. 4.
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Forecasting Experiment Results

Start

Input Data:

— coordinates (X and Y) of the
well’s location;

— geological index of the productive layer

Classification Task Solution:

— Decision Tree;
— Random Forest;
— Linear Discriminant Analysis

Input Data:

absorption intensity

End

Adding New Data

Start

Input Data:

coordinates (X and Y) of the
well’s location;
geological index of the
productive layer;
absorption intensity

Saving Data

End

Fig. 3. The program flowchart

Fig. 4. Absorption intensity scheme (test sample wells)

Wells marked with differently colored dots correspond to mud loss intensity levels in increasing order:

— blue dots — 0 m*h (no mud losses);
— green dots — 0 to 40 m*/h (low intensity);

— orange dots — 40 to 80 m*/h (moderate intensity);
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— red dots — over 80 m*h (catastrophic losses).
Fig. 5-7 show the schemes of the deposits with wells and predicted absorption intensities for the three machine
learning models considered. Differences from the test sample are noted.

Fig. 5. Absorption intensity scheme (for the “Decision Tree” algorithm)

Wells marked with differently colored dots correspond to mud loss intensity levels in increasing order:
— blue dots — 0 m*h (no mud losses);

— green dots — 0 to 40 m*/h (low intensity);

— orange dots — 40 to 80 m*/h (moderate intensity);

— red dots — over 80 m*h (catastrophic losses).

Fig. 6. Absorption intensity scheme (for the “Linear Discriminant Analysis” algorithm)

Wells marked with differently colored dots correspond to mud loss intensity levels in increasing order:

— blue dots — 0 m*h (no mud losses);

— green dots — 0 to 40 m*/h (low intensity);

— orange dots — 40 to 80 m3/h (moderate intensity);

— red dots — over 80 m*h (catastrophic losses).

The greatest number of “mismatches” was observed with the “Random Forest” algorithm model. This can be explained
by the insufficient size and number of features in the training sample for constructing the ensemble of decision trees.
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Fig. 7. Absorption intensity scheme (for the “Random Forest” algorithm)

For accuracy metrics, recall (sensitivity) was used, which characterizes the ability to identify the considered class, as
well as precision, which allows distinguishing one class from another. These metrics are calculated using formulas (3, 4):

P 3)
precision =————,
TP + FP
TP @
recall =——,
TP+ FN

where TP — True Positives: correctly predicted values of the class under consideration; /’P — False Positives: incorrectly
predicted values of the class under consideration; FN — False Negatives: incorrectly predicted values of other classes.
The calculation results for each class are presented in Table 2.

Table 2

Metrics for evaluating the quality of machine learning models

Absorption Class Precision max Recall max
0m’ 0.88 (LDA) 0.97 (Decision Tree)

040 m’ 0.89 (Random Forest) 0.93 (LDA)

40-80 m? 0.93 (Decision Tree) 0.84 (LDA)
>80 m? 0.98 (LDA) 0.92 (Random Forest)

From Table 2, it can be concluded that all three models demonstrated high prediction performance. The most effective
algorithm for the problem at hand is Linear Discriminant Analysis.

Discussion and Conclusion. The results obtained during the prediction of drilling fluid loss intensity in wells are
relevant for practical application in assessing complications in the field. Despite the high predictive capability of the
model, its main limitation is the lack of applicability to other fields. To achieve accurate classification for different fields,
the model must be retrained on the corresponding operational data.

Thus, it is essential to develop solutions for the preliminary analysis of “raw” data provided by geological exploration
and the subsequent transfer of processed data to machine learning algorithms.
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Abstract

Introduction. Mathematical tools integrated with satellite data are typically employed as the primary means for
studying aquatic ecosystems and forecasting changes in phytoplankton concentration in shallow water bodies during
summer. This approach facilitates accurate monitoring, analysis, and modelling of the spatiotemporal dynamics of
biogeochemical processes, considering the combined effects of various physicochemical, biological, and anthropogenic
factors impacting the aquatic ecosystem. The authors have developed a mathematical model aligned with satellite data
to predict the behavior of summer phytoplankton species in shallow water under accelerated temporal conditions. The
model describes oxidative-reduction processes, sulfate reduction, and nutrient transformations (phytoplankton mineral
nutrition), investigates hypoxia events caused by anthropogenic eutrophication, and forecasts changes in the oxygen
and nutrient regimes of the water body.

Materials and Methods. To simulate the population dynamics of summer phytoplankton species correlated with satellite
data assimilation methods, an operational algorithm for restoring water quality parameters of the Azov Sea was developed
based on the Levenberg-Marquardt multidimensional optimization method. The initial distribution of phytoplankton
populations was obtained by applying the Local Binary Patterns (LBP) method to satellite images of the Taganrog Bay
and was used as input data for the mathematical model.

Results. Using integrated hydrodynamic and biological kinetics models combined with satellite data assimilation methods,
a software suite was developed. This suite enables short- and medium-term forecasts of the ecological state of shallow
water bodies based on diverse input data correlated with satellite information.

Discussion and Conclusion. The conducted studies on aquatic systems revealed that improving the accuracy of initial
data is one mechanism for enhancing the quality of biogeochemical process forecasting in marine ecosystems. It was
established that using satellite data alongside mathematical modeling methods allows for studying the spatiotemporal
distribution of pollutants of various origins, plankton populations in the studied water body, and assessing the nature and
scale of natural or anthropogenic phenomena to prevent negative economic and social consequences.

Keywords: forecasting, summer phytoplankton populations, coastal system, satellite data, numerical experiment
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OPMZMHLUZbHoe meopemudecKkoe ucciedosamue

HpOFHO3I/Ip0BaHI/Ie JAUHAMMUKU JIETHUX BU/10B q)HTOHJIaHKTOHa
HA OCHOBEC METOA0B YCBOCHHS CIYTHUKOBBIX JAHHBIX
10.B. Beaosa' DX, A.A. ®uauna®> , A.E. Uncraxos!
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AHHOTanUA

Beeoenue. B xauecTBe OCHOBHOTO MHCTPYMEHTA MCCIIEAOBAHUH (DYHKIIMOHUPOBAHHS BOAHBIX YKOCHCTEM M MPOTHO3H-
pOBaHMsI U3MEHEHHS] KOHLEHTPALMH (DUTOIIAHKTOHA B MEJIKOBOTHOM BOJJOEME B JIETHUH MEpHoA OOBIYHO HUCIIONB3YeTCs
MaTeMaTHIEeCKUI MHCTPYMEHTapUi ¢ IPUMEHEHNEM CIIyTHUKOBBIX JTAHHBIX, YTO MO3BOJISIET OCYIIECTBIISATh KOPPEKTHBINA
MOHHUTOPHHI, aHAJIN3 U MOJCIHPOBaHNE TUHAMHUKH MPOTEKaHUSI OMOTCOXUMHUYECKHUX ITPOIECCOB B MPOCTPAHCTBE U BO
BPEMEHHU C YYETOM COBOKYITHOTO JIEHCTBUS psia (pU3NKO-XMMUYECKUX, OMOIOTHUECKUX M aHTPOIOTeHHBIX (haKTOPOB,
BIMSIOIINX HAa M3y4aeMyI0 BOZHYIO 9KOCHCTEMY. ABTOpaMu pa3zpaboTaHa MaTeMaTHYecKas MOZENb, KOPPEIUPYIOLIas CO
CITyTHUKOBOH MH(OpMAaIIHeH, II03BOJIAIONIAs IPOTHO3UPOBATh ITOBEACHHE JIETHIX BUI0B (PUTOIUIAHKTOHA B MEITKOBOHOM
BOJIOEME B YCIOBHUSIX YCKOPEHHOTO BPEMEHH, OIUCHIBATh OKUCIUTEIbHO-BOCCTAHOBUTEIbHBIE ITPOLIECCH BOAHOM Cpesibl,
cynbharpenyKIun, TpancGopMariu ONOTEHHBIX BeIeCTB (MHHEPAIBFHOTO MUTaHHUS (PUTOTUIAHKTOHA), U3y4JaTh Pa3BUTHE
3aMOPHBIX SIBIICHUH, BOSHUKAIONINX B PE3YJIbTAaTe aHTPOIIOTEHHON IBTPOHKAINH, CTPOUTH IIPOTHO3BI U3MEHEHHUS KHACIIO-
POAHOTO ¥ OMOTEHHOTO PEXUMOB (PYHKIIMOHUPOBAHHS BOJOEMA.

Mamepuanst u memoost. J1J11 MOIECTMPOBAHNUS YUCIEHHOCTH BHOBOTO COCTaBa JIETHETO (PUTOIUIAHKTOHA, KOPPETIHPYIO-
IIETO C METOJ[AMH YCBOCHHMSI CITyTHUKOBBIX JJaHHBIX, pa3pa0boTaH ONepaTUBHBIA aIrOPUTM BOCCTaHOBJICHHUS IIAPaMETPOB
KayecTBa BoJ A30BCKOTO MOPsI, KOTOPBI 0a3upyeTcst Ha METoJie MHOTOMEpHOii ontuMu3zanuu JleBenbepra-Mapksapara.
HauansHoe pacnpenesnenne (pUTOINTAHKTOHHBIX MOMYIIIINHN OBLIO MOYYeHO B pe3yibTare npuMeHeHus Mmeroga LBP (io-
KaJbHBIX OMHApHBIX MA0IOHOB) K KOCMHYECKHM CHUMKaM TaraHporckoro 3ajyBa M UCIIOJIb30BaHO B KAUYECTBE BXOTHBIX
JAHHBIX A7 pa3pabOTaHHOI MaTeMaTUYeCcKoil Moaeny.

Pesynomamut uccnedosanus. Ha 0CHOBE CKOMIUIEKCHPOBAHHBIX MOJIEIIEH THAPOIUHAMUAKA 1 OMOIOTHYECKON KMHETHKH,
a TaK)Ke METOJIOB YCBOCHHS CITyTHUKOBBIX JAHHBIX, pa3pab0OTaH MPOrpaMMHBII KOMIUIEKC, KOTOPHIH ITO3BOJISIET CTPOHUTH
KPAaTKO- M CPETHECPOUHBIE IPOTHO3bI SKOJIOTHUECKOH 00CTAaHOBKH MEJIKOBOIHBIX BOJOEMOB Ha OCHOBE Pa3JIMUHBIX BXOJI-
HBIX JaHHBIX, KOPPEIUPYIOMNX CO CITyTHUKOBOH MH(OpMAIHei.

Obcyrcoenue u 3axniouenue. B paMkax IpoBOAMMBIX UCCIEA0BAHUN COCTOSHUS BOAHBIX CUCTEM YCTAHOBIIEHO, UTO OJHUM
U3 MEXaHU3MOB MOBBIILICHHUS KaYeCTBa IPOrHO3UPOBAHUS OMOT€OXUMHUYECKHX IPOLIECCOB MOPCKHX SKOCHCTEM SIBISETCS
yYTOYHEHHE HadalbHBIX JAAHHBIX. YCTAHOBJIEHO, YTO HMCIIOJIb30BAHHUE CIIyTHHUKOBBIX JAHHBIX HApsIy C METOJaMH MaTeMa-
TUYECKOTO0 MOZAENHUPOBAHUS TO3BONAIOT U3y4aTh MPOCTPAHCTBEHHO-BPEMEHHOE pacIpeAeieHUe 3arpsA3HEHUI pa3IndHON
HPHPOJIBI, TUIAHKTOHHBIX MOMYJISIIUE UCCIIElyeMOTO BOAHOTO 00BEKTA, OLICHUBATh XapaKTep M MacIITaObl IPHUPOJHOTO I
TEXHOTEHHOTO SIBIICHHS VIS IPEIOTBPAIIECHNS HETAaTHBHBIX ITOCIEACTBUI SKOHOMHYIECKOTO U COLMATIBHOTO XapaKTepa.

KiaroueBrbie ciioBa: MPOTHO3UPOBAHUE, MMOITYJISIIIUA JICTHETO (I)I/ITOHJ'IaHKTOHa, HpI/I6p€)KHaH CHUCTEMA, CITYTHUKOBLIC JaH-
HBIC, YHUCJICHHBIN OKCIICPUMEHT

duHancupoBanme. VccienoBanne BBIIONHEHO 3a cueT rpaHTa Poccuiickoro HayuHoro ¢onma Ne 22-71-10102,
https://rscf.ru/project/22-71-10102/

Joas uutupoBanus. benosa 10.B., ®ununa A.A., YnuctaxkoB A.E. [IporHosupoBaHue TUHAMHUKH JIETHUX BHUIOB (u-
TOIUIAHKTOHA HAa OCHOBE METONOB YCBOCHHUS CIIYTHUKOBHIX NaHHBIX. Computational Mathematics and Information
Technologies. 2024;8(4):27-34. https://doi.org/10.23947/2587-8999-2024-8-4-27-34

Introduction. Remote sensing of the Earth (RSE) represents a modern and promising method for assessing the
biological state of shallow water bodies, as well as the dynamics of biogeochemical processes, including the behavior
of phytoplankton populations during the summer in shallow aquatic systems. A key challenge in this domain is
developing and implementing computationally efficient forecasting algorithms and providing them with real-world
input data. Addressing this challenge is fundamental to solving numerical modelling problems in hydrobiology for
water bodies in southern Russia.

Research in this field is actively conducted by both Russian and international scientists. For example, [1] describes
the application of remote sensing methods to map cyanobacterial blooms in lakes in northern Italy. The study in [2]
demonstrates the effectiveness of the Maximum Peak Height (MPH) algorithm of MERIS in extracting chlorophyll-a
(chl-a) concentrations as a tool for monitoring water body eutrophication. G.I. Marchuk, V.P. Shutyaev, G.K. Korotaev,
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and V.B. Zalesny have significantly contributed to data assimilation methods in atmospheric and ocean physics problems [3, 4].
A.A. Zelenko and Yu.D. Resnyansky have studied marine observation systems [5]. O.I. Krivorotko and S.I. Kabanikhin
developed algorithms for reconstructing disturbance sources in the nonlinear shallow water equations system [6].

The works of G.I. Marchuk and V.P. Shutyaev focus on iterative algorithms based on the theory of adjoint equations,
allowing the solution of variational data assimilation problems [7]. Y. Chao, H. Zhang, et al., in [8], proposed a three-
dimensional ocean modelling system for the California region that processes satellite data in real time. This ocean model
features a horizontal resolution of approximately three kilometers and employs a multi-scale three-dimensional variational
data assimilation methodology.

In [9], researchers Robertson R. and Dong C. compare several vertical mixing parameterization algorithms for oceanic
waters: modifications of the Nakanishi-Niino Mellor-Yamada algorithm (NN), the Large-McWilliams-Doney’s Kpp
algorithm (LMD), Mellor-Yamada 2.5 (MY), and four versions of the Generic Length Scale (GLS) algorithm. Algorithms
for processing satellite images to parameterize hydrodynamic and hydrobiological models and identify pollution zones
are also actively developed. Study [10] describes algorithms and provides code for automatic detection of upwelling
filaments (AFD) based on image processing and pattern recognition. Study [11] explores the potential use of Sentinel-2
satellite images with unmanned aerial vehicles for obtaining multispectral aerial photographs to detect marine surface
debris for monitoring, collection, and removal.

The aim of this study is to integrate effective mathematical modeling methods with satellite data assimilation
techniques to conduct detailed investigations into the functioning of aquatic ecosystems and forecast the dynamics of
summer phytoplankton population changes in shallow water bodies. This approach enables the observation and analysis
of the spatiotemporal dynamics of biogeochemical processes in shallow systems while accounting for the combined
influence of physicochemical, biological, and anthropogenic factors affecting the studied aquatic ecosystem.

Materials and Methods. The developed 4D mathematical model of summer phytoplankton evolution in coastal
systems is based on a system of unsteady partial differential equations with nonlinear source terms v :

aq, oq, 0q, 0q, 0 0q,
— tu—L+v—"+(w—w, | —L=p.Ag, +—| v.— |+ vy,
o ox oy (W) =g+ | v v, M

where u, v, w are the components of the velocity vector for convective transport; p,, v, are the coefficients of turbulent
transport in the horizontal and vertical directions, respectively; W, is the gravitational settling velocity of the i-th component
in suspension; A is the two-dimensional Laplace operator; y, are nonlinear source functions describing chemical and
biological processes; i is the type of substance, i € M = {P, MP, N, D, BT, BD, HS, S, SO,, O,}. The set of modeled
substances is detailed in Table 1.

Table 1

Set of Modeled Substances

No. Symbol Description
1 P Summer phytoplankton species
2 MP Phytoplankton metabolite
3 N Nutrients
4 D Detritus
5 BT Aerobic bacteria Thiobacillus
6 BD Anaerobic bacteria Desulfovibrio
7 H,S Hydrogen sulfide
8 S Elemental sulfur
9 SO, Sulfates
10 0, Dissolved oxygen

The source functions and model parameters are described in detail in [12]. Appropriate initial and boundary conditions
are incorporated into the model.

The presented mathematical model builds upon the foundational works of prominent researchers, including A.I.
Sukhinov, B.N. Chetverushkin, G.G. Matishov, E.V. Yakushev, and E.R. Weiner, among others [13, 14].

Development of a Software Suite for Research and Forecasting. The forecasting of phytoplankton dynamics in a
shallow waterbody during the summer period was carried out using the developed research and forecasting complex
(RFC), equipped with an integrable algorithm for interaction with geographic information systems (GIS). The software

29



30

Belova Yu.V. et al. Forecasting the dynamics of summer phytoplankton species based on satellite Data assimilation methods

and algorithmic framework is designed to analyze and evaluate the scale of natural disasters (including eutrophication,
“blooming”, pollution by components of various etiologies, etc.) and to generate short- and medium-term forecasts of
their development in accelerated time frames, with the potential for mitigating economic and social impacts.

Given the rapid escalation of factors adversely affecting the progression of hazardous and emergency events (climatic
and anthropogenic), the use of modern and efficient forecasting methodologies integrated with GIS and satellite data is
highly relevant today.

Modelling the dynamics of biological and geochemical indicators of the shallow waterbody (the Azov Sea and the
Taganrog Bay) was carried out by solving direct and inverse remote sensing (RS) problems for aquatic environments. The
solution to the direct problem of remote sensing in the visible range involves determining the spectral dependence of the
reflection coefficient R = (1,-0,0,, B) as a function of the concentrations of water system components and their optical
properties [15]:

R, (%-00,.8)= T, L, (+0,6,.B,.1)/E, (+0,1), ®)

where A is the wavelength; B is the viewing angle of the water surface by the satellite sensor; 0, is the solar zenith angle;
T, is the solar light attenuation factor when passing through the “water-air” interface; £,(+0,)) is the illumination of the
water surface, and L (+0,0 ,8 ,1) is the brightness of the water surface, determined using remote sensing data.

The solution to the inverse problem is based on developing an algorithm for retrieving water parameters from satellite
data. Optical properties of water are influenced by living organisms, dissolved and suspended substances, micro-turbulent
inhomogeneities, and bubble gases. This study highlights the primary color-forming components (water, dissolved organic
matter (DOM); chlorophyll from phytoplankton (Chl), and mineral suspension (MS)), as well as the primary hydro-
optical water parameters (a — absorption coefficient; b, — backscattering coefficient). These parameters are convolutions

of the optical properties of the color-forming components, characterized by additive properties:

K

K
a=Y Ca;; b=> Chb,, ©))
k=1

k=1

where a;, b,; are the primary hydro-optical characteristics of the k-th component; C, is the specific concentration of the
k-th component. The set of spectral values of the a’, b," coefficients constitutes the hydro-optical model of the Azov Sea.
The coeflicient R = (A,~0,0,, B) is determined as a secondary hydro-optical characteristic of the aquatic environment,
describing water properties and brightness characteristics. It is calculated at the horizon based on the surface layer of the
water column and shows minimal dependency on 6 and f:

R, (mC.ab,)=a,+a b, (V) a(h)} +a,{b, () a(M)) (10)

where a,,k = 0,_2, b,(A), a()) are the known coefficients for each component of the aquatic environment (hydro-optical
model of the Azov Sea).

Let us describe the developed algorithm for retrieving water parameters of the Azov Sea, which is based on the
efficient Levenberg-Marquardt (LM) multidimensional optimization method. The concentration vector of color-forming
components was represented as:

xn? " me

c=(C,.C,.C,,).

To find the optimal concentration vector C an absolute minimum of the residual function f{C) was sought:

2

(€)= [S,-R,,(LC.ab,)] (11)
J
The expression for calculating the optimal vector C is as follows:
-1
Cpi =Co+ A (FF +u D) R, (1.C.a.b,), (12)
aRrsw(}\"Ck’a’bb) . . . . . e . . . .
where F, = °C is the matrix; p,_is the direction of minimization; D, is the diagonal of the matrix F,"F’;
k

A, is the step size of the optimization; T denotes the transpose operation.

Expressions (9) and the parameterization in (10) were used to calculate the spectral value of the reflectance coefficient
of the water column based on the concentration vectors of color-forming components. Calculations were performed for the
wavelengths 412, 443, 490, 510, 590, and 670 nm (corresponding to the Sea Viewing Wide Field Sensor (SeaWiFS) channels).
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In addition to synchronous remote sensing data from SeaWiFS sensors and the MODIS spectrometer, in situ
measurements of hydrodynamic, hydro-optical, and biogeochemical parameters of the studied water body were used to
verify the accuracy of the retrieved vector CoptC_{\text{opt} } Copt obtained using the LM algorithm. These measurements
included scattering, absorption, and attenuation coefficients for nine wavelengths in the spectral range of 412715 nm,
collected at each station during field expeditions.

A comparison of the measured and retrieved concentrations of color-forming components from satellite monitoring
data showed agreement, with a correlation coefficient averaging 0.75.

Results. A computational experiment was conducted based on integrated hydrodynamic and biological kinetics
models. The Taganrog Bay was chosen as the real modelling area since this part of the Azov Sea produces the majority
of phytoplankton biomass during the summer. A module for calculating biological kinetics processes was developed and
integrated into the “Azov3D” software suite [16—18].

The input data for the calculations included salinity and temperature distributions derived from cartographic information,
water flow velocity calculated using a hydrodynamic mathematical model, and processed long-term observational data on
the concentrations of nutrients and key phytoplankton species [19]. Additionally, the spatial distribution of phytoplankton
populations, obtained using the Local Binary Patterns (LBP) method applied to satellite images, was used as input data.
The method was developed by the authors of this research [20].

The LBP method enables the detection of the boundaries of phytoplankton “blooms” and pollutants, including oil
and petroleum products, in satellite images. Figure 1 a shows the initial satellite image captured on August 6, 2020, by
the Sentinel-2 L2A satellite [21]. Figure 1 b presents the initial distribution of phytoplankton populations, derived using
the LBP method, which serves as input data for the program module. The concentration values reflect typical summer
phytoplankton levels based on long-term observations.

The results of the software suite’s operation for a 30-day time interval and uniform initial distributions of phytoplankton
and nutrient substances are shown in Figure 2.

52
mg/l

3.9

2.6

1.3

0.0
b)
Fig. 1. Phytoplankton Images

a — Satellite image of the modeled area;
b — Initial distribution of phytoplankton populations
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Fig. 2. Distribution of Concentrations in Taganrog Bay During the Summer Period
a — Chlorella vulgaris green algae; b — Aphanizomenon flos-aquae cyanobacteria; ¢ — Phosphates; d — Nitrates

Discussion and Conclusion. The research on the state of aquatic systems has revealed that one of the mechanisms
for improving the quality of biogeochemical process forecasting in marine ecosystems is refining initial data. In data
assimilation systems, alongside stationary measurements, methods for processing and assimilating satellite information,
which have been actively developed in the country over the past decades, have gained significant importance. It has
been established that using satellite data in conjunction with mathematical modelling methods enables the study of the
spatiotemporal distribution of various pollutants and plankton populations in the studied water body. This approach also
helps assess the nature and scale of natural or anthropogenic events to prevent adverse economic and social impacts.

The authors have developed a spatially heterogeneous mathematical model of summer phytoplankton evolution in
a shallow water body, numerically implemented in a research and forecasting complex (RFC). This complex integrates
with various GIS platforms and satellite data. The model provides real-time forecasting of changes in density and spatial
distribution of plankton populations. It also facilitates the study and analysis of redox processes, the transformation of
nutrients (mineral feeding of phytoplankton), and sulfate reduction occurring within the water column. Additionally, the
model examines the development of fish-kill events caused by anthropogenic eutrophication and predicts changes in the
oxygen and nutrient regimes of the water body.

The RFC enables the development of comprehensive preventive measures to ensure environmental safety and mitigate
economic damage in the studied region. The study also constructed an efficient and rapid algorithm for restoring water parameters
in the shallow region (Azov Sea), based on the effective Levenberg-Marquardt multidimensional optimization method.

The developed RFC can be effectively applied to generate short- and medium-term environmental forecasts for shallow
water bodies in Southern Russia. It utilizes diverse input information, such as the spatial distribution of phytoplankton
during the summer period, obtained using the Local Binary Patterns method applied to satellite imagery.
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Abstract

Introduction. Many practically significant tasks reduce to nonlinear differential equations. In this study, one of the
applications of neural networks for solving specific nonlinear boundary problems for complex-shaped domains is consid-
ered. Specifically, the focus is on solving a stationary heat conduction differential equation with a thermal conductivity
coefficient dependent on temperature.

Materials and Methods. The original nonlinear boundary problem is linearized through Kirchhoff transformation. A neural
network is constructed to solve the resulting linear boundary problem. In this context, derivatives of singular solutions to the
Laplace equation are used as activation functions, and these singular points are distributed along closed curves encompassing
the boundary of the domain. The weights of the network were tuned by minimizing the mean squared error of training.
Results. Results for the heat conduction problem are obtained for various complex-shaped domains and different forms
of dependence of the thermal conductivity coefficient on temperature. The results are presented in tables that contain the
exact solution and the solution obtained using the neural network.

Discussion and Conclusion. Based on the computational results, it can be concluded that the proposed method is
sufficiently effective for solving the specified type of boundary problems. The use of derivatives of singular solutions to
the Laplace equation as activation functions appears to be a promising approach.

Keywords: nonlinear boundary problems for complex-shaped domains, neural networks
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AHHOTANHSA

Beeoenue. MHorHe IPaKTUUECKN Ba)XKHBIE 3a[]a4M CBOISTCS K HEJIMHEHHBIM TuddepeHranbHpiM ypaBHeHUsIM. B Ha-
cToslIed paboTe pacCMOTPEH OJMH U3 BAPHAHTOB MPUMEHEHHs HEHPOHHBIX CETeH K PELICHHI0 HEKOTOPBIX HEMHEHHBIX
KpaeBBIX 3aad Ui 00JacTelt CI0KHOM (POPMBI, @ IMEHHO K PEIISHHIO CTAIIHOHAPHOTO TU(GepeHINaTHHOTO YPaBHEHUS
TEIUIONIPOBOTHOCTH C KO3 (PHUIIMEHTOM TETIIONPOBOAHOCTH, 3aBUCSIIIM OT TEMIIEPaTyphl.
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Mamepuanst u memoost. Vicxonnas HelnHEHHas KpaeBasi 3a/1a4a CBOIUTCS K JTMHEHHOW C IOMOIIBIO ITPeoOpa3oBaHuUs
Kupxroda. HeiliporHas ceTb CTpOUTCA IS PELICHUS OTyIeHHON JIMHEHHOM KpaeBol 3amgaun. [Ipu 3ToM B KauecTBe ak-
THUBALMOHHBIX (QYHKIMH IPUHUMAIOTCS IPOU3BOJHBIC OT CHHTYIISIPHBIX pelleHui ypaBHeHUs Jlamnaca, a cHHTYIspHbIC
TOYKHM 3THX PEUICHUH pacrpeieIeHbI 10 3aMKHYTHIM KPUBBIM, OXBATHIBAIOIINM I'paHMILy 001acTH. [lJ1s1 HACTPOHKH BECOB
CeTH MUHMMH3UPOBAIACH CPEAHEKBAIpaTUYECKas OIHNOKa 00yYeHUs.

Pesynomamut uccnedoganus. 11omyueHsl pe3ynbTaThl PEICHHs 3aa41 TETIONPOBOIHOCTH A Pa3IMYHbIX 00IacTeH CIoXK-
HOI1 (hOpMBI 1 pa3IIHBIX (POPM 3aBUCHMOCTH KO3(h(HUIMEHTA TEIIONPOBOAHOCTH OT TeMIIeparypsl. [1omydeHHbIe pe3yabTaTsl
TIPEJICTABIICHBI B BUJIE TAOJINILI, KOTOPHIE COAEPIKaT TOYHOE PEIIEHHE U PEIIeHHE, MTOIyYeHHOE TIPX TOMOIIN HEHPOHHOI CEeTH.
Obcyrcoenue u 3axknroyenue. 11o pesynsraraM MPOBEJEHHBIX PACUETOB MOXKHO CAENATh BBIBOJ O TOM, YTO IPEIOKEHHBII
METOJ SIBJISIETCS] JOCTATOYHO (D PEKTHBHBIM JUIsl PELICHHs] YKa3aHHOTO THIA KpaeBbIX 3a1ad. Vcrons3oBaHue B KadecTBe
AKTUBAIIMOHHBIX q)yHKLIl/Iﬁ MPON3BOAHBIX OT CUHI'YJISIPHBIX peH_leHl/Iﬁ YpaBHECHUA MPEACTABISACTCA BE€CbMa IEPCIICKTUBHBIM.

KioueBble ciioBa: HeJMHEHHbIC KpaeBbIe 3a1a4u JUisl 001acTell CI0KHON (GopMbl, HEWPOHHBIE CETH

BaarogapHocT. ABTOp BEIpaXkaeT OJ1arolapHOCTh COTPYAHNUKAM PEIAKIMHU 33 YKa3aHHbIE 3aMeYaHus 110 0()OPMIICHHUIO,
KOTOpBIE TIO3BOJIMIIH CLIEJIaTh CTAThI0 OoJiee YI0OHO IS BOCIPHATHSI.

Jas ourupoBanus. [anaOypnua A.B. [IpuMeHeHne HEHpPOHHBIX CeTeH U PEIICHHUS HEIWHEHHBIX KpPAacBBIX 3a-
mad ans obnmacted ciokHou Gopmel. Computational Mathematics and Information Technologies. 2024;8(4):35-42.
https://doi.org/10.23947/2587-8999-2024-8-4-35-42

Introduction. In constructing models of various natural phenomena, the apparatus of differential equations is often
employed. The complexity of the modeled phenomena leads to complex systems of differential equations with intricate
domain shapes. Currently, in solving such boundary problems, the method of neural networks is increasingly utilized.

It should be noted that the theoretical foundations of the neural network method were laid in the mid-20th century by
A.N. Kolmogorov [1]. The development of the theory in [2] is applied to solving the problem of membrane deflection.
In [3], a neural network structure is proposed that allows solving Laplace, Poisson, and heat conduction equations.
The numerical solution of the Poisson equation in a two-dimensional domain, obtained by the Galerkin method and
Ritz method with deep neural networks, is presented in [4]. In article [5], approaches to solving heat and mass transfer
problems based on a perceptron-type neural network are explored.

Recently, there has been a frequent use of physically-informed neural networks to solve partial differential equations
[6]. Article [7] presents solutions to classical mechanics problems through the application of physically-informed neural
networks. In [8], an approach to solving direct and inverse scattering problems using radial basis function neural networks
is discussed. In article [9], based on the method of trust regions, a training method for RBF networks with a customizable
functional basis is developed for solving boundary problems in mathematical physics. Article [10] studies the use of
physically-informed neural networks in solving unsteady nonlinear differential equations describing the motion of a one-
dimensional heat-conducting gas. In works [11, 12], neural networks are applied to solve the Navier-Stokes equations.
In works [13, 14], radial basis functions are used as activation functions in the neural network, and their parameters are
varied during training.

This work is a development of the approach to solving partial differential equations using neural networks as presented
in article [15]. The aim of this study is to develop a method for applying neural networks to solve nonlinear boundary
problems for complex-shaped domains.

Materials and Methods. Consider the boundary problem for the nonlinear differential equation

on the planar domain G bounded by a closed curve y.

This equation describes a stationary thermal field. In this context, W represents the temperature and k(W) represents
the thermal conductivity coefficient. Using the Kirchhoff transformation [16, 17], this problem is reduced to a linear form.
The essence of the transformation is to introduce a function u(#), such that

_au(w)
Cdw

grad(u(W)) grad(W).

Then we have
du (W)
aw

where the original differential equation takes the form of Au(x, y) = 0.

=k(W) )
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From equation (2) we obtain
w
= [k(w)aw

where W_is an arbitrary initial quantity.
If the boundary conditions are given for the values of W = W, on the boundary of the domain, then for u we obtain
boundary conditions:

Expressing W, gives the solution to the original boundary problem.
Thus, the original nonlinear problem is reduced to a Dirichlet problem, which is solved using a neural network [15].
The basis of the neural network is the relationship:

1 & ou 1 & ou
= — _— U _— .
“ 2m kzz;Ck |:an ilk [ ]ik 2n kZ;Ck [u]k |: on lk

In this expression [U], and {z—(n]} can be viewed as activation functions, and c, {—u} and c,[u], as weights.

ik k
Using the least squares method and requiring the specified relationship to hold at each point of the boundary for

all functions of the training set, a system of equations can be obtained for determining the weights. To improve the

oUu

conditioning of this system of equations, it is necessary to increase the singularity of the quantities [U], and { } ,

shifting the contour integration a certain distance from the boundary of the domain vy. on Ju
The solution to the Dirichlet problem is sought in the form:

N
u(x)=2wkp(sk) xck kap Sk xck),
k=1

where p(s,) — is the value of the unknown function u at the boundary of the domain; U(x, 6,) and ¥(x, 6,) are activation functions;
o, and t, are points on the closed curves y, and 1v,, that cover the boundary of the domain; v, x are points in the domain G.

The closed curves v, and v, are similar to the contour y and are obtained by displacing each point in the direction of the
outward normal to the boundary by distances p, and p, respectively. During the training process, the weights and values
p, and p, are determined. To do this, the error functional is minimized:

M N 2
H(Wkavkapppz):ZZ{ZWkpk xmck +Vkka(x=Gk)_p/{}

Jj=1i=1

where x, is the coordinate of the i-th point on the boundary contour y; p/ is the boundary value of the j-th function of the
training set at the point x,.
g p k o7

From these relationships, for 6_17 and 8_ =0 ,m=12,..N a system of linear equations is obtained to
m V

determine w, and v . The value p, is determined by simple enumeration, and p,= p +1.
To assess the accuracy of the obtained solution, the values of u on the boundary of the domain, calculated using the
neural network

N
zZ(si):Zwkp(sk) sl,ck kap sk sl,ck)
k=1

are compared with the specified boundary conditions u(s).
The obtained network parameters do not provide the desired accuracy of the obtained solution. The accuracy can be
increased by iterative refinement of the obtained result according to the following scheme:

Au(s) = p(s), 4°(s) = p(s),
n+l _ < n
Av (s,.)—ZWkAu (s,)U(s;,0,) Zv,(Au (s )V (s557)

37



38

Galaburdin A.V. Application of Neural Networks for Solving Nonlinear Boundary Problems ...

Aunﬂ(si):AMHH(SI-)—AV”H(SI-), utrl+1(si) :AM:+1(Si)_Aun+l(Si),

where 4! (s,) represents the values of the refined solution at the boundary of the domain.

The process of refining the solution continues until the value
s
n+l
™ (s,)|

will not be small enough (less than the set value 3 ) or until it starts to grow. The results below are obtained at 5 = 0.0025.
To determine the value of u at any point x in the domain G use the formula:

N

u(x)= iwkut (s,)U(x,0,)+ ZVkut (s )V (8557,

k=1

For the training set, a set of functions that are solutions to the Laplace equation was used
x . X
r cos(k arccos (—ﬂ +7*sin (k arccos (—ﬂ, r=4x"+y
r r

where k= 0,1, 2, 3, ..., M. Calculations were conducted for M = 75.

The specified functions were defined in various coordinate systems rotated relative to each other by angles that are
multiples of 2/5.

Activation functions:

B° —10B°6” + 5P3* +8° —108°B” + 5P

U(x,y,t,s)z R

BT —21B°8% +358°8* —~7BS° & —218°B +358°B* — 76p°
RIO nx + R]O n,V

V(x,y,t,s) =

where 8=x—1£;B=y—s; R=48+ [32 jn;n are the coordinates of the outward normal vector to the boundary of the domain.
Research Results. The proposed method was applied to solve equation (1) for domains whose boundary y was defined as

x=acos(t)+gsin(ot)
y=a,cos(t)+g sin(or) te[0,2n],

where a, a, g, g,, ® are variable parameters.
Task 1. Consider the domain G1, corresponding to the parameter values: a = 1.15; @, = 1.15; g = 0.05; g, =-0.05; o =7 (Fig. 1).

1.5
1.0 3
2
10

0.5 4 9

18 1

>~ 0.0 19 15
0.5 >
7
-1.0 6
-1.5
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X

Fig. 1. Domain G1
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Stars indicate the locations of points in domain G1, where the exact solution values and those obtained using the neural
network for p, =7, p, = 8 were calculated.
The equation (1) was considered for the case k(W) = th(5W), which has the exact solution:

W, = arch(11.25((x—1.5)> +(y —1.5)*)".

The computational results are presented in Table 1.

Task 2. Let us consider domain G2 (Fig. 2), corresponding to parameter valuesa = 1;a,= 1; 2= 0; g,= 0.3; 0 = 3;
p,=10.51; p, = 11.51.

In equation (1), k(W) = ch(5W), was used, with the exact solution:

W, = arsh(5¢™ sin5y)/5.

The computational results for this case are presented in Table 2.

1.0
2
3
0.5 10
11
18 17 1?5 g
>~ 0.0
19
1 20 21
0.5 ’ 13
6
7
-1.0
-1,5 -1,0 -0,5 0,0 1,0 1,5 2,0
X
Fig. 2. Domain G2
Table 1
Calculation Results
Point No. 1 2 3 4 5 6 7
X 1.0534 0.6865 -0.1869 0.8848 -0.9709 -0.3193 0.5811
y 0.1275 0.8240 1.0218 0.3939 -0.3832 —0.9998 —-0.9001
Exact Solution 3.0529 2.6521 2.3621 2.8550 3.3731 3.8462 4.1520
Neural Network Solution 3.0535 2.6479 2.3629 2.8491 3.3771 3.8434 4.1566
Point No. 8 9 10 11 12 13 14
X 0.6937 0.4521 0.1231 -0.5826 | -0.6035 —0.1984 0.3612
y 0.0839 0.5426 0.6729 0.3252 -0.2382 -0.6215 —0.5595
Exact Solution 3.2590 3.0804 2.9504 3.1696 3.4495 3.7625 3.9935
Neural Network Solution 3.2584 3.0790 2.9487 3.1681 3.4494 3.7628 3.9947
Point No. 15 16 17 18 19 20 21
X 0.3340 0.2176 -0.0592 -0.2805 | -0.2361 -0.0776 0.1413
y 0.0404 0.2612 0.3240 0.1566 —-0.0932 -0.2431 -0.2189
Exact Solution 3.5104 3.4526 3.4064 3.4820 3.5887 3.7314 3.8544
Neural Network Solution 3.5100 3.4520 3.4058 3.4815 3.5885 3.7315 3.8547
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Table 2
Calculation Results
Point No. 1 2 3 4 5 6 7
X 0.9085 0.6728 -0.1902 -0.8641 -0.9230 -0.3228 0.5679
y 0.1291 0.8320 0.6703 0.5138 -0.4025 -0.7484 0.8587
Exact Solution 0.3489 0.6987 0.6948 0.5361 0.3820 0.2615 0.1561
Neural Network Solution 0.3510 0.6982 0.6941 0.5346 0.3850 0.2666 0.1589
Point No. 8 9 10 11 12 13 14
X 0.5983 0.4430 -0.1253 -0.5690 -0.5737 -0.2006 0.3530
y 0.0850 0.5479 0.4414 0.3383 -0.2502 -0.4652 -0.5338
Exact Solution 0.1849 0.5233 0.5761 0.4537 0.3508 0.29214 0.1806
Neural Network Solution 0.1879 0.5231 0.5753 0.4533 0.3521 0.29578 0.1836
Point No. 15 16 17 18 19 20 21
x 0.2880 0.2133 -0.0603 0.2739 -0.2245 -0.0785 0.1381
y 0.0409 0.2638 0.2125 0.1629 -0.0979 -0.1820 —0.2088
Exact Solution 0.0585 0.2897 0.3780 0.3021 0.2534 0.2496 0.1573
Neural Network Solution 0.0607 0.2901 0.3780 0.3026 0.2544 0.2512 0.1591
Task 3. Consider equation (1) in domain G3 (Fig. 3).
1.5
1.0
10
0.5 1
17 9
16
8
s~ 0.0 15
21
12 20
14
0.5 5
-1.0
-1.5
-1.5 -1.0 -0.5 0.0 1.0 1.5 2.0
X

Fig. 3. Domain G3

For this case, the parameters are set as follows: a=1;a4,=1;g=0,g,=0.3; 0 =5; p, = 11.65; p, = 12.65.
K(W) = W3, the exact solution is given by:

0.4

W, = {2.5<<x2 -y’ )cosl.chhl,Sy +2xy sinl.sthl.Sy) + 25\/5}

The results of the calculations are presented in Table 3.
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Table 3
Results of Calculations

Point No. 1 2 3 4 5 6 7
X 0.9090 0.4788 -0.1752 -0.8421 -0.9238 -0.2642 0.4126
y 0.1524 0.5207 1.0491 0.5014 -0.4754 —0.9563 -0.6755
Exact Solution 4.9224 5.0814 49816 47718 4.7525 4.9738 5.0741
Neural Network Solution 5.0164 5.0845 5.0215 4.8410 4.7800 5.0122 5.1008
Point No. 8 9 10 11 12 13 14
X 0.5986 0.3153 —0.1154 —0.5546 | —0.5742 —0.1642 0.2564
y 0.1004 0.3429 0.6908 0.3962 —-0.2955 -0.5944 -0.4199
Exact Solution 4.9672 4.9862 4.9595 4.9035 4.8956 4.9575 4.9874
Neural Network Solution 5.0201 5.0286 5.0030 4.9507 4.9375 4.9987 5.0289
Point No. 15 16 17 18 19 20 21
X 0.2882 0.1518 —0.0555 -0.2671 -0.2246 —0.2246 0.1003
y 0.0483 0.1651 0.3326 0.1910 —-0.1156 -0.2326 —0.1643
Exact Solution 4.9643 49616 4.9576 4.9483 4.9471 4.9575 4.9625
Neural Network Solution 5.0060 5.0049 4.9998 4.9910 49893 4.9988 5.0040

Fig. 4 and 5 illustrate the comparison between the exact solution of Problem 3 and the solution obtained using the

neural network.
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Fig. 4. Exact solution of Problem 3
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Fig. 5. Solution of Problem 3 obtained using the neural network

Discussion and Conclusion. The presented results advance the approach to solving partial differential equations
using neural networks, as outlined in [15]. They convincingly demonstrate the effectiveness of the proposed method for
constructing a neural network to solve boundary value problems in domains of complex shape.

This method shows significant potential, making it amenable to further development and refinement for solving a wide
range of boundary value problems.
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Identification of Marine Oil Spills Using Neural Network Technologies
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Abstract

Introduction. Detecting oil spills is a critical task in monitoring the marine ecosystem, protecting it, and minimizing
the consequences of emergency situations. The development of fast and accurate methods for detecting and mapping oil
spills at sea is essential for prompt assessment and response to emergencies. High-resolution aerial photography provides
researchers with a tool for remote monitoring of water discoloration. Artificial intelligence technologies contribute to
improving and automating the interpretation and analysis of such images. This study aims to develop approaches for
identifying oil spilled on water surfaces using neural networks and machine learning techniques.

Materials and Methods. Algorithms capable of automatically identifying marine oil spills were developed using computer
image analysis and machine learning methods. The U-Net convolutional neural network was employed for image segmentation
tasks. The neural network architecture was designed using the PyTorch library implemented in Python. The AdamW optimizer
was chosen for training the network. The neural network was trained on a dataset comprising 8,700 images.

Results. The performance of oil spill detection on water surfaces was evaluated using metrics such as IoU, Precision,
Recall, Accuracy, and F1 score. Calculations based on these metrics demonstrated identification accuracy of approximately
83—-88%, confirming the efficiency of the algorithms used.

Discussion and Conclusion. The U-Net convolutional network was successfully trained and demonstrated high accuracy
in detecting marine oil spills on the given dataset. Future work will focus on developing algorithms using more advanced
neural network models and image augmentation methods.

Keywords: marine systems, oil spill detection, aerial photography, deep learning, image segmentation, U-Net,
AdamW optimizer
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AHHOTALUSA

Beeoenue. OOHapyxeHHE Pa3TUBOB HE(PTH SABISCTCS BAKHOU 3aaveld B 1eie MOHUTOPUHTA COCTOSTHHS MOPCKOM 3KOCHCTe-
MBI, 3aIUTHl 1 MUHUMH3AIMH TOCIIEICTBIH aBapUiHbIX CUTyauid. JIIsi onepaTnBHOM OLIEHKH M pearupoBaHMs HA YPE3BhI-
YaifHbIe CUTyal[M1 He0OXoMMa pa3paboTKa OBICTPHIX M TOYHBIX METO/IOB OOHAPY)KEHUS M KapTUPOBAHUSI Pa3IMBOB HEPYTH
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B Mope. [laHHbIe a3p0(OTOCHEMKH C BHICOKMM IPOCTPAHCTBEHHBIM Pa3peIICHUEM MPETOCTABISIOT HCCIEA0BATEISIM BO3-
MOXKHOCTb YAAJICHHOTO HAaOJIOJCHUS 32 IBETHOCTHIO BOJ. YIYYIICHHIO M aBTOMAaTH3allMy MPOLEAYpP WHTEPIPETAlNU U
aHaJM3a CHUMKOB CIIOCOOCTBYIOT TEXHOJIOTMH MCKYCCTBEHHOTO MHTEIUIEKTa. Llenbio HacTosmeil paboTel sBIsieTcs pas-
paboTKa IMOIX0M0B K MJICHTU(HKAIMH PA3JIMBIICHCS Ha BOJHOM MMOBEPXHOCTH HE(TH C UCIIOIb30BaHNEM HeHpoceTel 1
MAIIIMHHOTO 00yUYeHHS.

Mamepuansvt u memoowvt. MeTonaMu KOMIIBIOTEPHOTO aHAJIM3a H300paKEHUI U MAITUHHOTO 00yYCHHSI CO3aHbI aITOPUT-
MBI, CIOCOOHBIE aBTOMATHUYECKH UACHTU(HUINPOBATh MOPCKUE Pa3nuBbl HeTu. IIst 3a1a4u CerMeHTauy H300pakeHnH
MIPUMEHSUIaCh CBepTouHas HelipoHHast ceTh U-Net. [ pa3paboTku apXUTEKTypHI HelipoceTr ObLIa HCIOIb30BaHa Ono-
mmoteka PyTorch, Harmmcannas Ha si3bike Python. B kadectBe ontumusaropa Heifpocern Ob11 BoIOpan AdamW. OOy4denue
HEHPOHHOM CeTH MPOBOANIIOCH C TIOMOLIBIO JAaTaceTa, Co31aHHOro Ha ocHOBe 8700 n3o0pakeHHH.

Pesynomameut ucciedosanus. OleHKa MPOU3BOAUTEILHOCTH OOHAPY)KEHHS Pa3IUuTON HE(TH Ha BOMHOW MOBEPXHOCTH
BBINMOJIHEHA HA ocHOBe MeTpuk [oU, Precision, Recall, Accuracy u F1 score. [IpoBeneHHbIC pacueThl ¢ HCIOIL30BAHUEM
YKa3aHHBIX METPHUK JEMOHCTPUPYIOT TOYHOCTh UAECHTU(HKAINH 0KOJI0 83—88 %, 4TO MO3BOISIET ClIENaTh BBIBOA 00 3(-
(hEeKTHBHOCTH UCIIOIb3YEMBIX AITOPUTMOB.

Oécysncoenue u 3axniouenue. Ceprounas cetb U-Net ycriemHo oOydeHa U criocoOHa J1aBaTh BBICOKYIO TOYHOCTH MPH
00OHapy>XeHNH MOPCKHX pa3iIMBOB HE(TH Ha 3aJaHHOM Jaracere. [lepcriekTnBaMu JanpHEHIINX paboT aBTOPOB SBISAETCS
CO3/IaHHE AJITOPUTMOB C MCIIOJIL30BAHUEM 0O0JIee CIIOKHOW HEHPOCETEeBOM MO U METOJJOB ayrMEHTAIMU N300paKEHHUI.

KiroueBble c10Ba: MOpCKHE CHCTEMBI, OOHApY)KCHUE Pa3inBa HEPTH, a3poPOTOCHUMKH, IITyOOKoe 00ydYeHHe, CerMeH-
tarus n3oopakennit, U-Net, ontumuzarop AdamW

duHancupoBanme. VccienoBanrue BBITOJHEHO 3a CyeT rpaHTa Poccuiickoro HayuHoro ¢onma Ne 23-21-00509,
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Introduction. Oil spills are one of the primary sources of marine pollution, exerting a negative impact on aquatic
ecosystems. Toxic chemicals present in oil can persist in the water column for extended periods and may even settle on
the seabed, influencing sedimentation rates. Oil spills may occur intentionally, for example, when cargo ships transporting
oil discharge waste oil and bilge water into the sea. However, most oil spills are accidental and generally result from
emergencies whose time, location, and scale are difficult to predict. Examples include tanker accidents and leaks from
offshore installations. Detecting and promptly addressing the consequences of oil spills require a set of modern monitoring
methods for marine ecosystems, characterized by high accuracy and efficiency [1, 2].

The identification of marine oil spills using neural network technologies has gained significant importance in recent
years for monitoring the ecological status of water bodies. Neural networks enable the efficient processing of large
volumes of data, allowing for real-time detection of changes on the ocean surface [3]. Deep learning algorithms can
identify patterns characteristic of oil spills, even in the presence of complex backgrounds and noisy data. The use of
such technologies not only enhances the speed of detection but also facilitates more accurate predictions of potential
contamination zones.

Significant progress has been made in global research on identifying oil spills on water surfaces using neural network
technologies [4-9]. Despite these advancements, challenges remain in the recognition of such structures in marine
environments, necessitating further research and development. This study is dedicated to addressing these challenges
within this field of research.

Materials and Methods. To address the task of segmenting images of oil spills on the sea surface, the study employs
the U-Net convolutional neural network for deep learning. This choice was made based on a comparative analysis of
U-Net with other networks such as FCN32, SegNet, and DilatedSegNet for recognizing structures on water surfaces [10, 11].
The network architecture was developed using the PyTorch library, implemented in Python.

Optimization methods play a crucial role in artificial neural networks, significantly influencing the training process.
The final accuracy of a neural network depends on aligning the weights of artificial neurons with the loss function,
which must be minimized with each epoch. Faster convergence to the global minimum enhances recognition accuracy
and reduces training time. AdamW, one of the most effective optimization algorithms for training neural networks, was
selected as the optimizer. AdamW adjusts the learning rate for each network weight individually during training. A
modified gradient descent algorithm was applied to minimize the loss function. The following parameters were used:
batch size — 64, momentum — 0.9, and learning rate — 0.001.

The neural network was trained on a dataset comprising 8,700 images obtained through aerial photography. Before
training, the data were split into the following subsets: 90 % for training, 5 % for validation, and 5 % for testing.
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Fig.1 and 2 present the accuracy and loss graphs during the training and validation stages of the neural network model.
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Fig. 3. Numerical experiments conducted on aerial photographs:
a — Input images; b — Image masks; ¢ — Segmentation results
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For color-based segmentation, the RGB model was used, incorporating the following values: Rainbow oil (55, 255,
255), silver oil (155, 255, 255), brown oil (180, 180, 180), black oil (0, 0, 0), and background (255, 255, 255). A specific
spectrum was selected to identify each oil type.

To evaluate the performance of the automated classifiers, widely used metrics in detection and segmentation tasks
were applied, including IoU, Precision, Recall, Accuracy, and F1 score.

Table 1
Model Accuracy for the Dataset Under Study
Neural Network Model IoU Precision Recall Accuracy F1 score
Detection Accuracy of Qil 0.83 0.86 0.88 0.85 0.87
Spills from Aerial Photographs

The data from Table 1 indicates that the achieved accuracy using the mentioned metrics ranges from 83 % to 88 %,
demonstrating not only successful detection of oil spills but also their type identification — an aspect that is significantly
overlooked in this field of study. Calculations were performed using an NVIDIA GeForce RTX 4090 graphics processor.

Discussion and Conclusion. The results of this study address the challenge of detecting and segmenting marine oil
spills using deep learning structures. Semantic segmentation was performed using a fully convolutional U-Net network.
The recognition accuracy for these structures on the water surface was over 83 % (as calculated using metrics such as loU,
Precision, Recall, Accuracy, and F1 score), showcasing the effectiveness of the employed algorithms.

Future work by the authors includes the development of algorithms using more complex neural network models
and image augmentation methods. The authors extend their gratitude for the extensive dataset provided by international
colleagues [12], which enabled the experimental part of this study.

References

1. Sidoryakina V.V. Mathematical model of the process of oil pollution spreading in coastal marine systems. Computational
Mathematics and Information Technologies. 2023;7(4):39—46. (In Russ.). https://doi.org/10.23947/2587-8999-2023-7-4-39-46

2. Sidoryakina V., Filina A. A set of tools for predictive modeling of the spatial distribution of oil pollution. E3S Web
of Conferences. 2024;592:04017. https://doi.org/10.1051/e3sconf/202459204017

3. Muratov M.\V., Konov D.S., Petrov D.I., Petrov [.B. Application of convolutional neural networks for searching and
determining physical characteristics of heterogeneities in the geological environment based on seismic data. Mathematical
notes of NEFU. 2023;30(1):101-113. (In Russ.). https://doi.org/10.25587/SVFU.2023.87.50.008

4. Huang X., Zhang B., Perrie W., Lu Y., Wang C. A novel deep learning method for marine oil spill detection from satellite
synthetic aperture radar imagery. Marine Pollution Bulletin. 2022;179:11366. https://doi.org/10.1016/j.marpolbul.2022.113666

5. Rousso R., Katz N., Sharon G., Glizerin Y., Kosman E., Shuster A. Automatic Recognition of Oil Spills Using
Neural Networks and Classic Image Processing. Water. 2022;14:1127. https://doi.org/10.3390/w14071127

6. Favorskaya M., Nishchhal N. Verification of Marine Oil Spills Using Aerial Images Based on Deep Learning
Methods. Informatics and Automation. 2022; 21(5):937-962. https://doi.org/10.15622/ia.21.5.4

7. Zeng K., Wang Y. A Deep Convolutional Neural Network for Oil Spill Detection from Spaceborne SAR Images.
Remote Sens. 2020;12:1015. https://doi.org/10.3390/rs12061015

8. Yekeen S.T., Balogun A.L. Automated Marine Oil Spill Detection Using Deep Learning Instance
Segmentation Model. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020;XLIII-B3-2020:1271-1276.
https://doi.org/10.5194/isprs-archives-XLII1-B3-2020-1271-2020

9. Safin M.A., Bikbulatov R.I., Pirogova A.M. Improving the efficiency of automatic identification of oil spills using
unmanned aerial vehicles. Engineering Bulletin of the Don. 2022;12. (In Russ.). URL: ivdon.ru/ru/magazine/archive/
nl12y2022/8046 (accessed: 25.11.2024).

10. Sukhinov A., Sidoryakina V., Solomakha D. Identification of plankton populations in the surface waters of
the Azov Sea based on neural network structures of various architectures. BIO Web of Conferences. 2024;141:03003.
https://doi.org/10.1051/bioconf/202414103003

11. Sukhinov A.I., Sidoryakina V.V., Solomakha D.A. Identification of plankton populations on the surface of marine

systems based on machine learning methods. Priority areas for the development of science and education in the context
of the formation of technological sovereignty: materials of the International scientific and practical conference. Rostov-
on-Don: DSTU-Print; 2024. P. 272-277. (In Russ.)

47


https://doi.org/10.23947/2587-8999-2023-7-4-39-46
https://doi.org/10.1051/e3sconf/202459204017
https://doi.org/10.25587/SVFU.2023.87.50.008
https://doi.org/10.1016/j.marpolbul.2022.113666
https://doi.org/10.3390/w14071127
https://doi.org/10.15622/ia.21.5.4
https://doi.org/10.3390/rs12061015
https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-1271-2020
https://doi.org/10.1051/bioconf/202414103003

48

Sidoryakina V.V. et al. Identification of Marine Oil Spills Using Neural Network Technologies

12. Bui N.A., Oh Y.G., Lee L.P. Oil spill detection and classification through deep learning and tailored data
augmentation. International Journal of Applied Earth Observation and Geoinformation. 2024;129:103845.
https://doi.org/10.1016/j.jag.2024.103845

About the Authors:

Valentina V. Sidoryakina, Cand. Sci. (Phys. — math.), Associate Professor at the Department of Mathematics and
Computer Science, Don State Technical University (1, Gagarin Sq., Rostov-on-Don, 344003, Russian Federation);
Associate Professor at the Department of Mathematics and Physics, Taganrog Institute named after A.P. Chekhov (branch)
of RSUE (RINH) (347936, Russian Federation, Taganrog, Initsiativnaya Str., 48), ORCID, SPIN-code, ResearcherID,
MathSciNet, ScopusID, cvv9@mail.ru

Denis A. Solomakha, 4th year student at the Department of Mathematics and Computer Science, Don State Technical
University (1, Gagarin Sq., Rostov-on-Don, 344003, Russian Federation), SPIN-code, solomakha.05@yandex.ru

Claimed Contributorship: the authors contributed equally to this article.
Conflict of Interest Statement: the authors declare no conflict of interest.

All authors have read and approved the final manuscript.

00 asmopax:

Banentuna BnagnmvupoBHa CHIOpsIKMHA, KaHIUIAT (U3MKO-MAaTeMaTHYEeCKHX HayK, JOLEHT Kadeapsl Marema-
THKH M MHQpOpMAaTHKU J[OHCKOTO ToCylapcTBEHHOTo TexHmueckoro yHuBepcurera (344003, Poccuiickas deneparus,
. PocroB-na-Jlony, mi. ['arapuna, 1); nonesnt xadeapsl mMaremMatnku ¥ (usuku TaraHpOrcKOro MHCTHTYTa MMEHH
A.II. Yexona ((pumuana) PocTOBCKOTO rocynapcTBEHHOTO 3KOHOMUYECKoro yHUBepeuteta (347936, Poccuiickas deneparys,
r. Taranpor, yn. Uaunuarusras, 48), ORCID, SPIN-kon, ResearcherID, MathSciNet, ScopusID, cvv9@mail.ru

Jennc AnaroaneBuu Cosomaxa, CTyA€HT Kadeapsl MaTeMaTHKH M WH(OpMaTHKH JJOHCKOTO rocyapcTBEHHOTO
TexHu4yeckoro yHuBepcurera (344003, Poccuiickast ®enepaums, T. Pocros-Ha-Ilony, min. [arapuna, 1), SPIN-kox,

solomakha.05@yandex.ru

3anenennslii 6K1a0 a8MOPos: Bee aBTOPHI C1e1aJH IKBUBAJIEHTHBIH BKJIa/J B NOATOTOBKY IyOJIHKAIIMH.
Kongnuxm unmepecos: aBTopbl 3asiBJISAIOT 00 OTCYTCTBHU KOH()JIUKTA HHTEPECOB.

Bce asmoput npouumanu u 0000punu oKoHuamMenbHbII 6APUAHM PYKORUCU.

Received / lloctynuiaa B penakuuio 30.10.2024

Reviewed / ITocTynuiia nociie penensuposanus 29.11.2024
Accepted / Ilpunsita k nyonuxanuu 06.12.2024


https://orcid.org/0000-0001-7744-015X
https://elibrary.ru/author_profile.asp?authorid=124086
https://www.researchgate.net/profile/Valentina-Sidoryakina
https://mathscinet.ams.org/mathscinet/MRAuthorID/730104
https://www.scopus.com/authid/detail.uri?authorId=57194681211
https://www.elibrary.ru/item.asp?id=49545197
https://orcid.org/0000-0001-7744-015X
https://elibrary.ru/author_profile.asp?authorid=124086
https://www.researchgate.net/profile/Valentina-Sidoryakina
https://mathscinet.ams.org/mathscinet/MRAuthorID/730104
https://www.scopus.com/authid/detail.uri?authorId=57194681211
https://www.elibrary.ru/item.asp?id=49545197
https://doi.org/10.1016/j.jag.2024.103845
mailto:cvv9@mail.ru
mailto:solomakha.05@yandex.ru
mailto:cvv9@mail.ru
mailto:solomakha.05@yandex.ru



