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Solution of Boundary Value Problems for Certain
Nonlinear Differential Equations Using the Bubnov-Galerkin Method

Natalya K. Volosova' , Konstantin A. Volosov’> , Aleksandra K. Volosova? , Mikhail I. Karlov?,

Dmitriy F. Pastukhov* DX, Yuriy F. Pastukhov*
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Abstract

Introduction. This study investigates the possibility of numerically solving a boundary value problem with a nonlinear
differential equation, continuous coefficients, and a right-hand side using the modified Bubnov-Galerkin method. In the
problem formulation, the partial derivatives of the equation’s coefficients are continuous functions of all arguments. The
order of the nonlinear differential equation # is strictly less than the number of coordinate functions m.

Materials and Methods. To numerically solve the nonlinear boundary value problem, the modified Petrov-Galerkin
method and the uniqueness property of decomposing a smooth function into a system of linearly independent polynomial
basis functions on the interval [—1,1] with a unit Chebyshev norm for each function in the system are used. The system
of linear algebraic equations includes linearly independent boundary conditions. The matrix elements and the right-
hand side of the system depend on the simple iteration index s. The coefficient vector of the solution decomposition
into basis functions also depends on the index s. The inverse matrix of the system was computed using the Msimsl
linear algebra library in Fortran.

Results. Sufficient conditions for the existence and uniqueness of the solution to the boundary value problem with a
nonlinear differential equation using the simple iteration method have been formulated. When the sufficient conditions are
met, the decomposition coefficients decrease absolutely as the basis function index increases.

Discussion and Conclusion. Three boundary value problems with a second-order nonlinear equation and one problem
with a third-order equation were solved exactly. The analytical solutions were compared with numerical solutions, with
the uniform norm of the difference having an order of 1073, 10", 10'%, 10'°, respectively. The modified Bubnov-
Galerkin method allows for solving each branch of a multivalued function in boundary value problems with nonlinear
differential equations.

Keywords: hydrodynamics, mechanics, numerical methods, nonlinear differential equations, boundary value problems,
Galerkin method
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OPMZMHLUZbHoe meopemudecKkoe ucciedosamue

Pemenue kpaeBbIX 32124 ¢ HeJTUHEeHHBbIMU AU epeHunaTbHBIMUA YPABHEHUAMH
MetoaoM byoHoBa-I"asepkuna
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AHHOTAIHSA

Beeoenue. Viccnenyercs BO3MOXKHOCTD YHCJICHHOTO peElICHWs] MOIM(HIMPOBAaHHBIM MeToioM byOHoBa-I anepkuHa
KpaeBol 3amaun ¢ HeJMHEHHBIM An(epeHInaIbHBIM YpaBHEHHEM, HEMPEePhIBHBIME KO (UIMEHTaMI W TIPABOA YACTHIO.
B nocraHoBKe 3a/1auM 4acTHBIE POU3BOIHBIE KOA(D(DHIIMEHTOB YpaBHEHHS SBJISIOTCS] HETIPEPBIBHBIMU (DYHKIIMSIMH TI0 BCEM
aprymenTam. [Topsimok HermHeHHOro TuddepeHITHaTEHOTO YPAaBHEHHS 71 CTPOTO MEHBIIIE YKCIIAa KOOPANHATHBIX (DYHKIIUH 1.
Mamepuanst u memoosl. [l YICICHHOTO PEIICHUS HEIWHEHHOM KpaeBoil 3a1auy UCIIOIBE30BaH MOIU(PUIINPOBAHHBII
meton [lerpoBa-I"anepkuna 1 uest eTMHCTBEHHOCTH Pa3JIOKECHUS T KON (DYHKIHH 110 CHCTEME JITHEHHO He3aBHCHUMBIX
0a3uCHBIX (YHKIMH CTENeHHOro BHAa Ha oTpeske [—1,1] ¢ enuHnuHOW HOpMmoW YeOblmieBa Ui KXol (QyHKUHUU
CUCTeMBI. B cricTeMy TMHEHHBIX alreOpandecKiX ypaBHEHIH BKIIOUEHBI TMHEWHO HE3aBIHCUMBIC KpaeBbIe YCIIOBHSL. [Ipn
9TOM BJIEMEHTHI MaTPHIIBl U TpaBasl 4aCTh CUCTEMBI 3aBUCST OT MHJIEKCA MPOCTOi ureparuu s. OT MHIEKca § 3aBUCHT
U BEKTOP KOO (PHUIMEHTOB pa3ioKeHus1 peuieHus no 6aszucHeiM QyHkuusaM. OOpaTHas MaTpula CHCTEMbl HAXOAMIACh
6ubnnotekoil muHeHHOU anreOpsl Msimsl Ha si3p1ke Fortran.

Pezynemamut uccnedosanus. CHopMyInpoBaHbl JOCTATOYHBIE YCIOBUS CYIIECTBOBAHUS U €AMHCTBEHHOCTH PEIICHHS
KpaeBoW 3aJaul ¢ HEJIMHEHHBIM Au(PepeHInaIbHbIM YPaBHEHHEM METOAOM HPOCTON uTepauuu. [Ipu BBINONHEHUH
JOCTAaTOYHBIX YCIOBUH KOA(PPHUIINEHTHI pa3ioKeH!s a0COIIOTHO YMEHBIIAIOTCS C pOCTOM HOMepa 0a3uCcHON (yHKIIHN.

Oécyscoenue u 3akniouenue. ToUHO pEIICHB! TPU KPAEBBIX 33Jadll ¢ HEJIMHEHHBIM YpaBHEHHEM BTOPOTO IOPSAKA U
OJlHA 3aJiaya C YpPaBHEHHEM TPEThEro MNOpsAKa. AHaJUTUUYECKHE PELICHUS CPaBHEHBI C YHMCICHHBIMU PELICHUSIMHU,
paBHOMEpHast HopMa pasHocTH uMeet mopsimok 10713, 107!, 10719 10 coorBercTBeHHO. MOMMMDUIIMPOBAHHBIH METO
ByOnoBa-I"anepkiHa MO3BOJSIET HAXOANUTH PEUICHHE KaXJOW BETBM MHOTO3HAYHOW (YHKIMH B KPaeBBIX 3ajadax C
HeJMHEHHBIMU T depeHIHaNTbHBIME yPaBHEHUSIMH.

KiroueBble ciioBa: THAPOJANHAMHKKA, MCXAaHHKaA, YHCIICHHbBIC MCTO/bI, HEJIMHEHHBIC Z[I/I(l)(l)epeHL[I/IaHLHLIC YpaBHCHUA,
KpaeBbIC 3a/la4u, METO FanepKI/IHa

Juast uuTupoBanus. Bonocosa H K., Bonocos KA., BomocoBa A.K., Kapnos M.H., ITactyxoB I.9.,
[MactyxoB }0.®. Pemienne kpaeBbIX 3a7ad Ui HEKOTOPHIX HENMHEHHBIX U (GEepeHINATbHBIX —YpaBHCHUH
meronoM byOHoBa-TI'anepkuna. Computational Mathematics and Information Technologies. 2025;9(1):7-19.
https://doi.org/10.23947/2587-8999-2025-9-1-7-19

Introduction. Various methods are known for solving boundary value problems on an interval with a nonlinear
differential equation, such as Newton’s method [1, p. 460]. Methods for solving boundary value problems in
hydrodynamics and mechanics are also presented in [2, 3]. The methods for solving nonlinear boundary value problems
share many similarities with those used for linear problems [1, p. 458]. In this study, the modified Bubnov-Galerkin
method, previously proposed in [4, 5] for solving boundary value problems with linear differential equations, has been
extended to the case of boundary value problems with nonlinear differential equations.

In this work, any branch (graph) of a smooth solution of a nonlinear differential equation is represented as a linear
combination of polynomial-type basis functions (i. e., the numerical solution is expressed in functional form). All basis
functions are defined on the interval [—1,1] with a unit Chebyshev norm.

The solution of the nonlinear boundary value problem is reduced to the simple iteration method. At each iteration,
a system of linear algebraic equations (SLAE) is solved, where the matrix elements and the right-hand side coefficients
depend on the iteration index s. For a third-order equation, the SLAE includes n—1 linearly independent boundary
conditions and m—n+1 orthogonality conditions for the residual of the differential equation to the basis functions [1, 6]
(n is the order of the ODE, m is the number of basis functions).

New results and ideas for solving boundary value problems, including high-accuracy solutions and problems in
complex domains, have been obtained in [7—10].


https://orcid.org/0000-0002-7063-0513
https://orcid.org/0000-0002-7955-0587
https://orcid.org/0000-0002-0538-2445
https://orcid.org/0000-0003-1398-6238
https://orcid.org/0000-0001-8548-6959
mailto:%D0%B4dmitrij.pastuhov@mail.ru
https://doi.org/10.23947/2587-8999-2025-9-1-7-19

Comp ional Mathematics and Information Technologies. 2025;9(1):7—19. eISSN 2587-8999

Materials and Methods

Problem Statement. Let the unknown function u(x), belonging to the class of functions that are n-times continuously
differentiable on the interval C"[a, b], be the solution of a boundary value problem with a nonlinear differential equation
of order n with variable coefficients g, (x,u(x),u (x),...,u"” (x)) € Cla,b],i =0,n

Llu(x)]= f(x,u(x)), x € (a,b),u(x) € (c,d)

g M
Lu() = {Zgl (o (x)... “(x))%jum,

) (ocilu(i) (a)+Bu"” (b)) =Y, u=Ln. 2)

i=0

In the boundary value problem (1)—(2), the given functions g, (x,u(x),u (x),....u'”(x)) € C[a,b],i = 0,n are continuous
on the interval [a, b] with respect to all arguments. Each term of the nonlinear equation (1) can be expressed such that the

coefficient g, (x,u(x),u (x),...,u"” (x)),i =0,n, multiplying the derivative a”u(_x)
function u”(x), p=0,i up to order i at most. dx’

For simplicity, the boundary conditions (2) at the points x=a, x=>b are given as linear forms with respect to the function
and its derivatives up to order n—1 similar to a linear boundary value problem. To ensure the well-posedness of problem
(1), the total number of boundary conditions must be equal to n. The coefficient matrices (xL,BL, i=0,n—1u= I,_n, as
well as the values of y,, p=1,n are predefined. To uniquely determine a specific branch of the nonlinear solution of
equation (1), one or more additional conditions can be imposed on the boundary conditions of type (2).

Assume that the coefficients g, (x,u(x),u (x),...,u" (x)) € C[a,b],i =0,n are continuously differentiable with respect

, depends only on derivatives of the

0g; n -
oy € Cle,,d,],p=0,i.

to their variables u®), i. e. 5
u

We generalize the Bubnov-Galerkin method, proposed in [4, 5] for solving boundary value problems with linear
ordinary differential equations, to the case of a nonlinear differential equation. Suppose that any smooth function u(x) or
its specific branch (a solution of equation (1)) can be uniquely represented as a linear combination of polynomial basis
functions [4, 5]:

(o0}, = {(2—xb_—aa_bj xeladli- W} Io 0l = max o ol =1vi=0m ®
m - 2(x—c J a+b
u(x):u(c)+z¢j(x)DjZM(C)-FZ( h—a J Dj’C: > . (4)

The goal of the numerical algorithm is to determine the decomposition vector D, for solving the boundary value
problem (1)—(2) using the basis functions ¢j(x). We define the residual of the nonlinear equation (1) and take into account
the representation of its solution using formula (4):

R(u(x)) = L{u(x)] = 1 (x,u(x)) = (zgi Cru(x),u (x),u” (X))j—);]u(X) = f(xu(x)) =

i=0

=" D, > g (x,u(x), 4 (x),....u" (x)) ¢()+go(xu(x>) w(x) =/ (x,u(x)) = (5)
=D, Y & (), (x),..,u” () ¢()—f(x u(x)), £ u(x)) = f () = & (x,u(x)) -u(x).

j=1 i=1

We require [1, 4-6] that the residual R(u(x)) be orthogonal to the maximum number of m—n+1 basis functions (where
m is the number of basis coordinate functions and # is the order of the differential equation):

(R(u(x)), ¢, (x)) =0 <k =0,m—n,
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<ZDjzgi(x,u(x),u'(x),. u?(x)) d) (x )—f( Lu(x)), ¢k(x)>:0Vk:0,m—n<:>
Jj=1 i=1 (5)

4D, = = (70,6, ()

- <Zgi(x,u(x),u'(x),...,u

i=1

d',(x)
dx'

(x)>,k =0,m—n.

Other linearly independent boundary conditions (2) for the system of linear algebraic equations (5) should be selected
from the set of admissible functions of the original boundary problem (1) [11].

We will solve the system of linear algebraic equations (5), where the matrix coefficients and the coefficients of the right-
hand side depend implicitly on the solution, using the simple iteration method. To do this, we will consider the implicit
dependence of the solution on the decomposition vector D;,s =0,1,2,...,j = 1,m, (4) by the system of basis functions with
iteration number s.

From (5) we obtain:

=4, ()= A (D) o= ) = o u(0)). D= 7,

iA,w. (DS)-D?+1 =F, (DS),j:L_m, k=0,m—n, D" = 4" (DS)-F(DS),S =0,1,2,.... (6)

J

Let us denote the limiting values

EHI;A(D‘Y): ;1, }EEF(D‘T):I;,}LIED‘ _D.

We will write the limiting form of equation (6):

E *

AD=F. @)

Theorem 1 (sufficient conditions for the existence and uniqueness of the solution D of equation (7) in the simple
iteration (6)). o
Let the coefficients of equation (1) be continuous g, (x,u(x),u (x),...,u""(x)) € C[a,b],i =0,n and continuously

Clc,.d,],p=0,i,i=1n. Let the limiting

matrix 4 in (7), computed according to formulas (5), be non-singular. Let the conditions for a contraction mapping

*

S

*

q= |Gll<1 be satisfied. Then, in the boundary value problem (1) with boundary conditions (2), there exists a

unique solution. The residual norm decreases according to the formula ||5D“ " < ||6D°| ; (1 - q) , where s is the iteration
number in the algorithm (6).

Proof. Consider the increment of equation (6) in the vicinity of all its limiting values:

* ok

AD = F:>6AD+A8D OF,

where 04’ = AY A is the increment of the matrix of dimension m ><m A is the matrix of dimension m xm;
D! =D — D is the increment of the vector of dimension m; 8F° = F* F is the increment of the vector of dimension
m. Introduce an integer index = 1 m and consider the increment of the specified quantities 84°, 8/* as a function of the
increment of the component of the vector 60°, using formula (5): 8D = D; — D,

SA,(J(SD;)5:<ZD Zz %, ¢<p>(x) 0% (x), ¢,{(x)>6D;,upEu(m(x) t=Lm, k=0,n—m,j=1m.

zlpO

In the last formula, summation over the index p, has been added because the coefficients of the nonlinear ODE
g, (x,u(x),u (x),...,u"” (x)) depend on the function and its derivatives up to the i-th order, inclusively. The effective right-
hand side of the nonlinear equation f(x,u(x)) = f(x,u(x))— g,(x,u(x))-u(x) depends only on the function u(x):

5F, (3D;) = <W¢ (s <x>>6D:,r “im.
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%=1 *
We obtain 8D°*' = 4 (SF T -84° Dj and replace the last equation with a similar equation of simple iteration

5D =(4) (8F° ~34°D*)=(£") G*8D". (8)

In equation (8)

Ay, = <Z”: g (xu’ (x),° (x),.c0yu™ (x) dgj fx) , (x)>,k =0,m—-n,j= l,_, )
P X

i=l p=0

G = <8f t, ”(x))d),( )¢k(x)> <ZDAZZag L4 ()40 (), ¢k(x)> k=Om-nt=Lm, (10

8D =8D =0, t=m—n+1,m the last rows of the matrix coefficients and the coefficients of the right-hand side in
equation (5) are determined by the boundary conditions and are constant numbers. In formula (10), ¢!”’ denotes the p-th order
derivative of the basis coordinate function with index #. Similarly, for ¢ (x) . Explicit formulas ¢ (x) are provided in [4, 5].
Let us estimate the right and left sides of equation (8)
«\—1
“{(4

[sp1] < (Af)’l‘ G
<Ls=012,..

(11)

a0l =) o

by the norm in complete metric spaces [12]. If the compression parameter

* _1 *
ol ;
for the mapping 8§D° — §D**! = ( A )71 G’8D’ is less than one, the solution to the boundary value problem (1)—(2) exists

and is unique.
According to the work of A.N. Kolmogorov and S.V. Fomin [12, p. 87], the residual norm decreases according to the

<fortlar 1-0). [so|=or -0 =o( 0.0}
Theorem 1 is proved.

Let us consider three examples of solving a nonlinear boundary value problem with a second-order equation and one
example with a third-order equation.
Example 1.

ofe ot

formula ||8DS

we' (x)—u -u'(x) =1’ (x) = f(x,u),
u(0)=1u(l)=e€"?, x €[0,1]. (12)

The exact solution of the problem was obtained by considering the transformations:

. L 5 u ' .ouu —(u')2
w-u' (X)—u -u(x)=w’(x) | —| =(Inux)) =————=1<
u u
)C2 — ﬁ+C1x —_ 1 1
In(u(x)) =7+C,)C+C2 sSu(x)=Ce? ,u(0)=1<C, =Lu()=e"” < 5+ C = 5:> C =0.

X2

As a result, the exact solution of Example (1) is of the form u(x)=e? .

Let us convert the condition of the example to a numerical algorithm (5)—(6). It is also necessary to specify the
initial function — a solution that satisfies the Dirichlet boundary conditions, i. e., the given values of the function at the
boundaries of the interval.

We obtain that

u0+u

W (x) =2 1 g ()Df =

¢](x)( j,Df:...:D,?:O, (13)

since

(@) =Ly (b) =L’ (@) =21 (u";uoj:uo,u"(b)="°§”"+(u";u0j=u,,

and the boundary conditions for the initial function u°(x) are satisfied. The coefficients and the right-hand side in
Example 1 are as follows:

11



12

Volosova N.K. et al. Solving Boundary Value Problems with Nonlinear Differential Equations ...

gz(x,u,u',u") =u,g (x,u,u') = —u',go(x,u) =0, f(x,u) =u2(x).

In the numerical algorithm, in addition to formulas (5)—(6), we use the detailed formulas from the work [5], which
account for the Dirichlet boundary conditions for the second-order linear differential equation:

m

s

s s+l _ S . —
Zai’ij =S ,.,z—O,m 1 (14)

J=1

Here, the elements of the matrix a; ,,i=0,m—1,j = 1,m and the coefficients of the right-hand side 7, of the system

of equations (14) are:

2J?

(L';.4,)./ =1(mod2),i =0,m =2,
oo <L (9, —1),¢,.>,j =0(mod2),i = 0,m -2,

a’,
" Li=m-1,j=1(mod2),
0,i=m—1,j=0(mod2),
o (U, tu, L
f(X,u )_L —— ,(]),-(x) ,l=0,m—2,
— 2
=t
Bt m-1.
2

However, the operator L“d)j for the matrix coefficients @, in (14) is nonlinear and is computed using formula (1), unlike
in [5]. The absolute and relative Chebyshev vector norm of the residual for the problem:

num exact
—u

num exact

u
=1.072313895664201E - 013, < =6.503912545562317E - 014.

c exact
||u

c

The number of intervals for calculating the scalar product of two functions in (14) is #n,=20, the number of coordinate
functions m=15, and the number of iterations n =30.

The scalar product of functions was computed using the formulas from [5]:
b-a

n

b n
<J’17y2>:J.yl(x)yz(x)dle()h;yl (xi)yz(xi)ci"'o(hzz),nl =20s,h = ,SEN, (15)

1145302367137 ... .

,ifi=0ori=n,,
48426042384720
1145302367137 , if (i = 0m0d20) and (0 <i< nl),
24213021192360
335582304250 , if (i=1mod20) or (i =19mod20),
1470076286679
_19467909708875, if (i=2mod20) or (i =18mod20),
41162136027012
—8274871497250, if (i=3mod20) or (i =17mod20),
3430178002251
-413929922392625

, if (i=4mod20) or (i =16mod20),
54882848036016 (16)

C =
20652939811062 it (; _ Smod20) or (i =15mod20),
2450127144465

155790561130375 , if (i=6mod20) or (i =14mod20),
3430178002251
286953364893000 it (1 = 7mod 20) or (i =13mod20),
3430178002251
202376261017625 4t (; _ 8 mod 20) or (i =12mod20),
3920203431144
1704056522480500 ¢ (; ~ 9mod 20) or (i =11mod20),
10290534006753
1684005984173647 if i =10mod 20,
9355030915230
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The results of the program (Example 1) are presented in Table 1.

Table 1
Numerical u"** and exact " solutions of the problem (12)

-x[ uinumerical uiexucl uinumerifal _ uiexacl
0.0000000000000E+000 1.00000000000000 1.00000000000000 0.00000E+000
5.0000000000000E-002 1.00125078157569 1.00125078157562 6.533608E-014

0.100000000000000 1.00501252085944 1.00501252085940 3.497831E-014
0.150000000000000 1.01131351922362 1.01131351922361 5.002183E-015
0.200000000000000 1.02020134002678 1.02020134002676 2.150048E-014
0.250000000000000 1.03174340749917 1.03174340749910 7.15878E-014
0.300000000000000 1.04602785990882 1.04602785990872 1.072313E-013
0.350000000000000 1.06316467213420 1.06316467213410 9.834472E-014
0.400000000000000 1.08328706767501 1.08328706767496 5.269027E-014
0.450000000000000 1.10655324549790 1.10655324549789 4.473201E-015
0.500000000000000 1.13314845306681 1.13314845306683 —1.17629E-014
0.550000000000000 1.16328744359303 1.16328744359302 1.449849E-014
0.600000000000000 1.19721736312188 1.19721736312181 6.498762E-014
0.650000000000000 1.23522112174449 1.23522112174439 1.029619E-013
0.700000000000000 1.27762131320499 1.27762131320489 1.004986E-013
0.750000000000000 1.32478475872893 1.32478475872887 6.074600E-014
0.800000000000000 1.37712776433597 1.37712776433596 1.600000E-014
0.850000000000000 1.43512219658388 1.43512219658387 5.959208E-015
0.900000000000000 1.49930250005679 1.49930250005677 2.719775E-014
0.950000000000000 1.57027380147662 1.57027380147660 1.296022E-014

1.00000000000000 1.64872127070013 1.64872127070013 4.737963E-017

The numerical solution of the problem (1)—~(2) can be brought to the form (17) by transforming formula (4) with
Dirichlet boundary conditions [4]:

() :(ua ;rub)JriH(Z?;-_i‘bjj +[‘1+(2—1)j+] HZ),-. (17)

J=1

In (17), the limiting values D; of the decomposition vector of the solution by basis functions are used, and D; is the
solution of the system of linear algebraic equations (14) on the last iteration.
Example 2.

{2“ -u"(x)+2u' -u'(x) =X= f(xau)> (18)

u()=Lu(2)=2, x<[1,2].
Since

(uz(x))‘ =2uu, (uz(x))" = 2(u')2 +2uu’ =x=u’(x)= %+ Cx+C, &

3 u(l)=l<:>l=l+C +C C +C =§
¥ 6 1 2 1 2 6 11
u(x)=%,[—+Cx+0C,, & s C=—,C,=-1.
6 4 8 6

u(2):2<:>4:§+2C1+C2 2C1+C2:§

3 J—
it follows that u(x) =, /Lw is the exact solution of the boundary value problem (18).

Note that in this case, the boundary conditions (18) unambiguously choose one branch of the solution; otherwise,
additional conditions can be set to select one branch.

13
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The number of intervals for calculating the scalar product of two functions in (18) is #,=100, the number of coordinate
functions m=18, and the number of iterations n =30, g, (x,u,uu')= 2u, g, (x,u,u’)=2u, go(x,u) =0, f(x,u) =x.

Table 2

Numerical u"** and exact u *““ solutions of the problem (18)

X

i

numerical
ui

u exact
i

numerical exact
ui - ul.

1.00000000000000

1.00000000000000

1.00000000000000

0.0000000000E+000

1.05000000000000

1.05732563573

1.05732563574331

—9.187983707E-012

1.10000000000000

1.11287914887

1.1128791488746

3.6390890301E-012

1.15000000000000

1.16696722317

1.16696722319009

—1.377342684E-011

1.20000000000000

1.21983605454

1.21983605455815

—1.174038644E-011

1.25000000000000

1.27168687184

1.27168687183599

4.801492536E-012

1.30000000000000

1.32268665978

1.32268665979513

—8.256284544E-012

1.35000000000000

1.37297578272

1.37297578274345

—2,059930004E-011

1.40000000000000

1.42267353949

1.42267353950230

—5.676792369E-012

1.45000000000000

1.47188229828

1.47188229828339

5.4383164638E-012

1.50000000000000

1.52069063256

1.52069063257455

—8.254952277E-012

1.55000000000000

1.56917573902

1.56917573904264

—1.900479773E-011

1.60000000000000

1.61740532952

1.61740532953246

—6.780798145E-012

1.65000000000000

1.66543913128

1.66543913128040

3.2989166953E-012

1.70000000000000

1.71333009078

1.71333009078811

—7.917888567E-012

1.75000000000000

1.76112535043

1.76112535045067

—1.482725053E-011

1.80000000000000

1.80886704873

1.80886704873520

—2.779998453E-012

1.85000000000000

1.85659298177

1.85659298178141

—1.615374500E-012

1.90000000000000

1.90433715501

1.90433715502271

—6.362910198E-012

1.95000000000000

1.95213024668

1.95213024667925

6.6588956570E-012

2.00000000000000

2.00000000000000

2.00000000000000

0.0000000000E+000

The Chebyshev vector norm (absolute and relative norms) of the residual for the problem in Example (18) are:

num exact
—u

u

num exact
—u

u

=2.059930004350008E -011, < =1.029965002175004E - 011.

c exact

c

Note. If the boundary conditions in Example (18) are chosen as u(1) =—1, u(2) =-2, and the exact solution of the

3
problemiis y(x) = — /w , the program gives the same Chebyshev vector norm of the residual due to the symmetry
6

of Example (18) with respect to the transformation (x,u) — (x,—u).

Therefore, the algorithm using formulas (1), (5), (6), (13), (15), (16), (17) for the nonlinear Dirichlet boundary value
problem with a second-order equation finds the solution for each branch of the multi-valued solution function. If the
boundary conditions for the branches coincide, an additional condition can be selected, for example, the value of the

. . . . a+b . . . . .
function at the midpoint of the interval u(c)= u( J and this condition can be included in the system of linear

algebraic equations (14), thereby reducing the number of orthogonality conditions for the residual of the ODE with
respect to the basis functions by 1.
Example 3.

{cos(u) u (x)—sin(u)u -u' (x) =2 = f(x,u), (19)

u(0)=0,u(l)==n/6, x €[0,1].
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Since

"

(sin(u))v = cos(u)u , (sin(u)) =cos(u)u — sin(u)(u' )2 =2 < sin(u(x)) =x" +Cx+C, =

u(x) = arcsin(x2 +Cx+C, ),

u(0) =0 < 0 =arcsin(C,)

1 =
u)=n/6& —=1+C +C,

C,=0

1< C

C1+C2 2—5

The function u(x) = arcsin (xz - %J is the exact solution to the problem (19).

———.C,=0.

In Example (19) &, (x,u,u ,u’) = cos(u), g, (x,u,u’) =—sin(u)u , g,(x,u) =0, f(x,u) = 2. The number of intervals for
the scalar product of two functions is #,=120, the number of coordinate functions is m=17, and the number of iterations

is n,=30.

Numerical ui”“’""”’"“’ and exact u ot

solutions of the problem (19)

Table 3

X.

i

numerical
ui

exact
ui

numerical exact
ut. - ul.

0.0000000E+000

0.0000000000E+000

0.00000000000E+000

0.00000E+000

4.16666666E-002

—1.90983832E-002

—-1.9098383217E-002

—-3.18418E-013

8.33333333E-002

—3.47292032E-002

—3.47292030514E-002

—2.030325E-010

0.125000000000

—4.68921831E-002

—4.68921831332E-002

—1.491510E-011

0.166666666666

—5.55841730E-002

—5.5584173280E-002

2.1348351E-010

0.208333333333 —6.08013439E-002 —6.08013437340E-002 —2.052915E-010
0.250000000000 —6.25407621E-002 —6.25407617964E-002 —-3.182648E-010
0.291666666666 —6.08013435E-002 —6.0801343734E-002 1.7451315E-010
0.333333333333 —5.55841729E-002 —5.5584173280E-002 3.3926163E-010
0.375000000000 —4.68921832E-002 —4.6892183133E-002 -1.666960E-010
0.416666666666 —-3.47292035E-002 —-3.47292030514E-002 —5.013826E-010
0.458333333333 —1.90983833E-002 —-1.90983832179E-002 —8.629465E-011
0.500000000000 4.30824846E-010 0.00000000000E+000 4.3082484E-010
0.541666666666 2.25713611E-002 2.25713609537E-002 2,0268367E-010
0.583333333333 4.86302760E-002 4.86302764989E-002 —4.379981E-010
0.625000000000 7.82046914E-002 7.82046919347E-002 —4.480854E-010
0.666666666666 0.1113410145 0.111341014340964 2.1420220E-010
0.708333333333 0.1481103594 0.148110359030227 3.9991367E-010
0.750000000000 0.1886163853 0.188616386175404 —2.500614E-010
0.791666666666 0.2330054316 0.233005432127055 —4.563276E-010
0.833333333333 0.2814800734 0.281480073230845 2.1672891E-010
0.875000000000 0.3343179941 0.334317994036368 1.4096033E-010
0.916666666666 0.3918993389 0.391899339315036 —3.222679E-010
0.958333333333 0.4547481928 0.454748192610442 2.4028019E-010
1.000000000000 0.523598775598299 0.523598775598299 2.8514517E-017

The Chebyshev vector norm of the residual for the problem in Example (19) is

num exact
e

c

= 5.602360454820782E-010 .

Example 4 (with a nonlinear third-order differential equation).

—sin(u)-u" (x)—3cos(u) -u -u'(x) +sin(u).(u')2 ' =6= f(x,u),
u(0)=n/3,u(l)=n/2,u(1)=0,xe[0,1]]>uec[rn/3,n/2].

(20)

15
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Since
(cos(u))' = —sin(u)u, (cos(u))" = —sin(u)u’ —cos(u)(u' )2 ,(cos(u))m = —sin(u)u" —3cos(u)uu’ + sin(u)(u' )3 ,

cos(u) = x* +Cx* + Cyx + Cy,u(x) = arccos(x3 +C x> +Cyx +C, ),

(cos(u)) = —sin(u)u’ =3x* +2C,x +C,, u(0) =1/3 < cos(n/3)=1/2=C,,

u(l)=m/2 < cos(n/2)=0=1+C,+C, +1/2

2 C+C,=-3/2 3
, (3x +2C1x+C2) & S CG=-=
ul)=0= : 1 3420, +C, =0 (26 +C =3

—sin(u =m/2)

2
The function u(x) = arccos [x3 —% + %] = arccos (%} is the exact solution to the problem (20).

The coefficients of the differential equation in Example (20) are

g (ouu u'u’) =—sin(u), g, (x,u,u ,u’) = -3cos(u)u’, g, (x,u,u’) —sm(u)( ) 8 (x,u) =0, f(x,u)=6.
For the third-order equation, the formulas of the algorithm from the work [5] need to be modified, taking into account

the iteration index:

m JR—

Z ”Dj+l £, i=0,m—1. @1

Jj=1

where the elements of the matrix a; Hi=0m-1j= 1,_m, s=0,1,2,... and the coefficients of the right-hand side f of
the system of equations (21), considering the nonlinear form of the differential operator L*, computed using formula (1), are:

Ll ()] = Zg (v (), (' () ’---a(u“’(x))ﬁj—)ﬂu%x),
i=0

3 g e (0.’ ,...,(u“”(x))s)j—;,)@,

i=0

L'e,]

(L'¢,.9,), ifj=1(mod2),i=0,m=3,
<L‘(¢j —1),¢,.>, if j =0(mod2),i=0,m—3,
a;, =41, ifi=m—-2,j=1(mod2),

0, ifi=m—2,=0(mod2),

Jj,ifi=m-1,

<f( )— L‘(””” j ¢<x>> ifi=0,m—3,f(”°;”"j{”‘);”"jgo(x),

s u, —u

S 0 ifi=m =2,
Y 2

0, ifi=m-1.
The last row of coefficients for a,;B (21) in (21) is obtained by differentiating formula (4), since at the right end of the
interval in Example (20) «/(b=1)=0:

c > 2 (@x—a-bYT o ,
&) Zd)(x)D Z(b_fa)(( j D=0 D; +2D; +3D; +...+mD}, = 0.

b_a x=b

J=1

The number of intervals for the scalar product of two functions in (20) is #,=100, the number of coordinate functions
m=17, and the number of iterations n =30.

Table 4
Numerical u"*' and exact u*“" solutions of the problem (20)
x; uinumen’cal uiexact uim{mert’cal _ uiexact
0.00000000E+000 1.047197551196 1.047197551196 —3.118165448E-016
5.00000000E-002 1.05137830714 1.051378307162 -1.8182033E-011
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End of table 4

X.

i

numerical
Mi

exact
ui

numerical exact
H,. —U.

0.1000000000000

1.06328930398

1.063289303975

8.411912659E-012

0.1500000000000

1.08193034985

1.081930349812

4.527497062E-011

0.2000000000000 1.10626929727 1.106269297375 —1.03325620E-010
0.2500000000000 1.13528395573 1.135283955730 3.742097994E-012
0.3000000000000 1.16799174328 1.167991743151 1.319257321E-010
0.3500000000000 1.20346614669 1.203466146733 —3.93724372E-011
0.4000000000000 1.24084180881 1.240841808965 —-1.47600610E-010
0.4500000000000 1.27931122393 1.279311223897 3.508758333E-011
0.5000000000000 1.31811607179 1.318116071652 1.431814589E-010
0.5500000000000 1.35653572032 1.356535720348 —2.54165034E-011
0.6000000000000 1.39387479319 1.393874793328 —1.33199911E-010
0.6500000000000 1.42945115362 1.429451153606 1.359530738E-011
0.7000000000000 1.46258526518 1.462585265086 1.018387917E-010
0.7500000000000 1.49259163483 1.492591634860 —2.76735182E-011

0.8000000000000

1.51877286350

1.518772863566

—6.40170944E-011

0.8500000000000

1.54041665402

1.540416653986

3.963527726E-011

0.9000000000000

1.55679586942

1.556795869421

—1.078461321E-013

0.9500000000000

1.56717131885

1.567171318855

—3.809447874E-012

1.000000000000

1.570796326794

1.570796326794

—6.125742274E-017

The Chebyshev vector norm (absolute and relative norms) of the residual for the problem in Example (20) are

num exact

u
= =1.454304895709992E - 010.

exact
||u

c

num exact
Jua

- =1.522944525480727E - 010,

c

Note 2. It should be noted that in the systems of linear algebraic equations (14) and (21) for the 4 examples, the library
of linear algebra msimsl in FORTRAN was used for the computation of D]F“.

Note 3. A comparison of the results of numerical solutions of the examples in this paper with the solutions of examples [4], [5]
shows that the accuracy of solving boundary value problems is achieved greater than 103—-10'* if a small number of
intervals were used in the scalar product formula (n;ﬂ) in the first example of this paper, 7,=20) and the rounding
error is not it managed to grow due to fewer calculations. If the number of intervals is large (n,=100) in the second, third
and fourth examples of this work, then the accuracy of calculations is low (107'%) due to the increase in rounding error and
its effect on the overall error.

Discussion and Conclusion. A numerical solution algorithm for the boundary value problem on the interval with
a nonlinear differential equation of order n, modified by the Bubnov-Galerkin method, is proposed. The possibility of
decomposing the smooth solution of the nonlinear problem into a system of linearly independent basis functions with a
unit Chebyshev norm on the interval [—1,1] is assumed. The number of basis functions m is greater than the order of the
differential equation 7. Formulas for the elements of the matrix and the coefficients of the right-hand side in the system
of linear algebraic equations of the second and third orders are obtained. The systems of linear algebraic equations (14)
or (21) are solved sequentially using the simple iteration method, with the number of iterations n =30. The theorem —
sufficient conditions for the existence and uniqueness of the solution of the boundary value problem with the nonlinear
ODE using the simple iteration method is proven.

Four nonlinear boundary value problems are solved analytically. The Chebyshev norm of the difference between the
exact and numerical solutions in the solved examples has an order of magnitude, 1073, 107", 107°, 10™® respectively.
This accuracy of the solution is intermediate between single 10-* and double precision 107°, and is also comparable to the
accuracy 107" of the solution of the linear boundary value problem in the work [4].
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Abstract

Introduction. This paper examines a two-dimensional spatial model of multifractional sediment transport, specifically
focusing on shallow water zones. This process can be described using an initial-boundary value problem for a parabolic
equation with nonlinear coefficients. The study employs a temporal grid linearization method with a step size t, where
nonlinear coefficients are calculated with a “lag” at the previous time layer. Previously, the well-posedness conditions
for the linearized sediment transport problem were established, and a conservative and stable finite-difference scheme
was developed and analyzed, with numerical implementations for both model and real-world problems (the Sea of Azov,
the Taganrog Bay, and the Tsimlyansk Reservoir). However, the convergence of solutions of the linearized problem to
the solution of the original nonlinear initial-boundary value problem for multifractional sediment transport had not yet
been explored. The research results presented in this paper fill this gap. Earlier, the author, together with A.I. Sukhinov,
conducted similar studies in the case where sediment fraction composition was not considered. These studies formed the
basis for obtaining new results.

Materials and Methods. The derivation of inequalities guaranteeing the convergence of the solutions of a sequence of
linearized problems to the solution of the original nonlinear problem is carried out using the method of mathematical
induction, with the application of differential equation theory.

Results. The conditions for the convergence of solutions of the linearized multifractional sediment transport problem to
the solution of the nonlinear problem in the Banach space L, norm at a rate O(t) of are determined.

Discussion and Conclusion. The obtained research results can be used for forecasting nonlinear hydrophysical
processes, improving their accuracy and reliability due to the new functional capabilities that account for physically
significant factors.

Keywords: two-dimensional spatial sediment transport model, multifractional sediment composition, shallow water
zone, nonlinear problem, linearized problem
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OPMZMHLUZbHoe meopemudecKkoe ucciedosamue

I[OCTaTO‘{HLIe Ycj1oBudA CXOAUMOCTH pemelmﬁ .J]I/IHeapI/I30BaHHOﬁ 3ala4i K pelI€eHUuI0
HMCXOJHOI HeJIMHEeliHOM 3agaun TpaHcmopTa MHOFO(bpaKIII/IOHHLIX HAHOCOB B 30H¢ MEJIKOBOIbSA

B.B. Cunopsikuna

JloHCKOM rocyiapcTBEHHBIN TEXHUUECKUN YHUBEpCUTET, I. PocToB-Ha-Jlony, Poccuiickas denepanus

P4 cvv9@mail.ru

AHHOTAIUSA

Beeoenue. PaccmaTprBaeTcs MpOCTPAHCTBEHHO-ABYMEPHAS MOJETh TPAHCIIOPTAa HAHOCOB MHOTO(PAKIIMOHHOTO CO-
CTaBa, OPUCHTUPOBAHHAS Ha 30HBI MEITKOBOABS. J{JIs1 OMMCaHUS STOTO IMPOIecca MOXKET OBITh UCTIONH30BaHA HAdaIbHO-
KpaeBas 3aJ1ada Uil MapabolnIecKoro ypaBHEHUS ¢ HeMMHEHHBIMU Koo dunnentamu. Ee nccnemopanne mpoBoIuTCs
C TIOMOIIBIO JIMHEAPU3aIlMU Ha BPEMEHHOW CETKE C IIaroM T, IPU KOTOPOW HEIMHEHHBIC KOI(PQPHUIIMECHTHI PACCUNUTHI-
BAIOTCS «C 3ama3bIBaHUEM» Ha MPEABIAYIIEM BpEeMEHHOM ciioe. JlJis JIMHeapHu30BaHHOMN 3a1a4K TPAHCIIOPTa MHOTO-
(paKIMOHHBIX HAHOCOB paHee OBLIM OMPEICIICHBI YCIOBHS KOPPEKTHOCTH, MMOCTPOCHA M HUCCIIC0BaHA KOHCEPBATHB-
Has yCTOMUYMBas pa3sHOCTHAs CXeMa, YUCICHHO pean30BaHHAS I MOJECNBHBIX M pealbHBIX 33134 (A30BCKOEe Mope
u Taranporckuii 3anmuB, Llumnsgackoe Bomoxpanmuine). OZHAKO BOIPOCH CXOAMMOCTH PEIICHUN THHEapU30BaHHON
3319 K PEUICHUI0 WCXOMHOU HETMHCHHOW HavYallbHO-KpaeBOW 3a/laud TPAHCIIOPTa MHOTO(PAKIIMOHHBEIX HAHOCOB
MMOKa OCTaBaJIUCh HE PACCMOTPECHHBIMU. Pe3ylbTaThl HCClieOBaHN, IPECTABICHHBIC B TaHHON paboTe, BOCIOIHS-
10T 3TOT mpoben. Panee aBTopoM coBMecTHO ¢ A.M. CyXHHOBBIM YIaliOCh MPOBECTH aHAJOTUYHBIC UCCICAOBAHUS
JUTSL CiTydasi, Korna ¢ppakIInOHHBIA COCTaB HAHOCOB HE YUUTHIBACTCS. DTH UCCICAOBAHUS JICTIIM B OCHOBY I MOJTY-
YeHUS HOBOTO pe3yiIbTara.

Mamepuanst u memoost. IloydeHne HEPaBEHCTB, TAPAHTUPYIOIINX CXOAUMOCTD PEIICHHUH ICTIOYKH JINHEAPU30BAHHBIX
3a/a4 K PEIICHUIO MCXOMHBIX HEJIMHEHHBIX 3ajad, MPOBOAUTCS METOJAOM MATeMaTHYeCKOW WHIYKIMH C MPHBICUYCHHEM
Teopun auddepeHInaNbHBIX YPABHCHHIMA.

Pesynomamot uccnedosanus. OnpeneseHbl yCIOBHsL CXOMUMOCTH PELICHUH JTMHEapU30BaHHOM 3a1a41 TPAHCIIOPTa HAHOCOB
MHOTO(PAKIIMOHHOTO COCTaBa K PENICHHUIO HEMMHEHHOM 3a/1a91 B HOpME 0aHaxoBOTO MPOCTPAHCTBA L, CO CKopocThIo O(T).
Obcysicoenue u 3aknroyenue. lomydeHHbIe pe3yNbTaThl UCCIEAOBAHUS MOTYT OBITh HCHOJIB30BAHBI IPH IMPOTHO3HPO-
BaHUM HEIWHEHHBIX THAPOPU3NIECKUAX MPOIECCOB, MOBBIIICHAS UX TOYHOCTH M HAIC)KHOCTH B CHJIY HAJUYHS HOBBIX
(YHKIIMOHATHHBIX BO3MOXKHOCTEH y4eTa (PH3NIeCKU BAXKHBIX (PAKTOPOB.

KioueBble ciioBa: IpOCTPaHCTBEHHO-ABYMEpPHAst MOJIENb TPAHCIIOPTa HAHOCOB, MHOTO(PAKIIMOHHBIN COCTAB HAHOCOB,
30Ha MEJIKOBO/IbsI, HEIMHEHHAs 3aa4a, TMHEeapU30BaHHAas 3a]a4a

®dunancupoBanue. VccienoBanue BBINONHEHO 3a cueT IpaHTa Poccuiickoro nHayuHoro ¢onma Ne 25-11-68060,
https://rscf.ru/project/25-11-68060

Jnst uurnposanus. Cunopsikuna B.B. JlocTarounbie yCIOBHS CXOMUMOCTH PEIIEHHH JTHHEAPH30BaHHOM 3a1au K pe-
[ICHUIO UCXOJHOW HEIMHEWHOMN 3a7aud TPAaHCIIOPTa MHOTO(PAKIIMOHHBIX HAHOCOB B 30HE MeNKOBObs. Computational
Mathematics and Information Technologies. 2025;9(1):20-30. https://doi.org/10.23947/2587-8999-2025-9-1-20-30

Introduction. One of the important and complex problems in studying sediment transport in shallow water zones
is accounting for its fractional composition. The fractional composition of sediments varies significantly depending on
the slope and morphological structure of the seabed, depth, flow velocity, bed surface roughness, and other factors.
Differences in fractional composition determine the nature of sediment movement and sedimentation processes.
Considering particle size in mathematical modeling of sediment transport enables more accurate and reliable predictions
of seabed morphodynamics.

This study examines a nonlinear 2D model of sediment transport that takes into account its fractional composition [1-4].
To analyze this model, a linearization is performed on a time grid with step size , where nonlinear coefficients are
computed with a “lag” from the previous time step. Using the method of mathematical induction and differential equation
theory, sufficient conditions for the convergence of solutions of the linearized problem to the solution of the original
nonlinear initial-boundary value problem are determined. It is worth noting that previous studies have ensured the
well-posedness of this problem.

The existence and uniqueness of solutions to the linearized multifractional sediment transport problem were studied
in [3]. The work [4] demonstrated the continuous dependence of the solutions of the linearized multifractional sediment
transport problem on the input data. Research on the well-posedness of the linearized sediment transport problem, which
does not account for heterogeneous fractional composition, is presented in [5-8].
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Materials and Methods. The sediment transport equation, including R fractions, is written as:

(1 ~)8—H+§R:d' (Vk7,)= ZR:d' Vk—2 gradH ER:

€ A iv(Vk,T, )= 2 iv| Vk, Sing, gra 2,
where H = H(x,y,f) is the water body depth; € is the porosity of bottom sediments averaged over all components; £ is the
time variable, 1[0, T]; ¥ volume fraction of the r-th component; fb is the vector of tangential shear stress at the bottom
of the water body; 1, is the critical value of tangential stress for the 7-th sediment component, t, = a sing, where a, is
the coefficient for the r-th sediment component, @, is the angle of natural slope of the ground in the water body; w is the
vertical component of the velocity vector U of the water medium; w,  is the hydraulic size or settling velocity of the r-th
component; p is the density of the -th bottom material component; ¢ is the concentration of the 7-th suspended fraction;
k_is the coefficient determined by the relation:

w+w, —
£ c., r=1R, )

g1
Add,

((p, —po)ed.)

(& is the average wave frequency; d  is the characteristic size of the 7-th component; g is the gravitational acceleration; p,
is the density of the water medium; 4 and P are the dimensionless constants),

= ‘Cbc r
T, ————gradH

k =k,,(H,x,y,t)= Sno
0

r b

krZkO’rzconst>0,‘v’(x,y)eé, r=1R, 0<t<T.

We assume that I = Gx(0,7) is the domain where equation (1) is defined. Let the sediment transport process take
place in the domain with the boundary I, which represents a piecewise-smooth curve.

The boundary of this cylinder consists of the lateral surface ['x[0,7] and two bases — G x {0} and G x { T} .

Equation (1) is considered in the domain G(x,y) = {0 <x<L,0<y< Ly} (Fig. 1).

Y &
L |p c
4 “Deep woter” B X
Lx
Fig. 1. Computational domain
We supplement equation (1) with initial and boundary conditions:
H(x,y,0)=H,(x,y), Ho(x,y)eCz(G)ﬂC(a), ©)
AD: H(O,y,t)ZH](y,t), (3)
BC: H(Lx,y,t)=H2(y,t), 4)
AB: H()C,O,t)=H3 (x), 5
CD: H(x,L;,t):H4(x,t)ZcoEconst>0,L)', <L, (6)
Additionally, we assume:
AB:|%,| =0, (7
grad(x’y)H € C(ﬁT ) NC' (HT ), graaf(x’y)H0 € C(E), (8)
o _on|
ax x=0 - ax x=Ly o (9)
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k. >k, ,=c0nst>0, V(x,y)eé, (10)
T =1, z+r[n], L S¢n [T, |6, ¢ =const, ¢, = const. (11)

The condition
H(x,y,t)ZcOEconst>0, 0<x<L,0<y<L, 0<t<T. (12)

ensures that no drying occurs in the considered domain.
Linearization of problem (1)—(6) is performed on a time grid:

o, :{tn =nt,n=0,L..,N,, Nlr:T},

using the methods presented in [5-10].
After linearization, equation (1) and the initial conditions (2) are written as:

(n)
(1- 8)8H —idlv Vki”1 gradH i lV Vk"1 ) iW’LWg,r ¢,
r=l1 p ~ pr (13)
FZL_R, ,n=12,
H(l)(x,y,to)zH (x,y), H" (x VoL, 1)_H< )(x it 1) (x,y)eG, n=2,..,N. (14)

The coefficient k£ " in equation (14) is determined by the equation:
Add,

0

((p.—p,)ed,)

Results. We will show that the solution of problem (13), (14), (3)—(6) converges to the solution of the nonlinear
problem (1)—(6) in the norm of the space L (Gx[0,7]) ast — 0, Nt =T.

Let us denote the solution of the nonlinear problem as H,,(x,.t), (x,y)€G, and the solution of the linearized
problem as H,(x,y,t), (x,y)€G. Note that for each time layer, its own solution function H,= (x.p,1) is defined, and
in general, the linearized problem constructs a family of solutions {H (x ¥, )}, =1,2,.. N , that depends on the
parameter T.

We assume that:

1. The function /= (x,y,?) is bounded on the interval 0 <7< T;

2. The derivatives exist and are bounded:

o oH,, 0 oH,, 0 oH, 0 OH,, ).
o5} el ) Ao} Sl )

T, - Toer gradH"" (x ¥, “1)

(n-1) __ 7.(n-1) (n-1) _
K™ =k (H ,x,y,t)— g,

"

wH+w, .
3. The expression £” ¢, is bounded.
P,
Substituting the function A, o (x,y,t) into equation (1) and the function Hlp= (x,y,f) into equation (12), we obtain:
O0H L T R R wW+w —
1-¢ 2 =Ndiv|Vk ——gradH |- div(VkZT)- e, r=LR. 15
(-5 2 S| vk, g, |- San(rh7)- 52 15

~ 6[_](}") R , . ) - R W+Wgr
1902~ gy |- San{ra ) 5 e,

o =] = P, ( 1 6)

where

np.r np,r = ((pr ., )gd, )ﬁ

p-1

Add,
((p,—p.)ed,)
Multiplying both sides of equations (15) and (16) by the functions H,, (x,y,t) ,H" :H,(p”) (x,y,t), (x,y) €G,

Ip
respectively, and integrating the resulting expressions over the variables ¢, 0 < ¢ < T u (x,y) and (x,y) in the domain G

followed by some straightforward transformations, we can write:

T, - T” gradH,p” ) (x,y,t)

k(n—l) _ k(n;l) (H n-1) X, 0, )
sSmaQ,

Ip.r Ip, p
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ﬂ xy, HZ xy, )dxdy i]{“‘H dzv(Vrknpr —"gradH, dedy]dt

G = ino, (17)
R T RT
_Z l UG H,,div(V,k,, 3, dxdyjdt Z’ g( ([, W+1/v ]dt_
(1—§)t;.ﬂ‘]{G.|‘H;;')a;I—t[(;)d dyjd itT][I H ahv[Vrkl(:r1 in(po gradH jdxdyjdt— (18)
_ijl UGJ' HZ(I:’)div(V,kl(;j)‘fb )dxdyjdt - 21( IGI HY %ﬁvg"‘cr ]J,’ r=1R.
Summing both sides of relation (18) over n, n = 1,...,N, we obtain:
HL; ,IIH H, dtdedy ZI:HZ;LJ‘IL”H dzv(Vk Sln(po gradH dedy}dt (19
[ (v k%, Vaxay |ae- [ | [0 0 aay |ar
(oo o a1 [ |
By transforming the left-hand side of equality (19), we write:
_5)'[3[(1‘[; (x,y,T)— x »,0 )dxdy = ii{j [”H Md;y(V kl;rl jn(p gradH )dxdy)dt— 20)

ty
- H"div(V k"7 dxdyjdz - [ H" e dxddet
oty o
Subtracting expression (20) from equality (17) and considering that H = (e ,b)= H = (xe,0), H = )= HZP(O), we obtain:

(7 )1 o5 =
1( GjH dzv[an,,rsi nor gradH, jdxdyjdt—iz(anpdiv(Vk,,p, b)dxdyjd

Bl e | el g omns oo
+I(HH”’dzv(Vk”l b)dxdyjdt+ j[”H > gr c,,dxdy]dt}.

1,
We perform transformations on the right-hand side of equality (21). To do this, we add and then subtract the expressions

Mx

7

o2y

")le[V, k,,, 'n 0 ~— gradH ] /(:)div(Vr knp’r%b) under the integral sign, respectively, in the fourth and fifth terms of
0

the right-hand side of equality (21).

Combining the terms, we obtain:

_U( x v, T (x,y,T))dxdy =

G

R N I
=>> {]HL[(HW )le[Vk vy "~ gradH, jdxdy]+”H dlv( SZ_‘(;O @)
(k,,prgde —k gradH ))dxdy+H(H,(;)—an)div<anp, b)dxdy+

+jo dzv( ARV INE: )dxa’y+”( i, )"

We estimate each of the integrals on the right-hand side of equality (22) under the summation sign. For this purpose,
we use the reasoning detailed in [9].

+w
= c,dxdy} dt.
P,
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Let us introduce the following notation:

I j[” (#,, - H )dzv[l{kﬂpysi;”(;o gradandeddet, (23)
- j ( ([ dWL (knp, grad H,, k")rl)gradH,(:)))dxdy]dt, (24)
th
( j dzv(anpr b)dxdyjdt (25)
UGJ.H“’ dzv l:rl) ~k,,, )_fb )dxdy)dt, (26)

—J[mH )

For n =1 for integrals (23)—(27), we obtain:

"¢ dxdy]dt n=1..,N. 27)

r

I}, < ; vLL M|

1r? 2, 2 20" x "y

Io<iemipr I, S%TZL LM,
1 1 2 1 1 2 1 (28)
I4J£ETM LL, I, < vLLM

4 "x"y 52

where

br o=t | (x.y)eG ot Ot o

oH, (x,y.8) OH) (x.»,
M! =max max{ "p(xyE”)— p (00%) div anp, ——gradH,, |+,
Smo

T, [0k (x,v, 0 X, ¥,
M) =max{ max H] div| v, e ’W( 4 %)gradHn +k gradM dxdy|; ¢,
2 sy | G || sinQ, ot v ot

T
ot ot et
ok .Y S
Hl(l)div V. _—,W(xy §7) T,
? ot

oH,) (x., °H,, (x,y, w+w
M) =max< max p ( Y §5) _ "p( Y E—’6) er o |l

aH(l)
M), = max (m%[ (x’y’%)-aH””(x’y’éé)Jdiv( o)1
’ 0SI=f | (x,y)e

M) =max< max
T SIS | (x,y)eG

P,

fy <8 & &5 &y &0 & & 1, <1<,

Considering the obtained estimates (28) and using the triangle inequality for the magnitudes of the quantities, we
obtain an inequality of the form:

R
J.GJ‘(H; ()c,y,t1 ) - Hl(;)z (x,y,t1 ))dxdy < ’CZLXL),;M:’,, (29)
where
M, = ! (M1 + M, M+ M, +M, ).

By swapping the functions H, * (x,p,t,) u H,* (x,y.t,) and following reasoning analogous to the one given above, we

can obtain an estimate:

R
J;J(H,S)z ()c,y,t1 ) —H,fp (x,y,t1 ))dxdy < TzLxLyZ:l:Ml*,r' (30)
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From inequalities (29) and (30), we get the following inequality:
R
J.HHZ(;)Z ()c,y,tl ) —ij (x,y,t1 ))dxdy < ‘CZLXL_VZM:V. (31)
G 7=

We transform the left-hand side of inequality (31):

jGj 11 (5,328 ) = HE (3t ey = IGI 11 (. 3.,) = H,, (5,3,

0 (32)
.‘Hlp (x,y,t] )+an (x,y,tl )‘dxdy.
Next, we will assume that an inequality of the form (12) holds for the functions /= (x,y,¢) and H, ", i. e.
np Ip
H, (x,3,t)2¢,>0, (x,y)eG, 0<t<T, (33)
Hl(pl)(x,y,t)200>0, (x,y)e(_;, 0<t<T. (34)
Considering expressions (33)—(34), we obtain:
(1)2 (1
.[G”Hlp (x,y,t1 ) — H:p (x,y,tl )}dxdy > 2COJ.GJ.‘HIP (x,y,t1 ) -H, (x,y,t1 ))dxdy. (35)
From relations (31), (32), and (35), we get the following estimate:
U | T
L”HIP (x’y’tl ) -H, (x’y’tl ))dxdy < 2_6,0T LJCL)’;MIJ" (36)
The required estimate for n = 1 is obtained, since inequality (36) is equivalent to a relation of the form:
R
(1) _ <L 2 *
where
Ul
"Q(x’y’t)"Ll(Gx[to,tl]] = ;I;[J;;”Q(x’y,t)|dxdyjdt
For n = 2 for integrals (23)—(27), we obtain:
2 1 2 1 * 2 2 2 1 2 2 2 2 1 2 1 * 2 2
I <—vLL|—wM M +M; |, I, <—tvLLM M, 6 I, <—tLL|—tM M; +M; |,
S 2 Xy CO W S S S 2 Xy W S S 2 Xy CO W S N
(39%)

I;, < %ﬁLxLyMjJMZ I < %rzLxLy (L’EM;M;V + M, J

T2
CO
}9

oH, (x,3,8) oH (x,, T
M? =max<{ max ""( yil)— lp( yaZ) div| Vk — oradH ,
2r = 1 | (o o, np
Ty sing

ot ot .
i

2oy M2 M2+ M+ ML +M?

21, r 22,r 23, r 24, r 25, r 26,r°

where

2
M = max{ max

b hsist | (x,y)eG

T
div[V,knpr _bes gradanj
" sing

0

2
M: Emax{max{‘H[( )
» {<i<ty | (x,y)eG 'p

M; =M

4,

M, =max{ max
T gsisty \(xy)eG

[aan(x’y"gl)_aHl(pZ)(x’y’az)]div(Vk T )

np,r b

div(V,k,,? )‘}

M? =max< max

6, n<tsty | (x,y)eG M apr b

T
ot ot

M7 =M +M, +M:;
N 3,r

32, 33,r°
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MZ

11,r

w+w,,

p,

Cc

b hsisty | (x)eG "

M:? Emax{max

oH,, (x,y,&l) ~ GH};) (x,y,éz) wHw,, .
ot ot P,

O ygisty | (x)eG ik

M? =max max{

M2 r :M321,r +M322,r +M2

7, 33,72

= max | max|t, Ot (1) +1-(bl) oH, (y,t1)| , M7, =max{max|z, OH, (»:t) +r2) oH, (y°t1)|
hsisiy | xeBC | gy ¥ ox | T ysisiy | yeBC | gy y oy |
- o, () ot ()| R — [oH(en) o, (x)] ’
13,1 §<1<ty | xeCD | Ox Ox | 14 §<1<ty | xeCD | ay 6)}
M, =max max|aH1(y’t) + o, (y’tl)| , M} =max max|aH1(y’t1) + 8H1(y,t1)| ,
o ysisty | xedD | ox Ox T ySisty | yedD | oy oy |
M? =max<{max|V. Ti"” Add, i oA, (y,<“;4) Tber M* -2t |+
2Lr T ysisty | veBC |7 gin? 3 : 1Lr bx
sin” @, ((Pr —py )gdr) ox ot sin@,
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M322,r Etrllggé I}El%( V. s::(;) (( Ad)‘;r y )3 {a_ax(a}h (X’QS)J(}EM _LMz J_‘r
N o (P, —py)gd,

T, AG OH, (y, Ty
M, = max4 max |V, —<~ od, . o (18) 21, ——L M |+
T gsisty | yedD ) ox ot X ks

1 <&, &, &, &, &, <1, 1, <t<t,.

Thus, using the estimates (38), we obtain:

R
jGﬂij (x.3,t,) = H (x, 3.1, )}dxdy <PLL, ;(Mg +My ), (39)
where
Mf,m‘ll (M2 M2+ M+ M (M2 M} ))
2 - 2 2
M2, = (1_5)COM,1(M M+ M),

From inequality (39), we can move to the following estimate:

1, R
<—1L, L 1 +71 M s 40
L(@{nn))  2c, ; > (40)

Jf1 (e 3.t) =, (0,

where

.
M,,

= max (Mg, 5 M, |,

)
0G50, 00, = j[ Lﬂg(x,y,t)wxdy]dt.
il

The required estimate for » = 2 is obtained. The first step of the induction is completed.
Next, we assume that for n = s the estimate holds:

SLENEYS L, 1= TSER:M 41
Ll(GX[fHJx]] 2¢, -t & 7 (41)

HHI(;) (x,y,ts ) -H, (x,yyf.v)

where M* .. is some constant function.
For n = s + 1 in equations (23)—(27), we consider integrals over the time interval ¢ < ¢ <¢_ . By estimating these
integrals with the consideration of (41) on the previous time step, we obtain the inequality:

”| X, Yt m pr (x,y,ts+1 )ldxdy < rzLxLyZR:(MOTIr +TM s+l et TYMOY:i1 r) (42)

with constants M ;ﬁ M S; l,, M gil > that depend on the magnitudes of the derivatives.

Using inequality (42), we arrive at the estimate:

1 1-t&
bt ot ot 3 M @
where 0
M, = max AMGT s M s M
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||Q(x’y’t)"L](GX[IS,tSH]) = j [L”Q(x,y,tﬂdxdy]dt.

The inductive step has been completed, allowing us to state the validity of the assertion for any s, 1 <s < N.
Using the estimates (37), (40), and (43) from formula (22), we obtain:

”}Ilp (7)- H, (T)“L,(Gx[o,r]) < ;TZLXZ,},C((I —1)+ (1 - ‘Ez) +..+ (1 — v )) <

~ 2¢,(1-
CO( T) N+2 (44)
< ;rzLxL,C[N+ 1 —l}
2¢,(1-1) iy -7
where
R * R * R *
C= (E}%E%{;Ml,r’;er""’ 2 M“Lr},
T N | I
"Q(x,y,t)"Ll(Gx[oﬂ) = ![g|Q(x,y,t)|dxdyjdt = Z‘{ j [L[|Q(x,y,t)|dxdyjdt}
n=| t"71
Since Nt = T = const, inequality (44) leads to
"H’P (T) - H”P (T)”LI(GX[O,T]) - O(T)’ (45)

which completes the study of the convergence of the linearized problem to the solution of the original nonlinear problem.

Discussion and Conclusion. The conditions for the convergence of the solutions of the linearized sediment transport
problem with a multicomponent composition to the solution of the nonlinear problem in the Banach space norm L, with a
rate O(t) of convergence have been determined. The obtained research results can be used in the forecasting of nonlinear
hydrophysical processes, improving their accuracy and reliability due to the availability of new functional capabilities for
accounting for physically significant factors.
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Abstract

Introduction. The Azov Sea is a shallow semi-enclosed sea where satellite altimetry (SA) faces challenges in ensuring
accurate sea level measurements. This study focuses on verifying Sentinel-3 altimetry data in the coastal areas of the Azov
Sea using observational platform data and a three-dimensional hydrodynamic model.

Materials and Methods. The study is based on a comparison of sea surface heights (SSH) obtained from the Sentinel-3
radar altimeter with tide gauge data and modelling results. A three-dimensional hydrodynamic model, adapted to the
conditions of the Azov Sea, was used, along with satellite data processed considering atmospheric and tidal corrections.
Results. The root mean square error (RMSE) between satellite-derived and reference data was found to be 85 mm. The
analysis demonstrated that Sentinel-3 Doppler altimetry in SAR mode provides higher accuracy compared to traditional
altimetry, particularly in coastal areas.

Discussion and Conclusion. The assessment of Sentinel-3 data confirms their reliability in modeling water levels in the
Azov Sea. The comparative analysis methodology proposed in this study enables the identification of systematic errors in
satellite data and facilitates their integration with modelling and in situ observations. The study confirms the effectiveness
of Sentinel-3 data in determining sea levels in complex coastal conditions. The developed methodology can be applied to
other coastal areas to assess satellite altimetry performance.

Keywords: satellite altimetry, Sentinel-3, Azov Sea, sea level variations, hydrodynamic modeling, three-dimensional
hydrodynamic model, satellite data verification

Funding. This research was supported by the Russian Science Foundation, grant No.25-21-00021,
https://rscf.ru/project/25-21-00021/.

For Citation. Protsenko S.V., Protsenko E.A., Kharchenko A.V. Accuracy Assessment of Sentinel-3 Satellite Altimetry
in the Coastal Areas of the Azov Sea. Computational Mathematics and Information Technologies. 2025;9(1):31-38.
https://doi.org/10.23947/2587-8999-2025-9-1-31-38

Opueunaﬂbnoe meopemuvyeckKkoe uccnedosanue

OneHka TOYHOCTH CIIYTHHKOBOI aibTHMeTpHH Sentinel-3 B npuOpe:KHbIX pailoHax A30BCKOro MOpst

C.B. IIpouenxo D4, E.A. IIpouenko , A.B. Xapuenko
Taranporckuit uactutyT umenn A.I1. Yexosa (punuan) PI'OY (PUHX), r. Taraupor, Poccuiickas ®eneparust

>4 rab55555@rambler.ru

AHHOTALUA

Beeoenue. A30Bckoe MOpE SIBISIETCS] MEJIKOBOAHBIM TTOIY3aMKHYTBHIM MOPEM, I/I€ CITyTHUKOBAs albTUMETpHs (SA) cTan-
KHMBAeTCs C TPYAHOCTSMH B 00€CIIEUeHNH TOYHOCTH N3MEpEeHni ypoBHS Mopst. PaccmarpuBaercst Bepudukamys JaHHBIX
aNBTUMETPHH cliyTHHKa Sentinel-3 B mpuOpexxHbIX pailoHax A30BCKOTO MOPSI C MCIOJIB30BaHUEM JAHHBIX IIAaThopM Ha-
OJIIONCHUN M TPEXMEPHOUN THAPOIMHAMUYCCKON MOJICIIH.
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Mamepuanst u memoosi. ViccienoBanne 0CHOBaHO Ha CPaBHEHHH BBICOT MOBEPXHOCTH Mops (SSH), momydeHHBIX C
pamnoBeIicoTOMepa Sentinel-3, ¢ JaHABIME MapeorpadoB U pe3yJabTaTaMid MOIEIUPOBaHHA. Vcmonap30BaHa TpeXMepHas
THIPOAMHAMUAYECKas. MOJIENb, aaliTUPOBAaHHAs K YCIIOBHAM A30BCKOTO MOpSI, @ TAKXKE CITyTHHKOBBIC JTaHHBIE, 00pabo-
TaHHBIE C yYETOM aTMOC(EPHBIX M IPHIUBHBIX ITONPABOK.

Pezynomamut uccnedosanusn. Cpennexsanparnynas ommoka (RMSE) Mexy CiyTHUKOBBIMH U 3TAJIOHHBIMH JJAHHBIMH
cocraBmia 85 MM. AHanM3 MoKasal, 4To IOIMJIepOBCKas anbruMeTpus Sentinel-3 B SAR-pexxume obecrieunBaer Oosee
BBICOKYIO TOYHOCTH 110 CPABHEHHIO C TPATUIIMOHHON aJbTUMETpHEH, 0COOEHHO B IPUOPEKHON 30HE.

Obcyscoenue u 3axntouenue. ONieHKa TaHHBIX Sentinel-3 TeMOHCTpUpPYET UX HAIEKHOCTh B MOACTHPOBAHUU YPOBHSI
BOJIBI B A30BCKOM Mope. MeTonnKa CpaBHHTEILHOTO aHAIN3a, IPeIUIoKEeHHast B paboTe, MO3BOJISICT YUUTHIBATh CHCTEMa-
THYECKHE OLIMOKM CITyTHHKOBBIX JJAHHBIX M MCIOJIb30BAaTh UX B COYETaHUH C MOJICIIMPOBAaHNEM U HAaTypHBIMH HalItoze-
HusiMu. MccnenoBanme noareepxaaet 3ppekTHBHOCTD JaHHbIX Sentinel-3 B onpeneseHn ypoBHS MOPSI B CIIOXKHBIX TIPH-
OpeXHbBIX ycnoBusX. PazpaboTanHas METOIMKAa MOXKET ObITh IPUMEHEHA B JIPYTHX HPUOPEKHBIX padlOHaX Ui OLICHKU
XapaKTEPUCTHUK CITyTHUKOBOH aJIETUMETPHHU.

KioueBble ciioBa: criyTHUKOBas ambTUMeTpus, Sentinel-3, A30Bckoe Mope, KoJieOaHHsT YPOBHS MOPS, THIPOIHHAMHYE-
CKOE MOZICIMPOBAaHUE, TPEXMEPHAs TUIPOJMHAMHYECKAsl MOJIEIb, BEPUPHKAIMS CITyTHUKOBBIX JaHHBIX

dunancupoBanme. VccnenoBanne BBIIONHEHO 3a cueT rpaHTa Poccuiickoro nHayuHoro ¢onma Ne 25-21-00021,
https://rscf.ru/project/25-21-00021/.

Jas nurupoanus. [Iporenko C.B., Ilponenko E.A., Xapuenko A.B. OueHka TOYHOCTH CITyTHUKOBOM aJbTUMETPHH
Sentinel-3 B mpuOpexxHbIx paiioHax AzoBckoro mops. Computational Mathematics and Information Technologies.
2025;9(1):31-38. https://doi.org/10.23947/2587-8999-2025-9-1-31-38

Introduction. The Azov Sea is a shallow semi-enclosed body of water characterized by low salinity, significant
seasonal fluctuations in water levels, and intense river discharge. These factors significantly affect the dynamics of water
masses and necessitate precise tools for monitoring sea level changes. In recent decades, remote sensing has become one
of the key methods for studying marine and coastal processes. In particular, satellite altimetry (SA) enables continuous
observation of sea level variations on a global scale.

One of the modern tools for satellite monitoring is the Sentinel-3A satellite, launched by the European Space Agency
(ESA) in 2016 as part of the Copernicus program. It is equipped with a synthetic aperture radar (SAR) altimeter, which
significantly improves the spatial resolution of data compared to traditional altimetry. However, the application of satellite
altimetry methods in coastal zones presents significant challenges due to the influence of the coastline, wave heterogeneity,
seabed topography variations, and land-induced interference. This makes the verification of Sentinel-3 data particularly
relevant in complex marine areas such as the Azov Sea.

Previous studies have shown that while satellite altimetric data achieve high accuracy in open ocean waters, their
precision may decrease in coastal areas due to signal reflections, meteorological effects, and water mass dynamics.
Therefore, it is crucial to assess the accuracy of Sentinel-3 data under the specific conditions of the Azov Sea, where
shallow depths and the influence of river discharge and seasonal changes significantly affect sea levels [1].

This study conducts a comprehensive verification of Sentinel-3 satellite altimetry data by comparing them with in situ
tide gauge measurements installed in the Azov Sea, as well as with numerical modeling results obtained using a three-
dimensional hydrodynamic model. The objective of the study is to determine the accuracy of satellite data and analyze
their applicability for monitoring sea level in coastal conditions.

To achieve this, the following tasks were carried out:

— collection and processing of Sentinel-3 satellite altimetry data;

— adaptation and application of a three-dimensional hydrodynamic model to calculate sea surface height;

— analysis of discrepancies between satellite, model-based, and in situ data;

— determination of root mean square error (RMSE) and evaluation of the reliability of satellite data for monitoring the
Azov Sea.

Thus, this study aims to expand the capabilities of satellite altimetry in coastal areas and enhance methods for
evaluating Sentinel-3 data under the complex hydrodynamic conditions of the Azov Sea.

Materials and Methods

Satellite Altimetry Data. Satellite altimetry (SA) is a remote sensing method for measuring sea level based on the
use of a radar altimeter, which emits an electromagnetic pulse and records the time it takes to return after reflecting off
the water surface. This method enables global measurements of sea surface height (SSH) and provides valuable data for
analyzing water level variations in both coastal and open sea areas.
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The Sentinel-3 satellite (Fig. 1), launched by the European Space Agency (ESA) as part of the Copernicus program, is
equipped with the SRAL (Synthetic Aperture Radar Altimeter), which operates in two modes:

— Low Resolution Mode (LRM) — traditional altimetry with relatively low spatial resolution;

— Synthetic Aperture Radar (SAR) Mode — a synthetic aperture mode that provides enhanced resolution and more
accurate sea level measurements, particularly in coastal areas.

Fig. 1. Artistic depiction of Sentinel-3 [2]

This study analyzes data obtained in SAR mode, which minimizes signal reflections from land and improves
measurement accuracy under complex hydrodynamic conditions.

The Sentinel-3 satellite follows a sun-synchronous orbit at an altitude of 814 km with an inclination of 98.6°, ensuring
global coverage with a repeat cycle of 27 days over the same region (when combined with Sentinel-3B, the repeat period
is reduced to 13.5 days) (Fig. 2). The SRAL radar altimeter operates in the Ku/C bands and transmits pulses at a frequency
of 1 kHz, allowing sea level measurements with a temporal resolution of 20 Hz (i. e., approximately one measurement
every 350 meters along the satellite’s track) (Fig. 3) [2].

S3A

S3B
Fig. 2. Study area location, with lines indicating Sentinel-3 passes
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Land

Sea
Radar footprint

Fig. 3. Changes in signal shape (red) as the satellite altimeter approaches the coastline
and enters the radar coverage zone [2]

The altimeter onboard the satellite transmits microwave radiation at two frequencies toward the sea surface and records
the time required for the signal to return to the satellite. The initial distance R(,¢,?) at a specific coordinate and time t is
corrected for atmospheric effects and instrumental errors. The corrected distance R is calculated using the formula [3]:

Rc()rr (7\" ¢’ t) = R(7\‘7 (I)? t) - C;- b

where the corrections C, applied to the satellite range include:
— sea state bias correction, which accounts for the influence of waves on radar signal reflection;
— polar tide correction, which compensates for changes in the Earth’s shape due to mass movements in polar regions;
— solid Earth tide correction, which considers the deformation of the Earth’s crust caused by the gravitational pull of
the Moon and the Sun;
—ionospheric correction, which adjusts for the effect of electron density in the ionosphere on radio wave propagation;
— dry and wet tropospheric corrections, which account for the refraction of radio waves in the atmosphere due to the
presence of water vapor and other gases.
These corrections are essential to minimize systematic errors and ensure high-precision satellite sea level measurements.
After applying all necessary corrections, the sea surface height determined from satellite data is calculated as follows:

SSHSA (7\’7 (I)’ t) = h.mt (7\” ¢’ t) - Rmrr (7\‘5 ¢5 t):

where SSH, (A, ¢,t) — sea surface height determined from satellite altimetry data; /4, (A, ,#) — satellite altitude above

the reference ellipsoid; R, (A,$,#) — corrected distance from the satellite to the water surface [4—5].
The verification of Sentinel-3 satellite altimetry data is performed by comparing the sea surface heights obtained from
the altimeter SSH,,, with reference data, including measurements from observation platforms in the Azov Sea SSH,. and
results from numerical modeling based on a three-dimensional hydrodynamic model SSH, .
In this study, Sentinel-3 SSH products obtained from the official Copernicus Data Hub [6] were used. The data were
downloaded in NetCDF format and underwent preprocessing, which included:

— selecting Sentinel-3 orbital segments passing over the Azov Sea;

— filtering and removing noisy data with anomalous values;

— interpolating to align with the coordinates of tide gauges and the hydrodynamic model..

To verify the accuracy of Sentinel-3 measurements, SSH data were compared with reference measurements from:

1. Ground-based observation platforms (tide gauges) — sea level height data from the Unified State Information System
on the Situation in the World Ocean (ESIMO).

2. Numerical modeling — sea surface height data obtained using a three-dimensional hydrodynamic model (the model
description is provided in the next section).

The accuracy assessment of the data was conducted by calculating the root mean square error (RMSE) between SSH
values derived from satellite data and tide gauge observations, as well as analyzing the standard deviation (STD) between
Sentinel-3 data and numerical modeling results.

Observation Platforms in the Azov Sea. For the verification of Sentinel-3 satellite altimetry data in the coastal
zone of the Azov Sea, data from seven observation platforms registered in the Unified State Information System on the
Situation in the World Ocean (ESIMO) were used (Fig. 4). These platforms are tide gauge stations equipped with high-
precision measuring instruments, enabling real-time sea level recording and providing long-term observation series [7].
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Data unit: ID: 17765
Latitude of the point (degr., tenths of a degr.) : 46.4
Point longitude (degr., tenths of a degr.) : 35.7

Fig. 4. Observation platforms in the Azov Sea

Tide gauges installed at various locations across the Azov Sea continuously record sea level fluctuations. These
stations are strategically positioned near key hydrodynamic nodes where wave action, wind surges, and river discharge
effects are most pronounced. This placement ensures the collection of representative data on sea level dynamics across
different regions of the Azov Sea.

Coastal tide gauges are used to measure and continuously record fluctuations in the sea level of the Azov Sea. The sea
surface height SSH ,;(A,;,d,;.¢) based on tide gauge data can be determined as follows:
where H, () — sea level measured by the tide gauge relative to the zero level of the national vertical reference system.

For a proper comparison with satellite data, tide gauges were used, located at varying distances from the shore: from
deep-water areas to shallow zones influenced by the shoreline. This distribution allows for the assessment of the accuracy
of Sentinel-3 altimetric data depending on the distance from the shore, the identification of the impact of coastal effects
on satellite measurements, and consideration of the local hydrodynamic features of the Sea of Azov when analyzing
discrepancies in the data. The locations of the tide gauge stations are shown in Fig. 2, with the coordinates of each
observation platform marked.

The tide gauge data were standardized to a common reference system for accurate comparison with satellite altimetry
and hydrodynamic modeling data. The processing included:

— harmonic analysis of tidal and set-up oscillations of the sea level;

— filtering of high-frequency fluctuations caused by local hydrodynamic processes (e. g., short-term wind effects);

— adjustment of data to a reference level aligned with the geoid used in satellite measurements;

— interpolation of time series to match Sentinel-3 satellite passes.

Additionally, an analysis of statistical characteristics of the measured data was performed, including the mean value,
standard deviation (STD), and range of sea level fluctuations for each station.

A spatially inhomogeneous three-dimensional mathematical model of wave hydrodynamics in a shallow water body.
The governing equations of the wave hydrodynamics model are [8—12]:

— the equation of motion (Navier-Stokes):

’ 4 ’

1
’ ’ ! ’ ! ’ ’ ’
U, +uu, v+ wu = —EPX +(uux )X +(puy) +(vuz )Z ,

y

’ 4 '

1
’ ! ! ’ ! ! ! !
vV uv, v+ wyl = _BP) +(v)), +(uv},) +(wv)). s

' (M
W uw +vwl +ww! = _lpz' +(pw! )x, + (uw;) +(vw! )Z' +g:
o v,
— the continuity equation in the case of variable density:
Pt (pu)x +(pv)y +(pW)z = 0’ (2)

where V={u,v,w} is the velocity vector; P is the pressure; p is the density; p, v are the horizontal and vertical components
of the turbulent exchange coefficient; g is the acceleration due to gravity.
The system of equations (1)—(2) is considered with the following boundary conditions:
— at the inlet:
u(x,y,z,t)=u(t), v(x,y,z,t)=v(t), P/(x,y,z,0)=0, V'(x,y,z,t)=0,
— on the lateral boundary (shore and bottom):

p“(u,)n (x,y,z,t) = _Tx(t)a pM(V’)ﬂ (x,y,z,t) = _Ty(t)n

v, 1)=0, P/ =0
— on the upper boundary: (2,20 =0, £(x.y,2.0) =0,
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p”’(u')n ('x’ y’ Z’ t) = _Tx (t)7 p“(v')ﬂ (x, y: Zn t) = _Ty (t)a
w(x,y,t) =—o—F /pg, B, (x,y,1) =0, (€)

where o is the intensity of liquid evaporation; T, T, are the tangential stress components.

Tangential stress components for the free surface are given by {TX )T y} =p,Cd, |7v| {WX W, }, where Cd_ = 0.0026 is the
wind velocity relative to the water, p, is the air density; Cd_ is the dimensionless surface drag coefficient, which depends
on wind speed and is considered in the range of 0.0016—0.0032.

Tangential stress components for the bottom, accounting for water movement, can be written as {TX > T, } =pCd, | V| {M, V} ,
Cd = gn*/h'”, where n = 0.04 is the roughness group coefficient in the Manning formula (0.025-0.2); 2 = H+ is the depth
of the water body; H — is the depth to the undisturbed surface; 1 is the free surface elevation relative to the geoid (sea level).

The data from the hydrodynamic model on sea level H,,, (A, ¢, ?) relative to the geoid will be used in the form of:

SSHHDM (A, ¢, )= HHDM (A, (I)a )+ N, ¢)

The displacement between the tide gauge data and the three-dimensional wave hydrodynamics model can be
determined at a nearby tide gauge location at time #:

BTG/HDM (t) = SSHTG(X’TG’(I)TG’I)_SSHHDM (XTG’(I)TG’I)'

The displacement is introduced for each corresponding node of the grid cell in the discrete hydrodynamic model
during the computation of SSH, :

SSH 1iprteorr (X, d,1) = SSH 11, (X, 9,7) - Bi611pm (.

To account for the systematic error SSH i (A, ¢, ) between the satellite data and the hydrodynamic model, the following
is introduced:

SSH 7 (hs 0,1) = SSH g, (A &,8) = SSH 111000 (B 0, 0).

The effectiveness of the Sentinel-3 SRAL altimeter was assessed in the coastal zone of the Sea of Azov. Remote
sensing data were obtained from the official Copernicus data center in the standard NetCDF format [1]. Based on these
data, SSH,,, was calculated. Observation series from 7 coastal tide gauges were used to calculate SSH . (A, ¢, ) [2].
The three-dimensional spatially inhomogeneous model of wave hydrodynamics in shallow water, which includes three
equations of motion, was used to obtain SSH, . (A, ¢, 7) [3].

Results

Comparative analysis of Sentinel-3 satellite altimetry data, tide gauge observations, and hydrodynamic
modelling. To assess the accuracy of Sentinel-3 satellite data, it was compared with in situ measurements from tide gauges
located in the Sea of Azov, as well as with the results of numerical simulations performed using a three-dimensional
hydrodynamic model. The analysis is based on the calculation of statistical characteristics of the differences between
measured and computed sea surface height values, considering the spatial and temporal alignment of the data.

The study covers the year 2024, during which the satellite passes of Sentinel-3A and Sentinel-3B over the Sea of Azov
were analyzed. SAR-mode altimetry products were used, providing higher accuracy compared to traditional methods. For
each satellite pass, points of intersection with the tide gauges and the hydrodynamic model grid were identified.

For verification, the following data were used:

— tide gauge data (seven stations), recorded in the Unified Interagency Federal Information System (ESIMO);

— Sentinel-3 SSH satellite measurements, obtained from the Copernicus data center;

— results of a three-dimensional hydrodynamic model, adapted for the conditions of the Sea of Azov.

To quantitatively assess the discrepancies between the SSH values obtained by different methods, the following were
calculated:

— Root Mean Square Error (RMSE) — the scatter of satellite data relative to tide gauge and model values;

— Mean Bias (Bias) — the magnitude of the systematic error;

— Standard Deviation (STD) — the degree of scatter of the values.

The results of the calculations showed that the overall RMSE between the Sentinel-3 data and the tide gauges was
85 mm. The mean bias between the satellite data and the tide gauges does not exceed 2-3 cm, indicating the absence of
significant systematic deviation. The STD ranged from 6 to 9 cm, depending on the specific satellite pass and its distance
from the shore.

Table 1 presents statistical data on the difference in SSH measurements. The overall difference across all fourteen
passes was 85 mm.
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Table 1
Data on the difference in SSH measurements
Points Sentinel-3 Passes RMSE, mm Distance from the point Distance from the point
to the shore, km to the platform, km
1 653 S3A 78 16.3 2.3
270 S3A 106
2 42 S3A 109 11.6 2.4
425 S3B 84
3 539 S3B 43 36.2 2.1
156 S3A 115
4 270 S3A 68 48.6 3.2
653 S3B 102
5 156 S3B 87 37.8 2.7
425 S3B 110
6 270 S3B 63 33.9 32
539 S3B 75
7 539 S3A 79 28.3 4.4
270S3A 68

To assess the impact of coastal effects on the accuracy of Sentinel-3 altimetry, an analysis of the dependence of
discrepancies on the distance of the measurement point from the shore was conducted. In deep-water areas (>20 km from
the shore), the measurement accuracy is maximal: RMSE does not exceed 67 cm, and STD ranges from 5 to 8 cm. In areas
10-20 km from the shore, the errors increase: RMSE reaches 7-9 cm, and STD ranges from 6 to 9 cm. In shallow coastal
zones (<10 km from the shore), the accuracy of satellite data deteriorates due to reflection effects and the influence of
dynamic processes in the surf zone. In these areas, RMSE reaches 10-12 cm, and STD ranges from 9 to 12 cm. Thus,
Sentinel-3 data in SAR mode demonstrate high accuracy in open waters but require correction when analyzing coastal areas.

The three-dimensional hydrodynamic model used in the study allowed for the calculation of SSH with high spatial and
temporal resolution, providing an additional means of assessing the accuracy of satellite altimetry. The analysis showed
that the average discrepancy between the model and satellite SSH data is 4—6 cm, confirming the high accuracy of the
model. In areas with intense river runoff (e. g., the mouths of the Don and Kuban rivers), discrepancies increase to 8—10
cm due to variations in water density and currents. In deep-water areas of the Sea of Azov, model data align with satellite
data within +5 cm, further confirming their reliability.

Discussion and Conclusion. Sentinel-3 satellite altimetry in SAR mode demonstrates high measurement accuracy in
the open waters of the Sea of Azov but is subject to errors in coastal areas (<10 km from the shore). The root mean square
error (RMSE) between satellite and tide gauge data is 85 mm, which aligns with the current level of altimetry methods.
The hydrodynamic model showed good agreement with Sentinel-3 data (average discrepancy of 4—-6 cm), confirming the
possibility of jointly using numerical modeling and satellite data. To further improve the accuracy of satellite altimetry
in coastal areas, adaptive data filtering and correction algorithms should be applied. Therefore, the results of the study
confirm the effectiveness of using Sentinel-3 data for sea level monitoring in the Sea of Azov and underscore the need for
continued improvement of satellite measurement correction methods in the coastal zone.
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Abstract

Introduction. In the modern development of intelligent transportation systems (ITS), an urgent task is the accurate
estimation of the velocity limit of traffic flow on a highway. Despite existing solutions to this problem based on statistical
mechanics methods and stochastic models, gaps remain in adapting these theories to real road segments of limited length.
The traditional thermodynamic limit formula, used to calculate the average velocity of traffic flow, becomes inaccurate
for small road segment lengths, limiting its applicability in practical traffic monitoring tasks. The aim of this study is a
comparative analysis of various approaches to estimating the average velocity limit of traffic flow.

Materials and Methods. The study was conducted using the method of statistical mechanics and a stochastic model on a
one-dimensional finite lattice. Numerical experiments with various parameter values (number of cells, traffic density, and
movement probability) were used for analysis.

Results. The study revealed significant discrepancies between the results obtained using the statistical mechanics method
and other approaches when the road segment length was small. The efficiency of the second and third approaches was
confirmed for limited road segments, where they demonstrated greater accuracy and applicability.

Discussion and Conclusion. The research results have practical significance for the development of intelligent traffic
management systems, especially for short road segments. The proposed approaches can be successfully integrated into
modern monitoring systems to improve their accuracy. The theoretical significance of this work lies in advancing the
methodology for traffic flow estimation while accounting for the specific conditions of real-world environments.

Keywords: traffic flows, thermodynamic limit, exclusion processes, asymptotic behavior of average velocity, stationary
solutions, probabilistic traffic model, queuing systems
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Ouenka npegejbHOH CKOPOCTH OAHOHANIPABJIECHHOI0 TPAHCIIOPTHOIO OTOKA
€ BBICOKOW BbIYMCIUTEIbHON 3 (PeKTUBHOCTHIO
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AHHOTAIHUSA

Beeoenue. B cOBpeMEHHBIX YCIOBHUAX Pa3BUTHS HHTEIICKTYAIBHBIX TPaHCIIOPTHEIX cucTeM (ITS) Bo3HuKaeT akTyanpHas
3a7ja4a TOYHOH OIIEHKHU NPEJEIbHOW CKOPOCTH TPAaHCIIOPTHOTO MOTOKAa Ha Marucrpanu. HecMoTps Ha cymiecTByronye
peleHuns TaHHOU TPOOJIeMbl, OCHOBaHHBIC HA METO/IaX CTATHCTHYECKOM MEXaHUKN M CTOXaCTHYECKUX MOJIEIISIX, OCTAIOTCS
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TIpoOeITBl B aJanTaluy 3TUX TEOPUH AT pealbHbIX CETMEHTOB JJOPOT C OTPaHUYCHHOH NPOTHKEHHOCTHI0. TpaguinoHHas
¢dopMyna TEPMOAMHAMUYECKOTO IPEAENa, WCIIONb3yeMasl A pacueTa CpeJHeld CKOpOCTH TPAHCIOPTHOTO MOTOKa,
CTaHOBUTCSI HEKOPPEKTHOW NMPH MaJbIX 3HAUYCHMSX JUTMHBI JJOPOXKHOHM MOJIOCHI, YTO OTPAaHUYMBACT €€ NMPUMEHUMOCTH B
MIPaKTHYECKHX 3a/1a9aX MOHUTOPUHTA TpaHCTopTa. L{esbIo HacTOsIIero NcCIea0BaHus SIBISICTCS CPAaBHUTEIILHBII aHAIIN3
Pa3IMYHBIX OJXO0/I0B K OL[EHKE CpeIHeH MpeaeabHON CKOPOCTH TPAHCIOPTHOTO MOTOKA.

Mamepuanst u memoowl. VccnenoBanue MpoBeACHO HA OCHOBE METOJ]a CTATUCTUYIECKON MEXaHUKH U CTOXACTHUECKOM
MOJIETTH HAa OJHOMEPHON KOHEYHOH pemeTke. {1t aHam3a NCIoJIb30BAINCh YUCICHHBIE 3KCIIEPUMEHTHI C PA3IHIHBIMA
3HA4YEHUSAMH [1apaMeTPOB (YHCIIO KIIETOK, INIOTHOCTH MTOTOKA, BEPOSITHOCTD JBYKECHUS).

Pezynomamut uccnedosanus. IIpoBeieHHOE NCCIIeJOBAaHNE ITOKA3aJI0 3HAYUTEIBHBIC PACXOXKICHUS MEXKIY PE3YIIbTaTaMu
METO/la CTATUCTUYECKOH MEXaHWKM W JPYTMMH NOAXOAaMH NPH MalbIX 3HAYCHUSX JUIMHBI JOPOXKHOH ITOJIOCHI.
D¢ heKTUBHOCTh BTOPOTO U TPETHETO MOJXOJ0B OblIa MOATBEPKAEHA Ul O'PAaHUYEHHBIX CErMEHTOB JIOPOT, I'Ie OHU
JEMOHCTPHPYIOT OOIBIIYI0 TOYHOCTh U IPUMEHUMOCTb.

Oécyscoenue u 3axniouenue. Pe3ynpTaTel MCCIEAOBAHUS MMEIOT MPAKTHYECKOE 3HAYEHHWE ISl pa3pabOTKM HHTE-
JIEKTYaJIbHBIX CHCTEM YNPABIICHUS TPAHCIIOPTHBIMU ITOTOKaMH, 0COOEHHO Ha KOPOTKHUX ydacTKax fopor. IIpemnnokeHnbre
MTOJIXO/Ib MOTYT OBITH YCIEIITHO HHTETPUPOBAHBI B COBPEMEHHbIE CHCTEMbl MOHUTOPHHTA JUIS TOBBIMICHUS UX TOYHOCTH.
Teopernyeckast 3HAYUMOCTH PabOTHI 3aKIIIOYACTCS B PA3BUTHH METOAOJIOTHH OLEHKH TPAHCIIOPTHBIX OTOKOB C YYETOM
crienu(UKN pealibHbIX YCIOBHIL.

KaroueBble c10Ba: TPaHCIOPTHBIE ITOTOKH, TEPMOAMHAMHYECKHI Ipeler, Clly4aifHble IPOLECCHl € 3alpeTamu,
ACHMIITOTHYECKOE IOBECHIE CPEHEI CKOPOCTH, CTAIMOHAPHBIC PEIICHHUS, BEPOSATHOCTHAS MOAENb TpadHKa, CUCTEMBI
MaccoBOTO 00CITyKHBaHHS

s nurupoBanus. Kyreitnnkos N.A. OueHka npenensHONH CKOPOCTH OJHOHANPABICHHOTO TPAHCIOPTHOTO MOTOKA C
BBICOKOH BEIYUCTIHTENLHOM 3 PekTuBHOCTEI0. Computational Mathematics and Information Technologies.2025;9(1):39-51.
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Introduction. The complexity of traffic flow modeling arises from the need to account for numerous factors,
such as driver behavior, weather conditions, and the technical characteristics of vehicles and infrastructure. Despite
significant progress in the development of mathematical traffic flow models, existing approaches often face a number
of limitations that reduce their applicability in real-world conditions.

Mathematical models based on physical concepts traditionally describe physical media using methods from
solid mechanics, hydrodynamics, and gas dynamics. These approaches are formulated as systems of differential
equations, which impose smoothness requirements on their solutions. For example, the Navier-Stokes equations in
hydrodynamics assume that the velocity and pressure of a fluid change smoothly, allowing for the description of
fluid flow across a wide range of conditions. However, such models, based on differential equations, often lack the
flexibility needed to describe complex and nonlinear processes, such as traffic flows, where abrupt changes in density
and velocity are observed.

One of the fundamental properties of many controlled, interacting many-body systems is the emergence of shocks. A
shock in a system of classical flowing particles represents a sudden transition from a low-density region to a high-density
region. A well-known example of a shock is the onset of a traffic jam on a highway (Fig. 1), where incoming vehicles
(almost freely flowing particles in a low-density regime) must rapidly decelerate over a short distance, subsequently
becoming part of a high-density congested area. A remarkable feature of such shocks is their stability over long periods,
meaning they remain localized over distances comparable to the size of individual particles. In a certain sense, these
shocks can be viewed as soliton-like collective excitations of the particle system.

The difference between fluid (or gas) flow and traffic flow is too significant to employ a continuous approach and
accurately describe traffic flow using macroscopic models [1]. Inaccuracies arise in situations where, for example,
very few vehicles are present in the region affecting the movement of a given vehicle, compared to the vast number
of particles in thermodynamic problems. Unlike mathematical physics, where molecules obey physical laws that are
typically simple and constant, drivers exhibit diverse behavior and adapt their actions, introducing a human factor.
While molecules move chaotically, drivers share similar goals (same direction, similar desired speeds) and generally
prefer to avoid frequent acceleration and deceleration, making their behavior more varied than that of particles in a
fluid or gas.

To address these challenges, this study proposes an evaluation of the velocity limit of unidirectional traffic flow
based on various modelling approaches.
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Fig. 1. Illustration of the Discontinuity (Stepwise Change) in Traffic Flow Density

Lighthill-Whitham-Richards (LWR) Model. One of the most popular approaches to traffic modelling since the mid-
1950s has been the network hydrodynamic model and its various modifications, which liken vehicle flow to the motion
of a continuous fluid. Hydrodynamic-based models (Payne [2], Kerner-Konhauser [3], Aw-Rascle [4], Zhang [5]) account
for additional factors such as driver behavior, flow heterogeneity, phase transitions, and others.

In the 1955 work by Lighthill and Whitham [6] and the 1956 work by Richards [7], the dependence of flow functions
on density was likened to fluid flow, where the density p(x,?), is defined as the number of vehicles per unit road length,
and the flow rate g(x,f), represents the number of vehicles crossing a given section x, where xe G. Considering the law of
mass conservation, the number of vehicles remains constant within a closed system. In the case of an open system, we
have g +p,= 0 and g +p,= g(x,?). The function g(x,f) represents the rate of vehicles entering or exiting the system. The
velocity of traffic flow at a point x at time # is denoted as v(x,f), and in the LWR model, it is assumed that velocity depends
only on density. This model corresponded well with real-world observations, particularly at low traffic flow intensities.

Thus:

dp d(pu(p)) _
at T a (1)
v(t,p) = F(p)

where F(p) is a non-increasing function, not necessarily convex.

Mathematically, this model is analogous to the equation of motion for a compressible fluid, where the fluid density
corresponds to traffic density, and the particle flow pv(p) is analogous to mass transport flow in hydrodynamics. Although
hydrodynamic-type models are widely used to describe traffic flows, they have several limitations that become apparent
when analyzing real-world data:

1. Lack of Discreteness in Vehicle Representation. Hydrodynamic-type models assume that traffic flow behaves
as a continuous medium, whereas in reality, vehicles are discrete entities. This limits the models’ ability to describe
microscopic phenomena such as gaps or density jumps, which are characteristic of real road conditions.

2. Inaccurate Representation of Abrupt Density Changes. The equations of hydrodynamic-type models are based
on the assumption of density function smoothness, making it impossible to model discrete or sudden changes, such as
unexpected traffic jams.

3. Limitations in Modelling Complex Vehicle Interactions. These models assume that a vehicle’s speed depends solely
on local density, ignoring factors such as individual driver characteristics, perception delays, and long-range interactions.

4. Limited Adaptability to Real-World Conditions. The models do not account for external influences such as weather
conditions, accidents, or variable speed limits.

5. Inability to Describe Phase Transitions. Real traffic flows exhibit phase transitions between free-flowing traffic,
stable flow, and congestion. These phenomena are difficult to accurately describe within hydrodynamic-type models
without additional assumptions or modifications.

Gas Dynamic Models. Researchers have attempted to address the shortcomings of hydrodynamic models by
introducing additional functions into the right-hand side of the equations. One of the most successful models in this
regard is the quasi-gas-dynamic (QGD) model, developed under the guidance of Academician B.N. Chetverushkin [8].

The QGD model for traffic flows and its numerical implementation are discussed in detail in [9]. It is based on analogies
between vehicle behavior and gas movement, allowing the application of gas dynamics approaches and methods. The
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main advantage of this model is that, unlike gases where molecules are distributed in three-dimensional space, in traffic
flows, the particles (vehicles) have finite sizes and move along constrained road lanes. In the one-dimensional case, the
QGD system of equations for describing vehicular traffic flows takes the following form:

2
@+8pV:££6(pV +P)+Fp, 2
o ox 0x2 ox

2 3
6pV+8pV _ f—gradP+ 0 1t o(pV +PV)+F.

ot Oox ox 2 ox g

3)

ﬂ} represents the flow density and V[k—m} represents the vehicle speed.
kmxlane h
Equation (2) defines the flow density, while equation (3) defines its speed.

For the case of low density, when the distances between vehicles are significant and their interaction is minimal,
a simplified model can be used, analogous to incompressible fluid flow. In this case, the density of the traffic flow is
considered constant, and changes only occur in the speed and direction of the flow. However, this approach is rarely used
in traffic models, as density plays a key role in the formation of traffic jams and other phenomena.

Connection between Microscopic and Macroscopic Models. In more complex microscopic models, where a particle
corresponds to a vehicle, the ratio of the number of particles to the number of cells in a section of the grid is a variable
quantity. The average speed of the particles and the flow intensity also depend on the location of the grid section. The
local state of a section can be characterized by the particle flow density and flow intensity. When the distribution of
one of these characteristics is given on the grid, the distribution of the other characteristics is typically studied through
simulation modelling.

In a macroscopic model of vehicle traffic flow, the relationship between density, speed, and intensity is described
using partial differential equations (equations of mathematical physics). The relationship between the distribution of these
characteristics and their dynamics is determined by these differential equations, which are usually solved using numerical
methods under given boundary conditions.

Both microscopic and macroscopic traffic models are similar to or directly correspond with statistical physics models. In
microscopic models of statistical physics, particles correspond to molecules or elementary particles, while in macroscopic
models, distributions of characteristics such as pressure, temperature, flow velocity, and gas or liquid density are defined.

Microscopic models of traffic flows, described by random processes of various types [10], have advantages over
macroscopic models as they allow the individual behavior of each vehicle to be considered. This is especially important
for analyzing complex situations such as traffic jams, flow merging, or intersections. These models provide a more
detailed description of the movement dynamics at the level of individual objects, making them useful in developing real-
time traffic management strategies and creating intelligent transportation systems.

Probabilistic Traffic Model on a One-Dimensional Lattice. This work examines the implementation of a microscopic
model on a single traffic lane. To obtain stationary solutions, we will investigate it on a closed ring lattice.

Let there be a ring lattice containing N cells, with M < N particles (Fig. 2). Time is discrete. At each moment r=0,1,2...
each particle occupies one of the cells. Each cell can contain no more than one particle at a time. The cells are numbered
0,1,...N—1 with the numbering directed along the direction of particle movement modulo N.

If at time ¢ = 0,1,2... a particle is in cell i and cell i + 1 (mod N) is free, then at time 7+ 1 the particle will, with
probability 0 < p < 1 be in cell i + 1 and with probability 1— p the particle will remain in cell. If cell i + 1 is occupied, the
particle cannot move.

We introduce the concept of the state space of a ring lattice S = {so,sl,...,s

In this second-order model p[

} , where the total number of possible

-1
states Cy is the number of combinations of N elements out of M. Each state S, J= 0,1,...,Cy =1 can be represented
by a vector of length N(x, x, X,,..., X, |, X,, X, ,..., X, ), where element x =1 if cell i is occupied and x =0, if cell i is free.
N-1
Thus le. =M.

i=0
The transition matrix P has dimensions Cy x Cy’ .

Let’s consider an example for N=4, M =2 .
States of the system:

S =1{{1,1,0,0),(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(0,0,1,1)}.
Let’s consider the initial state s,= (1,1,0,0). The possible transitions are:

« (1,1,0,0) > (1,1,0,0) with probability 1 — p;
« (1,1,0,0) — (1,0,1,0) with probability p.
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Now consider the initial state s, = (1,0,1,0). The possible transitions are:
*(1,0,1,0) — (1,0,1,0) with probability (1 — p)%

* (1,0,1,0) — (0,1,1,0) with probability p(1 — p);

* (1,0,1,0) — (1,0,0,1) with probability (1 — p)p;

*(1,0,1,0) — (0,1,0,1) with probability p2.

Next, consider the initial state s,= (1,0,0,1). The possible transitions are:
*(1,0,0,1) — (1,0,0,1) with probability 1 — p;

*(1,0,0,1) — (0,1,0,1) with probability p.

Now consider the initial state s,= (0,1,1,0). The possible transitions are:
*(0,1,1,0) > (0,1,1,0) with probability 1 — p;

*(0,1,1,0) - (0,1,0,1) with probability p.

Consider the initial state s,= (0,1,0,1). The possible transitions are:
*(0,1,0,1) = (0,1,0,1) with probability (1 — p)*

*(0,1,0,1) — (0,0,1,1) with probability p(1 — p);

* (0,1,0,1) — (1,1,0,0) with probability (1 — p)p;

*(0,1,0,1) = (1,0,1,0) with probability p.

Finally, consider the initial state s, = (0,1,0,1). The possible transitions are:
*(0,0,1,1) > (0,0,1,1) with probability 1 — p;

*(0,0,1,1) — (1,0,1,0) with probability p.

Meaning 1 0 1 1 . 1
X
Cell number 0 1 2 3 N-1
0 1 2 3 N-1

Fig. 2. Visualization of Cell Arrangement on a Ring

Thus, for N=4, M =2 we get the transition matrix P

S, s, s, 8y S, S5
So( 1-p p 0 0 0 0
s| 0 (1-p’ pl-p) A-pp P’ 0
Fus=5%| 0 0 I-p 0 P 0
Sy 0 0 0 1-p p 0
s, A=p)p P’ 0 0 (-p?* pd-p)
S 0 p 0 0 0 1-p

Let m be the stationary probability of state s; P; be the probability of transitioning from state s, to state s,
i, j=0,1,..,Cy —1.
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The stationary probabilities of the states satisfy the system of equations:

cl 41 -1
P M
nizpjj: Z"T,-jp_,-,-a l,j=0,...,CN -1, (4)
=0 =0
-1

D om=1 (5)

i=0

Let k(s)) be the number of “clusters” in the state s, of the chain. A cluster is defined as a group of neighboring cells
occupied by particles, separated from other clusters by free cells. If the chain is in state s, the number of particles that
can move equals the number of clusters (s ), 0 < k(s ) < M. There are 2¥ states into which the chain can transition from
state s,. Let the system, starting from state s, be able to reach state s, 1<j< Cy —1 in one time step by moving I(s, sj)
particles, 0 < (s, sj) < k(s)). Then

py = A= p) T (s s) =0, ©)

The probability that the system remains in state s, at this step is the probability that none of the k(s,) particles will
move, p; =(1-p)"*", so
¥ -1
D py=1-0-p)|. (7)
J=0,j#i
Let S(k, N, M) be the number of states with 0 < k£ < M clusters for a given number of cells N and particles M.
Lemma 1. The following equality holds:

N o1 ke .
—C,,_Cy_y  k<min(M,N -M),
S(k,N,M)=v =4 f M1NM )

0,k > min(M,N —M).

Proof. Let R(k, M) be the number of ways, taking into account the order, to represent the number M as a sum of & natural
summands (k < min(M, N — M)). This number is equal to the number of ways to choose (k — 1) elements from M — 1:

R(k,M)=C}". ©))

Next, consider the number A(k, N, M) of states in set A, that contain k clusters and where cell 1 is free, and cell 2 is
occupied. This number is the product of the number of ways to distribute M particles among k clusters R(k, M) multiplied
by the number of ways to choose the lengths (k— 1) of the gaps (intervals between clusters R(k, N — M. Therefore, if
k <min(M, N - M):

A(k, N, M) = R(k, M) R(k, N — M). (10)

From Equations (9)—(10), we conclude that:
Ak, N,M)=Cy Cy - (11)

Leta=(i..., i,) be an arbitrary state from the set 4. Define b(a,d) the state corresponding to a by rotating it by d cells,
i, b(a,d)=(iy_g1>iy_gizse-eriysipse-aniy_g ). Any state with k clusters coincides with b(a,d) for k different ordered
pairs (a,d), where a is an element of the set 4, and d is one of the numbers 0,1,..., N—1. The total number of such distinct
pairs is N-A(k, N, M). Thus, we have:

S(k,N,M) :%A(k,N,M). (12)

From equations (11) and (12), it follows that equation (9) holds. The lemma is proven.
Theorem 1. The system (4)—(5) has a solution

C . "
Gy O G 1)
where the constant is
min(M,N-M) -1
N _ _ 1
C:( Z I'C}\I;—IICII:/—IM—] W} : (14)
k=1
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Proof. Let’s rewrite (4) in the form

-1 c¥ -1
Zn[p[j:znjpﬂ.,i,jzo,...,c%—l. (15)
Jj=0 Jj=0

Let F{(s)) be the set of states that can be reached from state s, in one step; F(s,, /) is a subset of the set /(s,) containing
states that can be reached from state s, by transitioning / particles; B(s)) is a subset of B(s), containing states that can
transition into state s, in one step; B(s,, /) is a subset of B(s,), containing states that can transition into state s, by transitioning
particles.

We have

i

[0 F(s)inj=0,....CY -1,
P (= Y e s I),i, j=0,...,CY —1,1 =1,...,k(s,), (16)

{o,je B(s)i,j=0,...Ch-1,
ji =

$)- 17
P a=p)7 jeB(s, )i, j=0,...,CY¥ =11 =1,....k(s,). a7
Taking into account (16) and (17), we rewrite (15) in the form:
k(s) k(s;)
cardF (s, [)m, p' (1— p) ) = Z Z cardB(s,, [)n,p' (1= p)**7,i=0,...,C)f -1, (18)
1=1 I=1 jeB(s;,l)
where “card” denotes the number of elements in the set 4.
Substituting (13) into (18), we rewrite (18) in the form
k(s;) k(s;)
D cardF (s, 1)p' (1= p)~ = cardB(s,,[)p'(1- p)"". (19)

1=1 1=1

Due to the symmetry card B(s,,/) = card F(s,,1),] =1,...,k(s,),i = O,...,Cﬁ‘f -1.

Thus, the solution (13) satisfies the system (19), and consequently, also satisfies the system (4)—(5). The formula (14)
for calculating the constant follows from (6), (13), and Lemma 1. Theorem 1 is proven.

Estimation of the Average Speed Based on Statistical Mechanics. In [11], the hypothesis is proposed that the
average speed of particles follows the formula

RSN ey o)
2p
where p = M/ N is the particle flow density.

In [12], it is shown that for finite systems (finite ) correlations between vehicles and their mutual influence on
movement cannot be fully accounted for by the formula (20). This is because in finite systems, there is a limited number
of vehicles, and their motion can be more complex due to interactions.

In the limit as N — o (thermodynamic limit), the system becomes infinitely large, and correlations between vehicles
become local. In this case, the formula (20) becomes exact, as the influence of boundary conditions and the finiteness of
the system vanishes.

In [13], a rigorous proof of the formula for the average speed in a model based on asymmetric exclusion processes
(Asymmetric Simple Exclusion Process — ASEP) on a ring is presented. This proof relies on the use of recursive formulas
for the distribution function and hypergeometric functions, which allow obtaining an exact expression for the average
speed as a function of density p and the probability p.

It is worth noting that for the creation of intelligent transport systems (ITS), short sections of highways are especially
important, as monitoring traffic flows using cameras mounted on lighting masts or traffic lights has a limited coverage
area of the lane.

Estimation of the Average Speed Based on the Stochastic Model. Since in real-world conditions the traffic
analysis task is carried out on finite sections of highways, formulas based on probability theory can be used to estimate
the average speed.

Let H(?) be the average total number of particle movements over a time interval (0,f). As follows from the ergodic
theorem of Markov processes theory, the limit

. H(@®)
=1lim
v=lim— 1)
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exists and does not depend on the initial configuration of the particles. The value v is called the particle speed.
Thus, the amount of movement of the system under consideration in one step is:

oy -1
0= mk(s)p. (22)
i=0
In [14], the following explicit formula for estimating the average speed of particles is obtained:
min(M ,N-M)
_ﬁ L_Ckfl Ckfl p
= BRI SR
M k=1 (1 - p)k :
min(M ,N-M) N 1 -1 (23)
C= Nt ,
[ ; k M-1“N-M-1 ( —p)k_l j

where C}/ is the number of combinations of N elements chosen from M.

The formula follows from the statement of Theorem 1, Lemma 1, and formula (22). In [15], an alternative derivation
of formula (23) is given.

Estimation of Average Speed Based on Queueing Systems. A research team led by Doctor of Technical Sciences
M.V. Yashina, which includes the author of this article, discovered that for calculating the average speed, a formula based
on queueing systems, presented in [16], can be applied.

The average speed is equal to the limit of the ratio of recursive procedures:

r(N—M,M)
=, (24)
rl(N_MsM)
where g = 1 - p, and r (N — M, M) and r,(N — M, M) are recursive procedures:
=L ps, 25)
p
N-M 1
rl(N—M,l)z[ij S N-M>1, (26)
p q
nemy =Ly @7
R(N-M,M) =rl(N—M,M—1)+ir2(N—M—1,M)+r1(N—M—1,M—1), N-M2>2,M >2, (28)
p
rn(N-M,M) =r1(N—M—l,M—l)+ir2(N—M—1,M), N-M2>3,M>1. (29)
p

Comparison of Average Speed Estimates from Proposed Methods. Let’s compare the dependencies of the average
speed estimate v on the density p for different values of the probability p using the formulas (20), (23), and (24) (Fig. 3).

The average speed estimate according to formulas (23) and (24) gives the same value, so the graphs overlap. From the
graphs, it can be seen that for small values of N the average speed calculated using formula (20) differs from those using
formulas (23) and (24). As N increases, the difference between the values decreases.

Figure 4 shows the dependency of the average speed v, calculated using formulas (20), (23), and (24), on the probability
pe[0,01, 0,99] and the number of particles Me[1, N—-1].

Graph of dependence of v by formulas (1), (2), (3) from rho at N=5 Graph of dependence of v by formulas (1), (2), (3) from rho at N= 10
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Graph of dependence of v by formulas (1), (2), (3) from rho at N =20
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Fig. 3. Average speed estimate according to formulas (20), (23), and (24)
fora —N=5;b—N=10;¢c—N=20;d— N=200
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Graph of the dependence and values of the average speed
to the formulas (1), (2), (3) from p and M for N= 10
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Graph of dependence of v by formulas (1), (2), (3) from rho at N =200
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Fig. 4. Dependency of the average speed v, calculated using formulas (20), (23), and (24), on the probability
p€[0,01, 0,99] and the number of particles Me[1, N-1] fora — N=5;b—N=10;c — N=20;d— N=200

From the graphs, we can evaluate the nature of the change in the average speed v, calculated using formulas (20), (23),

and (24), with respect to the probability pe[0,01, 0,99] and the number of particles Me[1, N—1].

In Fig. 5, the difference in the values of the average speed v, calculated using formulas (20) and (23), is presented as a
function of the probability pe[0,01, 0,99] and the number of particles Me[1, N-1]. Formula (24) is not considered, as its

values coincide with the average speed values calculated using formula (23).

From the graphs, the nature of the error growth is visible in two directions: when the probability p approaches 0.5, and
at low particle density, as well as when the particle density p, approaches 1, and the particle density p, approaches 0.5. At

low values of N the error is within the hundredths, while as N increases, the error decreases to thousandths.
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Fig. 5. The difference in the values of the average speed v, calculated using formulas (20) and (23), as a function of the
probability p[0,01, 0,99] and the number of particles Me[1, N-1] fora— N=10,b—N=10,c— N=20,d— N=200

Comparison of Average Speed Estimation with Computer Simulation. For the numerical estimation of average
speed values calculated by formulas (20), (23), and (24), a computer simulation was implemented, modelling the
movement of particles on a closed lattice. The user specifies the number of cells N the number of particles M, which are
uniformly distributed across all cells, the probability of a particle moving to the next cell p if the next cell is empty, the
number of iterations #, and the number of simulation runs 7.

At each iteration, the instantaneous speed v is calculated as the number of particles that moved divided by the total
number of particles, and the average speed is the sum of all instantaneous speeds over the number of iterations.

Upon completion of all runs, the average speed , is calculated as the sum of all average speeds at the end of each
simulation run divided by the number of simulation runs. The average speeds were calculated for = 2000, 7= 10.

Tables 1-4 show the results of average speed calculations based on formulas (20) and (23) (formula (24) is not shown
as the values computed by it are identical to those of formula (23)), as well as results from the computer simulation (sim)
for different numbers of cells N.

Table 1
Average speed for N=5

plp p=03 p=0.5 p=0.7 p=0.9

(20) (23) sim (20) (23) sim (20) (23) sim (20) (23) sim
p=0.1| 0.081 0.100 0.101 0.062 0.076 0.074 0.041 0.051 0.050 0.020 0.025 0.025
p=03 ] 0253 0.300 0.302 0.195 0.238 0.237 0.130 0.159 0.159 0.063 0.075 0.074
p=05 1] 0438 0.500 0.500 0.349 0.417 0.418 0.232 0.278 0.275 0.110 0.125 0.125
p=07 ] 0.643 0.700 0.700 0.534 0.619 0.622 0.356 0.413 0.415 0.161 0.175 0.173
p=0.9 | 0.872 0.900 0.896 0.789 0.859 0.862 0.526 0.573 0.572 0.218 0.225 0.225
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Table 2

Average speed for N =10

plp p=0.1 p=03 p=0.5 p=0.7 p=0.9

(20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim

p=0.110.091 | 0.100 | 0.100 | 0.072 | 0.079 | 0.079 | 0.051 | 0.057 | 0.057 | 0.031 | 0.034 | 0.034 | 0.010 | 0.011 | 0.011

p=030.278 | 0.300 | 0.299 | 0.225 | 0.247 | 0.243 | 0.163 | 0.180 | 0.182 | 0.097 | 0.106 | 0.104 | 0.031 | 0.033 | 0.032

p=0.50472 | 0.500 | 0.503 | 0.397 | 0.429 | 0.429 | 0.293 | 0.320 | 0.320 | 0.170 | 0.184 | 0.183 | 0.052 | 0.056 | 0.055

p=0.710.676 | 0.700 | 0.705 | 0.597 | 0.633 | 0.632 | 0.452 | 0.491 | 0.490 | 0.256 | 0.271 | 0.269 | 0.075 | 0.078 | 0.078

p=090.889 | 0.900 | 0.897 | 0.843 | 0.867 | 0.866 | 0.684 | 0.736 | 0.734 | 0.361 | 0.372 | 0.371 | 0.099 | 0.100 | 0.100

Table 3

Average speed for N =20

plp p=0.1 p=03 p=0.5 p=0.7 p=0.9

(20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim

p=0.110.091 | 0.095 | 0.093 | 0.072 | 0.075 | 0.075 | 0.051 | 0.054 | 0.053 | 0.031 | 0.032 | 0.031 | 0.010 | 0.011 | 0.010

p=0310278 | 0.289 | 0.285 | 0.225 | 0.235 | 0.232 | 0.163 | 0.171 | 0.171 | 0.097 | 0.101 | 0.101 | 0.031 | 0.032 | 0.031

p=051]0472 | 0486 | 0.478 | 0.397 | 0.413 | 0.411 | 0.293 | 0.306 | 0.305 | 0.170 | 0.177 | 0.179 | 0.052 | 0.054 | 0.054

p=0.7)0.676 | 0.688 | 0.691 | 0.597 | 0.615 | 0.615 | 0.452 | 0.471 | 0.472 | 0.256 | 0.264 | 0.263 | 0.075 | 0.076 | 0.076

p=090.889 | 0.895 | 0.892 | 0.843 | 0.856 | 0.855 | 0.684 | 0.708 | 0.706 | 0.361 | 0.367 | 0.366 | 0.099 | 0.099 | 0.099

Table 4

Average speed for N =200

plp p=0.1 p=03 p=05 p=0.7 p=0.9

(20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim | (20) | (23) | sim

p=0.110.091 | 0.091 | 0.091 | 0.072 | 0.072 | 0.070 | 0.051 | 0.052 | 0.051 | 0.031 | 0.031 | 0.030 | 0.010 | 0.010 | 0.010

p=03)0.278 | 0.279 | 0.279 | 0.225 | 0.226 | 0.225 | 0.163 | 0.164 | 0.163 | 0.097 | 0.097 | 0.096 | 0.031 | 0.031 | 0.031

p=050472 10474 | 0.474 | 0.397 | 0.399 | 0.399 | 0.293 | 0.294 | 0.294 | 0.170 | 0.171 | 0.170 | 0.052 | 0.053 | 0.052

p=0.710.676 | 0.677 | 0.674 | 0.597 | 0.599 | 0.598 | 0.452 | 0.454 | 0.453 | 0.256 | 0.257 | 0.256 | 0.075 | 0.075 | 0.074

p=090.889 | 0.890 | 0.887 | 0.843 | 0.845 | 0.842 | 0.684 | 0.686 | 0.685 | 0.361 | 0.362 | 0.361 | 0.099 | 0.099 | 0.074

From the tables, it is evident that the value of the average speed calculated using formulas (23) and (24) is closer to
the simulation results for small values of N. In general, the error between the results for formulas (20) and (23)—(24) fully
correlates with the results shown in Fig. 5. The obtained results also coincide with the results of the comparison between
formulas (20) and (23) in [17, 18]. It can be concluded that as N increases, the results calculated using formula (20)
increasingly approach the results obtained from formulas (23), (24), and computer simulation.

Computational Complexity Estimation of Average Speed Calculation Formulas. Let’s estimate the computational
complexity of calculating the average speed using formula (20). Since formula (20) does not contain loops or recursions,
and its computation depends only on basic operations and constants, its computational complexity is constant — O(1).

Now, let’s estimate the computational complexity of calculating the average speed using formula (23). The sum
iterates over all values of k£ from 1 to min(M, N — M). Let K = min(M, N — M) be the number of terms. Then the sum
has K terms.

For each term in the sum, we need to compute C},",, which requires O(k) operations, and Cy_',_, , which also requires
O(k) operations. Computing the remaining values and multiplying all these values together requires O(1) operations. Thus,
the overall computational complexity for one term in the sum is O(k). Since the sum has K terms, the total computational

K
complexity for calculating the entire sum is O(Z k)=O0(K?).
k=1
The total computational complexity of formula (23) is determined by the complexity of computing the normalization

coefficient C and the expression for v. Since both of these computations have a complexity of O(K?), the total complexity
is also O(K?), where K = min(M, N — M).
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Let’s estimate the computational complexity of calculating the average speed using formula (24). Both functions |
and r, depend on two parameters: N — M and M. Therefore, the total number of unique states (or nodes in the recursion
tree) equals the number of possible combinations (M, N — M), where N — M can take values from 1 to N— 1, and M can
take values from 1 to min(M, N — M). Consequently, the total number of states is O(N?).

The recursion depth for each function is determined by the maximum value of N — M or M. In the worst case, the
recursion depth is O(N). At each recursion level, simple arithmetic operations are performed, requiring O(1) operations.
Thus, the total number of operations is proportional to the number of unique states.

Considering the above factors, the total computational complexity of formula (24) is O(N?). This is because each
state (M, N — M) is computed exactly once, and the total number of states is O(N?). Therefore, formula (20) is the most
computationally efficient. Formulas (23) and (24) have identical computational complexities.

Discussion and Conclusion. The paper presents an estimation of the limiting speed of one-way traffic flow with high
computational efficiency. The main conclusions are as follows:

1. For small values of N, which are most representative of real highway sections captured by cameras, formulas (23)
and (24) are the most suitable for estimating the average speed v. These formulas provide equivalent results that closely
match the outcomes of computer simulations..

2. For estimating the average speed v for large N computer calculations with formula (23) are constrained by memory
usage due to the need to calculate large factorials. When N < 310 exceeds a certain threshold, memory overflow occurs on

the used computer system p ~ % . In such cases, formula (24) can be used as an alternative.

3. For estimating the average speed v for large N computer calculations with formula (24) are constrained by the
maximum recursion depth for the values of r, and r,. As a result, even when using dynamic programming methods, the
computation may take longer than when using formula (23) and may lead to a stack overflow.

4. From the obtained results, it is clear that as increases, the estimate of the average speed using formula (20) will
approach the values computed using formulas (23) and (24), while requiring significantly fewer computational resources. Thus,
formula (23), yielding an equivalent result to formula (24) for N — oo, can be applied in problems related to queuing systems.
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Abstract

Introduction. This study addresses the problem of automatic text recognition in images, specifically the extraction of depth
information from pilot charts. The relevance of this task is driven by the need to automate the processing of large volumes
of cartographic data to create depth maps suitable for mathematical modelling of hydrodynamic and hydrobiological
processes. The objective of this work is to develop the software tool LocMap, designed for the automatic detection and
recognition of depth values represented as numbers on pilot chart images.

Materials and Methods. The study employs deep learning methods, including convolutional neural networks (ResNet)
for feature extraction, the Differentiable Binarization (DB) algorithm for text detection, and the Scene Text Recognition
with a Single Visual Model (SVTR) architecture for text recognition.

Results. The developed software allows users to upload pilot chart images, perform preprocessing, detect and recognize
depth values, highlight them in the image, and save the results in a text file. Testing results demonstrated that the system
ensures high accuracy in recognizing depth values on pilot charts.

Discussion and Conclusion. The obtained results highlight the practical significance of the developed solution for
automating the processing of pilot charts.

Keywords: text recognition, pilot charts, depth, deep learning, convolutional neural networks, differentiable binarization
algorithm, Single Visual Model
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ABTOMaTH4YeCKOe PACIIO3HABAHUE 3HAYCHHI ITyOHHBI
HA JIOIIMAHCKHUX KapTax ¢ HCNOJb30BAHHEM METOA0B IJ1Iy00KOro o0yueHust
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AHHOTALUA

Bgeoenue. PaccmaTtpuBaeTcs mpobOieMa aBTOMAaTHYECKOTO PACIO3HABAHHUSI TEKCTa HA HM300paKEHUSIX, B YaCTHOCTH
3ajja4a M3BJICYCHHUs] MHPOpMAIUU O TIyOMHAX C JIOUMAHCKUX KapT. AKTyalbHOCTh JAHHOW 3aiadu OOYCIIOBJICHA
HEOOXOAMMOCTBIO aBTOMaTH3alUK 00pabOTKK OONBIIMX 00BbEMOB KapTOrpadMuecKuX AaHHBIX JUIs MOCTPOCHUS KapThl
TIIyOHMH, IPUTOTHOM JJIs1 MaTeMaTHYECKOTO MOJICINPOBAHUS THAPOANHAMUYECKUX U THIPOOHOIIOTHYECKUX TIPOIECCOB.
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Lemnpro paboTsl siBIsieTCA pa3padoTka mporpammuoro cpenctsa (I1C) LocMap, mpenHa3sHaueHHOTO 711 aBTOMaTHYECKOTO
oOHapyKeHHs U paclio3HaBaHMs 3HAYSHUHU IITyOUH, IPECTaBICHHbIX B BUIC YHCEN Ha H300paKEHHUSIX JIOLIMAHCKHX KapT.
Mamepuanvt u memoost. B paboTe HCIONB30BaHBI METOBI TIyOOKOro 00y4YeHHs, 2 UMEHHO CBEPTOYHbIC HEHPOHHBIC
cetu ResNet 1151 n3BiIe4eHsI NPU3HAKOB, ITOPUTM U depeHmpyemoit Onnapuzanuu DB 1i1s o0HapykeHus TekcTa 1
apxutektypa Scene Text Recognition with a Single Visual Model (SVTR) ms pacnio3naBanus Tekcra.

Pesynomamut uccnedosanusn. Pazpadorannoe I1C mo3Bosier 3arpyxath U300paKeHUs JIOIIMAHCKUX KapT, BBHITIOIHSATH
mpenoOpaboTKy, oOHapyXMBaTh W PACIO3HABATH 3HAYEHUS TIIyOWH, BBIACTATh WX Ha W300paKEHWH M COXPAHATH
pe3yibTaThl B TEKCTOBBIA (haii. PesynbraThl TecTHpOBaHUS MOKAa3aiH, 4TO pa3paboTaHHAs CHCTEMa O0ecIeUYnBacT
BBICOKYIO TOYHOCTh PACIIO3HABAHUS 3HAYCHHMI TTTyOUH Ha JIOMaHCKUX KapTax.

Oécyscoenue u 3axniouenue. IloaydeHHbIe pe3ysIbTaThl JEMOHCTPHPYIOT MPAKTUYECKYIO 3HAUUMOCTh Pa3padOTaHHOTO
peIlIeHUs Il aBTOMATH3aIMU 00paOOTKH JIOIIMAHCKUX KapT.

KnroueBbie cii0Ba: pacrio3HaBaHHE TEKCTa, JIOMAHCKUE KapThl, TTyOHHa, ITyO0oKoe 00ydeHHe, CBepTOYHbIC HeHPOHHBIE
cetu, anropuT™ andepennupyemoit ounapuzamuu, Single Visual Model

duHaHcupoBaHue. VccreoBanne BBIOJHEHO 3a cyeT rpaHTa Poccuiickoro nHaydaoro ¢onma Ne 22-71-10102,
https://rscf.ru/project/22-71-10102/

Jdas uurupoBanus. Paxumbaea E.O., AneimoB T.A., benosa FO.B. ABTomaTHueckoe pacrno3HaBaHHE 3HAUCHHIA
NIyOWHBI HA JIOIIMAHCKUX KapTaxX ¢ MCIOJIb30BAHUEM METOAOB ritybokoro obyuenus. Computational Mathematics and
Information Technologies. 2025;9(1):52—60. https://doi.org/10.23947/2587-8999-2025-9-1-52-60

Introduction. In today>s world, there is a rapid increase in the volume of information presented in the form of images.
This drives the need for the development of efficient methods for automated data extraction and analysis from images.
One of the key challenges in this field is Optical Character Recognition (OCR), which has broad applications in various
areas, including document digitization, automatic license plate recognition, and cartographic data analysis.

Extracting data from image processing, including satellite imagery, is becoming increasingly significant for modelling
processes in complex natural systems. A pressing issue is obtaining initial information for mathematical models of
hydrodynamics and hydrobiology [1] and refining the parameters of these models [2]. The development of satellite image
processing methods enables the acquisition of input data for predictive modelling of processes occurring in water bodies,
particularly in the Azov and Black Seas [3].

Pilot charts are a special type of map containing detailed information about water basins, designed to ensure safe
navigation for vessels. One of the key tasks when working with pilot charts is determining depth values, which are
typically represented as standard numbers and subscripted numbers on the maps. Traditional methods of processing
pilot charts, based on manual analysis, are extremely labor-intensive and prone to errors. Therefore, the development of
automated methods for recognizing depth values on pilot charts is an important and relevant task.

The aim of this study is to develop a software tool for the automatic detection and recognition of depth values on pilot
charts using deep learning methods. To achieve this goal, the following tasks were set:

« analyze existing text recognition methods for images;

* collect and prepare a training dataset of pilot chart images;

* develop a data augmentation algorithm to enhance model robustness against various distortions;

* develop and train a model for detecting and recognizing depth values;

* create a software tool with a user-friendly interface;

» conduct testing and evaluate the performance of the developed software.

Materials and Methods

Dataset Description. In this study, a dataset consisting of 1,590 images of pilot charts of the Azov and Black Seas
was used. The images were obtained from open sources on the Internet. The images have a resolution of 400x300 pixels
and depict sections of the seas with depth markings, fairways, coastlines, and other navigational objects. Figure 1 shows
an example of a pilot chart image from the dataset.

For training the model, the following elements were selected for recognition: numerical depth values represented by
Arabic numerals, numerical values with a subscript indicating tenths of a meter. Elements that do not represent depth
values, such as coastline markings, object names, and kilometer markers, were not subject to recognition.

Data Annotation. The data annotation was performed manually using the PPOCRLabel software. The elements to
be recognized were identified and assigned corresponding labels in the form of numbers, such as “10” or “12.4”. A total
of 1,590 images were annotated, containing approximately 12,500 depth values. Figure 2 shows an example of annotated
pilot chart data.
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Fig. 1. Pilot chart (depth map)

Figure 2. Data annotation on an image

During the annotation process, the following challenges were identified: low quality of some images, dense arrangement
of objects on the map, truncated depth values at the edges of images.

Data Augmentation. To enhance the model’s robustness against various distortions and to increase the size of the
training dataset, a data augmentation algorithm was applied. The augmentation included the following methods [4]:

« scaling (image sizes were adjusted by a factor of 0.8—1.2 while maintaining proportions),

« shifting (images were shifted horizontally and vertically by a random number of pixels within the range of —50 to
+50 pixels),

« applying filters (Gaussian blur and sharpening filters were used).

Figure 3 presents examples of augmented images.
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0 Original Image 0 Scaled and Translated Image
50 50
100 100
150 150
200 200
0 50 100 150 200 250 300 0 50 100 150 200 250 300
0 Blurred Image 0 Sharpened Image
50 50
100 100
150 150
200 200
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Fig. 3. Examples of image augmentation

Detection Model Architecture. For text detection in pilot charts, the Differentiable Binarization (DB) algorithm was
used, as illustrated in Figure 4. DB is a state-of-the-art text detection method based on segmentation, enabling efficient
text region extraction with a dynamic threshold.

The key advantage of DB lies in its differentiable binarization function, allowing the network to be trained end-to-end,
yielding more accurate results compared to traditional fixed-threshold binarization methods. The fundamental difference
from other approaches is that DB includes a threshold map, predicting the threshold for each pixel point in the image
using a neural network rather than assigning a fixed value. This enables better differentiation between text foreground and
background.

The DB algorithm applies differentiable binarization, which approximates the step function of conventional
binarization. The following formula is used:

5 1

B et ()
where B is the approximate binary map; & is the enhancement factor, equal to 50; P is the probability map; T is the
threshold map obtained from the network.

This approximate binarization function is differentiable, allowing it to be optimized along with the segmentation
network during the training process. Differentiable binarization with adaptive threshold values can not only help
distinguish text regions from the background but also separate tightly connected text instances [5, 6].

conv
Element-wise Sum conv, upx2

Up-sampl pred
upxN YPp-sample conv, upx4

with ratio N conv, upx8
conv 3*3 luti ’ -

convolution upx2 w2 Probability map DB box
upx2 1/4 formation
pred Approximate
binary map
Threshold map

172 /4 1/8 1/16 1/32

Fig. 4. Architecture of Differentiable Binarization

The ResNet networks and Differentiable Binarization Feature Pyramid Network (DBFPN) extract features from the
input image, which are then combined to form a feature map with a quarter of the original image’s size. A convolutional
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layer is applied to generate the probability map and threshold map. Subsequently, based on formula (1), the binary map is
created, and then, using DB post-processing, the contour is extracted.

The text detection algorithm using differentiable binarization can be described as follows:

Step 1. Feature extraction. The input image is fed into a network, such as ResNet, which extracts features at different
levels of the pyramid (1/2, 1/4, 1/8, 1/16, 1/32) relative to the input image scale;

Step 2. Feature fusion. The extracted features are successively upscaled to a common scale and merged. After merging,
they pass through 3x3 convolutional layers and additional upscaling operations to create a unified feature (F);

Step 3. Map prediction. The feature F is used to predict the probability map (P) and the threshold map (7);

Step 4. Differentiable binarization (DB). The probability (P) and threshold (7) maps are used to compute the
approximate binary map ( B) using the differentiable binarization function. This allows the binarization process to be
optimized along with the training of the segmentation network;

Step 5. Bounding box generation. During inference, text bounding boxes can be easily obtained from the approximate
binary map ( B) or the probability map (P) using the bounding box generation module.

The use of differentiable binarization for text detection in cartographic images enables the creation of an efficient and
accurate system capable of working in real-world conditions with diverse and distorted data. This approach ensures high
flexibility and adaptability of the model, which is a key factor for successful recognition of text elements in cartographic images [7].

The overall dataset of 1590 images was divided into a training set (1272 images) and a validation set (318 images).

For the DB architecture (based on ResNet-34), the DB++ model with the DBFPN module for feature extraction and
the DBHead module were used for text detection. The loss was calculated using the combined DBLoss function, which
includes DiceLoss with weights =5 and B=10. An online hard example mining (OHEM) mechanism with a coefficient of
3 was also applied. It selects only hard examples from the mini-batch for gradient calculation, skipping easy ones so that

the model focuses on more challenging cases.
The training parameters included:
» Adam optimizer with $1=0.9 and $2=0.999;
* Cosine learning rate decay (initial value 0.0005) with two epochs for warm-up;
* L, regularization with a coefficient of 0;
* Batch size — §;

* Total number of epochs — 21.
During training, evaluation metrics such as Hmean were used, which were calculated every 7 epochs. The images

were resized to 960x960 pixels, according to the DB architecture property (image resolutions must be divisible by 32) [8].

Recognition Model Architecture. For recognizing the detected depth values, the SVTR (Single Visual Model for
Scene Text Recognition) architecture was chosen, as shown in Figure 5. SVTR represents an innovative approach to text
recognition, in which the traditional sequential model is replaced by a unified visual model, improving efficiency and

processing speed [9].
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Fig. 5. SVTR Architecture

Main components and stages:

* Input (the input image with dimensions HxWx3);

* Patch Embedding (divides the input image into small patches and converts them into vector representations). A Position
Embedding is added to the output of Patch Embedding to encode the position information of each patch on the image;
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» Stage 1, Stage 2, Stage 3 (three processing stages, each including Mixing Blocks and Merging). In each Mixing
Block, local and global information are combined. This allows the model to account for fine details (e. g., textures, edges)
as well as the overall structure or context (global features) of the image. For example, to understand what is depicted in a
photograph, it is important to consider the spatial arrangement of objects relative to each other;

* Fully Connected (the final fully connected layer that produces the prediction) [10].

The SVTR architecture is based on the principle of tokenizing images into parts. The depth value image is split
into small 2D patches, called “character components”. Hierarchical cascades recursively apply mixing, merging, and
combining operations at the level of these components [11]. The architecture uses global and local mixing blocks to
perceive both inter-character and intra-character patterns, enabling multi-level perception of character components.
Character recognition is performed through a simple linear prediction at the end of the network. SVTR consists of a three-
cascade network, with progressively reduced height, which facilitates efficient feature extraction [12].

For training the SVTR model, the authors used a dataset of 12,495 depth value images. The dataset was split into
training (8,747 images) and validation (3,748 images) sets. The model was trained using the AdamW optimizer with a
decay weight of 0.05. The initial learning rate was set at 0.00005 using a Cosine Learning Rate Scheduler and a linear
warm-up phase for 2 epochs. The batch size was 256 images. The total number of training epochs was set to 50. The input
image size for the SVTR network was 48x36 pixels [13].

The loss function used was CPPDLoss (Character Position and Pixel Distance Loss). The CPPDLoss function is
specifically designed for recognition tasks and takes into account both the accuracy of character recognition and their
positional alignment.

The developed software tool, LocMap, performs the following functions:

» image upload (the user uploads a pilot chart image in png, jpeg, or bmp formats);

* image preprocessing (converting to grayscale and binarizing the images using thresholding);

* text detection (text areas in the image are detected using the DB algorithm);

* text recognition (the detected text areas are passed to the SVTR model for recognizing depth values);

« results output (the recognized depth values are highlighted on the original image and displayed in a separate window);

» results saving (the user can save the image with highlighted depth values and a text file with the recognized values
and their coordinates on the image).

Results

Evaluation of Detection and Recognition Quality. The following metrics were used to evaluate the quality of detection:

* precision — the proportion of correctly recognized depth values among all detected values;

» recall — the proportion of correctly recognized depth values among all depth values present in the image;

* harmonic mean (hmean) — the harmonic mean of precision and recall, a balanced metric that takes both characteristics
into account.

As a result of training the depth detection model, the best metric values were achieved at the 18th epoch, which are
presented in Table 1.

Table 1
Best Metric Values for the Detection Model
Metric Value
precision 90.89%
recall 82.66%
hmean 86.58%

To evaluate the recognition quality, the RecMetric metric was used, with the primary indicator being accuracy.
Additionally, the Norm Edit Distance (norm_edit_dis) metric was used, which measures the degree of similarity between
the predicted text and the reference (labeled) text. During the training process, the model that showed the best accuracy
on the validation dataset was saved for further use in inference tasks.

The recognition model achieved the best results at the 39th epoch, which are presented in Table 2.

Best Metric Values for the Recognition Model

Table 2

Metric Value
accuracy 95.03%
norm_edit dis 97.60%

57



58

Comp ional Mathematics and Information Technologies. 2025;9(1):52—60. eISSN 2587-8999

Examples of Software Operation. For user interaction with the LocMap software, four buttons were implemented,
displayed at the bottom of the window:

* “Open”;

* “Save Images”;

* “Save Values”;

* “Re-recognize”.

After opening a file with an image and performing recognition, the result of the software operation is displayed
on the screen in the corresponding areas, as shown in Figure 6. This includes a list of recognized depth values and the
coordinates of the points where these values were determined. The obtained values and their coordinates are saved in a
file with the .txt extension.

Fig. 6. Result of Software Operation

The LocMap software module allows obtaining the depth value at a selected point on the image, as demonstrated in Fig. 7.

Fig. 7. Depth at the Selected Point

Discussion and Conclusion. The results obtained demonstrate that the developed software LocMap provides high
accuracy in recognizing depth values on navigation charts. The best results are achieved when recognizing values located
in open areas of the map with good contrast and clear typography. Difficulties arise when recognizing values placed near
complex graphic elements, such as contour lines, markers, or text annotations.

The advantage of the developed method is the use of modern deep learning algorithms, such as DB, ResNet, and SVTR,
which allow effective detection and recognition of text on images with various distortions. The use of data augmentation has
improved the model’s robustness to various numeral writing styles, changes in scale and orientation, and noise on the image.

Despite the high recognition accuracy, the developed software LocMap has several limitations. One of the main
factors is the dependence on the quality of data labeling. Errors or inaccuracies in labeling can lead to incorrect model
training, which is especially critical for complex text regions on navigation charts. Another limitation is the computational



Rakhimbaeva E.O. et al. Automatic Depth Value Recognition on Pilot Charts ...

complexity of the method, associated with the use of deep neural networks. Specifically, resource-intensive stages of data
processing and computation hinder the application of the method in real-time on devices with limited computational power.

The next step in the research will be the construction of a depth map for the Azov and Black Seas using the algorithm
proposed in [14]. This algorithm uses a solution to the equation employed to obtain high-order accuracy schemes for the
Laplace equation. The use of this algorithm will allow for the interpolation of the seabed surface with sufficiently smooth
functions. This will improve the accuracy of modelling hydrodynamic and hydrobiological processes by constructing a
computational grid that matches current cartographic data [15].

The conducted experiments showed that the developed system ensures high recognition accuracy. The obtained results
demonstrate the practical significance of the developed solution for automating the processing of navigation charts.

Potential directions for future research include expanding the dataset, improving text detection and recognition
algorithms, integrating with GIS systems, recognizing other elements of navigation charts, and constructing seabed relief
based on the obtained depths and their coordinates. The application area of the developed software is mathematical
modelling of hydrodynamic and hydrobiological processes of water bodies. The application of the developed recognition
methods will help build computational grids based on up-to-date cartographic information.
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