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Abstract

Introduction. The development, analysis, and modification of finite difference schemes tailored to the specific features of
the considered problem can significantly enhance the accuracy of modeling complex systems. In simulations of various
processes, including hydrodynamic phenomena in shallow water bodies, it has been observed that for problems with third-
type (Robin) boundary conditions, the theoretical error order of spatial discretization drops from second-order to first-
order accuracy, which in turn decreases the overall accuracy of the numerical solution. The present study addresses the
relevant issue of how the approximation of third-type boundary conditions affects the accuracy of the numerical solution
to the heat conduction problem. It also proposes a finite difference scheme with improved boundary approximation for
the heat conduction equation with third-type boundary conditions and compares the accuracy of the numerical solutions
obtained by the authors with known benchmark solutions.

Materials and Methods. The paper considers the one-dimensional heat conduction equation with third-type boundary
conditions, for which an analytical solution is available. The problem is discretized, and it is shown that under standard
boundary approximation, the theoretical order of approximation error for the second-order differential operator in
the diffusion equation is O(%). To improve the accuracy of the numerical solution under specific third-type boundary
conditions, a finite difference scheme is proposed. This scheme achieves second-order accuracy O(/?), for the differential
operator not only at interior nodes but also at the boundary nodes of the computational domain.

Results. Test problems were used to compare the accuracy of numerical solutions obtained using the proposed scheme
and those based on the standard boundary approximation.

Discussion and Conclusion. Numerical experiments demonstrate that the proposed scheme with enhanced boundary
approximation for the heat conduction equation under specific third-type boundary conditions exhibits an effective
accuracy order close to 2, which corresponds to the theoretical prediction. It is noteworthy that the scheme with standard
boundary approximation also demonstrates an effective accuracy order close to 2, despite the lower theoretical order of
boundary approximation. Importantly, the numerical error of the proposed scheme decreases significantly faster compared
to the scheme with standard boundary treatment.
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OPMZMHLUZbHoe meopemudecKkoe ucciedosamue

Pa3HocTHaa cxema ¢ yJIy‘lIHeHHOﬁ annpoxchauneﬁ Ha rpanmue 1Jist ypaBHCHUSA
TEIJIONMPOBOJAHOCTH C TPAHUYHBIMHA YCJIOBUSIMU TPETHET0 pojaa

A.E. Yuctakos , I.1O. Ky3nenoa [

JloHCKOM rocy1apCTBEHHbIN TEXHUYECKUI yHUBEPCUTET, T. PocToB-Ha-Jlony, Poccuiickas deneparnust

P4 ikuznecova@donstu.ru

AHHOTALUA

Beeoenue. IlocTpoeHne pa3HOCTHBIX CXEM, UX MCCIIEIOBAHNE U MOJU(PHKAIHS C YUETOM ClielU(UKH paccMaTpuBaeMon
3aJ1a4H [MO3BOJISIET MIOBBICUTH TOYHOCTH MOJEIMPOBAHUS CIOXKHBIX cUcTeM. [Ipn MoienpoBaHIH pa3IMYHBIX IPOLIECCOB,
BKJIIOYasi THAPOAMHAMHUYECKHE MPOLECCHl B MEJKOBOAHBIX BOAOEMax, OBIJIO OTMEYEHO, YTO IPU PEIICHWH 334ad C
TPaHUYHBIMU YCJIOBHSIMH TPETHETO POAA TEOPETHUECKas OLEHKa MOpPsAKAa MOTPEIIHOCTU aNMpOoKCUMAalUU MajaeT co
BTOPOTO TMOPSAAKA IOTPEIIHOCTH OTHOCUTEIHHO MPOCTPAHCTBEHHBIX IIarOB PACUETHOM CETKH J0 IEepBOTO MOpAIKa, a,
CJIC/IOBATEINBHO, MTa/IaCT ¥ TOYHOCTD YHCIICHHOTO pelIeHns 3aaa4yn. HacTosmas paboTa mocBsIieHa akTyaJlbHOH mpobieme
HCCJIEIOBAHMSI BIUSHUS allPOKCUMAIIIY TPAHUYHBIX YCIOBUH TPETHEro pojia Ha TOYHOCTh YHCICHHOTO PELIeHUs 3a1a4n
TEIUIONPOBOAHOCTH, a TAK)KE IIOCTPOCHUIO PA3HOCTHOM CXEMBI ¢ YJIyYLIEHHON alnlpOKCHMalUed TPaHUYHBIX yCIOBUI
JUId ypaBHEHHUS TEIJIONPOBOJHOCTH C TPAHUYHBIMH YCIOBUSIMH TPETBEr0 poJa M CPaBHEHHIO TOYHOCTH YHMCIECHHBIX
pellIeHNH, IOTy4YEeHHBIX aBTOPaMHU, C U3BECTHBIMU PEIICHUSIMH.

Mamepuanst u memoowi. PaccmaTpuBaeTcsi ypaBHEHHE TETJIONPOBOJIHOCTH ¢ TPAHUYHBIMU YCIOBUSIMU TPETHETO POJa,
JUI1 KOTOPOTO MONYy4€HO aHAINTHYeCKoe pemeHue. IIpoBeneHa anmmpokcuManus pacCMOTPEHHON 3aJjadd M MOKa3aHo,
YTO NpPU CTaHJAPTHOW anmpoKCHMalu¥ 3aJadd Ha TpPaHulle PacueTHOW 00JacTH TeOpeTHYecKas OLIeHKa IOpsIKa
MOTPEUTHOCTH alIPOKCUMAINH TU(PepeHIINATBHOTO OIlepaTopa BTOPOro HOPsIIKa B ypaBHEHNUH AU y3UH COCTABISIET
O(h). Anst IOBBIMIEHUS] TOYHOCTH YHCICHHOTO PELICHUS B CIIydae TPaHUYHBIX YCIOBHH TPETHETO poJia CHENHATBHOTO
BUJa NpEAJIOKEHa pa3HOCTHAas CXeMa, MMEIOIIas MOTrPENIHOCTh allpoKCHMaluu Ju(QepeHHaIbHOr0 onepaTopa
Broporo mopsizka O(h?), Kak BO BHyTPEHHHUX, TAK M B TPAHHYHBIX y3JIaX PaCUCTHOMN 00IacTH.

Pesynomamut uccneoosanus. Ha tecToBbIX 3aJa4aX IPOBEAECHO CPABHEHHE TOYHOCTH YUCIEHHBIX PEIICHUH, TOTYYeHHBIX
Ha OCHOBE MpeAIaraeMoi CXeMbl U CXEMBI CO CTaHJapTHOM aNpoKCUMAalUed IPaHuLbl.

Oécyscoenue u 3akniouenue. V13 TpOBENECHHBIX YHCICHHBIX 3KCIEPHMEHTOB BHJHO, YTO MPENTIOKEHHAs CXeMa C
YIIy4IICHHOW amnmpoKCHMAalWeil Ha TPaHUIE PACUeTHOW 00JIACTH A ypaBHEHHs TEIIONPOBOMHOCTH MPU TPAHMYHBIX
YCIIOBUSIX TPETHEr0 pojia CHELMAIBHOTO BHAA UMeeT 3(P(EeKTUBHBINH MOPAIOK TOYHOCTH OKOJIO 2, YTO COOTBETCTBYET
NIOJIy4EHHO! TEOPETUUECKOM OLleHKE. [Ipr 3TOM CTOUT OTMETHUTB, UTO PA3HOCTHAS CXEMA CO CTaHAAPTHOM alnpoKCUManuei
Ha TpaHHIE PACUETHON 001acTH TaKke nMeeT 3G PEKTUBHBIA MOPSIIOK TOYHOCTH, OM3KHHN K 2, HECMOTPS Ha ITOJTyYEHHYIO
TEOPETUYECKYIO OLIEHKY MOpsAJKa MOTPELIHOCTH aNlpOKCUMAlMU JUIs TPaHWYHBIX Y3JI0B. BakHO OTMETUTh, 4TO IJIs
MIPEIOKEHHON CXEMBI pacueTHas MO PELTHOCTH YHCIIEHHOTO PELICHHUS [TaAaeT CYIIECTBEHHO OBICTpee, UeM AJIS PELICHUs
HA OCHOBE CXEMBI CO CTAaHIAPTHOH allIPOKCUMALUEN HA TPAHHULIE.

KiioueBbie ciioBa: YpaBHCHHUC TCIUIOMPOBOAHOCTHU, TPAaHUYHBIC YCJIIOBUA TPETHET0 poJaa, YUCICHHOC PCHICHUC,
NOrpCIHOCTL AIIIPOKCUMAIINHN

duHaHcupoBaHue. lccienoBaHue BBIIOJIHEHO 3a c4eT rpaHta Poccuiickoro Hay4dHoro ¢ouma Ne 22-71-10102,
https://rscf.ru/project/22-71-10102/

Jast umrupoBanus. Yuctakos A E., Kysnenosa W.10. PazHocTHas cxeMa ¢ yiIydieHHOW anmpoKcUMaliel Ha TpaHulle
JUIA YpaBHEHHs TEIUIONPOBOAHOCTH C TPAaHMYHBIMH YCIOBUSAMH TpeThero pona. Computational Mathematics and
Information Technologies. 2025;9(2):7-21. https://doi.org/10.23947/2587-8999-2025-9-2-7-21

Introduction. The heat conduction equation is widely used to describe a broad class of problems related to the
modeling of three-dimensional diffusion processes [1]. This diffusion equation has been extensively studied, and its
solutions are broadly applied in practice to describe many physical phenomena. Analytical approaches to solving this
equation are presented in [2, 3], while numerical methods for solving the heat conduction equation with first- and second-
type boundary conditions are discussed in [4, 5].

When designing complex engineering structures, it is necessary to account for the impact of ambient temperature
regimes. In many cases, heat propagation in such systems is described using the heat conduction equation with third-type
(Robin) boundary conditions [6]. Therefore, the goal of this study is to develop a finite difference scheme with improved
boundary condition approximation and to evaluate the performance of the proposed scheme on benchmark problems.
This approach allows for a comparison of the accuracy of numerical solutions obtained from various finite difference
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schemes under different initial and boundary conditions. In [7, 8], the Burgers equation is used as a test case; in [9, 10],
the transport equation; and in [11, 12], the convection-diffusion equation.

The problem of improving the accuracy of numerical solutions has been addressed by many prominent Russian
and international researchers. Notably, P.N. Vabishchevich [13, 14] studied finite difference schemes for solving
second-order parabolic-type equations involving specially structured non-self-adjoint operators. B.N. Chetverushkin
has contributed significantly to the development, analysis, and parameter tuning of difference schemes for applied
problems, particularly in the context of high-performance computing architectures [15, 16]. V.F. Tishkin explored
the modification of discontinuous Galerkin methods for gas and hydrodynamic modeling [17, 18]. The use of a
regularized finite difference scheme for hydrodynamic problems was discussed in [19], with its accuracy analyzed
in [20]. Methods to improve the order of accuracy in the grid-characteristic method for two-dimensional linear
elasticity problems are addressed in [21], and extended to three dimensions in [22]. A numerical approach for heat
and mass transfer in two-phase fluids is presented in [23], while [24] proposes a finite difference scheme for
single-phase filtration in fractured media, and [25] investigates two-phase filtration in complex environments.

Developing finite difference schemes and modifying existing ones with consideration of problem-specific features
enables improved modeling accuracy of complex systems [26]. In simulations of various processes, including hydrodynamic
flows in shallow water bodies, it has been observed that, for problems with third-type boundary conditions, the theoretical
order of approximation error for spatial discretization drops from second order to first order. Consequently, the accuracy
of the numerical solution is reduced. A.I. Sukhinov [27] recommended a more detailed study of the approximation of
problems with third-type boundary conditions. Accordingly, this work is devoted to examining the impact of third-type
boundary condition approximation on the accuracy of the numerical solution to the heat conduction problem. It also
presents the construction of a finite difference scheme with improved boundary approximation and compares the accuracy
of solutions obtained with the proposed scheme against those derived using a standard boundary approximation scheme
on benchmark problems.

Materials and Methods

1. Analytical Solution of the Heat Conduction Equation

Let us consider the homogeneous heat conduction equation

2
a—uzaa—f,0<x<l,0<t<T, (1)
ot ox
subject to the initial condition
u(x, 1),y = (%) 2

and third-kind (Robin) boundary conditions

=B 3)

x=I

%u(x,t) - au(x,t)xxzo _B, (%u(x,t) + om(x,t))

To find the analytical solution of the boundary value problem (1)—(3), we introduce a transformation
u(x,t) = v(x,t)— P/ o, which reduces the problem to one with homogeneous third-kind boundary conditions:

ov o B
—=a—7,0<x<,0<t<T,v(x,t)  =u,(x)+-,
or ox’ (6o =10() o
P P “)
—v(x,t)— ocv(x,t)x =0, (—v(x,t) + ocv(x,t)){ =0.
ox x=0 ox x=I
We seek the solution of (4) in the form:
v(x,1) = X ()T (?). (5)
Substituting (5) into the differential equation (4) and separating variables yields:
lﬂ = & =2
aT(t) X(x) ’ (6)
The boundary conditions in (4) transform into:
(X'(0) X (0)T(1) = 0, (X'() + aX ()T (1) =O. ™

Thus, taking (7) into account and assuming that v(x,f) # 0 we arrive at the Sturm—Liouville problem for the function X(x):

X"+MX=0,0<x<],

X'(0)—oX(0) =0, X'(7)+0X(l)=0. ®
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The general solution to (8) is:
X(x)=C, cosix+C,sin\x. 9)
Considering the boundary conditions in (8) and the general form (9), the eigenfunctions X,(x) are written as:
X, (x) =~ cosh, x+oasinh,x, k=1, 2,..., (10)
where A, k=1, 2,... are the eigenvalues of the problem (8), which are the positive roots of the transcendental equation

Ao
2ctg M ==—=.
g o« (11)

For the function 7(#) based on equation (6) and under the condition A = A, we arrive at the following problem:
T'(O)+ar,T(t)=0,
the general solution of which is given by
T,(t) = Cyexp(—arjt), k=1, 2,.... (12)
Then, taking into account equations (5), (10), and (12), the solution to problem (4) can be written in the form:
v(x,t) = ZCk (A, cosh,x +asin, x)exp(—akt), (13)
k=1
where A, k=1, 2,... are the positive roots of equation (11).
To determine the coefficients C, we use the initial condition of problem (4):

> C, (h, cosh,x+asink,x) =u,(x)+p/a,
k=1

i. e., this represents the expansion of a function f{x) = u (x) + /o for 0 < x < [ into a Fourier series in terms of the
eigenfunctions of the Sturm-Liouville problem (8). Then, assuming the eigenfunctions X (x), k= 1, 2,... are orthogonal on
the interval 0 < x </ the coefficients C, are given by:

If(x) L, cosA, x +osin), x)dx, (14)

k=

IIX o
where f{x) = u (x) + p/a,

Mt 2o
2 40,

]
Ix.J’ :J-(kk cosh,x +asink,x)’ dx = sm2k I-= cosZ?» 1+ > (15)
0

Taking into account the condition (11) for A =4, k= 1, 2,... and the trigonometric identities

sin2x = 2 igf , Cos2x:1_tg2x
X

the expression for the norm squared of the eigenfunctions X (x) in (15) becomes:

(A +a?)l+2a

2
Kl == (16)
Thus, expression (14) for the coefficients C,, k= 1, 2,... can be rewritten in the form:
2 f B
C, =———+——||u,(x) == |(A, cosir,x +asink, x)dx =C" +C?,
, (K§+a2)l+2a~[( o) oc)( ) , (a7
where
1
2 .
CY=— = |u, (x)(N, cosA, x +asin, x)dvx,
R PP T G )
2B f 2 (. o
c? = k cosA,x+osini, x)dx = sinA [ ——(cosA,l-1)|= (18
g (X2+a )ocl+2a2'([ ) (X2+a )ocl+2oc2k ‘ kk( d=1 (18)
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% (a a B [o M )
_(Xi+oc )al+2ot \?» Fsink l[l A, ctgh ID (X2+a2)al+2a2k7\k+ 207 \/1+Ctg27»kl h

2[3 ( k+1
(M o)+ 200 1+ ™),

Thus, for k= 2n the coefficients C{” = 0. Then the expression for the coefficients C{” will be written as:

€0 =0.C =0, =12
2n+1 (7\’2n+1 +a )l + 27\'2n+la‘

(19)

Then, the analytical solution of the original problem (1)—(3), taking into account the substitution and expressions (13),
(18), and (19), can be written as:

u(x,t) = —g+ ZCk (A, cosh, x+ ocsinkkx)exp(—a?uit), (20)
=1

where C, =C;"” +C;”, the coefficients C" and C® are defined by expressions (18) and (19), respectively, and
A, k=1,2,.. are the positive roots of equation (11).
In the case of solving the nonhomogeneous analog of the heat conduction equation (1):

ou _
ot 8
with the initial and boundary conditions (2)~(3), the solution will be sought in the form wu(x,7) =v(x,r)+w(x,t)— B/,

where v(x,?) is the solution to problem (4), defined by formula (13) with coefficients (18)—(19), and w(x,¢) is the solution
to the following problem:

2+f(xt) 0<x<l 0<t<T (21)

8W_aa—w+f O<x<l,0<t<T, w(xt)| 0,

ot ox?

(%W(x,t) - otw(x,t))

(22)

=0, (gw(x,t) + otw(x,t)X =0.
x=0 ax

x=l

The function w(x,?) is sought as an expansion in terms of the eigenfunctions of the corresponding homogeneous
Sturm—Liouville problem:

w(x,t) = ZC(”)(t) L, cosh, x+asink,x). (23)

We also expand the function f{x,?) over the considered interval as 0 <x < [:

f(x,t)= ;C,Ef) (1)(A, cosh, x+asink,x), (24)

where

C (1) = If(x 1)1, cosh,x +asinh, x)dx, (25)

IP(kII
where [|X||* is defined by formula (16).
Substituting (23) and (24) into (22), we obtain:
Z((c,ﬁ‘” (t))' +alC™ (t))(xk cosh,x +asink,x)= > C(£)(r, cosh,x +asini,x). (26)
k=1 k=1

Due to the completeness of the orthogonal system of eigenfunctions X (x), k=1, 2,..., equality (26) holds if and only if:

(G @) +anic () =C ). @7

Given (23) and the homogeneous initial conditions in (22), we have:

C(0)=0. (28)

11
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Thus, we obtain a Cauchy problem for an ordinary differential equation (27) with the initial condition (28). The
solution to this problem can be found, for example, by the method of variation of arbitrary constant (Lagrange method):

c 0= [ @esplan (e ), @

where C\/(1) is defined by formula (25).
Thus, the solution to the nonhomogeneous heat equation (21) with third-kind boundary conditions (3) can be written as:

u(x,t)= —g+ D C (A coshx+ asinkkx)exp(—akzt) + 2 CM (#)(h, cosh,x+asink,x), (30)
k=1 k=1

where C, =C,"” +C,”, the coefficients C{", C!* and C(t) are defined by formulas (18), (19), and (29), respectively,
and A, k=1, 2,... are the positive roots of equation (11).

2. Approximation of the Second-Order Differential Operator in the Diffusion Equation

Assume we need to consider the approximation of the nonhomogeneous heat conduction (diffusion) equation:

ou _ 0u
—=a—+ f(x,1),0<x<[,0<t<T,
o Yo S(x,0) (31)
with the following initial condition:
t=0 = uO ()C) (32)
and third-kind (Robin) boundary conditions:
0 0
—u(x,t)—ou(x,t)] =0, |=—u(x,t)+au(xt)] =0. (33)
6)6 x=0 ax x=[

To obtain a numerical solution to the problem (31)—(33), we divide the computational domain using a uniform grid
® =0, X®,, where

o, ={t” =nt, n=0.N,, N[‘C=T}, ®, ={xi =ih,i=0.N_, N h =l}, (34)

where 1 is the time step size; N, is the number of time steps; /4 is the spatial step size; N, is the number of spatial nodes.
The analytical solution of the problem (31)—(33), according to equation (30), can be written as:

u(x,t)= i(Ck(,l) exp(—ahjt)+ C,E"’)(t))(kk cosh,x +asinA, x), (35)
=

where the coefficients C{” and C;"(¢) are defined by expressions (18) and (29), respectively, and A,, k=1, 2,... are the
positive roots of equation (11).
To simplify further calculations, let us introduce the following notation:

Ci(t) = C{" exp(—akjt) + C (1). (36)

We now write the approximation of equation (31) at the interior nodes of the computational grid (34) as:

w—u' ul =2u +ul
=a

i i

. e S 37

where u, =u(t", x,,), u =u(t", x,).
Then, taking into account expressions (24), (35), and (36), the approximation (37) can be written in the form:
N

Z(C(u)(th C,Eu)(tn ))(7\% COS)\.kX + asinka) =

L:

TR ZC(H)(f" (hpcos(hy (x, +h))+asin(r, (x, + h)) =22, cosh,x, — 2asink, x, + (38)

N-1
+1, cos(h, (x, —h))+asin(k, (x, —h)))+ D_C" (") (k, cosh,x, +asink,x,).

k=1

Using the transformations
A, cos(h, (x, +h))+ A, cos(h, (x, —h)) = 2%, cosh,x,cosh,h,

asin(, (x, + #))+asin(r, (x, — k) = 20sin ., x, cos A, /i,
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expression (38) becomes:

N
Z:(C(“)(t"*1 C(”)(t”))(k cosh, x +osini, x) = as ZC(")(t )(cosA, h—1)(A, cosh, x, +asin,x,)+
T =1

k=1

N-1
+> C(t") (M, cosh,x, + asink,x,).

k=1

Taking into account the orthogonality of the basis functions X,(x), k= 1, 2,..., defined in (10), the final expression can
be written as:

CH (™= C™(t") _ aZ(cos?»kh -1)

T+ (). (39)
T

Let us find the second derivative of the function u(x,f) with respect to the spatial variable:

0’ 0’ (& . 0 [~ .
6_);{:@[;@( "(O(r, coskkx+as1nkkx)j=a[;clﬁ '(0)(=Af sink, x + ok, coskkx)jz
(40)

==Y M C (1) (A, cosh, x +asini, x).
=1

From formulas (39) and (40), it follows that in the approximation of problem (31)—(33) on the computational
grid (34) using scheme (37), the obtained solution for each harmonic deviates from the exact value by the quantity

a =1-2(1- cos?»kh)/(kkh)z.

Let’s consider the resulting value separately o.”:

z(mhf 0’ )J
* _ 2(1 _COS}\’kh) —1— 2 24 — (}\'kh)z + O(h4) (41)
(k) (Aeh) 12 .

From (41), we can conclude that when approximating the spatial variable using scheme (37), the numerical solution
at the interior grid nodes (34) deviates from the exact solution by O(A?).

Let us now consider the approximation of the function u(x,f) with respect to the spatial variable at the boundary nodes of
the spatial grid (34). We construct this approximation based on the integro-interpolation method (the balance method). Without
loss of generality, let us consider the approximation of u(x,) on the left boundary of the computational grid (i. e., at x = 0):

A, cosh h+osind, h—A,
h2

u' —u ou’ “ al

210 -2—0=2% (") -2) (") —~=

e p Z ( Z L=
e A -1 ink,h—,h) rh)Y (AR

=23yl ORA D oleinds *ZC“‘)(r )( ( 2) e +0(h6)—1]+ “2)
k=1

u 7\’ h >\’kh ’ 7 N u n 3 3 h 2
Zc< (" )[x o 6) %Jro(h )—k,{hJ:;C,ﬁ (1 )(—kk—kk%+0(h )).

To increase the order of approximation error for the spatial derivative of the function u(x,f) at the boundary nodes of
the grid (34), we consider the following approximation:

2”1 h_2u0 _zaY1

Uy -;yzul" :2§C,f”)(t")kk cosAh +ho§sin7»kh—k . NZiC(“)(t"‘yl}L ¢ TYah, cos?;l Jryosinkh

ZC(")(t Y(1=v,ah)(h, cosh h+asini, i ——ch(z W (1+y,ah) =

2 = Ah? 7\,5}14 7\.3h3 Ah
==(1- och C(") M| A, —=E arh—a +a=t—+0(n%) |- 4

(l+y1ah)ZC(")(t W, = p (y2+1 y,0h — yl)ZC(")(t W, Zc““(t")x

2 S 2BYE ) ivn 3 L RS ) iy S 3
o3| O a0 e ZC (" +—Zc ("M, +O(n’).
k=1
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The coeficients y, and v, in (43) are found as a solution to the system:

{Yz +1-v,0h—v, =0,
1 h
——+y,0==0,
Y2 3 Y2 3
from which we obtain the values of the coefficients y, = 2/(3 + ak) and v,= 1/(3 + ah).

Thus, we obtain the following approximation for the spatial derivative of the function u(x,?) at the boundary nodes of
the grid (34):

ul" —u(')’ 4o n 200 n _N_I (u) 4n 3 Kihz 3
27 h(3+ah)”° h(3+ah)u1 N ;ck (t )( M+ +0(h )j. (44)
Results. Assume we need to compare the computational accuracy of the spatial approximations (42) and (44) by
solving test problems. We consider three test problems. The first is a steady-state problem with a constant right-hand side.
The second is also a steady-state problem, but with a harmonic right-hand side corresponding to an eigenvalue A . The
third problem involves solving the heat conduction equation with a stepwise right-hand side.
Test Problem 1. Find the solution to the following problem:

ou _0u
—=—+2,0<x<2,
o o (3
with the initial condition:
u(x,t)|t:0 =0 (46)
and boundary conditions of the third kind
0 _ 0 _
—u(x,t)-2u(x,t)| =0, |=—u(x,t)+2u(x,t)| =0. (47)
ﬁx x=0 ax x=2

Problem (45)—(47) is a steady-state problem.

The analytical solution to problem (45)—(47) can be written in the form: u(x,f) =—*+2x+ 1.

Figure 1 shows the analytical solution of problem (45)—(47), as well as numerical solutions of Test Problem 1 obtained
using: the first-order finite difference scheme in space (42), and the second-order finite difference scheme in space (44),
for different spatial step sizes.

2.1 2.1
1.8 1.8
215 215
= =
1.2 1.2
0.9 0.9
~0.10 045 1.00 1.55 2.10 ~0.10 045 1.00 1.55 2.10
X X
a) b)

Fig. 1. Results of solving Test Problem 1:
red line — exact solution; blue dots — numerical solution using the first-order spatial approximation scheme (42);
green triangles — numerical solution using the second-order spatial approximation scheme (44);
a — spatial step size & = 0.5; b — spatial step size 7 = 0.1
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In addition to the approximation error, we compute the effective order of accuracy of the scheme [28]:

R
eff _ N
p” =log, }R—N{ (48)

where R) is the error of the numerical solution on the grid with step size 4, R , is the error on the grid with step size h/r.
Table 1 presents the computational error of the numerical solution for Test Problem 1 based on schemes (42) and (44)

N
for different spatial step sizes. The error was measured in the grid space norm P” = Z|u(xi,t”) —u!

-h, where u(x,t") is

i=1

the analytical solution, and " is the numerical solution.

Based on the data in Table 1, we can conclude that the proposed scheme (44), with improved boundary approximation
for the heat conduction equation under third-kind boundary conditions (33), exhibits an effective order of accuracy equal
to 2, which agrees with the theoretical estimate.

Table 1
Computed errors of the numerical solution for Test Problem 1 for various spatial step sizes
The error value of the numerical solution
h=1.00 h=0.50 h=0.25 h=0.10
Finite difference scheme with standard 0.000 0.000 0.000 3.286x107"
boundary approximation (42)
Finite difference scheme with improved 1.000 0.208 0.047 0.007
boundary approximation (44)
Effective accuracy order of scheme (44) - 2.263 2.152 2.075
Test Problem 2. Let us consider the solution of the following problem:
%:%+X"’O<x<5’ (49)
with the following initial condition:
u(x,0),_, =0 (50)
and third-kind boundary conditions:
%u(x,t) - 0,1u(x,t)XX:0 -0, (%u(x,t) + 0,1u(x,t))LS ~0, (51)

where X, is an eigenfunction corresponding to an eigenvalue A , which is determined by equation (11). Problem (49)—(51)
is a steady-state problem.
The analytical solution to problem (49)—(51) in the steady-state formulation can be expressed in the following form:

u(x,t) = A, X +arccos

e R |

According to the conditions of the problem (49)—(51), o = 0.1. Let us determine A,.
We now consider the numerical algorithm for solving equation (11) to determine the eigenvalues A,. Let us assume we
need to find the roots of the nonlinear equation f{A) = 0, where f(1)=2 ctg A/ X + %.
o

Step 1. Introduce two auxiliary functions f,(A)=2 ctg A/ and f, (1) = r_a
a

A
Step 2. Define the number of iterations K, which also determines the number of eigenvalues to be computed.
Step 3. For each eigenvalue A, define the initial guess using the following expression:

(2k+hm 1 1 (2k+Dn
== 77 Zlarcte| —- Al Lad) | §
WesT e L Ty

where £ is the iteration index or the index of the corresponding eigenvalue 2,.
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Step 4. At each iteration, apply Newton’s method to find the solution of the nonlinear equation f{A) = 0. For this, define
the function

Step 5. Use x, as the initial approximation w,.

Step 6. Compute the value x,,, =x, — f(x,)/g(x,).

Step 7. If |xHl —x,.| > ¢, where ¢ is a predefined small tolerance, return to Step 6.

Step 8. Assign the computed value A, define equal x,, .

Step 9. If k£ < K, proceed to Step 4. Otherwise, terminate the eigenvalue computation algorithm A,.

Figure 2 presents the results of the algorithm described above. The points in the figure indicate the values A, that
correspond to the solution of the equation f{A) = 0.

20

10

)

0 2 4 6 8 10
A

Fig. 2. Results of the eigenvalue A, computation algorithm: the red line represents the graph of the function f{A);
the blue dots indicate the computed values A, which correspond to the roots of the equation f{}) =0

Figure 3 presents the analytical solution of problem (49)—(51), as well as the numerical solutions of Test Problem 2
obtained using the first-order finite difference scheme in space (42) and the second-order finite difference scheme in space
(44) for various spatial step sizes. The eigenvalue was taken for k£ = 4 and is equal to A,~ 2,529.

0.500 0.500
0.225 0.225
T 0.500 S 0.500
1 5t
0.325 0.325
-0.600 -0.600
0.1 1.2 25 3.8 5.1 0.1 1.2 2.5 3.8 5.1
X X
a) b)

Fig. 3. Results of solving Test Problem 2 for k = 4:
the red line represents the exact solution; blue dots represent the numerical solution based on the first-order spatial
approximation scheme (42); green triangles represent the numerical solution based on the second-order spatial
approximation scheme (44); a — spatial step size & = 0.5; b — spatial step size & = 0.1

Table 2 presents data on the computed error of the numerical solution of Test Problem 2 obtained using schemes (42)
and (44) for various spatial step sizes.
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Table 2
Computed Error Values of the Numerical Solution of Test Problem 2 for Various Spatial Step Sizes
Values of the Numerical Solution Error
h=1.00 h=0.50 h=0.25 h=0.10

Finite Difference Scheme (42) 2.916 0.581 0.136 0.021
Effective Order of Accuracy of Scheme (42) — 2.327 2.094 2.028
Finite Difference Scheme with Improved 1.126 0.206 0.047 6.964x107
Boundary Approximation (44)

Effective Order of Accuracy of Scheme (44) - 2.455 2.133 2.080

Based on the data in Table 2, it can be observed that the proposed scheme (44), which incorporates improved boundary
approximation for the heat conduction equation with third-kind boundary conditions (33), demonstrates an effective order
of accuracy equal to 2, which is consistent with the theoretical estimate. The finite difference scheme (42), employing
standard boundary approximation, also exhibits an effective order of accuracy close to 2, despite the lower theoretical
approximation error order at the boundary nodes. It is worth noting that the proposed scheme (44) reduces the numerical
solution error by approximately 2.5 to 3 times, depending on the spatial step size. As the spatial step size decreases, the
difference in accuracy between schemes (42) and (44) becomes more pronounced.

Test Problem 3. Let us find the solution to the following problem:

ou _0’u

E=§—9(x—l)+9(x—3),0<x<5,O<T<10 (52)

with the following initial condition

u(x,t)L:O =0 (53)

and third-order boundary conditions

=0, (54)

x=5

—0, (%u(x,t) ; u(x,t))

(%u(x,t) — u(x,t))

x=0
where 0(x) is a piecewise-defined Heaviside function.
According to (30), the analytical solution to the problem (52)—(54) can be written in the following form:
u(x,t) = ZC;”’)(t)(Xk cosh,x +asink,x),
k=1
where C"(¢) is determined based on (29), while taking into account the type of the right-hand side (52)

2
S5(n; +1)+2

2

C(/’) ¢t :C(./') — _ e
v (=G S5(n; +1)+2

3
j(?»k cosh,x +asini, x)dx = (%(cos%k —cos),)+sink, — sin3kkj. (55)
1 k

Taking into account (29) and (55), we obtain the following form for the exact solution of the problem (52)—(54):

= exp(-A2t)—1
u(x,t) = ZMQU '(h, coshx +asin, x).
k=1

The eigenvalues A, are determined using the algorithm described in Test Problem 2.

In Figure 4a, the numerical solution to Test Problem 3, obtained using the difference scheme with improved boundary
approximation (44) for a spatial step of 4 = 0.5. is presented. In these calculations, 1000 eigenvalues A, were used. Visually,
no significant difference was observed between the numerical solutions obtained using difference schemes (42) and (44).

In Figure 4b, difference between the analytical and numerical solutions, calculated using formula (56) for k£ from 1 to
1000, is shown.

Figure 5 presents the analytical solution of the problem (52)—(54) at a fixed time =2, as well as the numerical
solutions of Test Problem 3 obtained using the first-order spatial approximation scheme (42) and the second-order spatial
approximation scheme (44) for different spatial step sizes. The calculations accounted for the sum of the first 1000
eigenvalues .
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10 2.599 10 x10°?
4.788
3 8
1.949 5951
6 6
~ 1.299 = 1.113
4 4
0.650 ~0.724
2 2
0 0.000 0 ~2.561
o 1 2 3 4 5 0 12 3 4 5
X X
a) b)

Fig. 4. Results of solving Test Problem 3 considering 1000 A, and time steps t = 0.001 and spatial steps # = 0.5:
a — numerical solution based on the second-order spatial approximation scheme (42);
b — difference between the analytical and numerical solutions based on (44)

1.5 1.5
1.0 1.0
) )
E E
s s
0.5 0.5
0 0
0 2 4 5 0 2 4 5
X x
a) b)

Fig. 5. Results of solving Test Problem 3 at ¢ = 2:
red line — analytical solution; blue dots — numerical solution based on the first-order spatial approximation scheme
(42); green triangles — numerical solution based on the second-order spatial approximation scheme (44);
a — spatial step & = 0.5; b — spatial step 2= 0.1

Table 3 presents information on the computational error of the numerical solution of Test Problem 3 based on schemes
(42) and (44) for different spatial step sizes.

Table 3

Computed values of the error for the numerical solution of Test Problem 3 at # =2 for different spatial step sizes

Error values of the numerical solution

h=1.00 h=0.50 h=0.25 h=0.10
Solution based on the first-order spatial 0.0503 0.0102 0.002 2.6797x10*
approximation scheme (42)
Effective order of accuracy of scheme (42) - 2.3010 2.231 2.2860
Solution based on the second-order spatial 0.0530 0.0130 2.914x1073 2.0397x107*
approximation scheme (44)
Effective order of accuracy of scheme (44) - 2.0570 2.132 2.9020

18



Computational Mathematics and Information Technologies. 2025;9(2):7-21. eISSN 2587-8999

From the data in Table 3 (similarly to Test Problem 2), it can be observed that the proposed scheme (44) with improved
boundary approximation for the heat conduction equation under third-kind boundary conditions (33) exhibits an effective
order of accuracy equal to 2, which is consistent with the theoretical estimate. The difference scheme (42) with standard
boundary approximation also demonstrates an effective order of accuracy close to 2, despite the theoretical estimate of the
approximation error order at the boundary nodes. At the same time, for the proposed scheme (44), the numerical solution
error decreases significantly faster than for the solution based on scheme (42).

Discussion and Conclusion. This study examined the heat conduction equation with third-kind boundary conditions,
for which an exact solution was obtained. The problem was discretized, and it was shown that under standard boundary
approximation, the theoretical order of approximation error for the second-order differential operator in the diffusion
equation is O(h). Based on this estimate, it follows that for the heat conduction equation with third-kind boundary
conditions, the standard discretization yields a first-order accurate scheme. To improve the accuracy of the numerical
solution, a finite difference scheme was proposed that provides an approximation error of O(4?), for the second-order
differential operator, both at interior and boundary nodes of the computational domain. This scheme is applicable to third-
kind boundary conditions of a specific form.

Numerical experiments demonstrate that the proposed scheme, featuring enhanced boundary approximation for the
heat conduction equation with third-kind boundary conditions of a specific type, achieves an effective order of accuracy
close to 2, which aligns with the theoretical estimate. It is also worth noting that the finite difference scheme with standard
boundary approximation exhibits an effective order of accuracy close to 2, despite the theoretical approximation error
estimate at the boundary nodes. The observed discrepancy between the theoretical approximation error and the achieved
numerical accuracy calls for further investigation. Importantly, the numerical error of the proposed scheme decreases
significantly faster than that of the scheme with standard boundary approximation.
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Abstract

Introduction. This study investigates the numerical solution of a two-dimensional hydrodynamic problem in a rectangular
cavity using the method of initial velocity field damping and the method of accelerating the initial conditions in terms
of stream function and vorticity variables. The damping method was applied at Reynolds numbers Re < 3000, and the
acceleration method was used for Re = 8000.

Materials and Methods. To speed up the numerical solution of the problem using an explicit finite-difference scheme
for the vorticity dynamics equation, the method of initial condition damping and the method of n-fold splitting of the
explicit difference scheme (with #n = 100) were used. Compared to the traditional method of accelerating from stationary
fluid, the initial velocity field damping method reduced the computation time by a factor of 57. The splitting method
used a maximum time step proportional to the square of the spatial step, while maintaining spectral stability of the
explicit scheme in the vorticity equation. The majority of computation time was spent solving the Poisson equation in the
“stream function — vorticity” variables. By freezing the velocity field and solving only the vorticity dynamics equation,
computation time was further reduced in the splitting method. The inverse matrix for solving the Poisson equation using
a finite number of elementary operations were computed using the Msimsl library.

Results. Numerical solutions demonstrated the equivalence of the damping and acceleration methods for the initial velocity
field at low Reynolds numbers (up to 3000). The equivalence of solutions obtained using the “stream function — vorticity”
algorithm and the implicit iterated polyneutic recurrent method for accelerated initial conditions was numerically
confirmed. For the first time, an initial horizontal velocity field was proposed, smooth at internal points and composed of
two sine waves, with a stationary center of mass for the fluid in the rectangular cavity.

Discussion and Conclusion. An algorithm for numerically solving a two-dimensional hydrodynamic problem in a
rectangular cavity using “stream function — vorticity” variables is proposed. The approximation of the equations in
system (1) has sixth-order accuracy at internal grid points and fourth-order accuracy at boundary points. A novel damping
method is introduced using an initial horizontal velocity field formed by smoothly connecting two sine waves. The
proposed algorithms enhance the efficiency of solving hydrodynamic problems using an explicit finite-difference scheme
for the vorticity equation.

Keywords: hydrodynamics, numerical methods, partial differential equations, initial-boundary value problem, boundary
conditions, initial conditions
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AHHOTALUSA

Beeoenue. Uccnenyercsa 4ucieHHOE PELIEHUE IBYMEPHON MMIPOIMHAMUYECKOM 3a1a4n B MPSIMOYTOJIbHON KaBEpHE Me-
TOJIOM TOPMOXKEHHSI U METOJIOM Pa3roHa HauyallbHbIX YCIOBHU B MEPEMEHHBIX «(DYHKIMS TOKAa — BUXPbY». MeTo] TOpMO-
JKEHUSI IpUMEHsLICs npy yncnax PeliHonsaca Re <3000, a meton pasrona mpu unucinax Re = 8000.

Mamepuanst u memoost. [|11 yCKOPEHNU YHCICHHOTO PELICHUS 3aJa4d C SBHOM pa3HOCTHOW CXeMOIl ypaBHEHHS IH-
HaMHKH BUXPsI HCIOIb30BAJICS METOJ TOPMOXKEHHS Ha4YadbHBIX YCIOBUN U METOJ] H-KPATHOTO PACILEIUICHUs sIBHOU pa3-
HOCTHOM cxeMblI (7 = 100). MeTon TOPMOXKEHHUST HauaJIbHBIX YCJIOBHMA MOJISI CKOPOCTH TI0 CPABHEHUIO C METOJIOM pa3roHa
HEMOABIKHOMN KUAKOCTHU MO3BOIMII COKPATUTh BpeMs cdeTa 3aJaud B 57 pa3. MeTox paclleIuieHus UCTIOIb30Ball MaK-
CHUMAJIBHBIN IIar BpeMEHH, IMPOMOPIIHOHANBHBIA KBaIpaTy KOOPAUHATHOTO IIara, He HapyIas IpH 3TOM CIIEKTPajIbHOM
YCTOHYMBOCTH SIBHOIM CXEMBI B ypaBHEHHH BHXps. Hanbonpiee BpemMs mporpamMMa 3aTpaTiia Ha pelieHHe YpaBHEHHS
[Tyaccona ¢ mepeMeHHbIMU «(QYHKIIMS TOKAa — BUXPb». VICIONB3ysl 3aMOpPOKEHHOE TMOJIE CKOPOCTEH M pelas TONbKO
JMHAMHYECKOE ypaBHEHHE BUXPS, ObIIIO COKpAIIEHO BpeMsI cueTa B MeTozie paciueruieHns. OOpaTHas MaTpulia JuIs perie-
Husl ypaBHeHHs [lyaccoHa 3a KOHEYHOE YMCIIO dJIEMEHTaPHBIX ONepaluii BBIUUCIsUIach OnbanoTekoit Msimsl.
Pesynomamut uccnedosanusn. YucneHHoe pelIeHNe 3a1a4 I0Ka3aJI0 SKBUBAJIEHTHOCTh METOA0B TOPMOXKEHHSI 1 Pa3roHa
HAYaJILHOTO MOJISI CKOPOCTHU IpY HeOoMbInuX ynciax Peitnonbaca (10 3000). HucieHHO H0Ka3aHa SKBHBAJICHTHOCTD Pe-
IIEHUsI THIPOJMHAMUYECKON 33/1a4¥l aJITOPUTMOM B MEPEMEHHBIX «(DYHKINS TOKa — BHXPb» U allTOPUTMOM C HESIBHBIM
MTONIMIIMHEHHBIM PEKypPEHTHBIM METOIOM B CIIydae pa3rOHa HayalbHBIX yCJIOBHH. BrepBrle mpeanokeHO HadalbHOe
TOPHU30HTAIILHOE M10JIE CKOPOCTH, IMAKO€ BO BHYTPEHHHUX TOUKaX U COCTOAIIEE U3 IBYX CUHYCOH/]| C HETIOJBM>KHBIM II€H-
TPOM MaccC BCEH JKUIKOCTU B IPSIMOYIOJIbHON KaBEPHE.

Oocyscoenue u 3axaouenue. IIpennoxeH anropuT™M YUCIEHHOTO PEIICHUS JBYXMEPHOH TMAPOANHAMHUYECKOHN 3a/auu
B IIPSIMOYTOJILHOM KaBepHE B MEPEMEHHBIX «(PYHKIHS TOKa — BUXPB». ANMPOKCUMaNus ypaBHeHUH B cucteme (1) mme-
€T MIECTON MOPSAJOK MOrPEIIHOCTY BO BHYTPEHHUX y3/1aX U YETBEPThIA B IPaHUYHBIX y3JaX. BriepBsle mpeoxkeH Me-
TOJ, TOPMOKEHUS C HAYAJIBHBIM TOJIEM FOPHU30HTAIBHON CKOPOCTH MOCPEACTBOM IVIAIKOTO COCAMHEHUS IByX CHHYCOU.
[IpennoxeHHBIE AITOPUTMBI O3BOJISIIOT Oosiee 3(h(EKTUBHO pemIaTh 3aJa4i THAPOANHAMUKY C SIBHOW Pa3HOCTHOMW CXe-
MOH ypaBHEHUS BUXPSL.

KiaroueBrble ciioBa: TUApOAWHAMUKA, YACICHHBIC MCTO/Ibl, YPABHCHHS B YaCTHBIX MTPOU3BOJAHBIX, HAYaJIbHO-KpAcBas 3a-
Jla4ya, rpaHAYHBIC YCJIIOBUA, HAYAJIbHBIC YCIIOBUA

Jaa nurupoBanus. Bonocosa H.K., Bonocos K.A., Bonocosa A.K., Kapaos M.U., TTactyxos [.®., ITactyxoB 10.D.
CpaBHeHHE pelIeHHH T'HIPOAMHAMUYECKON 3aJaud B MPSIMOYTOJbHOW KaBEpHE METOAaMH TOPMOXKEHUS U pas-
roHa HadanpHOro moms ckopoctH. Computational Mathematics and Information Technologies. 2025;9(2):22-33.
https://doi.org/10.23947/2587-8999-2025-9-2-22-33

Introduction. This paper examines a two-dimensional hydrodynamic problem in a rectangular cavity with a moving
upper lid, formulated in the “stream function — vorticity” variables [1]. The velocity field features two singular points
in the upper corners of the cavity—both in magnitude and direction—making this problem a benchmark for testing
numerical algorithms designed to solve various hydrodynamic problems [2]. For instance, studies [3—5] focus on exact
or highly accurate approximate solutions to hydrodynamic problems. Problems involving large velocity field gradients
at singular points are presented in [6, 7], while flows in viscous fluids are addressed in [8, 9]. Several approaches to
formulating initial and boundary conditions in hydrodynamics are discussed in [10, 11].

The present work builds upon the method of n-fold splitting of the vorticity equation using an explicit finite-difference
scheme (n = 100), as described in [11], and employs a uniform grid n, x n, = 100 x 100.

Materials and Methods

Problem Statement. We consider the classical hydrodynamic problem in a rectangular domain (cavity), described by
a system of partial differential equations along with initial and boundary conditions for the physical fields [1], formulated
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in the “stream function — vorticity” variables. Let (u(x,y), v(x,y)) denote the velocity vector of a fluid particle. On the
solid boundaries — the lateral and bottom sides of the rectangular cavity — the velocity is zero (no-slip condition for
fluid particles). The normal component of the velocity is also zero along the entire rectangular boundary. We position the
origin of the coordinate system at the lower left corner of the rectangle, with the y-axis directed upward and the x-axis to
the right. Let L be the width of the rectangular cavity and H its height.

In this hydrodynamic problem within a closed cavity, the moving upper lid translates to the right with a constant

velocity u_ . We define the characteristic scales: length scale: L, time scale: L, velocity scale: u__, stream function
u

max

scale: Lu__ , vorticity scale: Umax | Reynolds number: Re. We introduce the following dimensionless variables: x is the
L

horizontal coordinate, ; is the vertical coordinate, ﬁ, W are the stream function and vorticity, respectively, (1/_{, \_/) is the
dimensionless velocity vector, ¢ is the dimensionless time:

Y

0S;=£Sl, 0S;=1Sk=£:$=_’\vmax =Lumax’
L L L max
- u - v — w U nax
u:_av:_W:_’Wmax - >
U nax U nax Winax L
- u L
t:L,T:L,Re: max
T u v

Let us write the system of hydrodynamic equations using the dimensionless variables and functions [1, 5, 11]:

max 2

QE+QE=_%&5LO<}=%<LO<}<k

:ﬁ;;‘_":_ﬁga (1)

- - = - = 1 —_ = -t
Wt+u-W}+v~m:R—(W;;+w;;),0<t:—,

(5]
ﬂr = 0"_}|F = O’ﬂr, = 0’%1‘\5 =L

Here I, denotes the union of the side walls and the bottom segment of the rectangular boundary, /\I', represents
the upper segment of the rectangle. The first equation in system (1) is the Poisson equation for the stream function and
vorticity. The two-dimensional Poisson equation on a rectangular domain is solved in matrix form using a finite number
of arithmetic operations with sixth-order accuracy [5, 12]. From this point forward, we will omit the overbars above the
dimensionless functions, time, and coordinates for convenience.

The second line of system (1) describes the vorticity function, which is computed through the spatial derivatives of the
velocity field. The third line calculates the velocity components as partial derivatives of the stream function. The fourth
line is the vorticity dynamics equation, the only one in system (1) that explicitly depends on time. On the left-hand side
is the total (convective) time derivative. On the boundary of the rectangle, the vertical component of velocity is zero; the
horizontal component is equal to one on the upper segment and zero on the bottom and side segments.

In addition to the two mentioned singular points of the velocity field, for testing the algorithm in the method of
initial velocity field damping, a highly unsteady and vortical initial velocity field was used. This field should, by its
parameters, be close to a steady-state velocity field, satisfy the continuity equation for incompressible flow, and—as
numerical experiments show—Dbe continuously differentiable at all points in the domain.

For the first time in this work, an initial horizontal velocity field on a uniform rectangular grid is proposed, defined
by formula (2). The horizontal velocity profile on the upper segment of the rectangular cavity is constructed by smoothly
stitching together two cubic polynomials:

uO( ﬂ) T y O( n) T (1 ’\/7) ym JE
u (x,y )=—"—"sin| =2 |= sin 0y <———k,
_( "ym) \/5 (kl ) \/5 k«/f 4 1+\/§

2k

yﬂ'l_
| T —k . ( 1+\/§j \/E
u(xn,ym): u+(xn’ym)=u0(xn)S1n((Tzl)J=u0(xn)81n ;c k ’1+\/§k<ym Ska (2)

1+\/§

k. 2k

x, =nh,y, =mh,,h :L,h2 =—.k k, =

n n,’ L2

n=0,n,m=0,n,,n =n, =100.

k
1+\/§’

ky + ke, = ke, k, =2k,
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In formula (2), the lower part of the fluid moves to the left, the upper part moves to the right, and the horizontal
component of the velocity is bounded by u(x), i. e., it does not exceed unity. The profile of the horizontal velocity is
continuous with respect to the variable y: u_(x,,0)=u_(x,,k)=u,(x,,k)=0,u,(x,,k)=u,(x,). At the boundary point,
the sine curve graphs are tangent to each other:

uy(x,)m (k) up(x) T n(k, — k) T T
x,.k)=u, (x, k)< ——=,—cos| —L 0 =, (x )cos| DO _ g (6 )T = ()L
( n ) +)( n 1) \/E k] [kl J \/’ k 0( )2k 2k2 0( n)2k2 0( n)\/§k1
Integrating the profile (2) with respect to y from 0 to £ while keeping the variable x, constant, and denoting the integral

SR L -

kZ

we get:

Jy+hky

J.u(x y)dy = Iu (x,y)dy + J u, (x,y)dy =u,(x ( %jsin(n})d;+k2j.sin(§;)d;]=

=u0(x)[%cos(n;){; -2 o )‘ J_uo(x)[f_’; 2k, ) u (x)(‘f"l +%}=o.

This last integral shows that, at the initial moment in time, the center of mass of each sufficiently thin vertical column
of fluid lies on the x-axis. Thus, according to the law of conservation of momentum, the center of mass of the entire fluid
does not move along the x-axis either initially or at any subsequent moment in time.

The profile of the horizontal velocity component (3) on the upper segment of the cavity (y = k= 1) had the form of a
smooth and continuous symmetric curved trapezoid without singular points in the velocity field:

3202 - =X efo1],0<x <=l L
T n, 10 3
u(x,k)=u,(x)={L,t<x<l-1, A)
3207 =X o)1 —t<x <1
T

Note that u(0)=u'(0)=(6z-62") =0u(l)=1lu (1)=(6z-62>) =0, i.e, at the two junction points x=1,
x =1 —1 the profile of the horizontal component of velocity on the upper segment of the rectangular cavity is smooth.

The vertical component of the fluid particle velocity at the initial moment, according to the continuity equation, was
calculated using the trapezoidal rule m=1,n, —LLn=1,n, —1:

v(xn’ym) — _h2 (ux (xn’ym) + mzlux(xﬂ’yi)j — _h2 (u(xnﬂﬁym)_u(xnl’ym) + mzlu(xnﬂﬂyi)_u('xnl’y[)j' (4)

2 & 4h, o 2h,

According to the algorithm described in [1], the first equation to be solved in system (1) is the Poisson equation, which
is computed using a finite number of elementary operations [5]. The Poisson equation is approximated with sixth-order
accuracy at all internal points.

To approximate the Laplace operator, we expand the nodal values of the stream function y(x, y) in a Taylor series
around the central node on a 3x3 rectangular stencil. Due to symmetry, the odd-order partial derivatives of the stream
function vanish. When expanding in a Taylor series, we also take into account the Poisson equation:

=f(xl.,yj)=f,.wj,i=1,n2—1,j=1,n1—1, )

Ay =y +y, = (L0 =-wS V|, TV,

1 1
Ay = h_z(co\llo,o +C (\V—l,o TV TV, +‘Vo,1)+ G, (\V—I,—] P o A o VA )) = h_z(\Vo,o (Co +4C + 4C2)+

+C1[h2(wm+wyy) )+ 360(\vi‘”+w‘f))+0(hg)j+
2 R @\ ke ® ©) % 8\ _ (6)
+Cz(2h (W 0, )+ (Wi 0+ 6w )+ T (i +15(w,, + vl )+ Ok )j—

_ Yoo (Co +4C + 4C2)
hZ

+h4 ((\Uf) + \Viﬁ)

2
+(G+2G) (v tv,) +f—2((\vi‘” +yi)C 426, (w +y 6y )+

Jreg (Wi i +15(wi, + wii}t)l))l(;gj +O(H)=Ay =y, +v,,.
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Using equation (5) for equation (6), as well as the boundedness of the solution at each node of the rectangular grid,
we get that
{CO +4C, +4C, =0,

C +2C,=1.
Note that
_ o, @ 4 y@ pog® =
A =AMy, +v,, )= w 'y (Vo +w,)=v +yP+2yl) =1+,

A f = A+ 290 ) = v w3 (i, F v, ) S = (VW) =W, W e

xxyy

Considering the transformations above, we can rewrite formula (6) as:
Ay = h— W ryW)(C +2C,)+12C,pY
\V \Vxx +\'Iy} + (\'lx +\Vy )( 1 + 2)+ Z\Vx‘c}y

oy 1) S (wi"’)+\vf’+15(w$1m VO hs (i),

2
We require that the coefficient of % becomes an operator Af acting on the function f. Therefore, we have:

12¢,=2,
C,+4C +4C, =0
C +2C, =1 <:>C2:%,Cl:1—2C2:§,C0:—4C1—4C2:—m
12C, =2
ooy, (Wi F V)
Ay = f+ Af+—(C +2C,) (v +yl?)+ +0(n*) =
360 72
7)
1({ 10 2 1 (
h_z(_?\lfo,o +§(\|171,0 + \VO,—I +\|/1,0 + WO,I)+E(\V—I,—] +\V1,71 + ‘Vq,] +\V1,1)) =
©) vy © © © © 5 1 6)_
=+ Af+360(\u v +3(y my+Ww»))+(\l’mw+\I’mm)(%—@)+0(h )=
B fin @ 4 @ B fin 6
= + A +—A = + +f,)+— —=2 4+ O(h°).
=/ 4 360 / 180 ( ) / (f f”) 360(f ) ) 90 ( )

To use the Poisson equation (7) for the stream function in the system of equations (1) with an accuracy of O(h°) it is
necessary f=-w, the derivatives f_ f be represented with an accuracy of O(h*), and £, /5 o fxf:; with an accuracy of O(4?).

Using the method of undetermined coefficients [12], formulas for the internal nodes of the function £ with indices
n=2,n —2,m=2,n,—2 were obtained:

Jutty= ( 500+ (f10+fo 1 T 10+f01) (f_20+ﬁ)_2+f20+f02))+0(h )
fx(4) +fy(4) = h_4<12f0,0 _4(ﬁ1,o +f0,4 +f1,0 + .f;),l)+f—2,0 +f0,72 +f2,o + fo,z)"‘O(hz): 8)

P =it 2L o o Lo+ F) Lo Loy o+ )+ O(R).

Thus, formulas (7) and (8) together approximate the Poisson equation for the stream function and the vorticity function
in (1) with sixth-order accuracy at the interior nodes of the rectangle.

In [5], an algorithm for the matrix method of solving the difference Poisson equation (7) is described, which involves
a finite number of elementary arithmetic operations using the vector sweep method.

Consider the difference equation (9):

hl_z(_Tlowm,n + %(\mel,n + wm+l,n + \Vm,nfl + \Vm,nH) + é(“lm—l,nfl + \Vmﬂ,nfl + \Vm—l,nﬂ + \Vm+l,n+l )) fm n + (f;(v fy) )
©
1 1
+h4(%(fx(4) +fy(4))+ 90f )+0(h ) s M= Ln —-1m=1Ln,-1
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We define square matrices 4, B of dimension (n,~1)x(n ~1):

—m,m:n;mzl,nl—l,nzl,nl—1, g,m:n;mzl,nl—l,nzl,nl—l,
3 3
a = 2m:n-i-l\/mzn—l b = lm:n+1vm:n—1
m,n b > m,n 6’ ? (10)
Oom=>n+2vm<n-2, Oom=>2n+2vm<n-—2.

Let us briefly write the matrix algorithm for solving the difference equation (9) [5]:

1. Using the formula:

4
F, =1 +il—2(fxx +fyy)+h"(ﬁ(fx(4) +jfy(4))+9iojrng;)y)+0(hs)

X=Xy V=V
compute the right-hand side of the Poisson equation at all interior nodes of the uniform grid of the rectangle (m =1, ...,
n—lin=1,...,n-1).

2. Modify the right-hand side of the system of equations (11) using formulas (12) and (13) at the nodes of the rectangular
contour adjacent to the boundary contour, i. ., calculate £, , based on the values £, from step 1:

Ay +By) =F],
By, + Ay, + By, =F .m=2n,-2, (11)

B\V:rz +A‘V§24 =F, 1

ny—

_Tlowl,n,fl +§(wz,n]4 W W+ W) %(Wz,n,—z W2 T Vo Vo, )= Fis
m = E,n,—l - %(\Vl,nl + WO,n,—l) - %(Wo,npz TV, TV, )7
_TIOW;;Z—I,I + %(Wﬂz—Z,l TV, 2t W0t \Vnz,l) + %(\Vnrz,z TV, otV 00t \'}nz,O) =F,
m =L _Z(\I’nz-l,o + \Vnz,l) _l(W;12,2 TV, 00TV, ,0)’
10 23 ‘ 1 (12)
_T\Vnz—l,nl—l + E(an—z,n,—l + \Vnz—l,nl—z + \Unzfl,nl + \Vnz,nl—l) + g(‘l’nrz,n,fz + \Unz,n,fZ + \Vnrz,n1 + an,nl) = Erz—l,n,—l ’

F _F 2 1
ny—l,m—1 = ny—l,m—1 - E(anfl,nl + \']nz ) 71) - _(‘Vnz,nlfz + anf2,n, + \Vnz Wy )’

6
-10 2 1
T\Vl,l + g(\l’z,l Ty, tY,,t \Vo,l) + E(Wz,z TWo, tWo t Wo,o) =F,,

u=F, _g(‘l’ho + \Vo,l) _%(Wo,z TVt ‘Vo‘o)'

10 2 1 P E——
_?Wl,n +§(Wl,n—l TV, TVt \Vo,n) +g(\|/z,n4 TVt W, t \Vo,nn) = E,n SN = 29”1 -2,
E,n - E,n _EWO,n _g(wo,n—l + WO,nH)’n - 2’”] - 2’

10 2 1 o
_?an—l,n +§(\|‘ln2—],n—l + “ljnz—2,n + \VnZ—l,n-%-l + \Ilnz,n) +g(wnz—2,n—l + \ljnz—Z,rH—l + W}’Iz,’l—l + an,rﬁ—l) = EIZ—I,n SN = 2"nl - 2’
F =F _2 —l( + ) n=2n -2

ny-ln = T ny-ln 3\\Un2‘n 6 \Vnz,n—] \‘rlnz,;ﬁ-l A H (13)

10 2 1 S ——

_?\‘r[m,l +§(‘Vm-1,1 TV, otV t \Vm,o) +g(‘|/m-1,2 TV TVt ‘Vm+1,0) = Fm,pm = 2an2 -2,
Fm,l = Fm,l _gwm,o _E(Wmfl,o +\Vm+1,o)vm = 2,1’12 -2,

10 2 1 o —

_?\Vm,npl + E(Wmfl,npl + \Vm,an + \Vmﬂ,n,fl + \Vm,n1 ) + E(Wmfl,nﬁZ + Werl,n,fZ + \mel,n1 + \Vmﬂ,nl ) = Erz,n,—l ,m= 29”2 - 23
2 1 o —

Fm,npl = Fm,nlfl _EWm,nl _g(\vmfl,nl + Wmﬂ,nl )’m = 2’”2 - 2’

m =F,,, Vme2n,-2,ne2,n -2
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3. Find the matrix coefficients for the forward sweep using formulas (14) and (15) m =1,n, -2
A =—A"Byv,=A"FT, (14)

A, =—(B\,  +A) By, =(B\,  +A) (F] =By, )m=2,m,-2. (15)

4. Find the vector-row \V:z,l using formula (16):
i =(Bn, ,+4) (FL - By, ). (16)
5. Find the remaining rows of the solution matrix y’ using formulas (17):
m=n, =21y, =Ly, +V,.m=n—-2Lv, =y, . (17)

The matrix algorithm for the sweep (9)—(17) preserves sixth-order accuracy according to formulas (7) and (8) for the
Poisson equation.

The second and third equations of the system (1) w = vz —u5,u = y,,v=—y; are linear with respect to the first partial
derivatives, which can be calculated independently. Let us present the quadrature formulas for the first derivative with
different stencil centers.

For example, for the equation u = Q} we obtain:

Uiy = %(%(\VHI,/’ _Wi—],j) 230(\V1+2J Uu;_ 2,,) 60(W;+3, Wi—3,j))+ O(h6)si =3,n,-3,j=Ln -1,

v 13 V., Vs, e
(11) h(_ —— W 2W2/ W3,j+ - 5./j+0(h4)5‘]=17n1_1a

5 12 3 20
M(ZJ.) 12h( ( Wl/) (W4] WOJ))J’_O(hA‘)’j:l’nl _1’ (18)
U1,y = ( e Vot T2V, 0, =W, s, + an;J _%) + O(h4)’j =Lm -1,

u("z’z ;1) 12h (8(\'1"2 3.7 an—l,j) _(\Vn274,j - W"za/’)) + O(h4)"] = 1,}’11 - 1

Similar formulas can be written for the equations v=—y;,w=vi —uy. Consider the vortex dynamics equation in
the system of equations (1). To accelerate the numerical solution of the problem (1), the splitting method [11] was used.
Analytically, the method of n-fold splitting of the vortex equation for the time interval T - n can be written as:
Wk+i+] _ Wk+i 1

k+i F+i k+i\ —
. +u* w gL W, _R_e(wxx +w, ),l—O,n 1. (19)

The system of recurrence equations (19) for the vortex with a frozen velocity field
(u" (x, v), v (x, y)),i =0,n—1,k = const,k =1,2,... consists of n intermediate steps i=0,7—1, where the upper index i
indicates the number of the intermediate time layer in the vortex equation (19), and the index k is the number of the
multiple time layer in the system (19) (if £ is a multiple of #). The velocity fields and stream functions are constant in
equations (19) for given values of k = const and the change in index i=0,n—1. In this system of equations, only the
vortex field changes w*",i = 0,n —1. The velocity field changes abruptly in systems (1) and (19) when the time index of
the vortex function increases by »n from & to k£ + n in the vortex equation system (19).

The idea of splitting the system of equations (19) is to reduce the accumulation of rounding errors and the computational
time when solving it. Differential operators with respect to the coordinate in (19) are approximated in the internal nodes
with accuracy O(%), as are all the equations in the system (1), boundary conditions with accuracy O(/#*), and the time
with accuracy O(1).

Thus, by solving equation (19) 7, - n, n times in time we get a time jump 7, - 7 (which is n times larger than the
sequential solution of the system of equations (1)) and reduce the rounding error without solving the other equations in
the system (1) inside the system (19).

Equation (19) is linear with respect to the coordinate derivatives W' w W w In work [11], it is shown that for

xx?

spectral stability of the vortex dynamics equation (19), it is enough to choose the ratlo of the time and spatial steps in the

form of the inequality T, < %hz Re. This maximum time step was set by the authors in the program.

For the first partial derivatives of equation (19), approximation formulas were used, for example, for w ((formulas for
the derivative with respect to w_are similar):
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1(3 3 6\ - .
Wy([,/) - Z(Z(M}Hl,j _W[fl,j) 20( i+2,j W'*Z,_/) 60( 1+3/ [73,j))+ O(h )Hl = 35”2 _37] = 17”1 _19
1 W, 13 w J W, J o
Wi _Z( %— 12w1"" +2w,  —w, +%—%)+ 0(},4)’J =1,n -1,
1 . — (20)
W00 ——h(8 W —wl,/.)—(w{j _Wo,,/))+0(h4)’] =1n -1,
1 W"zf 13 Wn274, j an—S, j 4 . T
Wyn-1) = _Z(_ 5 : 12 Wi, -1.j +2an 27 " W3, +TJ_TJ]+O(]1 )7] =Ln -1,
1 A —
Wy("zfz,j) 12/’1 (8( nz 3,j an—l,j)_(wn2—4,j _an,/))'f' O(h ),] = 1,7’[1 -1
The second partial derivatives w,, in equation (19) are given by:
1{ 49 3 3 1 . .
Wyy([,j) = h_z(_ﬁw}[’j +5(W[+1,j + l/Vifl,j) 20( i+2,j + Wl'*z,j) 90( i+3,) + Wi73,j))+ O(h6),l = 3,”2 —3,] = l’nl —1’
1 (137 49 17 47 19 31 13
Pwp :?(@W‘” T60 " T2 T M T Y60 ™ TTs0 6’)+O(h )i =t =1,
1(5 4 1 [
Woo = h_z(_sz’j +§(w]‘j + W*-")_E(W“'«f + w4!j))+ O(h“),J =1,n -1, (20)
137 49 17 47 19 31 13 4 . T
Yooty =52 (180 m 0 e g M g e T M T g s T g e ’) O(#*).j =Lm 1.
1(5 4 1 o
W2,y = ?(_EW”Z’Z” +§(wnfl’j + an—m) 12(w W, 4j)) + 0(},4),] =Ln -1

Similar to formulas (20), formulas for the derivative with respect to w_are written.

According to the algorithm of A. Salih [1], it is necessary first to update the values of the vortex function w at the
boundary of the rectangle and only then solve the vortex equation (19) in the internal points of the cavity.

Let’s expand the stream function at the first coordinate node at a distance /4 from the left wall along the x-axis, which
is normal to the left wall:

V= by ey g oy h—+0(h) @1
X XX 2 XXX 6 XXXX 24 XXXXX 120

From the equation u= ﬁ; =0 it follows that on the lateral walls the stream function does not change, and from the
equation v =—y- =0 it follows that the stream function does not change on the bottom and top segments of the cavity.
Therefore, on all four sides of the rectangular cavity, we set the stream function to be equal to zero.

Considering that on the left wall of the cavity y, =0,y =-v,y =-w we rewrite equation (21) as:

" " h 3 2y, h h’ n

2
—Vvh—w—+ —+ 0 )ow=""y-——1+ —+y,
\Vl 2 \Vxxx 6 \Vr)ocx 24 \']xxxx‘c 120 ( ) h hz \Vxxx 3 \Vuxx 12 Wx.\:voc 60

From equation (22), it can be seen that it is sufficient to approximate the derivatives of the stream function y_,
V-V, at the left boundary with the 3rd, 2nd, and 1st orders of accuracy, respectively. Equation (22) has an invariant
form since the order of the derivative and the step size 4 have the same parity. For example, for y h? the 3rd and 5th

orders, respectively, the product of the difference operator applied to y__ by /* does not change the éign and has the same
form relative to both the right and left walls.

The program used the following approximation of derivatives for the formula (22) (in each formula (23), the index j
changes within the range j=1,n —1):

+0(h*). (22)

@ oL
Wyin, 1 = E

1 49 461 307 15
3) 4
wiih,) ?( S o, 20w, — = w4 62w, == S +13w5,j—§w6,j)+0(h )s
1(35 137 242 107 17
,(v‘(l()),j) 2 :?(— 0./ _31Wl,j +7W2,j _TWBJ +7W4,j _19W5,j +ZW"’1)+O(}14)’
1( 7 95 85 5
w;fz)’j)h3 :h_z(_Z +2Ow1j =W, +60W3,j —Yw” +16w5,j _EW6’j)+0(h4)’ (23)

—4789w2’,+29w7 ,.—%wr +62w, ,,—%wz 13w, —Dy 76’j)+0(h4),

ny=5,j 8 ny

w® hzzL(ﬁw -3lw__ .+mw —&w .+mw L, —19w .+£w P ,)+O(h4),
6 7 2 2 T e

y(ny.j) hZ ny.j ny-1,j =2, 3 n=3,j ny—4,j n,-5,) n
o o (7 _9% _8 _3 4
wy(nz,j)h = hz( 2an,j +20an—l,j 5 W, +60wn273,j 5 W, a, t 16wn275’j 2wn276,j + O(h )
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In the work by A. Salih [1], it is pointed out that the stability of the numerical solution to problem (1) depends on
the order of approximation of the boundary values of the vortex function in an equation analogous to equation (23). For
example, he claims that approximating the boundary conditions of the vortex with the first order is more stable than with
the second order. Using the method of splitting the vortex equation (19) with an explicit finite difference scheme, the
authors did not notice any influence of the order of approximation of the vortex boundary conditions on the stability of the
problem, even with a fourth-order approximation. The stability of the solution to the general problem (1) depended only
on the Reynolds number Re and the choice of initial conditions.

Similarly to equation (22), for the vortex at the lower (upper) wall, we have:

2 3
w:%u —%+\ungr\|/Awf—2+\u}wg—0+0(h4). (24)

The profile of the initial horizontal velocity component (2), (3) and the vertical velocity component (4) refers to the
deceleration method and is stable for a Reynolds number Re < 3000. The acceleration method assumes initially stationary
fluid in the cavity and was first proposed by A.A. Fomin and L.N. Fomina in their work [2]. The upper cover of the cavity,
slowly accelerating from the stationary state, drags the fluid along with it inside the closed cavity. In work [2], the Fomins
proposed the velocity of the upper cover as a function of time, according to the formula:

l(sin(ﬁ(zt/t1 —1))+ 1),0 <1<,
v(x,k)=0,u(x,k) =<2 2

Lt>t,.

In this work, the acceleration method used a similar formula:

sin nr ,0<tr<y,
v(x,k) =0,u(x,k) = 2t (25)
Lt>t,.
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Fig. 1. Results of the solution: « — Re = 2000, deceleration method, lower boundary of the stream function
(first number), boundaries of horizontal and vertical velocity components, and vortex function at time ¢ = 24000;
b — the limiting field of streamlines in the deceleration method Re = 2000, n, x n, = 100 x 100
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a)
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b)

Fig. 2. Results of the solution: ¢ — Re = 2000, acceleration method, lower boundary of the stream function
(first number), boundaries of horizontal and vertical velocity components, and vortex function at time ¢ = 1260000;
b — the limiting field of streamlines in the acceleration method Re = 2000, n, x n, = 100 x 100

By comparing the intervals of variation of the stream function values, the fields of horizontal and vertical velocities,
and the vortex function in Figures 1 and 2, we see that they coincide with an accuracy of up to 16 significant digits.
Therefore, the fields of streamlines in Figures 1 and 2 also coincide.

Thus, the acceleration and deceleration methods for the initial velocity field (2), (3), (4) are equivalent for Reynolds numbers
Re <3000. However, the time required to establish steady fields in the deceleration method is tens of times (57 times) shorter
than the time required to solve problem (1) using the acceleration method.
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0.00 0.25 0.50 0.75 1.00
X
b)

Fig. 3. Results of the solution: a — Re = 8000, acceleration method, lower boundary of the stream function
(first number), boundaries of horizontal and vertical velocity components, and vortex function at time ¢# = 1044000;
b — the limiting field of streamlines in the acceleration method Re = 8000, n, x n, = 100 x 100 31
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The field of streamlines in Figure 35 shows three second-order vortices located at the corners of the cavity and fully
coincides with the streamlines field presented in work [13, p. 22] for Re = 8000. From Figures 1, 2, and 3, it is evident
that the maximum values of the vortex function occur at nodes on the upper and right walls of the cavity, near the points
where the velocity profile joins or near special velocity points at the upper corners of the cavity [14].

Discussion and Conclusion. A numerical solution algorithm for a two-dimensional hydrodynamic problem in a
rectangular cavity, in terms of “stream function — vortex”, is proposed. The approximation of the equations in the
system (1) has a sixth-order error in the interior nodes and fourth-order error in the boundary nodes. For the first time, a
deceleration method with an initial horizontal velocity field is proposed using a smooth connection of two sinusoids. The
initial conditions in the deceleration method are suitable for Reynolds numbers Re < 3000. The numerical equivalence
of solutions using the acceleration and deceleration methods is demonstrated, with final fields of the stream function,
horizontal and vertical velocity components, and the vortex field coinciding up to 15 significant digits. The problem in
terms of “stream function — vortex” has been numerically solved for Re = 8000 and its solution and the structure of the
primary and secondary vortices qualitatively match the results of other authors.
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Study of the Influence of Boundary Motion on the Oscillatory
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Abstract

Introduction. The widespread use of technical systems with moving boundaries necessitates the development of
mathematical modelling methods and algorithmic software for their analysis. This paper presents a systematic review
of studies examining the oscillatory and resonance properties of mechanical systems with moving boundaries, such as
hoisting cables, flexible transmission mechanisms, strings, rods, beams with variable length, and others.

Materials and Methods. A problem statement is formulated, and numerical methods are developed for solving nonlinear
problems that describe wave processes and the resonance properties of systems with moving boundaries.

Results. An analysis is conducted on wave reflection from moving boundaries, including changes in their energy and
frequency. It is shown that the energy of the system increases when the boundary moves toward the waves and decreases
when moving in the same direction as the waves. Criteria are obtained to determine the conditions under which the
boundary motion must be considered for accurate calculation of oscillation amplitudes. Numerical results demonstrate the
influence of boundary speed and damping on the system dynamics.

Discussion and Conclusion. The findings have practical significance for the design and operation of mechanical systems
with variable geometry. The results make it possible to prevent large-amplitude oscillations in mechanical objects with
moving boundaries at the design stage. These problems have not been sufficiently studied and require further research.

Keywords: resonance properties, vibrations of systems with moving boundaries, wave processes, damping, vibration amplitude
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AHHOTALMA

Beeoenue. 11lupoxoe pactipocTpaHeHHE B TEXHUKE 0OBEKTOB C IBUKYIIIMMUCS TPaHUIIAMH O0YCIIOBIUBAET HEOOXOIMMOCTh
Pa3BUTHS METOZIOB MaTEMATHIECKOTO MOJICIIPOBAHHUS U CO3[aHUS AJITOPUTMHYECKOTO POrPaMMHOI0O 00€CIICUCHUS /ISl CO-
OTBETCTBYIOIIETO aHau3a. Hacrosias paboTa mpeacraBisieT co00i CHCTEMATH3HPOBAHHBINA 0030p MaTepHAIOB, B KOTOPHIX
HCCIICAYIOTCS KolleOaTeNbHbIC U PE30HAHCHBIC CBOHCTBA MEXaHUYECKUX CHCTEM C IBIDKYIIMMUCS TPAHUIAMH, TAKHX KakK
KaHATHI IIOJbEMHBIX YCTPONCTB, THOKHE TIepeIaTOYHbBIC MEXaHU3MBI, CTPYHBI, CTeP)KHH, OaJIKH IEpEeMEHHOM JJTHHEL U T. 11
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Mamepuanwt u memoosi. CHOpMyTUpOBaHA TIOCTAHOBKA M pa3pabOTaHbl YHCICHHBIE METOABI PEIICHHS HEJTMHEHHBIX 3a-
Jla4, OIMCHIBAIOIINX BOJHOBBIE IPOIIECCH M PE30HAHCHBIE CBOMCTBA 00BEKTOB C JABMKYIIMMHUCS I'PaHULAMHU.
Pezynomamut uccneooganus. 11poseneH aHann3 OTPaKCHUsS! BOIH OT JBIDKYIIMXCSI TPAHUI, BKIIOYas M3MCHEHHE WX
SHEPruM M 4acToThl. [IoKa3aHo, 4TO SHEPrusi CHCTEMBI BO3PACTAET MPH JIBIKCHUH TPAHHUIIBI HABCTPEUY BOJIHAM M YOBI-
BAacT IPH COBIAJCHUH HampaieHUH. [lomydeHsl KpuTepruH, ONPEACTSIONINE YCIOBUS, IIPH KOTOPBIX HEOOXOIUMO yUH-
TBHIBaTh JIBM)KCHNE TPAHMIL JUI KOPPEKTHOTO pacyueTa aMILIUTY/ KoieOaHui. UncineHHbIe pe3ynbTaTsl IEMOHCTPUPYIOT
BIIMSTHUE CKOPOCTH ABMXEHUSI TPAHUI] U IeMII(UPOBAHNS HA AUHAMUKY CHCTEMBI.

Oécyscoenue u 3axniouenue. Pe3ynsrarel pabOTHl IMEIOT NMPAKTHYECKOE 3HAUCHUE JUIS MTPOCKTUPOBAHMS U IKCILTya-
TallMM MEXaHWYECKUX CHCTEM C MEepeMeHHOIl reomeTpueil. [IpuBeneHHbIC pe3ynbTaThl MO3BOIAIOT HA CTAAUU MPOEKTH-
POBaHHMS IIPEAOTBPATUTH BO3MOXKHOCTH BO3HUKHOBEHHS KoJIeOaHUil OOJBIION aMILIMTYbI B MEXaHWYECKUX 00bEKTax ¢
JBIDKYIINMHUCS TpaHULIAMHY. JJaHHBIE 3a/1a41 MaJIo U3yUEeHbI U TPEOYIOT AaIbHEHIIIETO NCCICIOBAHN.

KioueBble cjioBa: pe30oHaHCHBIE CBOWCTBA, KOJEOAHUS CHCTEM C JBIDKYIIMMIECS TPAaHHWIAMH, BOJHOBBIC IPOIECCHI,
JnemriprpoBaHue, aMIDIATY/Aa KoIeOaHni

Jasi uurtupoBanus. CemenoB A.JL., JlursunoB B.JI., lllamonun M.B. UccrnenoBanue BIUsSIHUSL JBUKEHUS TPAHULL Ha
KoJie0aTeIbHbBIC U Pe30HAHCHBIE CBOHCTBA MEXaHMYECKUX CHCTEM IepeMenHon anuHbl. Computational Mathematics and
Information Technologies. 2025;9(2):34-43. https://doi.org/10.23947/2587-8999-2025-9-2-34-43

Introduction. In the field of elastic system dynamics, particular practical interest is drawn to problems involving
vibrations of structures whose geometric parameters change over time. Typical examples of such systems include hoisting
ropes [1-8], flexible transmission elements [4, 6, 9], drilling rigs [10], and others. Numerous studies on the dynamics of
hoisting ropes have revealed the need to develop new approaches to analyzing the behavior of one-dimensional objects
with variable geometric characteristics.

Similar problems involving moving boundaries also arise in the context of heat transfer, thermal conductivity, and
diffusion equations (notably, the Stefan problem). Such issues have been addressed in the works of L.A. Uvarova [11],
V.A. Kudinov [12], and other researchers.

A related class of problems—devoted to constructing two- and three-dimensional mathematical models of marine and
coastal systems, shallow water bodies, wave hydrodynamics and geophysics, and the correctness of problem formulations
described by elliptic-type equations—has been investigated by A.I. Sukhinov and his students [13, 14]. These authors
study the development and analysis of two-dimensional-one-dimensional splitting schemes and methods for solving grid-
based diffusion-convection-reaction problems, which form the basis for efficient parallel algorithms.

The results of A.I. Sukhinov, A.M. Atayan, A.V. Nikitina, A.E. Chistyakov, V.V. Sidoryakina [15], and others form
the foundation for studying forecasting problems of adverse and hazardous phenomena, including wave processes at
boundaries in natural and man-made systems; mass transfer across moving boundaries such as storm surges, coastal
flooding, and the formation of hypoxic zones in marine and coastal systems using precision models; as well as for remote
sensing and artificial intelligence applications. These authors have examined the existence and uniqueness of solutions to
linearized initial-boundary value problems for the developed models.

The problem of vibrations in systems with moving boundaries is related to obtaining solutions of systems of partial
differential equations in time-varying domains, as well as integro-differential equations with time-dependent integration
limits and kernels. It involves introducing the concepts of “eigenvalues” and “eigenfunctions” for variable-length objects
and developing a general framework for studying boundary value problems of this class based on the synthesis of integral
equation theory and asymptotic methods. Characteristic model boundary value problems are solved in the context of the
dynamics of hoisting ropes, beams, rods, and strings with variable length, and their resonance properties are analyzed.
These problems have not been sufficiently studied. Traditional methods of mathematical physics are mainly limited to
problems with fixed boundaries.

The difficulties encountered in formulating and solving such problems stem from the fact that, to date, no sufficiently
general approach exists for analyzing the dynamic behavior of such systems. Existing results are limited to qualitative
descriptions of dynamic phenomena, while little attention has been given in the literature to obtaining quantitative
characteristics with practical value.

The theoretical significance of this study lies in the development and investigation of new mathematical models
describing the vibrations of objects with moving boundaries in the form of partial differential equations.

The practical significance consists in the generalization of modelling techniques and numerical analysis of the
resonance properties of objects described by boundary value problems with moving boundaries. The emergence of large-
amplitude oscillations in such systems is often unacceptable, making resonance analysis a key focus.

From a mathematical perspective, these problems require solving hyperbolic-type equations in domains with moving
boundaries. The considerable challenges in describing such systems justify the predominant use of approximate analytical
methods. Among the analytical approaches, the most effective are those based on special variable transformations [16, 17],
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as well as methods employing the principle of superposition of counter-propagating wave processes [18]. Of particular
interest is the approach proposed in [19], which involves using complex variable substitutions to reduce the original
problem to the analysis of the Laplace equation.

However, the capabilities of exact analytical methods are significantly limited [1-3, 20-21]. Among approximate
methods, special attention should be given to the Kantorovich-Galerkin method [10, 22], as well as approaches based on
constructing solutions to integro-differential equations [23].

In systems with moving boundaries, two types of resonance phenomena are observed [4]: steady-state resonance and
passage through resonance.

If a system with time-varying dimensions is subjected to an external force whose variation is synchronized with the
changing natural frequency, the phenomenon of continuous amplitude growth is referred to as steady-state (or generalized)
resonance. Passage through resonance refers to the sharp increase in amplitude over a finite time interval, during which
the instantaneous natural frequency of one of the modes coincides with the excitation frequency.

Passage through resonance occurs over a limited time interval and typically does not reach the amplitude levels
characteristic of steady-state resonance. However, when damping is high and boundary motion is slow, the amplitude
values of both resonance types are close. In such situations, to estimate the vibration amplitude during passage through
resonance, it is sufficient to fix the boundaries at the resonance point and compute the amplitude of the steady-state
oscillations, which will approximate the maximum amplitude observed during the passage through resonance. Thus, the
amplitude in the fixed-boundary case provides an upper bound estimate for the desired quantity.

Consequently, there is a need to expand the range of problems related to modelling vibrations in systems with moving
boundaries and to develop new solution methods and corresponding software tools. This need constitutes the main
objective of the present work. The study explores the patterns of wave reflection from moving boundaries in systems
whose vibrations are described by the wave equation, as well as the interaction of longitudinal waves with moving
boundaries. The influence of damping forces on vibration amplitudes during resonance passage in systems with moving
boundaries is analyzed. Inequalities are derived that define the domains in which boundary motion must be accounted
for. The paper presents a systematized review of materials previously presented by the authors at scientific conferen-
ces [24-26], which examine the vibrational and resonance properties of mechanical systems with moving boundaries.

Materials and Methods

Investigation of wave reflection patterns from moving boundaries. Let the oscillatory processes of the system be
described by the wave equation:

U”(x,t)—azUxx(x,t)zo. )

Here U(x,?) is the function representing longitudinal or transverse displacement of the object from the equilibrium
position; ¢ is the time; x is the spatial coordinate.

The oscillating object (string, rod) is unbounded on one side, while the other boundary moves according to a law
x = (). A sinusoidal wave g(x + af) is incident on the moving boundary, where

g(z) = Asin(wz +7), )

and a reflected wave g(x — at) emerges from the boundary.
The task is to determine the change in energy of the reflected wave compared to the incident wave under uniform and
periodic boundary motion. The solution to equation (1) is written in the form:

U(x,t)=g(x+at)+q(x—at). 3)

The energy of the segment of the object (xe[a;b]) is given by the formula:
b
1 2772 2
W=p j (@*U2 (x,0) + U (x,0))dx, @)

where p is the linear mass density of the object.
Substituting expression (3) into (4), we obtain:

W =2pa [(&'(r+an)* +(q'(x- an)*

Thus, the system’s energy consists of two parts — the energy of the incident wave and the energy of the reflected wave:

1 of
W, =P’ [ (& (e + at)ds, )

Wiy =5P0° j (q'(x - at)d. ©)
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We will also use the dimensionless characteristic

W VV()mp. ( )
= 7
’ VVnaz),

and the dimensionless variables:

U(x,t)=AY (1), t=wat, E=wx, p=wz, q(z)=A0(p), g(z)=AG(p).

Then expressions (1)—(3), (5), and (6) will take the following form:

Y. (&D-Y. (&1 =0, ®)
G(p)=sin(p+7), ©))
YE1)=GE+1)+0(E-1), (10)

by by
W, = C[(GE+D)de, W,, =C[(QE-D)dE,
where C :%pazAzw, a, =wa, b, =wb.

Consider the boundary condition at the moving boundary of the form:
Ul@),)=0

(11)
for uniform boundary motion /(¥)=V%.
In dimensionless variables, the boundary condition will have the form:
Y(L(7),7) =0, (12)
where
L(tv=ar, a=V/a (a<]l). (13)
Substitute the solution (10) into the boundary condition (12). As a result, we obtain:
G(L(T)+ D)+ O(L(®) 1) =0. (14)

Let us denote this equation P = (L(t) — 1) and find from it the relation for t: T = @(P):
Express: L(t)+1t =P+ 2@(P). When the boundary moves according to the law ¢(P) = Ll equation (14) becomes:
oL —

O(P) = —G(Z—jP).

Given that the incident wave is defined by expression (9), the reflected wave will have the form:

OP)= —sin(—t—ZP—ky). (15)

Analysis of equation (15) shows that the amplitude of the wave does not change upon reflection from a moving

boundary, while the frequency changes in accordance with the Doppler effect by a factor of 140 When the boundary
1-a
moves toward the wave, the frequency increases (o > 0), when the boundary moves in the same direction as the wave, the
frequency decreases (o < 0).
Let us now calculate the energy change of a single incident wave upon reflection. |
The wavelength of the incident wave (from equation (9)) is 2n. The wavelength of the reflected wave is 1_—a27t,
+

therefore the ratio of the energies becomes
2n

W =C|cos’(P+y)dP=Cnr,
. = C[eos"(P+y) 16

1+a 2
w,, =C | (H_a) COSZ(H_OLP+Y)dp=Cn(1+_a)’
: 1-a 1-a 1-a

1+a
l-a

A
nao.
The energy of the system increases when the boundary moves toward the wave. The energy decreases when the
boundary moves in the same direction as the wave.
Now consider periodic boundary motion:

() = Bsin(mt). a7
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Let us synchronize the motion of the boundary with the incident waves in such a way that during the time it takes for
one wave to arrive (7 = 2n/wa) the boundary completes an integer number of oscillations, denoted by 7. In this case

o = wan. (18)
Expression (17) in dimensionless variables L(t) = wl(¢),T = wat, £ = wx taking into account (18) takes the form:
L(t) = Bsin(n1), (19)
where = Bw.

For subsonic boundary motion, the condition ([L'(t) <1) must be satisfied fn < 1. Substituting (19) into the boundary
condition (15) for the reflected wave yields:

O(P) =—sin(P+2¢(P)+Y). (20)

The function ¢(P) is defined implicitly and determined by the equation:

Psin(ne(P)) - p(P) = P. 21

To determine the energy of the reflected wave, we find from (21) ¢'(P) and from (20) Q'(P):
@'(P)=1/(Bncos(p(P))-1), (22)
Q'(P)=—(1+2¢'(P))cos(P+2¢(P) +7). (23)

The energy of the incident wave is defined by expression (16).
Taking into account (22) and (23), the energy of the reflected wave is given by:

I EZZZZQ * 1cos(P +2¢(P)+7) dP. (24)

omp

Results. We analyze expression (24) using the developed software package [27] to find its maximum with respect to
B and v for different values of n.

As a result of the numerical analysis, it was established that for any values of P the maximum energy of the reflected
wave is achieved at n =2 when y =/ 2. For other values of # the maximum is reached at different values of y=0. It was
also found that the function W (y) is periodic with period = for any values of 7.

The dependence of W, on B on y for n = 2, is presented in Table 1.

Table 1

Dependence of W on  and y for n =2

Y Bl 0.000 0.045 0.090 0.135 0.180 0.225 0.270 0.315 0.360 0.405
0.00 1.000 0.955 0.989 1.096 1.280 1.559 1.973 2.608 3.658 5.661
0.31 1.000 0.969 1.015 1.132 1.325 1.615 2.043 2.695 3.764 5.773
0.63 1.000 1.008 1.082 1.224 1.443 1.762 2.226 2.924 4.047 6.089
0.94 1.000 1.055 1.165 1.338 1.588 1.943 2.453 3.208 4.398 6.488
1.26 1.000 1.093 1.232 1.430 1.706 2.090 2.636 3.438 4.683 6.818
1.57 1.000 1.108 1.258 1.465 1.750 2.146 2.706 3.526 4.794 6.952
1.88 1.000 1.093 1.232 1.430 1.706 2.090 2.637 3.439 4.688 6.840
2.20 1.000 1.055 1.165 1.338 1.588 1.944 2.453 3.210 4.405 6.524
2.51 1.000 1.008 1.082 1.224 1.443 1.762 2.227 2.926 4.054 6.125
2.83 1.000 0.969 1.015 1.132 1.325 1.616 2.044 2.696 3.769 5.795
3.13 1.000 0.955 0.989 1.096 1.280 1.559 1.973 2.608 3.658 5.661

Features of Longitudinal Wave Interaction with a Moving Boundary. Let us consider the propagation of longitudinal
waves in a semi-infinite rod, where the left boundary moves between two rollers rotating with a circumferential speed v
and simultaneously translating along the x-axis with the same speed.

Until now, in the formulation of similar problems, the fact that deformed sections of the rod pass through the boundary
has been neglected, and the boundary condition in the absence of slip was written as:

U,@),t)=0; I(t)=vt.
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In cases where the deformations are significant, this can lead to substantial errors.
Let U(x,f) be the longitudinal displacement of the cross-section of the rod at coordinate x at time ¢ which satisfies the
wave equation (1). If deformations are taken into account, the boundary condition remains the same:

U,(0),1) =0, (25)
however, the law of boundary motion becomes coupled with U(x,f) by the relation:
I(ey=v/A+U (1(1).0)). (26)
This dependence of the boundary’s motion law on the oscillatory process makes the problem nonlinear. Problems of
this kind are currently poorly studied. A similar problem was first considered in [21].

We study the influence of the deformation magnitude and the boundary’s speed on the process of reflection of a

harmonic wave:
o(x +at) = Asinw(x + at) (27)

from a moving boundary.
Let us introduce the following dimensionless variables into the problem (1), (25)—(27):

U(x,t)= AV (&), (1) =L(v)/ o,
E=ox, T=awt, ¢(x+at)=Ag(E+1).

As a result, we obtain:
I/n (E,»T) - Vgr;(%?‘t) = 07 VT(L(T)s’E) = 0:

L'(v)y=¢/(1+aV,(L(1),7), g&+1)=sin(E+1), e=Vv/a, a = Ao.
We seek the solution in the form:
V(&,1) =sin(§+ 1)+ G(E—1).
As a result, to determine the functions G and L we obtain the following system:
L'(t)=¢/(1+2acos(L(7)+ 1)), G'(L(t)—1) =cos(L(t) +1).

From the second equation of the system, it follows that the amplitude of the deformation waves does not change. A
comparison of the system’s solution (the system was solved numerically using the developed software package [27]) with
the solution that does not account for the change in L(t) due to deformation, namely:

L(t)=¢1, G'(z2)=cos((e+1)z/(e-1)), z=1(e-1),

shows that there is a constant phase shift over time between the solutions. The wavelength in the first case is shorter. The
phase shift per unit time, depending on the parameters € and o deformation magnitude, is presented in Table 2.

Table 2

Phase shift per unit time depending on € and deformation magnitude o

€ 0.1 0.2 0.3 0.4
0.1 0.004 0.008 0.034 0.109
0.3 0.019 0.045 0.120 —
0.5 0.032 0.077 — —
0.7 0.057 — — —

At certain moments in time, the boundary may move faster than the speed of sound (L'(t) >1). In such cases, the

formulated problem becomes incorrect. The inequality € + 20, < 1 defines the admissible domain. In the cells of the table
where this inequality is not satisfied, a dash (—) is used.

Analysis of the Influence of Boundary Motion in the Study of Resonance Properties of Systems with Damping. To
answer the question of when it is necessary to take boundary motion into account, let us consider the process of passing
through resonance in a system with damping.

In works [10, 28], the resonance properties of two variable-length systems under the influence of damping forces were
studied. The expressions for the oscillation amplitude obtained therein take the form:

A3 = E2(e0)e ™ [ F, ()" sind, QLT +[[ F, (20" cosd, (LT}, ()
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where o, (g,1), E, (€1), F,(€€), D, () are certain functions.
Omitting some mathematical derivations, we obtain the expression for (28) in the form:

2
A()zn (TI’TZ) = A2 EAE (Zl ’22)’
where
A3(2,,2,) = €72 12(2,,2,) + 12(2,,2,)], (29)
I,(z,2,) = [e“sin(xz")dz, 1.(z,2,) = [ € cos(+2")dz, (30)

a=a,2/| V], z, =(vT,+®,) /2| V], i=12.

Here v is a parameter characterizing the speed of resonance passage; o, is a coefficient characterizing damping in the
system; 4 is a constant value; 1,1, are the boundaries of the resonance region.

Let us analyze expression (29) for its maximum in the vicinity of the point z, = 0.

As a result of the numerical solution of (29) using the developed software package [27], Table 3 was obtained.

Table 3
Results of the Numerical Solution of Expression (29) for the Maximum
a 0.00 0.10 0.30 0.50 0.70 1.00 1.30 2.00 3.00 7.00
z, -1.56 -1.54 -1.49 -1.49 -1.48 -1.48 -1.47 —-1.46 -1.35 -1.29
z, 1.56 1.45 1.30 1.25 1.20 1.15 1.10 1.00 0.70 0.40
A (o) 2.37 2.06 1.60 1.29 1.07 0.84 0.68 0.47 0.33 0.144

The maximum oscillation amplitude that arises when the boundaries stop at the resonance point is determined by
expression (28) at v = 0. Performing the calculations, we obtain:

A™ = A/ a. 31)

When v # 0 the amplitude is determined by the expression:

[2 [2
=4 |4 (0, =),
4, V] (o |V|) (32)

where the value of the function 4 is taken from Table 3.
The boundary motion should be taken into account when the relative amplitude error

A4,

is large.

Using the data from the table, it is easy to establish that the error A exceeds the value of 0.05 when

’ 2
a, m < 2,164 (34)

Inequality (34) defines the region in the parameter space o, v, where boundary motion must be considered. Substituting
into (34) and performing the transformations, we obtain the following inequality, which defines the region where boundary
motion must be considered:

A, >3.8\YA,
where A, =2mno,/®, is the relative change in amplitude over one free oscillation; A = 2n|u| [ wyl, is the relative
change in length over one free oscillation.

Discussion and Conclusion. The patterns of wave reflection from moving boundaries in systems whose oscillations
are described by the wave equation have been investigated. An expression has been obtained for the change in the energy
of the reflected wave relative to the incident wave in the case of uniform and periodic boundary motion. It has been
established that the system’s energy increases when the boundary moves towards the wave and decreases when it moves
in the same direction as the wave.
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The propagation of longitudinal waves in a rod with a moving boundary has been analyzed. In this case, accounting
for deformations renders the problem nonlinear. It has been shown that the amplitude of deformation waves remains
unchanged, despite the influence of boundary velocity and deformation magnitude.

The effect of damping forces on the oscillation amplitude during passage through resonance has been studied. Criteria
in the form of inequalities have been obtained, defining regions where the boundary motion must be taken into account.

The applied value of the results lies in their potential use for solving a wide range of engineering problems [29-33],
including: analysis of longitudinal and bending vibrations of shafts, beams, and rods with movable supports; reliability
assessment of ropes in lifting systems and dynamic stability of strings, fibers, and tape transmissions; study of vibrations
in tapes used in transport mechanisms, band saws, and flexible transmission elements; analysis of wire oscillations during
the fabrication of rotational shells by winding; process control in cable production, rolling; reliability assessment of
railway overhead contact systems, etc.

These types of problems are understudied and require further research. The presented results make it possible,
already at the design stage, to prevent the occurrence of high-amplitude oscillations in mechanical systems with moving
boundaries [34-37].
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Application of Neural Networks for Solving Elliptic Equations
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Abstract

Introduction. Differential equations are often used in modelling across various fields of science and engineering. Recently,
neural networks have been increasingly applied to solve differential equations. This paper proposes an original method
for constructing a neural network to solve elliptic differential equations. The method is used for solving boundary value
problems in domains with complex geometric shapes.

Materials and Methods. A method is proposed for constructing a neural network designed to solve partial differential
equations of the elliptic type. By applying a transformation of the unknown function, the original problem is reduced to
Laplace’s equation. Thus, nonlinear differential equations were considered. In building the neural network, the activation
functions are chosen as derivatives of singular solutions to Laplace’s equation. The singular points of these solutions are
distributed along closed curves encompassing the boundary of the domain. During the training process, the weights of the
network are adjusted by minimizing the mean squared error.

Results. The paper presents the results of solving the first boundary value problem for various domains with complex
geometries. The results are shown in tables containing both the exact solutions and the solutions obtained using the neural
network. Graphical representations of the exact and the neural network-based solutions are also provided.

Discussion and Conclusion. The obtained results demonstrate the effectiveness of the proposed neural network
construction method in solving various types of elliptic partial differential equations. The method can also be effectively
applied to other types of partial differential equations.

Keywords: elliptic partial differential equations, domain with complex geometry, neural networks

For Citation. Galaburdin A.V. Application of Neural Networks for Solving Elliptic Equations in Domains
with Complex Geometries. Computational Mathematics and Information Technologies. 2025;9(2):44-51.
https://doi.org/10.23947/2587-8999-2025-9-2-44-51

OpuzuﬂaﬂbHoe amnupudeckoe ucciedosamie

IIpyuMeHeHMe HEHPOHHBIX ceTell MPHU PelleHUH JJUIHNTHYECKUX YPABHEHUI
JJIs1 00J1acTeill CJI0KHOM (popMBbI

A.B. I'anaOypaun

JloHCKOM rocynapCTBEHHBIH TEXHUYECKUN yHUBEpcUTeT, I. PoctoB-Ha-Jlony, Poccuiickas ®enepanus

D4 Galaburdin@mail.ru

AHHOTANHSA

Begeoenue. [Tpu nocrpoeHny Mozieneil B pa3inuHbIX 00IacTsAX HAYKU U TEXHUKU YacTO UCTIOB3YIOT Au(depeHraIbHbIe
ypaBHeHUs. B Hacrosiee Bpems mpu pemieHnu auddepeHInanbHbIX YPaBHEHUH BCe Yallle NMPUMEHSIOTCS HEHPOHHBIC
cet. B manHoi paboTe MpemioxKeH OpUTHHANBHBIA METOI TOCTPOCHUS HEUPOHHON CETH JUIA PEIICHHUS IUIAIITHICCKUX
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muddepeHnnaIbHbIX ypaBHEHHH. DTOT METO MPUMEHSETCS TIPH PEIIeHNH KPaeBbIX 3a1ad Ul 00JacTeil CIoXHOM reo-
METPHUIECKOH (POpMBL

Mamepuanst u memoowt. [Ipeanaraercsi METOA IIOCTPOCHHST HEUPOHHOM CETH, IPEITHA3HAYCHHOW TSl pereHus auddepeH-
LIMaTBHbBIX YPaBHEHHUH B YACTHBIX IIPOU3BOIHBIX SIUTUIITHYECKOTO THITA. VICTIONB3ys 3aMeHy HEM3BECTHOH (DYHKIINH, NCXO/THAS
3aj1a4a cBOUTCS K ypaBHeHuto Jlarutaca. Takum 00pazom, paccMaTprBaliich HelMHekHHbIe 1] depeHInanbHble ypaBHeHUS.
[Ipu mocTpoeHNH HEHPOHHOI CETH B KaUECTBE aKTHBAIIMOHHBIX (DYHKIHI MPUHIMAIOTCS IPOU3BOAHBIE OT CHHTYIISIPHBIX pe-
nreHuid ypasHenus Jlarutaca. CHHIYISIpHBIE TOYKU 9TUX PEIISHHH pacipeneNieHbl 0 3aMKHYTHIM KPUBBIM, OXBATBIBAIOLINM
rpanuiry oonactu. IIpu HacTpoiike BECOB ceTH MHHUMH3HPOBAIACH CPEIHEKBaIpaTHyIecKast OMOKa 00y deHHsL.
Pe3ynomamut uccnedosanus. IlpencrapieHpl pe3yabTaThl peLICHHs EPBOi KpaeBoi 3aqa4u AJIs pa3IMYHbIX obnacTel
CIIO)KHOW TeoMeTpuyecKoil (opMbl. Pe3ynbraTel mpecTaBieHbl B BUAE TaOIHI, COIEPIKAIINX TOYHBIE PEIICHUS 3a1auu
U pelleHus], NOIyuYeHHbIE C IOMOIIBI0 HeHpoHHOH ceTH. JlaHo rpaduyeckoe MmpeacTaBieHne TOYHOTO PELICHUs U pelie-
HHUE, MOJYYCHHOC NPCAIIOKCHHBIM METOAOM.

Obcyscoenue u 3axknrouenue. I1oaydeHHbIe pe3yIbTaThl JoKa3aal 3QQEeKTHBHOCTD MPELIOKEHHOT0 METOa ITOCTPOCHHS
HEWPOHHOH CeTH MpPH PELICHUH PAa3IMYHBIX BHIOB NH((GEepeHINATbHBIX YPAaBHEHHH B YaCTHBIX IPOM3BOIHBIX DJUIHII-
THYECKOTO THMa. JJaHHBIA METOA MOXKET d(PPEKTHBHO NPHUMEHATHCS P PELICHHU APYTUX THIOB I hepeHInaTIbHbIX
YPaBHEHHI C YaCTHBIMU TPOU3BOIAHBIMH.

Krouesble ciioBa: quddepeHnnanbHble ypaBHEHHS B YACTHBIX MPOU3BOJHBIX JIUIMITHYECKOTO THIIA, 007IaCTh CI0KHON
TeOMETPHUYECKON (POPMBI, HEHPOHHBIE CETH

s uutupoBanmsi. ['anaOypaun A.B. IlpiMeHeHne HEHPOHHBIX CETEH NpPU PELICHHU JIUIMNTUYECKUX ypaBHEHHN
s obnmactedt cioxuoil (Gopmel. Computational Mathematics and Information Technologies. 2025;9(2):44-51.
https://doi.org/10.23947/2587-8999-2025-9-2-44-51

Introduction. Differential equations play a crucial role in modelling processes across various fields of science
and engineering. Traditional analytical and numerical methods for solving differential equations do not always yield
satisfactory results. As a result, different machine learning methods are increasingly being applied to solve differential
equations. In particular, artificial neural networks are often used for this purpose.

The theoretical foundations of the neural network method can be traced back to the work of A.N. Kolmogorov [1].
Today, neural networks are widely em-ployed for solving different types of differential equations. In [2], the transition
from neural network architecture to ordinary differential equations and the Cau-chy problem is discussed.

Papers [3, 4] focus on the application of neural networks to solve Laplace’s equation. In [5], deep learning methods
are applied to solve the Poisson equation in a two-dimensional domain. Radial basis function (RBF) neural networks have
become particularly widespread in solving partial differential equations [6].

In studies [7, 8], radial basis functions with tunable parameters are used as activation functions. Works [9-11]
demonstrate the successful use of neural networks for solving boundary value problems related to the Navier—Stokes
equations. Physics-informed neural networks (PINNs) have shown high effectiveness in solving partial differential
equations, particularly in classical mechanics problems [12, 13]. In [14], a perceptron-type neural network is applied to a
heat and mass transfer problem.

These studies highlight the growing popularity of neural networks for solving differential equations. The present
research is devoted to the analysis of boundary value problems for partial differential equations in domains with complex
geometries and builds on the approach developed in [15, 16].

Materials and Methods. Let us consider a boundary value problem for a differential equation:

U+b0oU+b,0,U+cU =0.

By representing the solution in the form U=Ve®*®) and appropriately selecting the parameters A and a, the problem
can be reduced to a simpler equation:

V+aV =0.

i. e., the Laplace equation.

The resulting equation was solved using a neural network with respect to the function V. The constructed neural
networks for solving the Laplace equation can also be used to solve nonlinear elliptic equations, provided they are
properly transformed.

As an example, consider the differential equation:

U-2(0U) + (0,U))/(3V)=0.
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The original differential equation is reduced to the Laplace equation by introducing a new unknown function V= U,
The neural network construction was based on the method described in [15, 16]. This method relies on a formula
similar to Green’s formula, in which integrals are replaced by sums:

V(x)= Zwkf(sk)U(x,ck) +ka f(s)G(x,7,),

where f(s,) is the value of the unknown function u on the boundary of the domain; U(x, ) and G(x, 1,) are activation
functions; o, and 1, are points on closed curves y, and y,, which surround the boundary y of the domain; x is a point inside
the domain G.

By requiring that this relation holds at every point on the boundary for all functions in the training set, and applying
the least squares method, a system of equations is obtained for determining the weights w, and v,.

To improve the conditioning of the matrix in the resulting system of equations, the activation functions were chosen
as derivatives of the fundamental solution of the Laplace equation

—10B°5% +5P&* +5° —108°8> + 55"
RIO

5
U(x,y,t,8)= B

>

B’ —218°°+35B’5* ~7B3°

G(xayatas): R14 X2

87 —21B25°+355°B* — 7S
+ = n,
R

S=x—t,B=y—s,R=48 +p°.

This increased the singularity of the activation functions. The points 6, and T, were taken on the contours y, and v,,
which were obtained by shifting each point of the boundary contour y outward along the external normal to the domain
boundary by distances p, and p, respectively. During the training process, the weights as well as the values of p, and p,
were determined. The values p, and p2 were found using a simple brute-force search.

As a training set, a set of functions that are solutions to the Laplace equation in polar coordinates was used:

rkcos(karccos(f)) + rksin(karccos(f)), =1+,
r r

where k=0, 1,2,3, ..., M.

These functions were specified in different coordinate systems, each rotated relative to one another by an angle that
is a multiple of 27/5.

Results. The proposed method was applied to solving problems in domains whose boundary v is defined by the equation:

x =acos(t)+ gcos(wt),
{ O+ goos(on. o0

y = a;sin(t) + g, sin(w?),

where t€[0,2n]; a, a,, g, g,, ® are adjustable parameters.

In all cases, the number of functions in the training set was taken as M = 75, and the number of neurons in the network
was N = 100.

Problem 1. As an example, consider the following differential equation:

AU -0,U + 50,U +6.5U =0.
A new unknown function V is introduced, which satisfies the Laplace equation:

U = Ve®5-25)

The first boundary value problem was considered.

Fig. 1 shows the domain whose boundary corresponds to the following parameter values: a = 1.15, g = 1.15,
a =0.07,¢g=-0.03, 0=9.

The points in the domain where both the exact solution and the neural network solution are evaluated are marked with
asterisks in the diagram.
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Fig. 1. Shape of the domain for Problem 1

The points in the domain where the exact solution and the neural network solution are computed are marked with
asterisks on the diagram. Table 1 presents the computational results corresponding to the solution of the equation:

U= xye(o'sx’z's)’).
Table 1
Computation Results for Problem 1

Point Number 1 2 3 4 5 6 7

Exact Solution 0.1158 0.2214 0.1055 0.0241 -0.0142 —0.0473 | —0.0835
Neural Network Solution 0.1148 0.2216 0.1054 0.0240 -0.0142 -0.0473 | —0.0838

Point Number 8 9 10 11 12 13 14

Exact Solution 0.0385 0.1092 0.0769 0.0244 -0.0157 0.0457 —-0.0629
Neural Network Solution 0.0382 0.1090 0.0768 0.0243 —0.0158 0.0458 —0.0630

Point Number 15 16 17 18 19 20 21

Exact Solution 0.0051 0.0213 0.0222 0.0098 —0.0069 -0.0175 | —0.0188
Neural Network Solution 0.0047 0.0210 0.0220 0.0096 —0.0071 -0.0177 | -0.0190

Problem 2. The following differential equation was considered:

AU +50,U + 30,U +8.5U =0.

The introduction of a new unknown function V-
U = Ve 353150

allows the original differential equation to be reduced to the Laplace equation with respect to the function V. The shape
of the domain in this case was determined by the parameters B a = 1.1, g= 1.1, al =0.05, gl = 0.1, ® =4 (Fig. 2). The
first boundary value problem was considered. Table 2 presents the computational results and the exact solution of the
differential equation:

—(2.5x+1.5y)

U=e¢e"chye
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Fig. 2. Shape of the domain for Problem 2
Table 2
Computation Results for Problem 2
Point Number 1 2 3 4 5 6 7
Exact Solution 0.0198 0.0143 0.0245 0.0622 0.1929 1.4682 9.0855
Neural Network Solution 0.0198 0.0143 0.0245 0.0622 0.1928 1.4640 9.0885
Point Number 8 9 10 11 12 13 14
Exact Solution 0.0818 0.0700 0.1163 0.2289 0.4502 1.4325 3.9076
Neural Network Solution 0.0817 0.0700 0.1162 0.2288 0.4499 1.4320 3.9104
Point Number 15 16 17 18 19 20 21
Exact Solution 0.3377 0.3321 0.4896 0.6716 0.7856 1.1957 1.6099
Neural Network Solution 0.3377 0.3320 0.4896 0.6716 0.7857 1.1959 1.6104
Problem 3. The following differential equation was considered:
2 2
v 2@Ur s @UY) o

K14

By introducing a new unknown function the original equation is reduced to the Laplace equation. The first boundary
value problem was considered. The shape of the domain was defined by the parameters a = 1.1, g = 1.1, a, = 0.07,
g,=0.07, o =9 (Fig. 3).
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Fig. 3. Shape of the domain for Problem 3
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Table 3 presents the computational results and the exact solution of the differential equation:

U=(xy+2.5x+y).

Table 3
Computation Results for Problem 3

Point Number 1 2 3 4 5 6 7

Exact Solution 24.613 28.736 32.687 7.2807 0.0363 -2.0562 10.894
Neural Network Solution 24.613 28.878 32.610 7.3419 0.0380 -2.0870 10.834

Point Number 8 9 10 11 12 13 14

Exact Solution 5.7339 5.9627 6.3055 1.4899 0.0169 0.2857 —2.0582
Neural Network Solution 5.7405 5.9727 6.3164 1.4937 0.0169 0.2865 -2.0625

Point Number 15 16 17 18 19 20 21

Exact Solution 0.3331 0.3060 0.2982 0.0754 0.0017 —0.0088 —0.0950
Neural Network Solution 0.3328 0.3058 0.2982 0.0753 0.0017 —0.0089 | —0.0957

Fig. 4 and 5 show graphical solutions obtained using the neural network, as well as the exact solution of Problem 3.

-1

2 2

-1

Fig. 4. Solution of Problem 3 obtained by the neural network

60
40

-1

-2 2

-1

Fig. 5. Exact solution of Problem 3
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Discussion and Conclusion. The presented results once again demonstrated the effectiveness of the neural network
construction method for solving boundary value problems in domains of complex shape for various types of elliptic partial
differential equations. This method can efficiently handle all types of partial differential equations. Future development of
the method will focus on expanding the classes of solvable problems and improving training techniques.
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Abstract

Introduction. This work addresses the scientific problem of studying natural-technological systems (NTS) of the Far North
under conditions of climate change and anthropogenic impacts. The relevance of ensuring their stability is emphasized,
which requires a comprehensive analysis of field data. Problems in automated processing methods of such specific data
have been identified. The aim of the study is to develop automated methods for processing field data to reveal patterns.
Python libraries for data analysis, processing, and visualization are used as tools.

Materials and Methods. The research object is described — the Main Building of the Yakutsk Thermal Power Plant (TPP)
in permafrost conditions. The study materials include field data obtained from engineering-geological boreholes at the
Yakutsk TPP, monitoring stations Chabyda and Tuymaada, as well as a section of the Amur-Yakutsk railway (AYR). The
data include measurements of soil temperature and moisture, seasonal thaw layer dynamics, snow cover characteristics,
and others. A detailed sequence of automated processing of primary data from XLS files using the pandas library is
presented, including reading, cleaning, format conversion, filling or replacing missing values, removing duplicates, and
saving processed data in CSV, JSON, and XLSX formats.

Results. Specific results of automated processing and systematization of primary field data are presented. Heterogeneous
measurements were successfully unified into a single format, ensuring their proper use. A unique data array was formed
based on empirical observations under the specific conditions of the Far North. The practical application of Python
libraries for executing key stages of preprocessing and data preparation is demonstrated.

Discussion and Conclusion. 1t is shown that the application of a systematic approach and automated data processing
significantly improves the quality and reliability of natural-technological system data analysis. Handling missing data
and normalization enhance accuracy, and the final data formats are convenient for further modeling. The universality
of Python is highlighted. Prospects for further research include applying machine learning, clustering, and modeling
methods aimed at uncovering patterns and forecasting the behavior of natural-technological systems in the Far North
under climate and anthropogenic influences.

Keywords: data analysis, Python libraries, data preparation, data preprocessing, information technologies.
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OpueunaﬂbHoe amnupudeckoe ucciedosamue

ABTOMaTH4YeCcKasi 00pad0TKa NePBUYHBIX JAHHBIX
HATYPHBIX HCCJIEJOBAHUI MOBeAeHUS] PUPOIHO-TEXHUYECKHUX CUCTEM
NPH U3MEHEHNH KJIMMAaTa U AaHTPONOIeHHBIX Bo3aeicTBUsAX B ycaoBusax Kpaiinero Cesepa

C.B. Kymykos! , K.H. UBanos! ,C.IL Jlesamkun' <, M.B. SIk06oBcKHii’
! TIoBOIKCKHIA TOCYaPCTBEHHBINH YHHBEPCHUTET TEIEKOMMYHUKanui u nadopmarukw, r. Camapa, Poccuiickas ®enepanust
2 MlHcTuTyT IpUKIaHON MaTemMariku umern M.B. Kenasiua PAH, 1. Mocksa, Poccuiickas ®@exneparius

D4 ai_lab@psuti.ru

AHHOTALUA

Beeoenue. PaccmatpuBaeTcs HaydHas mpoOiemMa nszydeHus npupomHo-texaudeckux cucteMm (IITC) Kpaitrero Cesepa
B YCJIOBHSIX M3MEHEHUs KJIMMara W aHTPOIOTEHHBIX BO3/eHcTBIH. OTMedaeTcsl akTyallbHOCTh 3a/1adl 00eCIeYeHUs] UX
YCTOWYMBOCTH, 4TO TpeOyeT KOMIUIEKCHOTO aHaJIM3a HaTypHBIX JaHHBIX. BBIABIEHBI MpoOieMbl B METO/aX aBTOMATH-
3MPOBaHHON 00pabOTKHM Takux crenuduyeckux AaHHbIX. Llenplo paboThl sBiseTcst pa3paboTka aBTOMaTH3UPOBAHHBIX
METO/I0B 00pabOTKM HATYpHBIX AAHHBIX JUIS BBISABICHHUS 3aKOHOMEPHOCTEH. B KadecTBe MHCTPYMEHTOB HCIIOIB3YIOTCS
o6ubmmorexu Python mist anami3a, 00paOOTKH M BU3yaTU3aliH JAHHBIX.

Mamepuanst u memoodst. Onirican 00beKT UccienoBaHUI — [ maBHEIH Kopiryc AxyTckoit TOL] B ycIoBHSIX BeUHOH Mep3II0-
THI. B KauecTBe MaTepuasoB UCCIIeIOBaHUS HCIIOb30BAHbI HATYpPHBIE JaHHBIE, IIOTYUCHHBIE U3 HH)KEHEPHO-T€OIOTHIECKIX
ckBakuH Skytckoit TOLI, cramonapos Yabsina u TyiiMaana, a Takke )KeJIe3HOMOPOKHOTO ydacTka AMypo-SKyTckol Ma-
ructpanu (ASIM). /laHHbIe BKITIOYAOT U3MEPEHUS TEMIIEPATyphl ¥ BIaKHOCTH I'PYHTOB, TUHAMUKH CE30HHOTAJIOTO CIIOS,
XapaKTepUCTHUK CHEXKHOTO MOKpoBa U Ap. [Ipencrasnena geranbHas MOCIEIOBAaTEILHOCTh aBTOMATH3UPOBAHHOM 00pa-
OOTKM MEepPBUYHBIX NaHHBIX U3 XLS-}aiiioB ¢ ucrnons3oBanneM OnOIHOTEKH pandas, BKIIFOYask YTEHUE, OYNCTKY, IPeod-
pasoBaHne (HOpMarToB, 3aNOJIHEHNE WM 3aMEHY 3HAUCHUH, yqajJeHne TyOliKaToB, a TaKKe COXpaHeHHe 00paboTaHHbBIX
naHHBIX B popmarax CSV, JSON n XLSX.

Pe3ynemamut uccneoosanus. IlpencraBiieHbl KOHKPETHBIE PE3YyNITaThl aBTOMATH3UPOBAHHON 00pabOTKU U CHCTEMaTH-
3all1M [IEPBUYHBIX HATYPHBIX JaHHBIX. YCIIEIIHO BHIOIHEHO NPUBECHNE Pa3HOPOIHBIX U3MEPEHHH K eAnHOMY (opMary,
obecrieurBaroIIeMy UX KOppeKTHOe ucroib3oBanue. CHopMHUpOBaH YHHKaIBHBIA MACCUB JAHHBIX HA OCHOBE dMITHpUYE-
CKuX HaOmoneHwi B cnenuduiecknx ycnouax Kpaitnero Cesepa. [IponeMOHCTpHPOBaHO MPAKTUIECKOE IPUMEHEHUE
6ubnmnorek Python [yt BEIONHEHNST OCHOBHBIX 3TAIoB MPEA0OPaOOTKH M MOATOTOBKH JaHHBIX.

Oécyscoenue u 3aknwuenue. J|oka3zaHo, 4To MPUMEHEHHE CHCTEMHOTO MOAXOJa M aBTOMaTH3WPOBAHHON 00pabOTKH
JIAHHBIX CYIIECTBEHHO MOBBIIIAET KAYeCTBO U HAaJeKHOCTh aHan3a HaTypHbIX JaHHbIX [ITC. YerpaHeHue npomyckoB u
HOpMaJIM3alusl JAHHBIX YIy4IIaloT TOYHOCTh, @ UTOTOBBIE (DOPMATHI TaHHBIX YIOOHBI JUTsl JAIbHEHILIEr0 UCIIOIb30BaHNs B
MozenupoBaHuu. [loquepkrBaeTcss yHUBepCcaIbHOCTh MpuMeHeHus Python. OGo3HaueHBI ePCIEKTUBEI HCCIEIOBAHUSI —
IIPUMEHEHHE METOJI0B MAIIMHHOTO OOy4YeHUs, KJIaCTEPU3allii U MOJEIUPOBAHMS, MPEAHA3HAYCHHBIX AJIS BBIIBICHHS
3aKOHOMEPHOCTEH M IPOTHO3MPOBAHMS MOBEACHHS ITPUPOTHO-TEXHUUECKUX CHCTEM B ycnoBusix Kpaiinero Cesepa non
BO3JICHCTBHEM KIIMMAaTHIECKUX U aHTPOIIOTEHHBIX (PAKTOPOB.

KioueBble ciioBa: aHanu3 AaHHBIX, OnOnrorexku Python, moaroroBka naHHBIX, MpenodpaboTKa AaHHBIX, HH(OOpPMAIH-
OHHBIE TEXHOJIOTUH

®dunancupoBanue. Pabora BeinonHeHa npu ¢punancoroit noxaepkke PH® (rpant Ne 23-61-10032).

Jas uutupoBanus. Kymykos C.B., Banos K.H., Jlesamkun C.I1., Ako6oBckuit M.B. ABromarndeckast 00paboTka mep-
BUYHBIX JAHHBIX HATYPHBIX HCCIECIOBAHMN OBESACHHS NPHPOIHO-TEXHHYECKUX CHCTEM IPH N3MEHEHHU KIIMMaTa U aH-
TPOIIOTCHHBIX BO3JeHCTBHAX B ycnoBusix Kpaitnero Cesepa. Computational Mathematics and Information Technologies.
2025;9(2):52—64. https://doi.org/10.23947/2587-8999-2025-9-2-52-64

Introduction. The study of natural-technological systems (NTS) under climate change and anthropogenic impacts,
especially in the challenging conditions of the Far North, represents an important scientific problem. These systems are
formed as a result of interactions between natural processes and technical objects, and their stability largely depends on
the dynamics of external factors. To identify patterns of NTS functioning and predict possible changes, a comprehensive
data analysis is required.

Information processing obtained during field studies involves several stages: collection of primary data, their
preliminary processing, analysis, and interpretation of results. The goal of this work is to develop methods for automated
processing of field data, which will allow identification of key trends and patterns in the interaction between natural and
technogenic factors [1-3].
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The relevance of the research is driven by the need to make informed decisions to ensure sustainable functioning and
management of natural-technological systems under increasing climatic and anthropogenic impacts [2—8].

First, we present algorithmic libraries [4] that provide diverse tools for data processing, analysis, and modelling [5]:

» scikit-learn: a universal machine learning toolkit covering the entire process from data preparation to model
evaluation. This library includes all necessary functions to solve machine learning and statistical analysis tasks [9, 10];

« statsmodels: a library for estimating statistical models, offering tools for statistical tests, regression analysis, and
time series analysis.

Next, we list visualization libraries that enable effective data presentation:

« matplotlib: helps create static, interactive, and animated graphs in Python. It provides a broad arsenal of tools for
visualizing data in various formats, revealing a wide range of possibilities for illustrative information presentation [11-14];

* seaborn: a data visualization library built on top of matplotlib, offering a high-level interface for creating informative
statistical graphics.

Additionally, we mention scientific computing libraries used for mathematical calculations and data processing:

* pandas: a framework for data manipulation and analysis. It provides powerful tools including data structures like
DataFrame, which simplify working with tabular data. The library is widely used in loading, cleaning, analyzing, and
preparing data before integration into machine learning algorithms;

* numpy: a library designed for manipulating multidimensional arrays and matrices, as well as performing mathematical
operations on them. It offers a variety of functions optimized for efficient numerical data processing;

* scipy: a highly efficient library for scientific and technical computations, extending functionalities for optimization,
integration, interpolation, and many other scientific tasks.

Materials and Methods

Review of Existing Research. In recent years, there has been a growing interest in studying the influence of climatic
and anthropogenic factors on natural-technological systems (NTS). Various studies emphasize the necessity of a
comprehensive approach to managing these systems to ensure their stability and functionality.

R.S. Rozhkov and co-authors, in their work “Management of Natural-Technological Systems through the Concept of
Sustainable Development and Acceptable Risk™ [15], highlight the importance of considering environmental, economic,
and social factors in the management of NTS. The authors propose using systems analysis and risk assessment to develop
optimal strategies aimed at reducing anthropogenic load and improving the ecological state of the environment.

N. Dregulo investigates the impact of climatic factors on the operation of NTS related to wastewater treatment. In [16], it is
emphasized that increased atmospheric precipitation can adversely affect the operational and environmental performance
of such systems, necessitating the revision of regulatory criteria and adaptation to changing climatic conditions.

The article “Impact of Anthropogenic Factors on Urban Heat Pollution” [17] presents a comprehensive assessment of
human activity’s effects on atmospheric heat pollution. It is noted that a significant share of heat pollution is contributed
by heat consumption and transportation, underscoring the need to develop measures to reduce anthropogenic thermal
impact in urbanized areas.

A study published on the website of LLC “Biochem-TL” analyzes the influence of anthropogenic factors on agricultural
development [18]. Particular attention is given to soil changes caused by prolonged use of fertilizers and livestock waste,
which affect the ecological condition of agricultural landscapes.

Taken together, these studies highlight the necessity of a comprehensive and adaptive approach to managing natural-
technological systems amid changing climate and increasing anthropogenic pressure. Accounting for the specifics of each
NTS component and continuous monitoring of their condition are key elements to ensure their sustainable functioning.

Research Subject Area. The object of the study is the Main Building of the Yakutsk Thermal Power Plant (Yakutsk
TPP) — a unique engineering structure constructed on permafrost (cryolithozone) conditions. This facility is particularly
interesting because it was the first industrial building in the USSR erected on permafrost soils following the pioneering
principle of construction. This means that during construction, measures were taken to preserve the frozen soils as a
reliable foundation for the power plant. Construction began in 1933, with active participation from scientists specializing
in permafrost studies. In 1937, the TPP was commissioned and has since been supplying electricity to Yakutsk, and since
1961 — also heat.

To understand how the TPP operates under permafrost conditions and how it is affected by various external factors, a
computational model was developed. This model covers an area of 180 by 150 meters and extends to a depth of up to 30
meters, enabling analysis of the permafrost soils (multi-year frozen ground, MYFG) on which the plant stands. The model
is based on data from engineering-geological boreholes. These data allow determining the behavior of soils under varying
temperature and external conditions, which is crucial for ensuring the stable operation of the TPP.

Special attention in the study is given to the thermal regime of the surrounding environment. Average monthly air
temperature data for the Yakutsk region over the past 10 years were collected and analyzed. These data are significant
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for understanding how climatic conditions change and how these changes may affect the state of frozen soils and the
operation of the TPP. It is important to note that these data differ from those provided by the Hydrometeorological Service
based on norms established since 1966. Normative data are statistical indicators obtained by long-term averaging of
climatic observations (usually over a 30-year period). These indicators serve as reference values for assessing the climatic
conditions of the region. However, under current climate change conditions, if these norms are not regularly updated,
they may not reflect modern trends and often underestimate temperature values, limiting their applicability in analyzing
the current climate state.

For studying thermodynamic processes in permafrost soils, field data obtained from engineering-geological boreholes
and stationary observation sites were used. These data represent detailed time series covering multi-year measurements
of key parameters of permafrost soils in various regions of Yakutia.

Data were collected from three main sources:

* Yakutsk Thermal Power Plant (TPP) — 8 engineering-geological boreholes where systematic measurements of soil
temperature and moisture are conducted, as well as studies of the lithological composition, physical, and thermophysical
properties of frozen soils;

* Chabyda and Tuymaada observation stations — 16 sites where soil temperature and moisture, seasonal dynamics of
thaw depth, interannual variability of the seasonally thawed layer (STS), snow cover height, snow density, and physical-
mechanical soil properties are recorded;

* Railway section of the Amur-Yakutsk railway line — 41 engineering-geological boreholes collecting data on soil
temperature and moisture, variability of the STS, snow cover height, and other geocryological parameters.

Unlike generalized climatic norms presented in official sources, these data reflect the actual processes occurring in
permafrost soils, with high resolution in depth and time. This makes them a unique source of information for studying
the stability of natural-technical systems of the Far North under conditions of climate change and anthropogenic impacts.

Data Processing and Preliminary Analysis. Consider the preprocessing of data using the example of a monitoring
dataset from sixteen sites in Yakutia, provided by the Permafrost Institute of the Siberian Branch of the Russian
Academy of Sciences (SB RAS). Each site contains its own observational data. For example, “Site 9 Chabyda” includes
information on soil temperature, moisture, seasonal dynamics of thaw depth, interannual variability of the seasonally
thawed layer, monthly snow height, interannual dynamics of snow density, seasonal dynamics of snowpack density and
height, lithological profile, and physical and thermophysical properties of soil and surface covers.

The objective of the study is to prepare data analysis using machine learning methods and to find relationships between
their attributes. It should be emphasized that the processes automated by the authors are usually performed manually or
using interactive methods. As a result of this interaction, structured and analysis-ready datasets are formed, transformed
from the raw data initially provided.

The structural scheme of the automatic data processing workflow is shown in Fig. 1.

Raw field data Data transfor'mat'lon
and standardization

Processing of omissions

Reading data from files and duplicates

Initial cleaning Organizing data
and structuring by ad platforms and sheets

Processed data Processed file

Fig. 1. Structural scheme of automated primary data processing

For data preprocessing, it is necessary to read data from XLS files (the original format of the monitoring data) and
load them into a DataFrame object using the pandas library. This stage includes detecting and handling missing values,
choosing a strategy for filling gaps in columns, as well as removing irrelevant features.
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To analyze the dataset, all relevant data should be prepared and the described Python modules applied in practice [7-8].

The first stage is extracting data from the XLS file. Efficient storage and processing of tabular data are critical aspects
when analyzing data.

We obtain information about the number of files per site:

def get excel files info(folder path: str):

won omnn

excel files info = []

for filename in tgdm(os.listdir (folder path)):

if filename.endswith(‘'.x1ls’) or filename.endswith(‘'.xlsx’):
file path = os.path.join(folder path, filename)

if filename.endswith(‘'.x1s’):

xls workbook = xlrd.open workbook (file path)

number sheets = xls workbook.nsheets

else:

workbook = load_workbook(ﬁle_path)

number sheets = len(workbook.sheetnames)

name for directory, extension = os.path.splitext (filename)
file info = {

‘file path’: file path,

‘name file’: filename,

‘type file’: ‘x1s’ if filename.endswith(‘'.xls’) else ‘xlsx’,
‘number sheets’: number sheets,

‘name for directory’: name for directory,

}

excel files info.append(file info)

return excel files info[::-1]

raw _data = get excel files info(data cache)

print (f’Number files: {len(raw_data)}\n\nList files:\n’)
pprint.pprint (raw data) .

After executing the code, the variable raw_data will contain information about the files located in the directory, which

allows for easy viewing of the contents of these files (Fig. 2).

Fig. 2. File information
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Next, we analyze the number of sheets in each dataset file:

def read non empty excel (file path, sheet name) :

wan

df = pd.read excel (file path, sheet name=sheet name)

return df if not df.empty else None

raw file = raw data[1l5]

state name = raw file.get (‘name for directory’)

df = pd.ExcelFile(raw file.get (‘file path’))

dfs = {name_ sheet: read non empty excel (df, name sheet) for name sheet in df.sheet names
if read non empty excel (df, name sheet) is not None}

key list = list(dfs.keys())

print (f’Name file: {state name}\n\nNumber sheets: {len(key list)}\n\nNames all sheets in
this file:\n\n{key list}’).

After running the code, we will have information about the number of sheets in the dataset, as well as the name of each
sheet, which allows us to directly access a specific sheet by its name (Fig. 3).

Fig. 3. Output of sheet information

However, it should be noted that some datasets contain errors in the sheet names that need to be corrected to avoid
problems in further analysis:

# Naming errors 1
if ‘Interannual snow density dynamics’ in dfs:

dfs[‘Interannual snow density dynamics’] = dfs.pop(‘Interannual snow dnamics density’)
if ‘Interannual snow density dynamics ' in dfs:

dfs[‘Interannual snow density dynamics’] = dfs.pop(‘Interannual snow density dynamics ‘')
if ‘Interannual snow density dynamics’ in dfs:

dfs[‘Interannual snow density dynamics’] = dfs.pop(‘Interannual snow density dynamics’)
# Naming errors 2
if ‘Seasonal dynamics of thaw depth’ in dfs:

dfs[‘Seasonal thaw depth dynamics’] = dfs.pop(‘Seasonal dynamics of thaw depth’)
if ‘Seasonal thaw depth dynamics’ in dfs:
dfs[‘Seasonal thaw depth dynamics’] = dfs.pop(‘Seasonal thaw depth dynamics’)

if ‘Seasonal dynamics of snow density and height’ in dfs:
dfs[‘Seasonal snow density and height dynamics’] = dfs.pop(‘Seasonal dynamics of
snow density and height’)
if ‘Seasonal snow density and height dynamics’ in dfs:
dfs[‘Seasonal snow density and height dynamics’] = dfs.pop(‘Seasonal snow density
and height dynamics’)
# Naming errors 3

if ‘Physical and thermophysical...’ in dfs:

dfs[‘Physical and thermophysical’] = dfs.pop(‘Physical and thermophysical...’)
if ‘Physical and thermophysical (typo)...’ in dfs:
dfs[‘Physical and thermophysical’] = dfs.pop(‘Physical and thermophysical (typo)...”")

key list = list(dfs.keys())
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print (f'Updated sheet names:\n\n{key list}’).
After executing the code, all the sheet names in the document were corrected (Fig. 4).

Fig. 4. Updated sheet names

Now we can proceed to processing the Excel sheets themselves.
The first sheet is titled “Soil Temperature”, which contains information about the measurement date and depth, as well
as the measurement values themselves (Fig. 5).

Fig. 5. Sheet “Soil Temperature”

For successful data processing, it is necessary to take into account the specifics of how the data are presented. In
particular, in some entries of the column containing the depth of the temperature sensors, the designation “n/m” appears.
This is not a missing value (NaN — Not a Number), but a special marker indicating that the sensor is located directly under
the snow cover. During data preparation, the “n/m” values should be replaced with the corresponding numerical depth
values according to the characteristics of the sites.

It should also be noted that the table contains missing values denoted as NaN. In this context, NaN means that a
specific parameter was not measured at a given time and depth. Additionally, the column containing dates needs to be
converted to a unified format, and the data should be checked for duplicate records, which should be removed if found. A
universal code was written to perform all of the above tasks, applicable to all the “Soil Temperature” sheets in the dataset
as a whole.

dfl = dfs[‘'Soil Temperature’]
# Dictionary for replacing «mn/mo» values for specific sites
dict pp values = {‘Site 9 Chabyda’: 0.08,
‘Site 10 _Chabyda’: 0.03,
‘Site 11 Chabyda’: 0.02}
if state name in dict pp values:
dfl.replace({‘n/n’: dict pp values[state name]}, inplace=True)
dict pkr values = {‘'Site 8 Chabyda’: 0.06}
if state name in dict pkr values:
dfl.replace ({‘moxm nkp’: dict pkr values[state name]}, inplace=True)

date indices = dfl[dfl.apply(lambda row: row.astype(str).str.contains(‘'Date’).any(),
axis=1)].index[1:]

dfl = dfl.drop(date indices)

dfl = dfl.iloc[1l:]

dfl = dfl.reset index(drop=True)
dfl.columns = dfl.iloc[0]

dfl = dfl.iloc[1l:]
dfl = dfl.reset index(drop=True)
dfl = dfl.rename (columns={‘Date ‘: ‘Date’})

dfl[‘Date’] = pd.to datetime (dfl[‘Date’])
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for column in dfl.columns:
if column != ‘Date’:
dfl[column] = dfl[column].astype (float)
def drop_duplicate(df, sort columns) :
""" Remove duplicate rows and sort the dataframe. """
duplicate df = df[df.duplicated()]
if not duplicate df.empty:
print (f’Duplicate rows:\n{duplicate df}\n’)
df = df.drop duplicates (keep='last’)
else:
print (‘No duplicate rows found’)
df = df.sort values(by=sort columns)
df = df.reset index(drop=True)
return df
dfl = drop duplicate(dfl, ‘Date’)
dfl

After executing the code, the variable df1 contains the processed sheet «Soil Temperature,» which is easy to read and
understand (Fig. 6).

Fig. 6. Processed data of the “Soil Temperature” sheet

The second sheet, “Soil Moisture”, contains similar information to the “Soil Temperature” sheet. However, more transforma-
tions are required, such as removing empty rows, renaming the column “Date of determination” to “Date” and converting it to
date format, replacing letter values like “Ice” with numeric values, searching for duplicates, and removing them (Fig. 7).

Fig. 7. The “Soil Moisture” sheet
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To accomplish this, code was written that performs all these transformations for the “Soil Moisture” sheets:

df2 = dfs|[ ‘BraxHOoCT: I'PyHTOB’ ]

df2 = df2.iloc[1l:]

df2 = df2.reset index(drop=True)
df2.columns = df2.iloc[0]

df2 = df2.iloc[1l:]

df2 = df2.reset index(drop=True)

df2 = df2.rename (columns={‘laTa onpenejyeHUs
df2 = df2.dropna (how="all’)

df2 = df2.dropna (thresh=2)

if state name
df2[‘Oara’] =
df2[ ‘CxBaxeHa

df2[‘OaTa’] =
df2[Ydara’] =
df2[Ydara’] =

for index,
try:
df2.at[index,

"]

== ‘llnomanxka Jlec Tyrimaana’ :

df2[‘Oara’].astype (str)

df2[‘OaTra’] .astype(str) .str.replace('*’,
df2[‘OaTta’] .apply(lambda x:

row in df2.iterrows () :

‘IMaTa' ] =

strftime (‘$Y-%m-%d $H:%M:%S’)

except ValueError:

pass

if state name == ‘lnomaaxka Jlyr Tyimaana’:

df2[‘OaTa’] =
df2 =

df2[‘Oara’].astype (str)

def fill skvazhena (row) :

if Y/

return ‘2’

elif row[‘OaTra’].count (' V)

return ‘3’
else:

return ‘1’

df2 [ ‘CxBaxeHa’

df2[‘Oara’]
df2 [ ‘OaTa’]
df2[‘OaTa’] =

for index,

try:

df2.at[index,
strftime (‘%

in row[ ‘Oara’]:

r .

= df2[‘Oara’].apply(lambda x:
df2[‘OaTa’].astype(str).str.replace(' *',

X +

pd.to datetime (row[ ‘OaTa’],

df2[~df2[‘daTra’] .str.contains (‘OaTa’) ]

‘Dara’ })

1 if Y*’ in x else 2)
\I)
\I)

Y 00:00:00" 1if len(x)

== 0 and not row[‘Hara’].isdigit():

] = df2.apply (fill skvazhena, axis=1)

df2[‘Oara’].astype (str).str.replace(' *',
df2[‘Oara’].astype (str).str.replace(‘*’,
df2[‘Oara’].apply(lambda x:

row in df2.iterrows () :

‘IaTa'] =

-sm-%d TH:3M:%S’)

except ValueError:

pass
months dict =

months dict number = {‘January’:

60

{‘AuBapp’: ‘January’,
‘deppanw’: ‘February’,
‘March’,

‘April’,

‘MapT’ :
‘AnpeJsb’ :
‘Man’ :

‘MioHB ' @

‘May’,
‘June’,
‘July’,

‘ApTyCT' @

‘Uonis’ :
‘August’,
‘CeHTAbOpPL' :
‘OxTsabpb’ : ‘October’,
‘Hosbpr’: ‘November’,
‘Ilexkabpb’ : ‘December’}
‘February’:
‘March’: ‘037,

‘September’

01,
27,

X +

pd.to datetime (row[‘OaTa’],

\I)
\I)

Y 00:00:00" if len(x)

10 else x)

format='%d.%m.%Y SH:%M:

== 10 else x)

format='%d.%m.%Y S$H:%M:
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‘April’: 104',
‘May’: ‘05',
‘June’: ‘06’,
‘July’: ‘07',
‘August’: ‘08’,
‘September’: ‘09',
‘October’: ‘10',
‘November’: ‘117,
‘December’: ‘12'}
df2[‘Ton’] = np.where(df2[‘CxBaxeHa’] == ‘3’, ‘1979’, np.nan)
df2[‘lara’].replace (months dict, inplace=True, regex=True)
df2[‘Oara’] .replace (months dict number, inplace=True, regex=True)
df2.loc[df2[‘CkBaxena’] == ‘3’, ‘Dara’] = df2[‘Ton’] + ‘-’ + df2[‘Oara’] + *-01 00:00:00"
df2 = df2.drop([‘Tomn’], axis=1)
df2 = df2.sort values (by='IllaTta’)
df2 = df2.reset index(drop=True)
df2[‘lara’] = pd.to_datetime (df2[‘Hara’])
# BaMeHna 3HaueHusa «Jlem» Ha «-1.0»
df2.replace(Ven’, -1.0, inplace=True)
for column in df2.columns:
if column != ‘JaTa’:
df2[column] = df2[column].astype (float)
if ‘Ckeaxena’ in df2.columns:
df2 [ ‘CxBaxena’] = df2[‘CxeaxeHa’].astype(int)
df2 = drop duplicate(df2, ‘Hara’).

After running the code, the variable df2 contains the processed sheet «Soil Moisture,» presented in a human-readable
format (Fig. 8).

Fig. 8. Processed data of the “Soil Moisture” sheet

In a similar way, the remaining seven sheets for “Site 9 Chabyda” and the other fifteen sites, each containing nine
sheets of data, were processed. To save the results of this work, a function was written that creates a directory with
subfolders to store the processed data by site and corresponding sheets (Fig. 9) in the following formats:

* CSV (Comma-Separated Values) — one of the most common formats for representing tabular data, a simple and
universal format used for storing data as text files based on comma-separated values;

* JSON (JavaScript Object Notation) — a standard text format for storing and transmitting structured data;

* XLSX — the Microsoft Excel file format used for storing spreadsheets.

Fig. 9. Saving processed data in CSV, JSON, and XLSX formats
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A script was also written to create an XLSX file containing summary information about the sites:

xlsx files = [f for f in os.listdir(f’{folder path}/xlsx/’) if f.endswith («.xlsx»)]

xlsx dfs = {}

# Reading data from each file and adding it to a dictionary

for file in xlsx files:

file path = os.path.join(f’ {folder path}/xlsx/’, file)

x1l = pd.ExcelFile (file path)

for sheet name in x1.sheet names:

df = xl.parse(sheet name)

if sheet name not in xlsx dfs:

x1sx dfs[sheet name] = []

x1sx dfs[sheet name].append (df)

with pd.ExcelWriter(f’{folderipath}/xlsx/{stateiname}.xlsx’, engine=’'xlsxwriter’) as
writer:

for sheet name, dataframes in xlsx dfs.items():

for i, df in enumerate (dataframes) :

df.to excel (writer, sheet name=sheet name, index=False).

After running it, a file with summary information for each of the sites is generated (Fig. 10).

Nnowanxa AlmpoTa_ase Renrora_nue Wwpota_an Aenrota_an KOnwaecTBo_MeTpus. THN_MecTHOCTH Yenoaws MNepaan_gara MWJNI:

| rimouamea iy _Tyin 20U AT cw | 1w 620136 120857 3 | Crussceica wepsn 1967-08-14 20221214
| nrcunzes Pac_Tyime 6100 46 cw 12 W e 10128 1288531 g Crusdwedcn weosn 1967-08-18 2022124
Mnowanea (Craman 615727 cau 120" 24507 ea 61.9575 1204138 L} Mermogonmsnl | CAMBIOURACA 1 He C 1980-09-12 20224214

| rnouwagxa 10_tagena 61' 57 107 120025 45 B2 61,6528 128.4204 ] Conosepih  COMBSOUISICA W HE © 1982-11-01 20221214
| Mrowagea 11_Haduza B ST O cw 12025 4F 82 §1.5500 1264300 L] Crnorall | CAMBILRCE 1t 1o € 15101 202212141
Mnowaze 3_Yateas 51" 5736 cu 1200 4 550 51,6500 120.4147 ] Conpsps  CrMBIOWSAC 48 © 1981-01-01 10890101
Mnowatxa 3a_Uatess 61' 57 26" cow 120025 17 619572 1204214 g Cuntranslh | CMBIOURACH ¥ HE C 19821101 20221214

| Mnewazes 4_Hadwuza B AT cw 1200252 e 15567 1294242 @ Conprnal  CANBROUMACR it W C. 19800702 19850101
Mnowase §_Yabeaa 61' 57 26 cu 1200 25 05 ma 51,6578 1204175 ] Conosps | CrMBSOWSRCA 1 HE C 1960-07-02 2022-12-14]

| Pinouanes 6_tatuze 61' 57 36" cu 12002455 88 61,9500 1204147 9 Cunoweph  COMBEOUSIIC i HE ¢ 1982-10-01 19020401
Nrousansa B5_4atsa 8152 e 120025 2T 02 &1 5567 120.4242 ] Corowial | CARBRIOUIACA it We €. 15821101 20221214
Mnowazes 7_Yatens 61' 5736 cw 120° 24 5T B 51,6600 128 4147 9 Conoseslh  CRUBSOWSHCA 1 HE © 1982-16-01 1991-04-02

| nnousagea 76_tasuns 61" 57 26" cu 120025 1T e 61,6572 1204214 9 Conokeesh | CRMBSOUBACA it HE © 1682-11-01 20221214
| Mnceuases 8_Waluwde B AT AT cw 1207261 e 61,5547 120.4203 Ll Marcogonnepd  CARBAHIIAICE 1 W C 1§8210-01 20221214
Mnousanea 8a_Ysduis B ST Cw 120250 e 51.9540 1204102 [} Mensogoniusisil | CrMBIOURACA 1 He C 1982-11-01 20221214

| Mncwazca s_uatuaa 61" 570X cuw 12000556 8. £1.9508 128,0989 ] Conowesh | COMBEOUSICA i HE © 1882101 20221214

Fig. 10. File with summary information on the sites

Results. The processing and systematization of data made it possible to unify disparate measurements into a consistent
format, ensuring their correct use in subsequent calculations. As a result, a unique dataset was obtained that has no
analogs, since it is based on direct empirical observations and covers the specific conditions of the studied area.

Data analysis using Python is a highly demanded skill in the modern world. This language is characterized by relative
ease of learning, making it accessible for beginners. The work considered the main stages of data processing using Python
libraries: preprocessing and data preparation. Using the example of the dataset “Site 9 Chabyda,” key preprocessing
techniques were demonstrated, such as detection and handling of missing values, data transformation, optimization, as
well as removal of insignificant attributes.

Discussion and Conclusion. The results demonstrate that applying a systematic approach to data processing
significantly improves the quality and reliability of the analysis. Addressing missing data and normalizing the dataset
improves the reliability of the dataset. The final processed data is provided in convenient formats for further use
in modelling, including CSV, JSON, and XLSX formats. This highlights the versatility of Python in solving data
processing tasks.

Future research plans include expanding the study by incorporating data analysis methods such as clustering, machine
learning model development, and result visualization [12, 14, 19]. These methods will not only help uncover hidden
patterns within the data but also enable the prediction of the behavior of natural-technical systems under changing
external conditions. Special attention will be given to modelling the impact of climatic factors and anthropogenic loads
on natural-technical systems, providing a more comprehensive understanding of processes occurring in the conditions of
the Far North.
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